JPWO2015105045A1 - Ferritic stainless steel and manufacturing method thereof - Google Patents

Ferritic stainless steel and manufacturing method thereof Download PDF

Info

Publication number
JPWO2015105045A1
JPWO2015105045A1 JP2015547592A JP2015547592A JPWO2015105045A1 JP WO2015105045 A1 JPWO2015105045 A1 JP WO2015105045A1 JP 2015547592 A JP2015547592 A JP 2015547592A JP 2015547592 A JP2015547592 A JP 2015547592A JP WO2015105045 A1 JPWO2015105045 A1 JP WO2015105045A1
Authority
JP
Japan
Prior art keywords
phase
rolled sheet
range
hot
sheet annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015547592A
Other languages
Japanese (ja)
Other versions
JP5862846B2 (en
Inventor
正崇 吉野
正崇 吉野
太田 裕樹
裕樹 太田
彩子 田
彩子 田
松原 行宏
行宏 松原
映斗 水谷
映斗 水谷
光幸 藤澤
光幸 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015547592A priority Critical patent/JP5862846B2/en
Application granted granted Critical
Publication of JP5862846B2 publication Critical patent/JP5862846B2/en
Publication of JPWO2015105045A1 publication Critical patent/JPWO2015105045A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Abstract

十分な耐食性および成形性(伸びおよび平均r値が大きく、|Δr|が小さい)を有し、かつ線状疵の発生が少ない表面性状に優れたフェライト系ステンレス鋼およびその製造方法を提供する。本発明のフェライト系ステンレス鋼は、質量%で、C: 0.005〜0.05%、Si: 0.02〜0.50%、Mn: 0.05〜1.0%、P: 0.04%以下、S: 0.01%以下、Cr: 15.5〜18.0%、Al: 0.001〜0.10%、N: 0.01〜0.06%、V: 0.01〜0.25%、Ti: 0.001〜0.020%、Nb: 0.001〜0.030%を含有し、残部がFeおよび不可避的不純物からなり、かつV/(Ti+Nb)≧2.0を満たす。Provided is a ferritic stainless steel having sufficient corrosion resistance and formability (elongation and average r value is large, | Δr | is small) and excellent in surface properties with little occurrence of linear flaws, and a method for producing the same. Ferritic stainless steel of the present invention is in mass%, C: 0.005-0.05%, Si: 0.02-0.50%, Mn: 0.05-1.0%, P: 0.04% or less, S: 0.01% or less, Cr: 15.5- Contains 18.0%, Al: 0.001 to 0.10%, N: 0.01 to 0.06%, V: 0.01 to 0.25%, Ti: 0.001 to 0.020%, Nb: 0.001 to 0.030%, with the balance consisting of Fe and inevitable impurities And V / (Ti + Nb) ≧ 2.0.

Description

本発明は、十分な耐食性および成形性を有し、かつ熱間圧延や焼鈍に起因する線状疵の発生がない表面性状に優れたフェライト系ステンレス鋼およびその製造方法に関するものである。   The present invention relates to a ferritic stainless steel having sufficient corrosion resistance and formability and excellent surface properties free from the occurrence of linear flaws due to hot rolling or annealing, and a method for producing the same.

フェライト系ステンレス鋼は、安価で耐食性に優れているため、建材、輸送機器、家電製品、厨房器具、自動車部品などのさまざまな用途に使用されており、その適用範囲は近年さらに拡大しつつある。これらの用途に適用するためには、フェライト系ステンレス鋼に対して、耐食性だけでなく、所定の形状に加工できる十分な成形性(伸びが大きく(以下、伸びが十分大きいことを延性があると称することがある)、平均ランクフォード値(以下、平均r値と称することがある)が大きく、r値の面内異方性の絶対値(以下、|Δr|と称することがある)が小さい)が必要になる。また、表面美麗性を必要とする用途に適用する場合には、表面性状に優れることも必要となる。   Since ferritic stainless steel is inexpensive and excellent in corrosion resistance, it is used in various applications such as building materials, transportation equipment, home appliances, kitchen appliances, and automobile parts, and its application range is expanding further in recent years. In order to be applied to these applications, not only corrosion resistance but also sufficient formability that can be processed into a predetermined shape (large elongation (hereinafter, elongation is sufficiently large) The average rankford value (hereinafter sometimes referred to as the average r value) is large, and the absolute value of the in-plane anisotropy of the r value (hereinafter sometimes referred to as | Δr |) is small. ) Is required. In addition, when applied to applications that require surface aesthetics, it is also necessary to have excellent surface properties.

上記に対して、特許文献1では、質量%で、C: 0.02〜0.06%、Si:1.0%以下、Mn:1.0%以下、P: 0.05%以下、S: 0.01%以下、Al: 0.005%以下、Ti: 0.005%以下、Cr: 11〜30%、Ni: 0.7%以下を含み、かつ0.06≦(C+N)≦0.12、1≦N/Cおよび1.5×10-3≦(V×N)≦1.5×10-2(C、N、Vはそれぞれ各元素の質量%を表す)を満たすことを特徴とする成形性および耐リジング特性に優れるフェライト系ステンレス鋼が開示されている。しかし、特許文献1では異方性については一切言及されていない。また、熱間圧延後にいわゆる箱焼鈍(例えば、860℃で8時間の焼鈍)を行う必要がある。このような箱焼鈍プロセスは加熱、冷却の過程を含めると完了まで一週間程度の時間を要するため、生産性が低いという問題がある。On the other hand, in Patent Document 1, in mass%, C: 0.02 to 0.06%, Si: 1.0% or less, Mn: 1.0% or less, P: 0.05% or less, S: 0.01% or less, Al: 0.005% or less Ti: 0.005% or less, Cr: 11-30%, Ni: 0.7% or less, and 0.06 ≦ (C + N) ≦ 0.12, 1 ≦ N / C and 1.5 × 10 −3 ≦ (V × N) ≦ 1.5 A ferritic stainless steel excellent in formability and ridging resistance, characterized by satisfying × 10 −2 (C, N, and V each represents mass% of each element) is disclosed. However, Patent Document 1 does not mention any anisotropy. Further, it is necessary to perform so-called box annealing (for example, annealing at 860 ° C. for 8 hours) after hot rolling. Such a box annealing process has a problem of low productivity because it takes about one week to complete when heating and cooling processes are included.

特許文献2では、質量%で、C: 0.01〜0.10%、Si: 0.05〜0.50%、Mn: 0.05〜1.00%、Ni: 0.01〜0.50%、Cr: 10〜20%、Mo: 0.005〜0.50%、Cu: 0.01〜0.50%、V: 0.001〜0.50%、Ti: 0.001〜0.50%、Al: 0.01〜0.20%、Nb: 0.001〜0.50%、N: 0.005〜0.050%およびB: 0.00010〜0.00500%を含有した鋼を熱間圧延後、箱型炉あるいはAPライン(annealing and pickling line)の連続炉を用いてフェライト単相温度域で熱延板焼鈍を行い、さらに冷間圧延および仕上げ焼鈍を行うことを特徴とした加工性と表面性状に優れたフェライト系ステンレス鋼が開示されている。しかし、箱型炉を用いた場合には上記の特許文献1と同様に生産性が低いという問題がある。また、特許文献2では伸びに関しては一切言及されていないが、熱延板焼鈍を連続焼鈍炉でフェライト単相温度域で行った場合、焼鈍温度が低いために再結晶が不十分となり、フェライト単相温度域で箱焼鈍を行った場合に比べて伸びが低下する。また、一般に特許文献2のようなフェライト系ステンレス鋼は、鋳造あるいは熱延時に類似した結晶方位を有する結晶粒群(コロニー)が生成し、|Δr|が大きくなるという問題がある。   In Patent Document 2, in mass%, C: 0.01 to 0.10%, Si: 0.05 to 0.50%, Mn: 0.05 to 1.00%, Ni: 0.01 to 0.50%, Cr: 10 to 20%, Mo: 0.005 to 0.50% , Cu: 0.01-0.50%, V: 0.001-0.50%, Ti: 0.001-0.50%, Al: 0.01-0.20%, Nb: 0.001-0.50%, N: 0.005-0.050% and B: 0.00010-0.00500% Hot rolling the contained steel, followed by hot-rolled sheet annealing in the ferrite single-phase temperature range using a box furnace or AP line (annealing and pickling line) continuous furnace, followed by cold rolling and finish annealing. Ferritic stainless steels with excellent workability and surface properties characterized by the above are disclosed. However, when a box furnace is used, there is a problem that productivity is low as in Patent Document 1 described above. Patent Document 2 does not mention any elongation at all. However, when hot-rolled sheet annealing is performed in a ferrite single-phase temperature range in a continuous annealing furnace, recrystallization becomes insufficient because the annealing temperature is low, and ferrite single Elongation is lower than when box annealing is performed in the phase temperature range. In general, ferritic stainless steel as in Patent Document 2 has a problem that a crystal grain group (colony) having a similar crystal orientation is formed during casting or hot rolling, and | Δr | becomes large.

特許第3584881号公報(再公表WO00/60134号)Japanese Patent No. 3588281 (Republication WO00 / 60134) 特許第3581801号公報(特開2001−3134号)Japanese Patent No. 3582001 (Japanese Patent Laid-Open No. 2001-3134)

本発明は、かかる課題を解決し、十分な耐食性および成形性を有し、かつ熱間圧延や焼鈍に起因する線状疵の発生がない表面性状に優れたフェライト系ステンレス鋼およびその製造方法を提供することを目的とする。   The present invention solves such problems, and provides a ferritic stainless steel having sufficient corrosion resistance and formability, and excellent surface properties free from the occurrence of linear flaws due to hot rolling or annealing, and a method for producing the same. The purpose is to provide.

なお、本発明において、十分な耐食性とは、表面を#600エメリーペーパーにより研磨仕上げした後に端面部をシールした鋼板にJIS H 8502に規定された塩水噴霧サイクル試験((塩水噴霧(35℃、5質量%NaCl、噴霧2h)→乾燥(60℃、相対湿度40%、4h)→湿潤(50℃、相対湿度≧95%、2h))を1サイクルとする試験)を3サイクル行った場合の鋼板表面における発錆面積率(=発錆面積/鋼板全面積×100 [%])が25%以下であることを意味する。   In the present invention, sufficient corrosion resistance refers to a salt spray cycle test ((salt spray (35 ° C., 5 ° C.) specified in JIS H 8502) on a steel plate whose surface is polished and polished with # 600 emery paper. (Mass% NaCl, spray 2h) → Drying (60 ° C, relative humidity 40%, 4h) → Wet (50 ° C, relative humidity ≥ 95%, 2h)))) It means that the rusting area ratio on the surface (= rusting area / total area of steel plate × 100 [%]) is 25% or less.

また、十分な成形性とは、JIS Z 2241に準拠した引張試験における破断伸びが圧延方向と直角方向に採取した試験片を用いた際に25%以上であること、JIS Z2241に準拠した引張試験において15%のひずみを付与した際の下記(1)式により算出される平均r値が0.65以上であること、および下記(2)式により算出されるr値の面内異方性(以下、Δrと称す)の絶対値(|Δr|)が0.30以下であることを意味する。
平均r値=(rL+2×rD+rC)/4 (1)
Δr=(rL−2×rD+rC)/2 (2)
ここで、rLは圧延方向に平行な方向に引張試験した際のr値、rDは圧延方向に対して45°の方向に引張試験した際のr値、rCは圧延方向と直角方向に引張試験した際のr値である。
In addition, sufficient formability means that the elongation at break in a tensile test based on JIS Z 2241 is 25% or more when using a specimen taken in a direction perpendicular to the rolling direction, and a tensile test based on JIS Z2241 The average r value calculated by the following equation (1) when applying a strain of 15% in the above is 0.65 or more, and the in-plane anisotropy of the r value calculated by the following equation (2) (hereinafter, This means that the absolute value (| Δr |) of Δr) is 0.30 or less.
Average r value = (r L + 2 × r D + r C ) / 4 (1)
Δr = (r L −2 × r D + r C ) / 2 (2)
Here, r L is an r value when a tensile test is performed in a direction parallel to the rolling direction, r D is an r value when a tensile test is performed in a direction of 45 ° with respect to the rolling direction, and r C is a direction perpendicular to the rolling direction. The r value when a tensile test is performed.

