JPWO2015099088A1 - Magnetic sensor, magnetic encoder using the same, lens barrel, camera, and method of manufacturing magnetic sensor - Google Patents

Magnetic sensor, magnetic encoder using the same, lens barrel, camera, and method of manufacturing magnetic sensor Download PDF

Info

Publication number
JPWO2015099088A1
JPWO2015099088A1 JP2015555025A JP2015555025A JPWO2015099088A1 JP WO2015099088 A1 JPWO2015099088 A1 JP WO2015099088A1 JP 2015555025 A JP2015555025 A JP 2015555025A JP 2015555025 A JP2015555025 A JP 2015555025A JP WO2015099088 A1 JPWO2015099088 A1 JP WO2015099088A1
Authority
JP
Japan
Prior art keywords
magnetic sensor
sensor element
wiring
magnetic
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015555025A
Other languages
Japanese (ja)
Other versions
JP6436098B2 (en
Inventor
杉本 正和
正和 杉本
和生 鈴木
和生 鈴木
賢治 西原
賢治 西原
直矢 木村
直矢 木村
裕崇 佐竹
裕崇 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JPWO2015099088A1 publication Critical patent/JPWO2015099088A1/en
Application granted granted Critical
Publication of JP6436098B2 publication Critical patent/JP6436098B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/30Supports specially adapted for an instrument; Supports specially adapted for a set of instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism

Abstract

接続部材と配線部材との剥離が起こりにくく、信頼性が極めて高い磁気センサを提供する。
本発明に係る磁気センサ1は、磁気センサ素子取付部21を弾性的に支持する弾性部を有する支持部材3と、
磁気センサ素子取付部21に設けられた、磁界を検出し、電気的に出力する磁気センサ素子5と、
磁気センサ素子5に電気的に接続された可撓性を有する配線部材7と、
支持部材3と配線部材7とを接続する接続部材9と、
配線部材7の少なくとも上面上の、接続部材9に対応する位置に設けられたキャップ部材11と、を備えることを特徴とする。
Provided is a magnetic sensor with extremely high reliability in which peeling between a connection member and a wiring member does not easily occur.
The magnetic sensor 1 according to the present invention includes a support member 3 having an elastic portion that elastically supports the magnetic sensor element mounting portion 21;
A magnetic sensor element 5 provided on the magnetic sensor element mounting portion 21 for detecting and electrically outputting a magnetic field;
A flexible wiring member 7 electrically connected to the magnetic sensor element 5;
A connection member 9 for connecting the support member 3 and the wiring member 7;
And a cap member 11 provided at a position corresponding to the connection member 9 on at least the upper surface of the wiring member 7.

Description

本発明は、磁気変化を検知する磁気センサ、移動体の移動方向若しくは移動量、または回転体の回転角度等を磁気変化で検出する磁気エンコーダ、レンズ鏡筒、及びカメラ、並びに当該磁気センサの製造方法に関する。   The present invention relates to a magnetic sensor for detecting a magnetic change, a magnetic encoder, a lens barrel, and a camera for detecting a moving direction or moving amount of a moving body or a rotation angle of a rotating body by a magnetic change, and manufacture of the magnetic sensor. Regarding the method.

精度良く移動方向、移動量、または回転角度等を検出する必要がある機器・装置等にはエンコーダが用いられている。   An encoder is used in a device or apparatus that needs to detect a movement direction, a movement amount, a rotation angle, or the like with high accuracy.

例えば、カメラのレンズ鏡筒においては第1のレンズ鏡筒に取り付けられたレンズ群と第2のレンズ鏡筒に取り付けられたレンズ群が、レンズ鏡筒同士の相対的な回転に応じて前後に移動する。その移動量を検知するためエンコーダが用いられている。特に一眼レフカメラ用のレンズ鏡筒には、レンズ鏡筒の回転方向の相対的な移動量を検出するため、レンズ鏡筒の周面に磁気エンコーダが取り付けられている。前記磁気エンコーダでレンズ鏡筒の回転方向の相対的な移動量を検出することで、鏡筒の前後方向の相対的な移動量を算出でき、ピント合わせを極めて正確に行うことができる。   For example, in a lens barrel of a camera, a lens group attached to a first lens barrel and a lens group attached to a second lens barrel are moved back and forth according to the relative rotation of the lens barrels. Moving. An encoder is used to detect the amount of movement. In particular, in a lens barrel for a single lens reflex camera, a magnetic encoder is attached to the peripheral surface of the lens barrel in order to detect a relative movement amount in the rotation direction of the lens barrel. By detecting the relative movement amount of the lens barrel in the rotation direction with the magnetic encoder, the relative movement amount of the lens barrel in the front-rear direction can be calculated, and focusing can be performed very accurately.