課題を解決するために検討した結果、適切な成分のフェライト系ステンレス鋼に対して熱間圧延後の鋼板を冷間圧延する前に、フェライト相とオーステナイト相の二相となる温度域で焼鈍を行うことにより、十分な耐食性と成形性を有するフェライト系ステンレス鋼が得られることを見いだした。また、鋼板表面の線状疵については、熱間圧延時に粗大なCr炭窒化物を析出させないよう、上記の適切な鋼成分の範囲においてV、TiおよびNbをさらに規定することで、発生を抑制することができ、その結果、耐食性ならびに成形性だけでなく表面性状にも優れることを見出した。   As a result of studying to solve the problem, before cold-rolling the steel sheet after hot rolling on ferritic stainless steel with an appropriate component, annealing was performed in a temperature range in which the ferrite phase and the austenite phase become two phases. It has been found that a ferritic stainless steel having sufficient corrosion resistance and formability can be obtained. In addition, wire rods on the steel sheet surface are suppressed by further defining V, Ti, and Nb within the above-mentioned range of appropriate steel components so as not to precipitate coarse Cr carbonitride during hot rolling. As a result, it was found that not only the corrosion resistance and moldability but also the surface properties were excellent.

本発明は以上の知見に基づいてなされたものであり、以下を要旨とするものである。
[1]質量%で、C: 0.005〜0.05%、Si: 0.02〜0.50%、Mn: 0.05〜1.0%、P: 0.04%以下、S: 0.01%以下、Cr: 15.5〜18.0%、Al: 0.001〜0.10%、N: 0.01〜0.06%、V: 0.01〜0.25%、Ti: 0.001〜0.020%、Nb: 0.001〜0.030%を含有し、残部がFeおよび不可避的不純物からなり、かつV/(Ti+Nb)≧2.0を満たすフェライト系ステンレス鋼。
[2]質量%で、C: 0.01〜0.05%、Si: 0.02〜0.50%、Mn: 0.2〜1.0%、P: 0.04%以下、S: 0.01%以下、Cr: 16.0〜18.0%、Al: 0.001〜0.10%、N: 0.01〜0.06%、V: 0.01〜0.25%、Ti: 0.001〜0.015%、Nb: 0.001〜0.025%を含有し、残部がFeおよび不可避的不純物からなり、かつV/(Ti+Nb)≧2.0を満たすフェライト系ステンレス鋼。
[3]質量%で、さらに、Cu:0.1〜1.0%、Ni: 0.1〜1.0%、Mo: 0.1〜0.5%、Co: 0.01〜0.5%のうちから選ばれる1種または2種以上を含む前記[1]または[2]に記載のフェライト系ステンレス鋼。
[4]質量%で、さらに、Mg: 0.0002〜0.0050%、B: 0.0002〜0.0050%、REM: 0.01〜0.10%、 Ca: 0.0002〜0.0020%のうちから選ばれる1種または2種以上を含む前記[1]〜[3]のいずれかに記載のフェライト系ステンレス鋼。
[5]前記[1]から[4]のいずれかに記載の成分組成を有する鋼スラブを、熱間圧延を施し、次いで880〜1000℃の温度範囲で5秒〜15分間保持する焼鈍を行い熱延焼鈍板とし、次いで冷間圧延を施した後、800〜950℃の温度範囲で5秒〜5分間保持する冷延板焼鈍を行うフェライト系ステンレス鋼の製造方法。
なお、本明細書において、鋼の成分を示す%はすべて質量%である。
This invention is made | formed based on the above knowledge, and makes the following a summary.
[1] By mass%, C: 0.005 to 0.05%, Si: 0.02 to 0.50%, Mn: 0.05 to 1.0%, P: 0.04% or less, S: 0.01% or less, Cr: 15.5 to 18.0%, Al: 0.001 ~ 0.10%, N: 0.01 ~ 0.06%, V: 0.01 ~ 0.25%, Ti: 0.001 ~ 0.020%, Nb: 0.001 ~ 0.030%, the balance is Fe and inevitable impurities, and V / (Ti + Nb ) Ferritic stainless steel that satisfies ≧ 2.0.
[2] By mass%, C: 0.01 to 0.05%, Si: 0.02 to 0.50%, Mn: 0.2 to 1.0%, P: 0.04% or less, S: 0.01% or less, Cr: 16.0 to 18.0%, Al: 0.001 ~ 0.10%, N: 0.01 ~ 0.06%, V: 0.01 ~ 0.25%, Ti: 0.001 ~ 0.015%, Nb: 0.001 ~ 0.025%, the balance is Fe and inevitable impurities, and V / (Ti + Nb ) Ferritic stainless steel that satisfies ≧ 2.0.
[3] In the mass%, the composition further includes one or more selected from Cu: 0.1 to 1.0%, Ni: 0.1 to 1.0%, Mo: 0.1 to 0.5%, and Co: 0.01 to 0.5%. The ferritic stainless steel according to [1] or [2].
[4] In the mass%, the composition further includes one or more selected from Mg: 0.0002 to 0.0050%, B: 0.0002 to 0.0050%, REM: 0.01 to 0.10%, Ca: 0.0002 to 0.0020% The ferritic stainless steel according to any one of [1] to [3].
[5] The steel slab having the composition according to any one of [1] to [4] is hot-rolled and then annealed at a temperature range of 880 to 1000 ° C. for 5 seconds to 15 minutes. A method for producing a ferritic stainless steel, in which a hot-rolled annealed sheet is used, followed by cold rolling, followed by cold-rolled sheet annealing in a temperature range of 800 to 950 ° C. for 5 seconds to 5 minutes.
In addition, in this specification, all% which shows the component of steel is the mass%.

本発明によれば、十分な耐食性および成形性(伸びおよび平均r値が大きく、|Δr|が小さい)を有し、かつ線状疵の発生が少ない表面性状に優れたフェライト系ステンレス鋼が得られる。   According to the present invention, a ferritic stainless steel having a sufficient corrosion resistance and formability (elongation and average r value is large, | Δr | is small) and excellent in surface properties with little generation of linear defects is obtained. It is done.

以下、本発明を詳細に説明する。
フェライト系ステンレス鋼は、質量%で、C: 0.005〜0.05%、Si: 0.02〜0.50%、Mn: 0.05〜1.0%、P: 0.04%以下、S: 0.01%以下、Cr: 15.5〜18.0%、Al: 0.001〜0.10%、N: 0.01〜0.06%、V: 0.01〜0.25%、Ti: 0.001〜0.020%、Nb: 0.001〜0.030%を含有し、残部がFeおよび不可避的不純物からなり、かつV/(Ti+Nb)≧2.0を満たすことを特徴とする。本発明では、成分組成のバランスが重要であり、特にVとTiとNbのバランスが重要である。V: 0.01〜0.25%、Ti: 0.001〜0.020%、Nb: 0.001〜0.030%とし、V/(Ti+Nb)≧2.0を満たすことは重要な要件である。このような成分組成の組み合わせとすることで、十分な耐食性と十分な成形性を有し、かつ線状疵の発生が少ない表面性状に優れたフェライト系ステンレス鋼を得る事ができる。
Hereinafter, the present invention will be described in detail.
Ferritic stainless steel is mass%, C: 0.005-0.05%, Si: 0.02-0.50%, Mn: 0.05-1.0%, P: 0.04% or less, S: 0.01% or less, Cr: 15.5-18.0%, Al: 0.001 to 0.10%, N: 0.01 to 0.06%, V: 0.01 to 0.25%, Ti: 0.001 to 0.020%, Nb: 0.001 to 0.030%, the balance is Fe and inevitable impurities, and V /(Ti+Nb)≧2.0. In the present invention, the balance of the component composition is important, and in particular, the balance of V, Ti, and Nb is important. V: 0.01 to 0.25%, Ti: 0.001 to 0.020%, Nb: 0.001 to 0.030%, and satisfying V / (Ti + Nb) ≧ 2.0 are important requirements. By using such a combination of component compositions, it is possible to obtain a ferritic stainless steel having sufficient corrosion resistance and sufficient formability, and having excellent surface properties with little generation of linear flaws.

まず、本発明の技術内容について詳細に説明する。
発明者らは箱焼鈍(バッチ焼鈍)のような長時間の熱延板焼鈍ではなく、生産性の高い連続焼鈍炉を用いた短時間の熱延板焼鈍により所定の成形性を得る技術について検討した。連続焼鈍炉を用いた従来技術においての課題は、焼鈍をフェライト単相温度域で行っているために十分な再結晶が生じず、十分な伸びが得られないこと、コロニーが冷延板焼鈍後にまで残存するために|Δr|が大きいことであった。そこで、発明者らは、熱延板焼鈍をフェライト相とオーステナイト相の二相域で行った後に、常法で冷間圧延ならびに冷延板焼鈍を行い、最終的に再度フェライト単相組織とすることを考案した。
First, the technical contents of the present invention will be described in detail.
The inventors examined a technique for obtaining a predetermined formability by short-time hot-rolled sheet annealing using a high-productivity continuous annealing furnace, instead of long-time hot-rolled sheet annealing such as box annealing (batch annealing). did. The problem with the prior art using a continuous annealing furnace is that annealing is performed in the ferrite single-phase temperature range, so that sufficient recrystallization does not occur and sufficient elongation cannot be obtained, and after the colony is cold-rolled sheet annealed In other words, | Δr | is large. Therefore, the inventors performed hot rolling sheet annealing in a two-phase region of a ferrite phase and an austenite phase, and then cold-rolled and cold-rolled sheet annealing by a conventional method, and finally made a ferrite single-phase structure again. I devised that.

すなわち、熱延板焼鈍をフェライト単相温度域よりも高温のフェライト相とオーステナイトの二相域で行うことにより、フェライト相の再結晶が促進される。その結果、熱間圧延によって加工ひずみが導入されたフェライト結晶粒が冷延板焼鈍後にまで残存することが回避され、冷延板焼鈍後の伸びが向上する。また、熱延板焼鈍でフェライト相からオーステナイト相が生成する際に、オーステナイト相が焼鈍前のフェライト相とは異なった結晶方位を有して生成するために、フェライト相のコロニーが効果的に破壊される。そのため、冷間圧延および冷延板焼鈍を行った後の冷延焼鈍板の金属組織では、r値を向上させるγ−ファイバー集合組織が発達するとともに、コロニーが分断され、金属組織の異方性が緩和され、|Δr|が小さくなるという優れた特性が得られることになる。   That is, recrystallization of the ferrite phase is promoted by performing the hot-rolled sheet annealing in the two-phase region of the ferrite phase and austenite that are higher in temperature than the ferrite single-phase temperature region. As a result, it is avoided that the ferrite crystal grains introduced with work strain by hot rolling remain until after cold-rolled sheet annealing, and the elongation after cold-rolled sheet annealing is improved. Also, when the austenite phase is generated from the ferrite phase by hot-rolled sheet annealing, the austenite phase is generated with a crystal orientation different from that of the ferrite phase before annealing, which effectively destroys the ferrite phase colony. Is done. Therefore, in the metal structure of the cold-rolled annealed sheet after cold rolling and cold-rolled sheet annealing, a γ-fiber texture that improves the r value develops, the colonies are divided, and the anisotropy of the metal structure Is relaxed and an excellent characteristic that | Δr | becomes small is obtained.

さらに、熱延板焼鈍をフェライト相とオーステナイト相の二相域で行った場合、熱延板焼鈍後はフェライト相と、オーステナイト相から変態したマルテンサイト相の二相組織となる。しかし、このマルテンサイト相を含んだ熱延焼鈍板を冷間圧延することにより、マルテンサイト相がフェライト相に比べて硬質なために、マルテンサイト相近傍のフェライト相が優先的に変形して圧延ひずみが集中し、冷延板焼鈍時の再結晶サイトが一層増加する。これにより、冷延板焼鈍時の再結晶がより促進され、冷延板焼鈍後の金属組織の異方性が一層緩和される。   Further, when hot-rolled sheet annealing is performed in a two-phase region of a ferrite phase and an austenite phase, after the hot-rolled sheet annealing, a two-phase structure of a ferrite phase and a martensite phase transformed from the austenite phase is obtained. However, by cold rolling this hot-rolled annealed sheet containing the martensite phase, the martensite phase is harder than the ferrite phase, so the ferrite phase near the martensite phase is preferentially deformed and rolled. The strain concentrates and the recrystallization sites during cold-rolled sheet annealing further increase. Thereby, recrystallization at the time of cold-rolled sheet annealing is further promoted, and the anisotropy of the metal structure after the cold-rolled sheet annealing is further relaxed.

しかしながら、従来成分の鋼に対して上記のフェライト相とオーステナイト相の二相域で熱延板焼鈍を行うと、冷延板焼鈍後に圧延方向に沿った線状の疵(以下、線状疵と称することがある)が発生し、表面性状が著しく低下するという新たな問題が生じることが明らかとなった。   However, when hot-rolled sheet annealing is performed on the steel of the conventional component in the two-phase region of the ferrite phase and austenite phase, linear wrinkles (hereinafter referred to as linear wrinkles) along the rolling direction after cold-rolled sheet annealing are performed. It has become clear that a new problem arises that surface properties are significantly reduced.

そこで、発明者らは成形性と表面性状を両立させるため、フェライト相とオーステナイト相の二相域で熱延板焼鈍を行うことにより線状疵が発生した原因について調査した。その結果、線状疵は熱延板焼鈍後の鋼板表層部に存在する著しく硬質なマルテンサイト相に起因することがわかった。すなわち、熱延板焼鈍後の鋼板表層部に著しく硬質なマルテンサイト相が存在すると、その後の冷間圧延において著しく硬質なマルテンサイト相とフェライト相の界面にひずみが集中して微小亀裂が発生し、冷延板焼鈍後に線状疵となることを見出した。マルテンサイト相はフェライト相とオーステナイト相の二相域での熱延板焼鈍において生成したオーステナイト相が冷却過程で変態して生成したものである。金属組織中の各マルテンサイト結晶粒の硬度を調査したところ、多くのマルテンサイト相がビッカース硬度(HV)で300〜400程度であるのに対し、一部のマルテンサイト相がHV500を超えるほど著しく硬質であり、冷間圧延における微小亀裂はこのHV500を超える著しく硬質なマルテンサイト相とフェライト相の界面で発生していることを見出した。   Therefore, the inventors investigated the cause of the occurrence of linear flaws by performing hot-rolled sheet annealing in a two-phase region of a ferrite phase and an austenite phase in order to achieve both formability and surface properties. As a result, it was found that the linear wrinkles were caused by a remarkably hard martensite phase present in the surface layer portion of the steel sheet after hot-rolled sheet annealing. That is, if there is a remarkably hard martensite phase in the surface layer of the steel sheet after hot-rolled sheet annealing, strains concentrate at the interface between the remarkably hard martensite phase and the ferrite phase in the subsequent cold rolling, and microcracks are generated. It has been found that after cold-rolled sheet annealing, it becomes a linear wrinkle. The martensite phase is formed by transformation of the austenite phase formed during hot-rolled sheet annealing in the two-phase region of the ferrite phase and the austenite phase during the cooling process. When the hardness of each martensite crystal grain in the metal structure was investigated, many martensite phases had a Vickers hardness (HV) of about 300 to 400, whereas some martensite phases markedly exceeded HV500. It was found that microcracks in the cold rolling occurred at the interface between the martensite phase and the ferrite phase, which is extremely hard, exceeding HV500.

そこで、発明者らは、熱延板焼鈍後にHV500を超える著しく硬質なマルテンサイト相が局所的に生成する原因を解明するとともに、その対策技術について鋭意検討した。その結果、熱延板焼鈍前に粗大なCr炭窒化物が存在する場合に、著しく硬質なマルテンサイト相が生成することを見出した。この機構は次のように考えられる。熱延板焼鈍では熱間圧延によって析出したCr炭窒化物が固溶することによりオーステナイト相が生成する。熱延板焼鈍前のCr炭窒化物が粗大な場合、オーステナイト相に供給されるC量が多くなる。そのため、粗大なCr炭窒化物が固溶した周囲では、粗大なCr炭窒化物が固溶していない箇所に比べてC濃度が局所的に高くなる。このC濃度が高いオーステナイト相から、熱延板焼鈍後に著しく硬質なマルテンサイト相が生成する。   Thus, the inventors have clarified the cause of locally forming a significantly hard martensite phase exceeding HV500 after hot-rolled sheet annealing, and have intensively studied the countermeasure technique. As a result, it was found that an extremely hard martensite phase is formed when coarse Cr carbonitride is present before hot-rolled sheet annealing. This mechanism is considered as follows. In hot-rolled sheet annealing, the austenite phase is formed by the solid solution of Cr carbonitride precipitated by hot rolling. When the Cr carbonitride before hot-rolled sheet annealing is coarse, the amount of C supplied to the austenite phase increases. Therefore, in the periphery where coarse Cr carbonitride is dissolved, the C concentration is locally higher than the portion where coarse Cr carbonitride is not dissolved. From this austenite phase having a high C concentration, a remarkably hard martensite phase is produced after hot-rolled sheet annealing.

そこで発明者らは熱間圧延時に粗大なCr炭窒化物を析出させない技術について検討した。その結果、鋼成分にV、TiおよびNbをV: 0.01〜0.25%、Ti: 0.001〜0.020%、Nb: 0.001〜0.030%、かつV/(Ti+Nb)≧2.0を満たすように含有させることで熱間圧延時の粗大なCr炭窒化物の析出を回避できることを知見した。   Therefore, the inventors examined a technique that does not precipitate coarse Cr carbonitride during hot rolling. As a result, V, Ti, and Nb are included in the steel component so that V: 0.01 to 0.25%, Ti: 0.001 to 0.020%, Nb: 0.001 to 0.030%, and V / (Ti + Nb) ≧ 2.0. Thus, it was found that precipitation of coarse Cr carbonitride during hot rolling can be avoided.

すなわち、これらの元素を適用含有することにより、熱間圧延時に析出するCr炭窒化物がV、TiおよびNbを含有する複合炭窒化物(Cr、V、Ti、Nb)(C、N)となり、Cr炭窒化物に比べて微細かつ均一に析出するようになり、粗大なCr炭窒化物の生成が抑制されることを見出した。   In other words, by applying these elements, Cr carbonitride that precipitates during hot rolling becomes composite carbonitride (Cr, V, Ti, Nb) (C, N) containing V, Ti, and Nb. As a result, the present inventors have found that finer and more uniform precipitation occurs compared to Cr carbonitride, and that the formation of coarse Cr carbonitride is suppressed.

このような効果は適量のVを含有することで発現する。TiおよびNbはCrよりもCおよびNとの親和力が強く、Crよりも炭窒化物を形成しやすい。そのため、TiあるいはNbを単独で含有した場合には、Cr炭窒化物とは別のTi(C、N)あるいはNb(C、N)として析出して、粗大なCr炭窒化物の生成を抑制する効果は得られない。   Such an effect is manifested by containing an appropriate amount of V. Ti and Nb have a stronger affinity for C and N than Cr, and form carbonitrides more easily than Cr. Therefore, when Ti or Nb is contained alone, it precipitates as Ti (C, N) or Nb (C, N) different from Cr carbonitride and suppresses the formation of coarse Cr carbonitride. The effect to do is not obtained.

一方、VもCおよびNとの親和力の強い元素である。しかし、VはCr、TiおよびNbとの複合炭窒化物である(Cr、V、Ti、Nb)(C、N)を形成する傾向を有するため、TiおよびNbに加えてVを適量含有させた場合にはCr炭窒化物が(Cr、V、Ti、Nb)(C、N)として析出する。この(Cr、V、Ti、Nb)(C、N)は、Crに比べて拡散速度の小さいV、TiおよびNbを含む析出物のため、析出後の成長あるいは粗大化がV、TiおよびNbの拡散に律速され、析出物サイズが従来のCr炭窒化物に比べて微細となり、熱間圧延における粗大な炭窒化物の生成を効果的に抑制することができる。   On the other hand, V is also an element having a strong affinity for C and N. However, since V has a tendency to form (Cr, V, Ti, Nb) (C, N), which is a composite carbonitride with Cr, Ti and Nb, an appropriate amount of V is contained in addition to Ti and Nb. In this case, Cr carbonitride precipitates as (Cr, V, Ti, Nb) (C, N). This (Cr, V, Ti, Nb) (C, N) is a precipitate containing V, Ti, and Nb, which has a lower diffusion rate than Cr, so that the growth or coarsening after precipitation is V, Ti, and Nb. The rate of precipitates is limited, and the precipitate size becomes finer than that of conventional Cr carbonitrides, and the formation of coarse carbonitrides in hot rolling can be effectively suppressed.

これらの効果により、フェライト相とオーステナイト相の二相域で熱延板焼鈍を行った際に、粗大なCr炭窒化物の固溶に起因した著しく硬質なマルテンサイト相の生成が抑制され、冷延板焼鈍後の線状疵の発生が大幅に低減されることが明らかとなった。   Due to these effects, when hot-rolled sheet annealing is performed in the two-phase region of the ferrite phase and austenite phase, the formation of a remarkably hard martensite phase due to the solid solution of coarse Cr carbonitride is suppressed, and the cold It has been clarified that the occurrence of linear wrinkles after sheet annealing is greatly reduced.

すなわち、箱焼鈍(バッチ焼鈍)のような長時間の熱延板焼鈍ではなく、連続焼鈍炉を用いた短時間の熱延板焼鈍により所定の成形性を表面性状を低下させることなく得るには、フェライト相とオーステナイト相の二相域で短時間の熱延板焼鈍を行うだけでなく、V、TiおよびNbを適切な配合で含有する鋼成分とすることが必要である。   That is, in order to obtain a predetermined formability without reducing surface properties by short-time hot-rolled sheet annealing using a continuous annealing furnace, rather than long-time hot-rolled sheet annealing such as box annealing (batch annealing). In addition, it is necessary not only to perform hot-rolled sheet annealing in a two-phase region of a ferrite phase and an austenite phase, but also to make a steel component containing V, Ti and Nb in an appropriate composition.

次に、本発明のフェライト系ステンレス鋼の成分組成について説明する。
以下、特に断らない限り%は質量%を意味する。
Next, the component composition of the ferritic stainless steel of the present invention will be described.
Hereinafter, unless otherwise specified,% means mass%.

C: 0.005〜0.05%
Cはオーステナイト相の生成を促進し、熱延板焼鈍時にフェライト相とオーステナイト相が出現する二相温度域を拡大する効果がある。この効果を得るためには0.005%以上の含有が必要である。しかし、C量が0.05%を超えると鋼板が硬質化して延性が低下する。また、本発明をもってしても熱延板焼鈍後に著しく硬質なマルテンサイト相が生成し、冷延板焼鈍後の線状疵を誘引する。そのため、C量は0.005〜0.05%の範囲とする。下限は、好ましくは0.01%、さらに好ましくは0.015%である。上限は、好ましくは0.035%、さらに好ましくは0.03%、より一層好ましくは0.025%である。
C: 0.005-0.05%
C promotes the formation of the austenite phase and has the effect of expanding the two-phase temperature range where the ferrite phase and the austenite phase appear during hot-rolled sheet annealing. In order to acquire this effect, 0.005% or more needs to be contained. However, if the C content exceeds 0.05%, the steel sheet becomes hard and the ductility decreases. Moreover, even if it has this invention, a remarkably hard martensite phase will produce | generate after hot-rolled sheet annealing, and will induce the linear wrinkles after cold-rolled sheet annealing. Therefore, the C content is in the range of 0.005 to 0.05%. The lower limit is preferably 0.01%, more preferably 0.015%. The upper limit is preferably 0.035%, more preferably 0.03%, and even more preferably 0.025%.

Si: 0.02〜0.50%
Siは鋼溶製時に脱酸剤として作用する元素である。この効果を得るためには0.02%以上の含有が必要である。しかし、Si量が0.50%を超えると、鋼板が硬質化して熱間圧延時の圧延負荷が増大する。また、冷延板焼鈍後の延性が低下する。そのため、Si量は0.02〜0.50%の範囲とする。好ましくは0.10〜0.35%の範囲である。さらに好ましくは0.25〜0.30%の範囲である。
Si: 0.02 ~ 0.50%
Si is an element that acts as a deoxidizer during steel melting. In order to obtain this effect, a content of 0.02% or more is necessary. However, if the Si content exceeds 0.50%, the steel sheet becomes hard and the rolling load during hot rolling increases. Moreover, the ductility after cold-rolled sheet annealing decreases. Therefore, the Si content is in the range of 0.02 to 0.50%. Preferably it is 0.10 to 0.35% of range. More preferably, it is 0.25 to 0.30% of range.