磁気エンコーダは、例えばシート上に配した磁性体に異なる磁化方向を回転方向に沿って一定のピッチで着磁した磁気スケール(磁気媒体)と、当該磁気スケール上を相対的に摺動する磁気センサと、を有して成る。レンズ鏡筒には磁気スケールがレンズ鏡筒の回転方向に沿って設けられ、レンズ鏡筒を回転させることにより、磁気スケール上を磁気センサが相対的に摺動する。その際、磁気スケールからの漏洩磁場の変化を当該磁気センサで検出することによりレンズ鏡筒の回転移動量を検出することができる。   The magnetic encoder is, for example, a magnetic scale (magnetic medium) in which different magnetization directions are magnetized at a constant pitch along the rotation direction on a magnetic material arranged on a sheet, and a magnetic sensor that relatively slides on the magnetic scale. And comprising. The lens barrel is provided with a magnetic scale along the rotation direction of the lens barrel, and the magnetic sensor relatively slides on the magnetic scale by rotating the lens barrel. At that time, the rotational movement amount of the lens barrel can be detected by detecting the change in the leakage magnetic field from the magnetic scale by the magnetic sensor.

このような磁気エンコーダとして、板バネ等の支持部材と、当該支持部材に設けられた磁気センサ素子と、当該磁気センサ素子に接続された可撓性(柔軟性)を有する配線部材と、前記支持部材と前記配線部材とを接続する接続部材とからなるものが、例えば特許文献1に開示されている。特許文献1のように従来の磁気エンコーダでは板バネ等の支持部材と配線部材とを接続部材で接続して磁気センサ素子の位置を固定している。   As such a magnetic encoder, a supporting member such as a leaf spring, a magnetic sensor element provided on the supporting member, a flexible wiring member connected to the magnetic sensor element, and the support For example, Patent Document 1 discloses a member including a member and a connecting member that connects the wiring member. As in Patent Document 1, in a conventional magnetic encoder, a supporting member such as a leaf spring and a wiring member are connected by a connecting member to fix the position of the magnetic sensor element.

特開2006−317255号公報JP 2006-317255 A

ところが、前記磁気センサをレンズ鏡筒などに組み付ける際、レンズ鏡筒にはスペースが少なく、配線部材を無理に湾曲させたり、屈曲させたりしてレンズ鏡筒に取り付けようとすることが多い。このとき、配線部材が引っ張られ、接続部材から配線部材を引き剥がす力が加わる。これにより配線部材が接続部材から剥離され、その先にある磁気センサ素子の位置がずれたり、板バネを曲げてしまうことがあった。その結果、磁気エンコーダの検出する位置精度が著しく低下するか、最悪の場合、支持部材が変形し、磁気エンコーダが故障して使用できなくなるという問題があった。
本発明は、上記課題に鑑み成されたものであり、その目的とするところは、接続部材と配線部材との剥離が起こりにくく、信頼性が極めて高い磁気センサ、及び、その製造方法を提供することにある。また、この磁気センサを用いた磁気エンコーダ、レンズ鏡筒、及びカメラを提供するものである。
However, when the magnetic sensor is assembled to a lens barrel or the like, there is little space in the lens barrel, and it is often attempted to attach the wiring member to the lens barrel by forcibly bending or bending it. At this time, the wiring member is pulled, and a force is applied to peel off the wiring member from the connection member. As a result, the wiring member is peeled off from the connecting member, and the position of the magnetic sensor element at the tip may be displaced or the leaf spring may be bent. As a result, there is a problem that the position accuracy detected by the magnetic encoder is remarkably lowered or, in the worst case, the support member is deformed and the magnetic encoder fails and cannot be used.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a highly reliable magnetic sensor in which peeling between a connecting member and a wiring member hardly occurs and a manufacturing method thereof. There is. The present invention also provides a magnetic encoder, a lens barrel, and a camera using the magnetic sensor.