Mn: 0.05〜1.0%
MnはCと同様にオーステナイト相の生成を促進し、熱延板焼鈍時にフェライト相とオーステナイト相が出現する二相温度域を拡大する効果がある。この効果を得るためには0.05%以上の含有が必要である。しかし、Mn量が1.0%を超えるとMnSの生成量が増加して耐食性が低下する。そのため、Mn量は0.05〜1.0%の範囲とする。下限は、好ましくは0.1%、さらに好ましくは0.2%である。上限は、好ましくは0.8%、さらに好ましくは0.35%、より一層好ましくは0.3%である。
Mn: 0.05-1.0%
Mn, like C, promotes the formation of an austenite phase and has the effect of expanding the two-phase temperature range in which the ferrite phase and austenite phase appear during hot-rolled sheet annealing. In order to acquire this effect, 0.05% or more needs to be contained. However, if the amount of Mn exceeds 1.0%, the amount of MnS produced increases and the corrosion resistance decreases. Therefore, the amount of Mn is made 0.05 to 1.0% in range. The lower limit is preferably 0.1%, more preferably 0.2%. The upper limit is preferably 0.8%, more preferably 0.35%, and still more preferably 0.3%.

P: 0.04%以下
Pは粒界偏析による粒界破壊を助長する元素であるため低い方が望ましく、上限を0.04%とする。好ましくは0.03%以下である。さらに好ましくは0.01%以下である。
P: 0.04% or less
P is an element that promotes grain boundary fracture due to grain boundary segregation, so a lower value is desirable, and the upper limit is made 0.04%. Preferably it is 0.03% or less. More preferably, it is 0.01% or less.

S: 0.01%以下
SはMnSなどの硫化物系介在物となって存在して延性や耐食性等を低下させる元素である。特に含有量が0.01%を超えた場合にそれらの悪影響が顕著に生じる。そのためS量は極力低い方が望ましく、本発明ではS量の上限を0.01%とする。より好ましくは0.007%以下である。さらに好ましくは0.005%以下である。
S: 0.01% or less
S is an element that exists as sulfide inclusions such as MnS and reduces ductility, corrosion resistance, and the like. In particular, when the content exceeds 0.01%, those adverse effects are remarkable. Therefore, it is desirable that the S amount be as low as possible. In the present invention, the upper limit of the S amount is 0.01%. More preferably, it is 0.007% or less. More preferably, it is 0.005% or less.

Cr: 15.5〜18.0%
Crは鋼板表面に不動態皮膜を形成して耐食性を向上させる効果を有する元素である。この効果を得るためにはCr量を15.5%以上とする必要がある。しかし、Cr量が18.0%を超えると、熱延板焼鈍時にオーステナイト相の生成が不十分となり、所定の材料特性が得られない。そのため、Cr量は15.5〜18.0%の範囲とする。好ましくは16.0〜18.0%の範囲である。さらに、好ましくは16.0〜17.0%の範囲である。
Cr: 15.5-18.0%
Cr is an element having an effect of improving the corrosion resistance by forming a passive film on the steel sheet surface. In order to obtain this effect, the Cr content needs to be 15.5% or more. However, if the Cr content exceeds 18.0%, the austenite phase is not sufficiently generated during hot-rolled sheet annealing, and predetermined material characteristics cannot be obtained. Therefore, the Cr content is in the range of 15.5 to 18.0%. Preferably it is 16.0 to 18.0% of range. Furthermore, it is preferably in the range of 16.0 to 17.0%.

Al: 0.001〜0.10%
AlはSiと同様に脱酸剤として作用する元素である。この効果を得るためには0.001%以上の含有が必要である。しかし、Al量が0.10%を超えると、Al2O3等のAl系介在物が増加し、表面性状が低下しやすくなる。そのため、Al量は0.001〜0.10%の範囲とする。好ましくは0.001〜0.07%の範囲である。さらに好ましくは0.001〜0.05%の範囲である。より一層好ましくは0.001〜0.03%の範囲である。
Al: 0.001 to 0.10%
Al, like Si, is an element that acts as a deoxidizer. In order to acquire this effect, 0.001% or more needs to be contained. However, when the Al content exceeds 0.10%, Al-based inclusions such as Al 2 O 3 increase, and the surface properties tend to deteriorate. Therefore, the Al content is set to a range of 0.001 to 0.10%. Preferably it is 0.001 to 0.07% of range. More preferably, it is 0.001 to 0.05% of range. Even more preferably, it is in the range of 0.001 to 0.03%.

N: 0.01〜0.06%
Nは、C、Mnと同様にオーステナイト相の生成を促進し、熱延板焼鈍時にフェライト相とオーステナイト相が出現する二相温度域を拡大する効果がある。この効果を得るためにはN量を0.01%以上とする必要がある。しかし、N量が0.06%を超えると延性が著しく低下する上、Cr窒化物の析出を助長することによる耐食性の低下が生じる。そのため、N量は0.01〜0.06%の範囲とする。好ましくは0.01〜0.05%の範囲である。さらに好ましくは0.02〜0.04%の範囲である。
N: 0.01-0.06%
N, like C and Mn, promotes the formation of the austenite phase and has the effect of expanding the two-phase temperature range in which the ferrite phase and austenite phase appear during hot-rolled sheet annealing. In order to obtain this effect, the N content needs to be 0.01% or more. However, when the N content exceeds 0.06%, the ductility is remarkably lowered and the corrosion resistance is lowered by promoting the precipitation of Cr nitride. Therefore, the N content is in the range of 0.01 to 0.06%. Preferably it is 0.01 to 0.05% of range. More preferably, it is 0.02 to 0.04% of range.

V: 0.01〜0.25%
Vは本発明において極めて重要な元素である。VはCおよびNとの親和力がCrよりも高いという特徴を有しており、V/(Ti+Nb)≧2.0を満たすことによりCr、TiおよびNbと複合して熱間圧延時に(Cr、V、Ti、Nb)(C、N)として析出し、粗大なCr炭窒化物の析出を抑制する。この効果により、熱延板焼鈍時にCが過剰に濃化したオーステナイト相の生成が抑制され、熱延板焼鈍後に著しく硬質なマルテンサイト相が生成せず、冷間圧延時の微小亀裂の発生に起因した表面線状欠陥の発生が防止される。この効果を得るためにはV量を0.01%以上含有する必要がある。しかし、V量が0.25%を超えると加工性が低下するとともに、製造コストの上昇を招く。そのため、V量は0.01〜0.25%の範囲とする。好ましくは0.03〜0.20%の範囲である。さらに好ましくは0.05〜0.15%の範囲である。
V: 0.01-0.25%
V is an extremely important element in the present invention. V has a feature that the affinity for C and N is higher than that of Cr. By satisfying V / (Ti + Nb) ≧ 2.0, it is combined with Cr, Ti and Nb during hot rolling (Cr, V, It precipitates as Ti, Nb) (C, N) and suppresses the precipitation of coarse Cr carbonitride. Due to this effect, the generation of austenite phase in which C is excessively concentrated during hot-rolled sheet annealing is suppressed, and a remarkably hard martensite phase is not generated after hot-rolled sheet annealing, resulting in generation of microcracks during cold rolling. Occurrence of the resulting surface line defects is prevented. In order to obtain this effect, the V content needs to be 0.01% or more. However, if the V amount exceeds 0.25%, the workability is lowered and the manufacturing cost is increased. Therefore, the V amount is in the range of 0.01 to 0.25%. Preferably it is 0.03 to 0.20% of range. More preferably, it is 0.05 to 0.15% of range.

Ti: 0.001〜0.020%、Nb:0.001〜0.030%、V/(Ti+Nb)≧2.0
TiおよびNbはVと同様に、CrよりもCおよびNとの親和力の高い元素であり、鋼がVを含有する場合にVおよびCrと(Cr、V、Ti、Nb)(C、N)を生成し、熱間圧延時の粗大なCr炭窒化物の析出を抑制する効果がある。この効果を得るためには0.001%以上のTiおよび0.001%以上のNbを含有するとともに、V/(Ti+Nb)≧2.0を満たす必要がある。しかし、Ti量が0.020%あるいはNb量が0.030%を超えると、熱間圧延時に(Cr、V、Ti、Nb)(C、N)ではなく、Ti(C、N)およびNb(C、N)が独立に析出するために粗大なCr炭窒化物の抑制効果が得られず、所定の表面性状を得ることができない。そのため、Ti量は0.001〜0.020%、Nb量は0.001〜0.030%の範囲とする。Ti量は好ましくは0.001〜0.015%の範囲である。さらに好ましくは0.003〜0.010%の範囲である。Nb量は好ましくは0.001〜0.025%の範囲である。さらに好ましくは0.005〜0.020%の範囲である。V/(Ti+Nb)が2.0未満の場合、複合炭窒化物を生成するために必要なVが不足するため、Ti、NbおよびVがそれぞれ独立に炭化物あるいは窒化物となって生成するため、粗大なCr炭窒化物の生成を十分に抑制することができない。そのため、V/(Ti+Nb)は2.0以上とする。好ましくは3.0以上である。さらに好ましくは4.0以上である。一方、V/(Ti+Nb)が30.0を超えると、V、TiおよびNbが所定の含有量であっても複合炭窒化物の形成に消費されずに母相中に固溶状態で存在するV量が増加するため、鋼板の硬質化に起因した伸びの低下が生じる。そのため、V/(Ti+Nb)の上限は好ましくは30.0である。
Ti: 0.001-0.020%, Nb: 0.001-0.030%, V / (Ti + Nb) ≧ 2.0
Ti and Nb, like V, are elements with higher affinity for C and N than Cr, and when steel contains V, V and Cr and (Cr, V, Ti, Nb) (C, N) Has an effect of suppressing the precipitation of coarse Cr carbonitride during hot rolling. In order to obtain this effect, it is necessary to contain 0.001% or more of Ti and 0.001% or more of Nb and satisfy V / (Ti + Nb) ≧ 2.0. However, if the Ti content exceeds 0.020% or Nb content exceeds 0.030%, it is not (Cr, V, Ti, Nb) (C, N) during hot rolling, but Ti (C, N) and Nb (C, N). ) Precipitates independently, the effect of suppressing coarse Cr carbonitride cannot be obtained, and the predetermined surface properties cannot be obtained. Therefore, the Ti content is in the range of 0.001 to 0.020%, and the Nb content is in the range of 0.001 to 0.030%. The amount of Ti is preferably in the range of 0.001 to 0.015%. More preferably, it is 0.003 to 0.010% of range. The amount of Nb is preferably in the range of 0.001 to 0.025%. More preferably, it is 0.005 to 0.020% of range. When V / (Ti + Nb) is less than 2.0, V required for producing composite carbonitrides is insufficient, and Ti, Nb, and V are independently produced as carbides or nitrides. The formation of Cr carbonitride cannot be sufficiently suppressed. Therefore, V / (Ti + Nb) is set to 2.0 or more. Preferably it is 3.0 or more. More preferably, it is 4.0 or more. On the other hand, when V / (Ti + Nb) exceeds 30.0, even if V, Ti and Nb have a predetermined content, the amount of V existing in a solid solution state without being consumed for formation of composite carbonitride Therefore, the elongation decreases due to the hardening of the steel sheet. Therefore, the upper limit of V / (Ti + Nb) is preferably 30.0.

残部はFeおよび不可避的不純物である。   The balance is Fe and inevitable impurities.

以上の成分組成により本発明の効果は得られるが、さらに製造性あるいは材料特性を向上させる目的で以下の元素を含有することができる。   Although the effects of the present invention can be obtained by the above component composition, the following elements can be contained for the purpose of further improving manufacturability or material characteristics.

Cu:0.1〜1.0%、Ni: 0.1〜1.0%、Mo:0.1〜0.5%、Co: 0.01〜0.5%のうちから選ばれる1種または2種以上
CuおよびNiはいずれも耐食性を向上させる元素であり、特に高い耐食性が要求される場合には含有することが有効である。また、CuおよびNiにはオーステナイト相の生成を促進し、熱延板焼鈍時にフェライト相とオーステナイト相が出現する二相温度域を拡大する効果がある。これらの効果は各々0.1%以上の含有で顕著となる。しかし、Cu含有量が1.0%を超えると熱間加工性が低下するため好ましくない。そのためCuを含有する場合は1.0%以下とする。好ましくは0.2〜0.8%の範囲である。さらに好ましくは0.3〜0.5%の範囲である。Ni含有量が1.0%を超えると加工性が低下するため好ましくない。そのためNiを含有する場合は1.0%以下とする。好ましくは0.1〜0.6%の範囲である。さらに好ましくは0.1〜0.3%の範囲である。
One or more selected from Cu: 0.1-1.0%, Ni: 0.1-1.0%, Mo: 0.1-0.5%, Co: 0.01-0.5%
Cu and Ni are both elements that improve the corrosion resistance, and it is effective to contain them particularly when high corrosion resistance is required. Further, Cu and Ni have an effect of promoting the formation of the austenite phase and expanding the two-phase temperature range in which the ferrite phase and the austenite phase appear during hot-rolled sheet annealing. These effects become significant when the content is 0.1% or more. However, if the Cu content exceeds 1.0%, the hot workability is lowered, which is not preferable. Therefore, when it contains Cu, it is 1.0% or less. Preferably it is 0.2 to 0.8% of range. More preferably, it is 0.3 to 0.5% of range. If the Ni content exceeds 1.0%, the workability decreases, which is not preferable. Therefore, when it contains Ni, it is 1.0% or less. Preferably it is 0.1 to 0.6% of range. More preferably, it is 0.1 to 0.3% of range.

Moは耐食性を向上させる元素であり、特に高い耐食性が要求される場合には含有することが有効である。この効果は0.1%以上の含有で顕著となる。しかし、Mo含有量が0.5%を超えると熱延板焼鈍時にオーステナイト相の生成が不十分となり、所定の材料特性が得られなくなり好ましくない。そのため、Moを含有する場合は0.1〜0.5%%以下とする。好ましくは0.1〜0.3%の範囲である。   Mo is an element that improves corrosion resistance, and it is effective to contain it particularly when high corrosion resistance is required. This effect becomes significant when the content is 0.1% or more. However, if the Mo content exceeds 0.5%, the austenite phase is not sufficiently generated during hot-rolled sheet annealing, and predetermined material characteristics cannot be obtained. Therefore, when it contains Mo, it is 0.1 to 0.5 %% or less. Preferably it is 0.1 to 0.3% of range.

Coは靭性を向上させる元素である。この効果は0.01%以上の含有によって得られる。一方、Co量が0.5%を超えると加工性を低下させる。そのため、Coを含有する場合は0.5%以下とする。好ましくは0.01〜0.2%の範囲である。   Co is an element that improves toughness. This effect is obtained when the content is 0.01% or more. On the other hand, if the Co content exceeds 0.5%, workability is reduced. Therefore, when it contains Co, it is 0.5% or less. Preferably it is 0.01 to 0.2% of range.

Mg: 0.0002〜0.0050%、B: 0.0002〜0.0050%、REM: 0.01〜0.10% 、Ca: 0.0002〜0.0020%のうちから選ばれる1種または2種以上
Mg: 0.0002〜0.0050%
Mgは熱間加工性を向上させる効果がある元素である。この効果を得るためには0.0002%以上の含有が必要である。しかし、Mg量が0.0050%を超えると表面品質が低下する。そのため、Mgを含有する場合は0.0002〜0.0050%の範囲とする。好ましくは0.0005〜0.0035%の範囲である。さらに好ましくは0.0005〜0.0020%の範囲である。
Mg: 0.0002 to 0.0050%, B: 0.0002 to 0.0050%, REM: 0.01 to 0.10%, Ca: One or more selected from 0.0002 to 0.0020%
Mg: 0.0002-0.0050%
Mg is an element that has the effect of improving hot workability. In order to acquire this effect, 0.0002% or more needs to be contained. However, when the Mg content exceeds 0.0050%, the surface quality decreases. Therefore, when it contains Mg, it is set as 0.0002 to 0.0050% of range. Preferably it is 0.0005 to 0.0035% of range. More preferably, it is 0.0005 to 0.0020% of range.

B: 0.0002〜0.0050%
Bは低温二次加工脆化を防止するのに有効な元素である。この効果を得るためには0.0002%以上の含有が必要である。しかし、B量が0.0050%を超えると熱間加工性が低下する。そのため、Bを含有する場合は0.0002〜0.0050%の範囲とする。好ましくは0.0005〜0.0035%の範囲である。さらに好ましくは0.0005〜0.0020%の範囲である。
B: 0.0002-0.0050%
B is an effective element for preventing low temperature secondary work embrittlement. In order to acquire this effect, 0.0002% or more needs to be contained. However, when the amount of B exceeds 0.0050%, the hot workability decreases. Therefore, when it contains B, it is set as 0.0002 to 0.0050% of range. Preferably it is 0.0005 to 0.0035% of range. More preferably, it is 0.0005 to 0.0020% of range.

REM: 0.01〜0.10%
REMは耐酸化性を向上させる元素であり、特に溶接部の酸化皮膜形成を抑制し溶接部の耐食性を向上させる効果がある。この効果を得るためには0.01%以上の含有が必要である。しかし、0.10%を超えて含有すると冷延板焼鈍時の酸洗性などの製造性を低下させる。また、REMは高価な元素であるため、過度な含有は製造コストの増加を招くため好ましくない。そのため、REMを含有する場合は0.01〜0.10%の範囲とする。
REM: 0.01-0.10%
REM is an element that improves the oxidation resistance, and in particular has the effect of suppressing the formation of an oxide film at the weld and improving the corrosion resistance of the weld. In order to obtain this effect, a content of 0.01% or more is necessary. However, if the content exceeds 0.10%, productivity such as pickling at the time of cold-rolled sheet annealing is lowered. Moreover, since REM is an expensive element, excessive inclusion causes an increase in manufacturing cost, which is not preferable. Therefore, when it contains REM, it is set as 0.01 to 0.10% of range.

Ca: 0.0002〜0.0020%
Caは、連続鋳造の際に発生しやすいTi系介在物の晶出によるノズルの閉塞を防止するのに有効な成分である。この効果を得るためには0.0002%以上の含有が必要である。しかし、Ca量が0.0020%を超えるとCaSが生成して耐食性が低下する。そのため、Caを含有する場合は0.0002〜0.0020%の範囲とする。好ましくは0.0005〜0.0015%の範囲である。さらに好ましくは0.0005〜0.0010%の範囲である。
Ca: 0.0002-0.0020%
Ca is an effective component for preventing nozzle clogging due to crystallization of Ti-based inclusions that are likely to occur during continuous casting. In order to acquire this effect, 0.0002% or more needs to be contained. However, when the Ca content exceeds 0.0020%, CaS is generated and the corrosion resistance is lowered. Therefore, when it contains Ca, it is set as 0.0002 to 0.0020% of range. Preferably it is 0.0005 to 0.0015% of range. More preferably, it is 0.0005 to 0.0010% of range.

次に本発明のフェライト系ステンレス鋼の製造方法について説明する。
本発明のフェライト系ステンレス鋼は上記成分組成を有する鋼スラブを、熱間圧延を施し、次いで880〜1000℃の温度範囲で5秒〜15分間保持する熱延板焼鈍を行い熱延焼鈍板とし、次いで冷間圧延を施した後、800〜950℃の温度範囲で5秒〜5分間保持する冷延板焼鈍を行うことで得られる。
Next, the manufacturing method of the ferritic stainless steel of this invention is demonstrated.
The ferritic stainless steel of the present invention is a hot-rolled annealed sheet obtained by subjecting a steel slab having the above composition to hot rolling, followed by hot-rolled sheet annealing that is held at a temperature range of 880 to 1000 ° C. for 5 seconds to 15 minutes. Then, after performing cold rolling, it is obtained by performing cold-rolled sheet annealing which is held at a temperature range of 800 to 950 ° C. for 5 seconds to 5 minutes.

まずは、上記した成分組成からなる溶鋼を、転炉、電気炉、真空溶解炉等の公知の方法で溶製し、連続鋳造法あるいは造塊−分塊法により鋼素材(スラブ)とする。このスラブを、1100〜1250℃で1〜24時間加熱するか、あるいは加熱することなく鋳造まま直接、熱間圧延して熱延板とする。   First, molten steel having the above-described component composition is melted by a known method such as a converter, an electric furnace, a vacuum melting furnace or the like, and a steel material (slab) is obtained by a continuous casting method or an ingot-bundling method. This slab is heated at 1100 to 1250 ° C. for 1 to 24 hours, or directly hot-rolled as cast without heating to form a hot-rolled sheet.

次いで、熱間圧延を行う。巻取りでは、巻取り温度を500℃以上850℃以下とすることが好ましい。500℃未満では巻取り後の再結晶が不十分となって冷延板焼鈍後の延性が低下する場合があるため好ましくない。850℃超で巻き取ると粒径が大きくなり、プレス加工時に肌荒れが発生してしまう場合がある。したがって、巻取り温度は500〜850℃の範囲が好ましい。   Next, hot rolling is performed. In winding, the winding temperature is preferably 500 ° C. or higher and 850 ° C. or lower. If it is less than 500 ° C., recrystallization after winding is insufficient, and ductility after cold-rolled sheet annealing may be lowered, which is not preferable. When it winds up above 850 degreeC, a particle size will become large and rough skin may generate | occur | produce at the time of press work. Accordingly, the winding temperature is preferably in the range of 500 to 850 ° C.

その後、フェライト相とオーステナイト相の二相域温度となる880〜1000℃の温度で5秒〜15分間保持する熱延板焼鈍を行う。   Then, hot-rolled sheet annealing is performed for 5 seconds to 15 minutes at a temperature of 880 to 1000 ° C. that is a two-phase region temperature of a ferrite phase and an austenite phase.

熱延板焼鈍は本発明が所定の表面性状ならびに成形性を得るために重要な工程である。熱延板焼鈍温度が880℃未満では十分な再結晶が生じないうえ、フェライト単相域となるため、二相域焼鈍によって発現する本発明の効果が得られない場合がある。しかし、焼鈍温度が1000℃を超えると炭化物の固溶が促進されるためにオーステナイト相中へのC濃化が助長され、熱延板焼鈍後に著しく硬質なマルテンサイト相が生成し、所定の表面性状が得られない。   Hot-rolled sheet annealing is an important process for the present invention to obtain predetermined surface properties and formability. If the hot-rolled sheet annealing temperature is less than 880 ° C., sufficient recrystallization does not occur and the ferrite single-phase region is formed, so that the effects of the present invention that are manifested by two-phase region annealing may not be obtained. However, if the annealing temperature exceeds 1000 ° C, solid solution of the carbide is promoted, so C concentration in the austenite phase is promoted, and an extremely hard martensite phase is generated after hot-rolled sheet annealing. The property cannot be obtained.

また、熱延板焼鈍温度が1000℃を超えると、オーステナイト相の生成量が低下する。そのため、熱延板焼鈍後に生成するマルテンサイト相量が減少し、フェライト相とマルテンサイト相を含む金属組織を冷間圧延することによる、マルテンサイト相近傍のフェライト相への圧延ひずみの集中による金属組織の異方性緩和効果を十分に得ることができず、所定の|Δr|を得ることができない。   Moreover, when the hot-rolled sheet annealing temperature exceeds 1000 ° C., the amount of austenite phase produced decreases. Therefore, the amount of martensite phase formed after hot-rolled sheet annealing is reduced, and the metal due to the concentration of rolling strain on the ferrite phase in the vicinity of the martensite phase by cold rolling the metal structure containing the ferrite phase and martensite phase. The effect of relaxing the anisotropic structure cannot be sufficiently obtained, and the predetermined | Δr | cannot be obtained.

焼鈍時間が5秒未満の場合、所定の温度で焼鈍したとしてもオーステナイト相の生成とフェライト相の再結晶が十分に生じないため、所望の成形性が得られない。一方、焼鈍時間が15分を超えると(Cr、V、Ti、Nb)(C、N)の一部が固溶してオーステナイト相中へのC濃化が助長され、上記と同様の機構によって所定の表面性状が得られない。   When the annealing time is less than 5 seconds, even if annealing is performed at a predetermined temperature, generation of austenite phase and recrystallization of the ferrite phase do not occur sufficiently, so that desired formability cannot be obtained. On the other hand, when the annealing time exceeds 15 minutes, a part of (Cr, V, Ti, Nb) (C, N) is dissolved and C concentration in the austenite phase is promoted. A predetermined surface texture cannot be obtained.