上記課題を解決するため、本発明の一の態様は、磁気センサ素子取付部を弾性的に支持する弾性部を有する支持部材と、
前記磁気センサ素子取付部に設けられた、磁界を検出し電気的に出力する磁気センサ素子と、
前記磁気センサ素子に電気的に接続された可撓性を有する配線部材と、
前記支持部材と前記配線部材とを接続する接続部材と、
前記配線部材の少なくとも上面上の、前記接続部材に対応する位置に設けられたキャップ部材と、を備える磁気センサである。
In order to solve the above problems, one aspect of the present invention provides a support member having an elastic portion that elastically supports the magnetic sensor element mounting portion;
A magnetic sensor element provided in the magnetic sensor element mounting portion for detecting and electrically outputting a magnetic field;
A flexible wiring member electrically connected to the magnetic sensor element;
A connection member for connecting the support member and the wiring member;
And a cap member provided at a position corresponding to the connection member on at least the upper surface of the wiring member.

上記磁気センサにおいて、ある態様では、前記接続部材及び/又は前記キャップ部材は樹脂である。   In the magnetic sensor, in one aspect, the connection member and / or the cap member is a resin.

さらに別の態様では、前記接続部材及び/又は前記キャップ部材を構成する樹脂は光硬化性樹脂である。   In still another aspect, the resin constituting the connection member and / or the cap member is a photocurable resin.

前記光硬化性樹脂は、紫外線硬化性樹脂であることが好ましい。   The photocurable resin is preferably an ultraviolet curable resin.

上記磁気センサにおいて、前記キャップ部材の高さは、好適には、0.1mm以上である。   In the magnetic sensor, the height of the cap member is preferably 0.1 mm or more.

上記磁気センサは、上記磁気センサ素子取付部と上記磁気センサ素子との間に配線部を有する基板あるいは配線部を有さない基板をさらに有し、前記基板上に前記磁気センサ素子が設けられていてもよい。   The magnetic sensor further includes a substrate having a wiring portion or a substrate having no wiring portion between the magnetic sensor element mounting portion and the magnetic sensor element, and the magnetic sensor element is provided on the substrate. May be.

好適には、前記接続部材の高さは、前記基板の厚さに対して、0.85倍〜1.15倍である。   Preferably, the height of the connection member is 0.85 to 1.15 times the thickness of the substrate.

上記磁気センサにおいて、前記磁気センサ素子と前記基板との間、及び、前記基板と前記支持部材との間に導電性樹脂層が介在し、前記磁気センサ素子の電気的に出力する端子以外の部分と前記基板とが前記導電性樹脂層により固定され、さらに前記基板と前記支持部材とが前記導電性樹脂層により固定されていてもよい。   In the magnetic sensor, a conductive resin layer is interposed between the magnetic sensor element and the substrate, and between the substrate and the support member, and a portion other than an electrical output terminal of the magnetic sensor element And the substrate may be fixed by the conductive resin layer, and the substrate and the support member may be fixed by the conductive resin layer.

本発明の別の態様は、磁気スケールと、前記磁気スケール上を相対的に摺動可能な上述の磁気センサと、を備える磁気エンコーダである。   Another aspect of the present invention is a magnetic encoder including a magnetic scale and the above-described magnetic sensor capable of sliding relatively on the magnetic scale.

また、本発明の別の態様は、上述の磁気エンコーダを備えるレンズ鏡筒である。   Another aspect of the present invention is a lens barrel including the above-described magnetic encoder.

また、本発明のさらに別の態様は、上述のレンズ鏡筒を備えるカメラである。   Yet another aspect of the present invention is a camera including the lens barrel described above.