また、焼鈍時間が15分を超えると上記の機構によって熱延板焼鈍後にオーステナイト相が変態して生成するマルテンサイト相への過度なC濃化が生じる。このマルテンサイト相は冷延板焼鈍時に炭化物とフェライト相へと分解するが、C濃化量が過度に大きいとマルテンサイト相が多量の炭化物を含むフェライト相へと変化する。これにより冷延板焼鈍後に粒内および粒界上の炭化物が少ないフェライト粒と、粒内および粒界上の炭化物が過度に多いフェライト粒の混粒組織となる。このような金属組織となった場合、炭化物が少ない粒と多い粒に硬度差が生じるために両者の粒の界面に変形ひずみが集中し、粒界上の炭化物を起点として大きなボイドが発生しやすくなり、延性が低下する。   Further, if the annealing time exceeds 15 minutes, excessive C concentration occurs in the martensite phase generated by transformation of the austenite phase after hot-rolled sheet annealing by the above mechanism. This martensite phase decomposes into carbide and ferrite phases during cold-rolled sheet annealing, but if the C concentration is excessively large, the martensite phase changes to a ferrite phase containing a large amount of carbides. This results in a mixed grain structure of ferrite grains with few carbides in the grains and on the grain boundaries after cold-rolled sheet annealing and ferrite grains with too much carbides in the grains and on the grain boundaries. In such a metal structure, a difference in hardness occurs between grains with few carbides and grains with many carbides, so deformation strain concentrates at the interface between both grains, and large voids are likely to occur starting from carbides on the grain boundaries. Thus, ductility is reduced.

そのため、熱延板焼鈍は880〜1000℃の温度で、5秒〜15分間保持する。好ましくは、900〜1000℃の温度で15秒〜15分間保持である。より好ましくは、900〜1000℃の温度で15秒〜3分間保持である。   Therefore, hot-rolled sheet annealing is held at a temperature of 880 to 1000 ° C. for 5 seconds to 15 minutes. Preferably, it is held at a temperature of 900 to 1000 ° C. for 15 seconds to 15 minutes. More preferably, it is held at a temperature of 900 to 1000 ° C. for 15 seconds to 3 minutes.

次いで、冷間圧延および冷延板焼鈍を行う。必要に応じて酸洗を施して製品とする。   Next, cold rolling and cold rolled sheet annealing are performed. Pickle the product as necessary to make a product.

冷間圧延は成形性および形状矯正の観点から50%以上の圧下率で行うことが好ましい。また、本発明では、冷延−焼鈍を2回以上繰り返しても良く、冷間圧延により板厚200μm以下のステンレス箔としても良い。   Cold rolling is preferably performed at a rolling reduction of 50% or more from the viewpoints of formability and shape correction. In the present invention, cold rolling and annealing may be repeated twice or more, and a stainless foil having a thickness of 200 μm or less may be formed by cold rolling.

冷延板の冷延板焼鈍は、良好な成形性を得るために800〜950℃の温度で5秒〜5分間保持する。   Cold-rolled sheet annealing is performed at a temperature of 800 to 950 ° C. for 5 seconds to 5 minutes in order to obtain good formability.

冷延板焼鈍は熱延板焼鈍で形成したフェライト相とマルテンサイト相の二相組織をフェライト単相組織とするために重要な工程である。冷延板焼鈍温度が800℃未満では再結晶が十分に生じず所定の延性および平均r値を得ることができない。一方、冷延板焼鈍温度が950℃を超えた場合、当該温度がフェライト相とオーステナイト相の二相温度域となる鋼成分では冷延板焼鈍後にマルテンサイト相が生成するために鋼板が硬質化し所定の延性を得ることができない。また、当該温度がフェライト単相温度域となる鋼成分であったとしても、結晶粒の著しい粗大化により、鋼板の光沢度が低下するため表面品質の観点で好ましくない。焼鈍時間が5秒未満の場合、所定の温度で焼鈍したとしてもフェライト相の再結晶が十分に生じないため、所定の延性および平均r値を得ることができない。焼鈍時間が5分を超えると、結晶粒が著しく粗大化し、鋼板の光沢度が低下するため表面品質の観点で好ましくない。そのため、冷延板焼鈍は800〜950℃の範囲で5秒〜5分間保持とする。好ましくは、850℃〜900℃で15秒〜3分間保持である。より光沢を求めるためにBA焼鈍(光輝焼鈍(bright annealing))を行っても良い。
なお、さらに表面性状を向上させるために、研削や研磨等を施してもよい。
Cold-rolled sheet annealing is an important process for making a two-phase structure of a ferrite phase and a martensite phase formed by hot-rolled sheet annealing into a ferrite single-phase structure. If the cold-rolled sheet annealing temperature is less than 800 ° C., sufficient recrystallization does not occur and the predetermined ductility and average r value cannot be obtained. On the other hand, when the cold-rolled sheet annealing temperature exceeds 950 ° C, the steel component becomes hard because the martensite phase is formed after the cold-rolled sheet annealing in the steel component in which the temperature is a two-phase temperature range of the ferrite phase and the austenite phase. A predetermined ductility cannot be obtained. Moreover, even if the temperature is a steel component in the ferrite single-phase temperature range, the glossiness of the steel sheet is lowered due to marked coarsening of crystal grains, which is not preferable from the viewpoint of surface quality. When the annealing time is less than 5 seconds, even if annealing is performed at a predetermined temperature, the ferrite phase is not sufficiently recrystallized, so that the predetermined ductility and average r value cannot be obtained. If the annealing time exceeds 5 minutes, the crystal grains become extremely coarse and the glossiness of the steel sheet is lowered, which is not preferable from the viewpoint of surface quality. Therefore, cold-rolled sheet annealing is held in the range of 800 to 950 ° C. for 5 seconds to 5 minutes. Preferably, it is held at 850 ° C. to 900 ° C. for 15 seconds to 3 minutes. In order to obtain more gloss, BA annealing (bright annealing) may be performed.
In order to further improve the surface properties, grinding or polishing may be performed.

以下、本発明を実施例により詳細に説明する。
表1に示す化学組成を有するステンレス鋼を50kg小型真空溶解炉にて溶製した。これらの鋼塊を1150℃で1h加熱後、熱間圧延を施して3.5mm厚の熱延板とした。次いで、これらの熱延板に表2に記載の条件で熱延板焼鈍を施した後、表面にショットブラスト処理と酸洗による脱スケールを行った。酸洗は、温度80℃、20質量%硫酸の溶液中に120秒浸漬後、15質量%硝酸および3質量%弗酸からなる温度55℃の混合酸溶液中に60秒浸漬した。さらに、冷間圧延により0.7mm厚として、表2に記載の条件で冷延板焼鈍を行った後、水温80℃、18質量%Na2SO4水溶液中において25C/dm2の条件での電解酸洗、および水温50℃、10質量%HNO3水溶液中において30C/dm2の条件での電解酸洗による脱スケール処理を行い、冷延酸洗焼鈍板を得た。
Hereinafter, the present invention will be described in detail with reference to examples.
Stainless steel having the chemical composition shown in Table 1 was melted in a 50 kg small vacuum melting furnace. These steel ingots were heated at 1150 ° C. for 1 h and then hot rolled to form 3.5 mm thick hot rolled sheets. Subsequently, these hot-rolled sheets were subjected to hot-rolled sheet annealing under the conditions shown in Table 2, and then the surfaces were descaled by shot blasting and pickling. The pickling was performed by immersing in a solution of 20 mass% sulfuric acid at a temperature of 80 ° C for 120 seconds, and then immersed in a mixed acid solution consisting of 15 mass% nitric acid and 3 mass% hydrofluoric acid at a temperature of 55 ° C for 60 seconds. Furthermore, after cold-rolled sheet annealing was performed under the conditions shown in Table 2 to a thickness of 0.7 mm by cold rolling, electrolysis under conditions of 25 C / dm 2 in a water temperature of 80 ° C. and an 18 mass% Na 2 SO 4 aqueous solution. Pickling and descaling treatment by electrolytic pickling under conditions of 30 C / dm 2 in a 10 mass% HNO 3 aqueous solution at a water temperature of 50 ° C. were performed to obtain a cold rolled pickling annealed plate.

かくして得られた冷延酸洗焼鈍板について以下の評価を行った。   The following evaluation was performed about the cold-rolled pickling annealing board obtained in this way.

(1)表面性状評価
冷延板焼鈍後、鋼板1m2あたりに存在する長さ5mm以上の線状疵の個数を計測した。冷延焼鈍板表面に認められた線状疵が鋼板1m2あたりで5箇所以下の場合を合格、5箇所超の場合を不合格とした。
(1) Evaluation of surface properties After cold-rolled sheet annealing, the number of linear wrinkles having a length of 5 mm or more present per 1 m 2 of steel sheet was measured. The case where the number of linear wrinkles recognized on the surface of the cold-rolled annealed plate was 5 or less per 1 m 2 of the steel plate was accepted, and the case where it was more than 5 was rejected.

(2)延性の評価
冷延酸洗焼鈍板から、圧延方向と直角にJIS 13B号引張試験片を採取し、引張試験をJIS Z2241に準拠して行い、破断伸びを測定し、破断伸びが25%以上の場合を合格(○)、25%未満の場合を不合格(×)とした。
(2) Evaluation of ductility From a cold-rolled pickled and annealed sheet, a JIS 13B tensile test piece was taken at right angles to the rolling direction, the tensile test was performed in accordance with JIS Z2241, the elongation at break was measured, and the elongation at break was 25 The case of% or more was regarded as pass (○), and the case of less than 25% was rejected (×).

(3)平均r値および|Δr|の評価
冷延酸洗焼鈍板から、圧延方向に対して平行(L方向)、45°(D方向)およびに直角(C方向)となる方向にJIS 13B号引張試験片を採取し、JIS Z2241に準拠した引張試験をひずみ15%まで行って中断し、各方向のr値を測定し平均r値(=(r+2r+r)/4)およびr値の面内異方性(Δr=(r−2r+r)/2)の絶対値(|Δr|)を算出した。ここで、r、r、rはそれぞれL方向、D方向およびC方向のr値である。平均r値は0.65以上を合格(○)、0.65未満を不合格(×)とした。|Δr|は0.30以下を合格(○)、0.30超を不合格(×)とした。
(3) Evaluation of average r value and | Δr | From the cold-rolled pickled and annealed sheet, JIS 13B in a direction parallel to the rolling direction (L direction), 45 ° (D direction) and perpendicular to C direction (C direction) Tensile test specimens were collected, the tensile test according to JIS Z2241 was interrupted to a strain of 15%, the r value in each direction was measured, and the average r value (= (r L + 2r D + r C ) / 4) and The absolute value (| Δr |) of the in-plane anisotropy (Δr = (r L −2r D + r C ) / 2) of the r value was calculated. Here, r L , r D , and r C are r values in the L direction, the D direction, and the C direction, respectively. As for the average r value, 0.65 or more was regarded as acceptable (◯), and less than 0.65 was regarded as unacceptable (x). For | Δr |, 0.30 or less was accepted (◯), and more than 0.30 was rejected (x).

(4)耐食性の評価
冷延酸洗焼鈍板から、60mm×100mmの試験片を採取し、表面を#600エメリーペーパーにより研磨仕上げした後に端面部をシールした試験片を作製し、JIS H 8502に規定された塩水噴霧サイクル試験に供した。塩水噴霧サイクル試験は、塩水噴霧(35℃、5%NaCl、噴霧2h)→乾燥(60℃、相対湿度40%、4h)→湿潤(50℃、相対湿度≧95%、2h)を1サイクルとして、3サイクル行った。
塩水噴霧サイクル試験を3サイクル実施後の試験片表面を写真撮影し、画像解析により試験片表面の発錆面積を測定し、試験片全面積との比率から発錆面積率((試験片中の発錆面積/試験片全面積)×100[%])を算出した。発錆面積率が10%以下を特に優れた耐食性で合格(◎)、10%超25%以下を合格(○)、25%超を不合格(×)とした
評価結果を熱延板焼鈍および冷延焼鈍条件と併せて表2に示す。
(4) Evaluation of corrosion resistance A 60mm x 100mm test piece was collected from the cold rolled pickled and annealed plate, and the test piece was prepared by polishing the surface with # 600 emery paper and sealing the end face. Subjected to the prescribed salt spray cycle test. The salt spray cycle test consists of salt spray (35 ℃, 5% NaCl, spray 2h) → drying (60 ℃, relative humidity 40%, 4h) → wet (50 ℃, relative humidity ≧ 95%, 2h) as one cycle. 3 cycles were performed.
Photograph the surface of the test piece after 3 cycles of salt spray cycle test, measure the rusting area on the surface of the test piece by image analysis, and calculate the rusting area ratio ((in the test piece Rust area / total area of test piece) × 100 [%]) was calculated. Rust area ratio of 10% or less passed with excellent corrosion resistance (◎), more than 10% passed 25% or less (○), more than 25% rejected (×) The results are shown in Table 2 together with the cold rolling annealing conditions.