また、本発明のさらに別の態様は、磁気センサ素子取付部を弾性的に支持する弾性部を有する支持部材と、前記磁気センサ素子取付部に設けられた、磁界を検出し電気的に出力する磁気センサ素子と、前記磁気センサ素子に電気的に接続された可撓性を有する配線部材と、前記支持部材と前記配線部材とを接続する接続部材と、前記配線部材の少なくとも上面上の、前記接続部材に対応する位置に設けられたキャップ部材と、を備える磁気センサを作製する方法であって、
前記磁気センサ素子と前記支持部材とを固定する工程と、
前記磁気センサ素子と前記配線部材とを電気的に接続する工程と、
前記配線部材と前記支持部材との間に接続部材を形成する工程と、
前記接続部材に対応する位置にキャップ部材を形成する工程と、を備える磁気センサの製造方法である。
According to still another aspect of the present invention, a support member having an elastic portion that elastically supports the magnetic sensor element mounting portion, and a magnetic field provided in the magnetic sensor element mounting portion are detected and electrically output. A magnetic sensor element; a flexible wiring member electrically connected to the magnetic sensor element; a connection member connecting the support member and the wiring member; and at least an upper surface of the wiring member, A cap member provided at a position corresponding to the connection member, and a magnetic sensor comprising:
Fixing the magnetic sensor element and the support member;
Electrically connecting the magnetic sensor element and the wiring member;
Forming a connection member between the wiring member and the support member;
Forming a cap member at a position corresponding to the connection member.

前記磁気センサが、さらに、前記支持部材と前記磁気センサ素子との間に、配線部を有する基板を備え、
前記磁気センサを作製する方法において、前記磁気センサ素子と前記支持部材とを固定する工程は、前記支持部材と前記基板とを固定し、さらに、前記基板と前記磁気センサ素子とを固定する工程であり、
前記磁気センサ素子と前記配線部材の配線部とを電気的に接続する工程は、前記基板の配線部を介して磁気センサ素子と前記配線部材の配線部とを電気的に接続する工程である。
The magnetic sensor further includes a substrate having a wiring portion between the support member and the magnetic sensor element,
In the method of manufacturing the magnetic sensor, the step of fixing the magnetic sensor element and the support member is a step of fixing the support member and the substrate, and further fixing the substrate and the magnetic sensor element. Yes,
The step of electrically connecting the magnetic sensor element and the wiring portion of the wiring member is a step of electrically connecting the magnetic sensor element and the wiring portion of the wiring member via the wiring portion of the substrate.

本発明に係る磁気センサの製造方法において、前記接続部材を形成する工程と、前記キャップ部材を形成する工程とを、同時に行ってもよい。   In the method for manufacturing a magnetic sensor according to the present invention, the step of forming the connection member and the step of forming the cap member may be performed simultaneously.

また、本発明に係る磁気センサの製造方法において、前記接続部材を形成する工程及び/又は前記キャップ部材を形成する工程は、液状の樹脂を硬化させて接続部材及び/又はキャップ部材を形成する工程であってもよい。   In the method of manufacturing a magnetic sensor according to the present invention, the step of forming the connection member and / or the step of forming the cap member includes a step of curing the liquid resin to form the connection member and / or the cap member. It may be.

本発明に係る磁気センサの製造方法において、前記樹脂は35,000(mPa・s)以上の粘度を有することが好ましい。   In the method of manufacturing a magnetic sensor according to the present invention, the resin preferably has a viscosity of 35,000 (mPa · s) or more.

また、本発明に係る磁気センサの製造方法において、前記接続部材を形成する工程及び/又は前記キャップ部材を形成する工程は、紫外線硬化性樹脂を用いて、紫外線を紫外線硬化性樹脂に照射して当該紫外線硬化性樹脂を硬化させ形成する工程であってもよい。   In the method for manufacturing a magnetic sensor according to the present invention, the step of forming the connection member and / or the step of forming the cap member may be performed by irradiating the ultraviolet curable resin with ultraviolet rays using an ultraviolet curable resin. It may be a step of curing and forming the ultraviolet curable resin.

さらに、本発明に係る磁気センサの製造方法において、前記接続部材を形成する工程及び/又は前記キャップ部材を形成する工程は、紫外線を、前記接続部材及び/又は前記キャップ部材の両側から照射する工程であってもよい。   Furthermore, in the method for manufacturing a magnetic sensor according to the present invention, the step of forming the connection member and / or the step of forming the cap member includes a step of irradiating ultraviolet rays from both sides of the connection member and / or the cap member. It may be.

本発明に係る磁気センサの製造方法において、前記磁気センサ素子の電気的に出力する端子以外の部分と前記基板とを導電性樹脂により固定し、及び、前記基板と前記支持部材とを導電性樹脂により固定してもよい。   In the method for manufacturing a magnetic sensor according to the present invention, a portion of the magnetic sensor element other than the electrical output terminal and the substrate are fixed with a conductive resin, and the substrate and the support member are connected with the conductive resin. It may be fixed by.