Figure 2015105045
Figure 2015105045

Figure 2015105045
Figure 2015105045

本発明の範囲を満たす発明例No.1〜23、33〜46、52〜63では、冷延板焼鈍後に認められた線状疵はいずれも1m2あたり5箇所以下であり良好な表面性状が得られた。また、破断伸び25%以上、平均r値は0.65以上、|Δr|は0.30以下と良好な成形性が得られた。さらに耐食性に関しても塩水噴霧サイクル試験を3サイクル実施後の試験片表面の発錆面積率がいずれも25%以下と良好な特性が得られていた。In Invention Examples Nos. 1 to 23, 33 to 46, and 52 to 63 satisfying the scope of the present invention, the number of linear wrinkles recognized after cold-rolled sheet annealing is 5 or less per 1 m 2 and has good surface properties. Obtained. Further, good moldability was obtained with a breaking elongation of 25% or more, an average r value of 0.65 or more, and | Δr | of 0.30 or less. Furthermore, regarding corrosion resistance, the rusting area ratio on the surface of the test piece after performing the salt spray cycle test for 3 cycles was 25% or less, and good characteristics were obtained.

特に、Cu、NiおよびMoを含有した鋼L、M、NおよびBM(No.17、18、19、52、61)では、塩水噴霧サイクル試験後の発錆面積率が10%以下となっており、耐食性が一層向上した。   In particular, in steels L, M, N and BM (No. 17, 18, 19, 52, 61) containing Cu, Ni and Mo, the rusting area ratio after the salt spray cycle test is 10% or less. Corrosion resistance has been further improved.

一方、Vの含有量が本発明の範囲を下回りV/(Ti+Nb)≧2.0を満たしていない比較例No. 24、およびTiとNbが本発明の範囲を上回る比較例No. 26では、(Cr、V、Ti、Nb)(C、N)の析出量が不足したために熱延板焼鈍中の固溶C、Nの固定化が不十分となった結果、熱延板焼鈍後に著しく硬質なマルテンサイト相が生成し、冷延板焼鈍後に線状疵が多量に発生した。   On the other hand, in Comparative Example No. 24 in which the V content is below the range of the present invention and does not satisfy V / (Ti + Nb) ≧ 2.0, and Comparative Example No. 26 in which Ti and Nb exceed the range of the present invention, Due to insufficient precipitation of (Cr, V, Ti, Nb) (C, N), solid solution C and N were not sufficiently fixed during hot-rolled sheet annealing. Martensite phase was generated, and a large amount of linear flaws were generated after cold-rolled sheet annealing.

Vの含有量が本発明の範囲を上回る比較例No. 25では、所定の平均r値および|Δr|は得られたが、過度のV含有によって鋼板が硬質化したために所定の延性を得ることができなかった。   In Comparative Example No. 25 in which the V content exceeds the range of the present invention, the predetermined average r value and | Δr | were obtained, but the predetermined ductility was obtained because the steel sheet was hardened by excessive V content. I could not.

Cr含有量が本発明の範囲を下回る比較例No. 27では、所定の表面性状ならびに延性、平均r値および|Δr|は得られたものの、Cr含有量が不足したために所定の耐食性が得られなかった。   In Comparative Example No. 27 where the Cr content is below the range of the present invention, the predetermined surface properties and ductility, the average r value and | Δr | were obtained, but the predetermined corrosion resistance was obtained because the Cr content was insufficient. There wasn't.

Cr含有量が本発明の範囲を上回る比較例No. 28では、十分な耐食性は得られたが、過剰にCrを含有したために熱延板焼鈍時にオーステナイト相が生成せず、所定の延性、平均r値および|Δr|を得ることができなかった。   In Comparative Example No. 28 in which the Cr content exceeds the range of the present invention, sufficient corrosion resistance was obtained, but since an excessive amount of Cr was contained, an austenite phase was not generated during hot-rolled sheet annealing, a predetermined ductility, average The r value and | Δr | could not be obtained.

C量が本発明の範囲を上回る比較例No. 29では、V、TiおよびNb量が本発明の範囲内であったが、鋼中のCを(Cr、V、Ti、Nb)(C、N)として十分に固定化しきれずに固溶Cが残存したために熱延板焼鈍後に著しく硬質なマルテンサイト相が生成し、所定の表面性状が得られなかった。また、固溶C量が増加したために鋼板強度が著しく上昇し、所定の延性も得られなかった。   In Comparative Example No. 29, in which the amount of C exceeds the range of the present invention, the amounts of V, Ti and Nb were within the range of the present invention, but C in the steel was changed to (Cr, V, Ti, Nb) (C, Since N was not sufficiently fixed as N) and solid solution C remained, an extremely hard martensite phase was formed after hot-rolled sheet annealing, and the predetermined surface properties were not obtained. Moreover, since the amount of solute C increased, the strength of the steel sheet increased remarkably, and the predetermined ductility was not obtained.

一方、C量が本発明の範囲を下回る比較例No. 30では、Cによるオーステナイト相の安定化が不十分であったために、二相域での熱延板焼鈍中に十分な量のオーステナイト相が生成せず、所定の平均r値および|Δr|が得られなかった。   On the other hand, in Comparative Example No. 30 where the amount of C is below the range of the present invention, since the austenite phase was not sufficiently stabilized by C, a sufficient amount of austenite phase during hot-rolled sheet annealing in the two-phase region. Was not generated, and the predetermined average r value and | Δr | were not obtained.

V/(Ti+Nb)が本発明の範囲を下回る比較例No. 31およびNo. 32では、熱間圧延時の(Cr、V、Ti、Nb)(C、N)の析出が十分でなかったために多量の粗大なCr炭窒化物が析出し、熱延板焼鈍後に著しく硬質なマルテンサイト相が生成したために冷延板焼鈍後に線状疵が多量に発生し、所定の表面性状が得られなかった。   In Comparative Examples No. 31 and No. 32 where V / (Ti + Nb) is below the range of the present invention, precipitation of (Cr, V, Ti, Nb) (C, N) during hot rolling is not sufficient. As a result, a large amount of coarse Cr carbonitride precipitates, and a remarkably hard martensite phase is generated after hot-rolled sheet annealing. There wasn't.

No.47およびNo.64は、V/(Ti+Nb)が本発明の範囲を下回り、かつ、熱延板焼鈍温度が本発明範囲より高い比較例である。V/(Ti+Nb)が本発明の範囲を下回ったため、熱間圧延時に析出した粗大な炭化物の固溶に伴うオーステナイト相中へのC濃化が助長され、熱延板焼鈍後に著しく硬質なマルテンサイト相が生成したために線状疵が多量に発生し、所定の表面性状が得られなかった。さらに、熱延板焼鈍温度が本発明範囲より高かったために焼鈍において生成するオーステナイト相の量が減少し、熱延板焼鈍後に生成するマルテンサイト相の量が減少したために、その後の冷間圧延による金属組織の異方性緩和効果を得ることができず、所定の|Δr|が得られなかった。   No. 47 and No. 64 are comparative examples in which V / (Ti + Nb) is below the range of the present invention and the hot-rolled sheet annealing temperature is higher than the range of the present invention. Since V / (Ti + Nb) is below the range of the present invention, C concentration in the austenite phase accompanying the solid solution of coarse carbides precipitated during hot rolling is promoted, and extremely hard after hot-rolled sheet annealing. Since the martensite phase was generated, a large amount of linear wrinkles was generated, and the predetermined surface properties could not be obtained. Furthermore, since the hot-rolled sheet annealing temperature was higher than the range of the present invention, the amount of austenite phase generated during annealing decreased, and the amount of martensite phase generated after hot-rolled sheet annealing decreased. The anisotropic relaxation effect of the metal structure could not be obtained, and the predetermined | Δr | was not obtained.

No. 48およびNo.65は、V/(Ti+Nb)が本発明の範囲を下回り、かつ、熱延板焼鈍温度が本発明範囲より低い比較例である。V/(Ti+Nb)が本発明の範囲を下回っているが、熱延板焼鈍温度がフェライト単相温度域となりオーステナイト相が生成しなかったために、著しく硬質なマルテンサイト相の生成に起因した線状疵の発生はほとんどなく良好な表面性状が得られた。しかし、熱延板焼鈍温度が本発明範囲より低かったため、十分な再結晶が生じなかったことに加え、熱延板焼鈍後にマルテンサイト相が生成しなかったために所定の延性、平均r値および|Δr|が得られなかった。   No. 48 and No. 65 are comparative examples in which V / (Ti + Nb) is below the range of the present invention and the hot-rolled sheet annealing temperature is lower than the range of the present invention. V / (Ti + Nb) is below the range of the present invention, but the hot-rolled sheet annealing temperature was in the ferrite single-phase temperature range and the austenite phase was not generated, resulting in the formation of a significantly hard martensite phase. There was almost no occurrence of linear wrinkles, and good surface properties were obtained. However, since the hot-rolled sheet annealing temperature was lower than the range of the present invention, sufficient recrystallization did not occur, and no martensite phase was formed after the hot-rolled sheet annealing, so that the predetermined ductility, average r value and | Δr | was not obtained.

No. 66は、V/(Ti+Nb)が本発明の範囲を下回り、かつ、熱延板焼鈍時間が本発明範囲より長い比較例である。そのため、熱間圧延時に析出した粗大な炭化物の固溶に伴うオーステナイト相中へのC濃化が過度に生じた結果、熱延板焼鈍後に著しく硬質なマルテンサイト相が生成したために線状疵が多量に発生して所定の表面性状が得られなかった。さらに、冷延板焼鈍後の金属組織が粒内および粒界上の炭化物が過度に多いフェライト結晶粒と、粒界および粒界上の炭化物が少ないフェライト結晶粒からなる混粒組織となったために、引張変形時に両者の結晶粒の界面で局所的なひずみ集中が生じ、所定の延性が得られなかった。   No. 66 is a comparative example in which V / (Ti + Nb) is below the range of the present invention and the hot-rolled sheet annealing time is longer than the range of the present invention. Therefore, as a result of excessive C concentration in the austenite phase accompanying the solid solution of coarse carbides precipitated during hot rolling, a remarkably hard martensite phase was generated after hot-rolled sheet annealing, resulting in linear flaws. It was generated in a large amount and a predetermined surface property could not be obtained. Furthermore, because the metal structure after cold-rolled sheet annealing was a mixed grain structure consisting of ferrite crystal grains with excessive carbide in grains and on grain boundaries, and ferrite grains with few carbides on grain boundaries and grain boundaries. During tensile deformation, local strain concentration occurred at the interface between the two crystal grains, and the predetermined ductility was not obtained.

No. 67は、V/(Ti+Nb)が本発明の範囲を下回り、かつ、冷延板焼鈍温度が本発明範囲より低い比較例である。V/(Ti+Nb)が本発明の範囲を下回ったため、線状疵が多量に発生して所定の表面性状が得られなかった。さらに、冷延板焼鈍温度が本発明範囲より低かったため、冷延板焼鈍における再結晶が不十分で冷間圧延時の加工組織が残存したために、所定の延性および平均r値が得られなかった。     No. 67 is a comparative example in which V / (Ti + Nb) is below the range of the present invention and the cold-rolled sheet annealing temperature is lower than the range of the present invention. Since V / (Ti + Nb) was below the range of the present invention, a large amount of linear wrinkles occurred, and the predetermined surface properties could not be obtained. Furthermore, because the cold-rolled sheet annealing temperature was lower than the range of the present invention, the recrystallization in the cold-rolled sheet annealing was insufficient and the work structure at the time of cold rolling remained, so the predetermined ductility and average r value could not be obtained. .