本発明によれば、接続部材と配線部材との剥離が起こりにくく、信頼性が極めて高い磁気センサ、及び、その製造方法を提供することができる。また、この磁気センサを用いた磁気エンコーダ、レンズ鏡筒、及びカメラを提供することができる。   According to the present invention, it is possible to provide a highly reliable magnetic sensor and a method for manufacturing the same, in which peeling between the connecting member and the wiring member hardly occurs. In addition, a magnetic encoder, a lens barrel, and a camera using this magnetic sensor can be provided.

図1は、本発明の実施の形態に係る磁気センサの構造を説明した図面である。図1(a)は、当該実施の形態に係る磁気センサの上面図であり、図1(b)は、その斜視図である。FIG. 1 is a diagram illustrating the structure of a magnetic sensor according to an embodiment of the present invention. FIG. 1A is a top view of the magnetic sensor according to the embodiment, and FIG. 1B is a perspective view thereof. 図2は、図1に示す本発明の実施の形態に係る磁気センサに用いられるキャップ部材周辺のY−Y’断面概略図である。FIG. 2 is a schematic cross-sectional view taken along the line Y-Y ′ around the cap member used in the magnetic sensor according to the embodiment of the present invention shown in FIG. 1. 図3は、従来の磁気センサにおける、接続部材の剥離現象を説明した図面である。FIG. 3 is a diagram for explaining a peeling phenomenon of a connection member in a conventional magnetic sensor. 図4は、本発明に係る磁気センサにおける、キャップ部材による剥離抑制現象を説明した図面である。FIG. 4 is a diagram for explaining a phenomenon of suppressing peeling by a cap member in the magnetic sensor according to the present invention. 図5は、図1に示す本発明の実施の形態に係る磁気センサのZ−Z’断面図である。図5(a)は、当該実施の形態に係る磁気センサをカメラのレンズ鏡筒に取り付ける前の状態を示しており、図5(b)は、当該磁気センサをレンズ鏡筒に取り付けた後の状態を示している。FIG. 5 is a Z-Z ′ sectional view of the magnetic sensor according to the embodiment of the present invention shown in FIG. 1. FIG. 5A shows a state before the magnetic sensor according to the embodiment is attached to the lens barrel of the camera, and FIG. 5B shows the state after the magnetic sensor is attached to the lens barrel. Indicates the state. 図6は、本発明の実施の形態1に係るレンズ鏡筒の斜視図である。FIG. 6 is a perspective view of the lens barrel according to Embodiment 1 of the present invention. 図7は、実施の形態1に係る磁気センサの別の態様を示した斜視図である。FIG. 7 is a perspective view showing another aspect of the magnetic sensor according to the first embodiment. 図8は、実施の形態1に係る磁気センサのさらに別の態様を示した斜視図である。FIG. 8 is a perspective view showing still another aspect of the magnetic sensor according to the first embodiment. 図9は、実施の形態1に係る磁気センサのさらに別の態様を示した斜視図である。FIG. 9 is a perspective view showing still another aspect of the magnetic sensor according to the first embodiment. 図10は、図9の磁気センサをレンズ鏡筒に取り付けた状態を示した断面図である。FIG. 10 is a cross-sectional view showing a state where the magnetic sensor of FIG. 9 is attached to a lens barrel. 図11は、本発明の実施の形態1に係る磁気センサの全体の製造工程を示したフロー図である。FIG. 11 is a flowchart showing the entire manufacturing process of the magnetic sensor according to the first embodiment of the present invention. 図12は、スポット照射の形態を説明した概略図である。FIG. 12 is a schematic diagram illustrating a form of spot irradiation. 図13は、キャップ部材の高さと接合強度(ピール強度)との関係を示したグラフである。FIG. 13 is a graph showing the relationship between the height of the cap member and the bonding strength (peel strength). 図14は、接続部材の高さと磁気スケールへの追随性について説明したグラフである。FIG. 14 is a graph illustrating the height of the connecting member and the followability to the magnetic scale. 図15は、B−A寸法と最大押込み量との関係について説明したグラフである。FIG. 15 is a graph for explaining the relationship between the B-A dimension and the maximum pushing amount. 図16は、樹脂粘度とキャップ部材の高さとの関係について説明したグラフである。FIG. 16 is a graph illustrating the relationship between the resin viscosity and the height of the cap member. 図17は、好ましい紫外線照射の下限値の決定の仕方を説明するためのグラフである。図17(a)は放射強度と接着強度との関係を示し、図17(b)は積算放射量と接着強度との関係を示す。FIG. 17 is a graph for explaining a method of determining a preferable lower limit value of ultraviolet irradiation. FIG. 17A shows the relationship between the radiation intensity and the adhesive strength, and FIG. 17B shows the relationship between the accumulated radiation amount and the adhesive strength. 図18は、好ましい紫外線照射の上限値の決定の仕方を説明するためのグラフである。FIG. 18 is a graph for explaining how to determine a preferable upper limit value of ultraviolet irradiation. 図19は、印加電圧と抵抗変化率との関係を示したグラフである。FIG. 19 is a graph showing the relationship between the applied voltage and the resistance change rate. 図20は、本発明の実施の形態に係るセンサの支持部材の上面図である。FIG. 20 is a top view of the support member of the sensor according to the embodiment of the present invention.