No. 68は、V/(Ti+Nb)が本発明の範囲を下回り、かつ、冷延板焼鈍温度が本発明範囲より高い比較例である。V/(Ti+Nb)が本発明の範囲を下回ったため、多量の線状疵が発生し所定の表面性状が得られなかった。さらに、冷延板焼鈍温度が本発明範囲より高かったため、フェライト相とオーステナイト相の二相温度域での焼鈍となったために、オーステナイト相が再度生成し、冷延板焼鈍後にマルテンサイト相へと変態したために鋼板が著しく硬質化し、所定の延性が得られなかった。   No. 68 is a comparative example in which V / (Ti + Nb) is below the range of the present invention and the cold-rolled sheet annealing temperature is higher than the range of the present invention. Since V / (Ti + Nb) was below the range of the present invention, a large amount of linear wrinkles occurred and the predetermined surface properties could not be obtained. Furthermore, because the cold-rolled sheet annealing temperature was higher than the range of the present invention, it became the annealing in the two-phase temperature range of the ferrite phase and the austenite phase, so the austenite phase was generated again, and after the cold-rolled sheet annealing, the martensite phase Due to the transformation, the steel sheet was remarkably hardened and the predetermined ductility was not obtained.


本発明で得られるフェライト系ステンレス鋼は、絞りを主体としたプレス成形品や高い表面美麗性を要求される用途、例えば厨房器具や食器への適用に特に好適である。

The ferritic stainless steel obtained by the present invention is particularly suitable for press-molded products mainly composed of a drawing and applications requiring high surface beauty, such as kitchen utensils and tableware.

Claims (5)

質量%で、C: 0.005〜0.05%、Si: 0.02〜0.50%、Mn: 0.05〜1.0%、P: 0.04%以下、S: 0.01%以下、Cr: 15.5〜18.0%、Al: 0.001〜0.10%、N: 0.01〜0.06%、V: 0.01〜0.25%、Ti: 0.001〜0.020%、Nb: 0.001〜0.030%を含有し、残部がFeおよび不可避的不純物からなり、かつV/(Ti+Nb)≧2.0を満たすフェライト系ステンレス鋼。   In mass%, C: 0.005-0.05%, Si: 0.02-0.50%, Mn: 0.05-1.0%, P: 0.04% or less, S: 0.01% or less, Cr: 15.5-18.0%, Al: 0.001-0.10% , N: 0.01 to 0.06%, V: 0.01 to 0.25%, Ti: 0.001 to 0.020%, Nb: 0.001 to 0.030%, the balance is Fe and inevitable impurities, and V / (Ti + Nb) ≧ 2.0 Satisfies ferritic stainless steel. 質量%で、C: 0.01〜0.05%、Si: 0.02〜0.50%、Mn: 0.2〜1.0%、P: 0.04%以下、S: 0.01%以下、Cr: 16.0〜18.0%、Al: 0.001〜0.10%、N: 0.01〜0.06%、V: 0.01〜0.25%、Ti: 0.001〜0.015%、Nb: 0.001〜0.025%を含有し、残部がFeおよび不可避的不純物からなり、かつV/(Ti+Nb)≧2.0を満たすフェライト系ステンレス鋼。   In mass%, C: 0.01-0.05%, Si: 0.02-0.50%, Mn: 0.2-1.0%, P: 0.04% or less, S: 0.01% or less, Cr: 16.0-18.0%, Al: 0.001-0.10% , N: 0.01 to 0.06%, V: 0.01 to 0.25%, Ti: 0.001 to 0.015%, Nb: 0.001 to 0.025%, the balance is Fe and inevitable impurities, and V / (Ti + Nb) ≧ 2.0 Satisfies ferritic stainless steel. 質量%で、さらに、Cu:0.1〜1.0%、Ni: 0.1〜1.0%、Mo: 0.1〜0.5%、Co: 0.01〜0.5%のうちから選ばれる1種または2種以上を含む請求項1または2に記載のフェライト系ステンレス鋼。   2. The composition according to claim 1, further comprising one or more selected from Cu: 0.1 to 1.0%, Ni: 0.1 to 1.0%, Mo: 0.1 to 0.5%, and Co: 0.01 to 0.5%. 2. Ferritic stainless steel according to 2. 質量%で、さらに、Mg: 0.0002〜0.0050%、B: 0.0002〜0.0050%、REM: 0.01〜0.10%、 Ca: 0.0002〜0.0020%、のうちから選ばれる1種または2種以上を含む請求項1〜3のいずれか一項に記載のフェライト系ステンレス鋼。   The composition further comprises one or more selected from the group consisting of Mg: 0.0002 to 0.0050%, B: 0.0002 to 0.0050%, REM: 0.01 to 0.10%, Ca: 0.0002 to 0.0020%. The ferritic stainless steel as described in any one of -3. 請求項1から4のいずれか一項に記載の成分組成を有する鋼スラブに対して、熱間圧延を施し、次いで880〜1000℃の温度範囲で5秒〜15分間保持する焼鈍を行い熱延焼鈍板とし、次いで冷間圧延を施した後、800〜950℃の温度範囲で5秒〜5分間保持する冷延板焼鈍を行うフェライト系ステンレス鋼の製造方法。   The steel slab having the component composition according to any one of claims 1 to 4 is hot-rolled and then annealed in a temperature range of 880 to 1000 ° C for 5 seconds to 15 minutes to perform hot rolling. A method for producing a ferritic stainless steel, which is annealed and then cold-rolled and then cold-rolled sheet annealed at 800 to 950 ° C. for 5 seconds to 5 minutes.
JP2015547592A 2014-01-08 2015-01-07 Ferritic stainless steel and manufacturing method thereof Active JP5862846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015547592A JP5862846B2 (en) 2014-01-08 2015-01-07 Ferritic stainless steel and manufacturing method thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014001362 2014-01-08
JP2014001362 2014-01-08
JP2014228501 2014-11-11
JP2014228501 2014-11-11
JP2015547592A JP5862846B2 (en) 2014-01-08 2015-01-07 Ferritic stainless steel and manufacturing method thereof
PCT/JP2015/000032 WO2015105045A1 (en) 2014-01-08 2015-01-07 Ferritic stainless steel and method for producing same

Publications (2)

Publication Number Publication Date
JP5862846B2 JP5862846B2 (en) 2016-02-16
JPWO2015105045A1 true JPWO2015105045A1 (en) 2017-03-23

Family

ID=53523875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015547592A Active JP5862846B2 (en) 2014-01-08 2015-01-07 Ferritic stainless steel and manufacturing method thereof

Country Status (8)

Country Link
US (1) US20160333439A1 (en)
EP (1) EP3093362B1 (en)
JP (1) JP5862846B2 (en)
KR (1) KR101850231B1 (en)
CN (1) CN105917016B (en)
ES (1) ES2713154T3 (en)
TW (1) TWI531666B (en)
WO (1) WO2015105045A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106460113A (en) * 2014-05-14 2017-02-22 杰富意钢铁株式会社 Ferritic stainless steel
WO2016092713A1 (en) * 2014-12-11 2016-06-16 Jfeスチール株式会社 Stainless steel and production method therefor
WO2016092714A1 (en) * 2014-12-11 2016-06-16 Jfeスチール株式会社 Ferrite-based stainless steel and production method therefor
JP6602112B2 (en) * 2015-08-31 2019-11-06 日鉄ステンレス株式会社 High purity ferritic stainless steel sheet for deep drawing with excellent secondary work brittleness resistance and method for producing the same
KR102590079B1 (en) * 2019-05-29 2023-10-17 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel sheet and manufacturing method thereof
CN114836684A (en) * 2022-04-01 2022-08-02 山西太钢不锈钢股份有限公司 Low-chromium soft magnetic stainless steel and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158233A (en) * 1992-11-25 1994-06-07 Nippon Steel Corp Production of ferritic stainless steel thin slab excellent in toughness and ferritic stainless steel strip by the same thin slab
JP2001003143A (en) * 1999-06-22 2001-01-09 Nippon Steel Corp Ferritic stainless steel sheet excellent in workability and surface characteristics, and its manufacture
JP2002542040A (en) * 1999-04-22 2002-12-10 ユジノール A method for twin-roll continuous casting of ferritic stainless steel without microcracks
JP2009068034A (en) * 2007-09-11 2009-04-02 Jfe Steel Kk Ferritic stainless steel sheet superior in formability for extension flange, and manufacturing method therefor
WO2013136736A1 (en) * 2012-03-13 2013-09-19 Jfeスチール株式会社 Ferritic stainless steel

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3589036B2 (en) * 1997-08-05 2004-11-17 Jfeスチール株式会社 Ferritic stainless steel sheet excellent in deep drawability and ridging resistance and method for producing the same
JP2000265215A (en) * 1999-03-16 2000-09-26 Kawasaki Steel Corp PRODUCTION OF FERRITIC Cr-CONTAINING STEEL SHEET EXCELLENT IN WORKABILITY
KR100484037B1 (en) 1999-03-30 2005-04-18 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel sheet having excellent formability
JP3913935B2 (en) 1999-06-21 2007-05-09 本田技研工業株式会社 Hypoeutectic spheroidal graphite cast iron
JP2001089815A (en) * 1999-09-22 2001-04-03 Kawasaki Steel Corp Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
US6786981B2 (en) * 2000-12-22 2004-09-07 Jfe Steel Corporation Ferritic stainless steel sheet for fuel tank and fuel pipe
KR100762151B1 (en) * 2001-10-31 2007-10-01 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel sheet having excellent deep-drawability and brittle resistance to secondary processing and method for making the same
JP3680829B2 (en) * 2001-10-31 2005-08-10 Jfeスチール株式会社 Ferritic stainless steel sheet excellent in deep drawability, secondary work brittleness resistance and corrosion resistance, and method for producing the same
JP4519543B2 (en) * 2004-07-01 2010-08-04 新日鐵住金ステンレス株式会社 Low cost stainless steel wire having magnetism with excellent corrosion resistance, cold workability and toughness, and method for producing the same
CN102041452A (en) * 2009-10-23 2011-05-04 宝山钢铁股份有限公司 Medium chromium ferrite stainless steel and making method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158233A (en) * 1992-11-25 1994-06-07 Nippon Steel Corp Production of ferritic stainless steel thin slab excellent in toughness and ferritic stainless steel strip by the same thin slab
JP2002542040A (en) * 1999-04-22 2002-12-10 ユジノール A method for twin-roll continuous casting of ferritic stainless steel without microcracks
JP2001003143A (en) * 1999-06-22 2001-01-09 Nippon Steel Corp Ferritic stainless steel sheet excellent in workability and surface characteristics, and its manufacture
JP2009068034A (en) * 2007-09-11 2009-04-02 Jfe Steel Kk Ferritic stainless steel sheet superior in formability for extension flange, and manufacturing method therefor
WO2013136736A1 (en) * 2012-03-13 2013-09-19 Jfeスチール株式会社 Ferritic stainless steel

Also Published As

Publication number Publication date
WO2015105045A1 (en) 2015-07-16
TW201531573A (en) 2015-08-16
TWI531666B (en) 2016-05-01
CN105917016A (en) 2016-08-31
EP3093362A4 (en) 2017-04-26
US20160333439A1 (en) 2016-11-17
KR101850231B1 (en) 2018-04-18
JP5862846B2 (en) 2016-02-16
ES2713154T3 (en) 2019-05-20
CN105917016B (en) 2018-11-27
EP3093362A1 (en) 2016-11-16
KR20160105874A (en) 2016-09-07
EP3093362B1 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
JP5888476B2 (en) Material for stainless cold-rolled steel sheet and manufacturing method thereof
JP5987996B2 (en) Ferritic stainless steel and manufacturing method thereof
JP5884211B1 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP5862846B2 (en) Ferritic stainless steel and manufacturing method thereof
EP3159423B1 (en) Cold-rolled ferritic stainless steel sheet
WO2016092714A1 (en) Ferrite-based stainless steel and production method therefor
JP5907320B1 (en) Material for stainless cold-rolled steel sheet and manufacturing method thereof
KR101949629B1 (en) Stainless steel and production method therefor
JP5505575B1 (en) Ferritic stainless steel sheet
WO2016035235A1 (en) Material for cold-rolled stainless steel sheets
WO2016051437A1 (en) Ferritic stainless steel and method for producing same
JP6411881B2 (en) Ferritic stainless steel and manufacturing method thereof
JP5919812B2 (en) High strength thin steel sheet with excellent formability and method for producing the same
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP5900717B1 (en) Stainless steel sheet and manufacturing method thereof
JP5928669B1 (en) Ferritic stainless steel and manufacturing method thereof
JP2001107149A (en) Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20151110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R150 Certificate of patent or registration of utility model

Ref document number: 5862846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250