以下、図面に基づいて本発明の実施形態を詳細に説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「上」、「下」、「右」、「左」およびそれらの用語を含む別の用語)を用いるが、それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が制限されるものではない。複数の図面に表れる同一符号は、特に断らない限り同一の部分又は部材を示す。
以下、本発明の実施の形態に係る磁気センサ、及び当該磁気センサを用いた磁気エンコーダ、レンズ鏡筒及びカメラ、並びに、当該磁気センサの製造方法について詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, terms indicating specific directions and positions (for example, “up”, “down”, “right”, “left” and other terms including those terms) are used as necessary. These terms are used for easy understanding of the invention with reference to the drawings, and the technical scope of the present invention is not limited by the meaning of these terms. The same reference numerals appearing in a plurality of drawings indicate the same parts or members unless otherwise specified.
Hereinafter, a magnetic sensor according to an embodiment of the present invention, a magnetic encoder using the magnetic sensor, a lens barrel and a camera, and a method for manufacturing the magnetic sensor will be described in detail.

(1)磁気センサ
図1(a)は、本発明の実施の形態1に係る磁気センサ1の上面図であり、図1(b)はその斜視図である。本発明の実施の形態1に係る磁気センサ1は、磁気センサ素子取付部21と支持部材取付本体部23とを有し、磁気センサ素子取付部21と支持部材取付本体部23との相対的位置が変化するように弾性変形する支持部材3と、支持部材3に設けられた、磁界を検出する磁気センサ素子5と、磁気センサ素子5に接続された可撓性(すなわち、柔軟性)を有する配線部材7と、支持部材3と配線部材7とを接続する接続部材9と、配線部材7の上面上の、接続部材9に対応する位置に設けられたキャップ部材11と、を備えることを特徴とする。本件において、磁気センサ素子5と、磁気センサ1とは異なる部材を指し示している。磁気センサ1とは、磁気センサ素子5を含むセンサ装置全体を意味する。一方、磁気センサ素子5とは、磁気センサ1に含まれる素子であって、例えば磁気スケールからの漏洩磁場を検出する素子を意味する。また、図示した基板13は必ずしも必要ではなく、備えていない例は追って説明する。以下、各構成要素について詳細に説明する。
(1) Magnetic Sensor FIG. 1A is a top view of the magnetic sensor 1 according to Embodiment 1 of the present invention, and FIG. 1B is a perspective view thereof. The magnetic sensor 1 according to the first embodiment of the present invention includes a magnetic sensor element attachment portion 21 and a support member attachment main body portion 23, and the relative position between the magnetic sensor element attachment portion 21 and the support member attachment main body portion 23. The support member 3 is elastically deformed so as to change, the magnetic sensor element 5 provided on the support member 3 detects a magnetic field, and has flexibility (ie, flexibility) connected to the magnetic sensor element 5. The wiring member 7, the connection member 9 which connects the support member 3 and the wiring member 7, and the cap member 11 provided in the position corresponding to the connection member 9 on the upper surface of the wiring member 7 are provided. And In this case, the magnetic sensor element 5 and the magnetic sensor 1 are different members. The magnetic sensor 1 means the entire sensor device including the magnetic sensor element 5. On the other hand, the magnetic sensor element 5 is an element included in the magnetic sensor 1 and means, for example, an element that detects a leakage magnetic field from the magnetic scale. Further, the illustrated substrate 13 is not necessarily required, and an example in which the substrate 13 is not provided will be described later. Hereinafter, each component will be described in detail.

1.キャップ部材及び接続部材
本発明の実施の形態1に係るキャップ部材11は、配線部材7の上面上に設けられ、配線部材7と当該配線部材7の下部に設けられた接続部材9との剥離を防止するためのものである。本実施の形態1においては、キャップ部材11は、配線部材7の上面に設けられているが、本発明においては、配線部材7が接続部材9から剥離することをキャップ部材11が抑制することが可能な位置(すなわち、後述する「接続部材9に対応する位置」)にあればキャップ部材11は如何なる場所に設けられていてもよい。
1. Cap Member and Connection Member The cap member 11 according to Embodiment 1 of the present invention is provided on the upper surface of the wiring member 7, and peels off the wiring member 7 from the connection member 9 provided below the wiring member 7. It is for preventing. In the first embodiment, the cap member 11 is provided on the upper surface of the wiring member 7. However, in the present invention, the cap member 11 prevents the wiring member 7 from being peeled off from the connection member 9. The cap member 11 may be provided in any position as long as it is in a possible position (that is, “position corresponding to the connection member 9” described later).

図2〜4は、キャップ部材11が接続部材9と配線部材7との剥離を抑制する原理を説明するための図面である。図2〜4を用いながら、キャップ部材11が如何にして接続部材9と配線部材7との剥離を抑制しているかについての考察を詳細に説明する。   2 to 4 are drawings for explaining the principle that the cap member 11 suppresses the peeling between the connection member 9 and the wiring member 7. The consideration about how the cap member 11 is suppressing peeling with the connection member 9 and the wiring member 7 is demonstrated in detail, using FIGS.

図2は、本発明の実施の形態1に係るキャップ部材11周辺の概略断面図である。図2に示すように、配線部材7と支持部材3との間に間隙を設けるように接続部材9が設けられ、接続部材9により配線部材7と支持部材3とが接続されている。そして、配線部材7の上面上の、接続部材9に対応する位置にキャップ部材11が設けられている。キャップ部材11は図示のように接続部材に対して配線部材の上にかぶせるキャップ状であることが望ましいが、後述するようにこれに限定されるものではない。   FIG. 2 is a schematic cross-sectional view around the cap member 11 according to Embodiment 1 of the present invention. As shown in FIG. 2, a connection member 9 is provided so as to provide a gap between the wiring member 7 and the support member 3, and the wiring member 7 and the support member 3 are connected by the connection member 9. A cap member 11 is provided on the upper surface of the wiring member 7 at a position corresponding to the connection member 9. The cap member 11 is preferably in the shape of a cap that covers the connecting member on the wiring member as shown in the figure, but is not limited to this as will be described later.

本発明者らは、配線部材7と接続部材9との剥離について鋭意研究を重ねた結果、以下の知見を得た。すなわち、図3(a)〜(c)に示すように、キャップ部材11が配線部材7の上に存在しない場合、可撓性を有する配線部材7(固定されていない自由端側)を、接続部材9が設けられた側と反対方向(すなわち、図3(a)〜(c)においては上方向)に湾曲させると、接続部材9と配線部材7との接合部のうち最外部Nに応力が集中する。ここで、配線部材7を接続部材9に対して上方向に湾曲させる場合について説明するが、配線部材7を接続部材9から剥離させる力が配線部材7および/または接続部材9に付与されている状況であれば如何なる状況であってもよく、配線部材7の端子を接続するときの配線部材7を引っ張る力や、エンコーダ動作時に磁気センサ1が配線部材7を引っ張る力などにより、配線部材7が変形したり配線部材7に張力がかかる状況全てを含む。当該応力が接続部材9と配線部材7との接着力を超えると、図3(b)に示すように、配線部材7が接続部材9から剥離し始め、配線部材7をさらに湾曲させると、図3(c)に示すように、配線部材7が接続部材9から離れていく。すなわち、キャップ部材11が、配線部材7の上面上の、接続部材9に対応する位置に設けられていない場合、キャップ部材11が配線部材7を介して接続部材9を押し返す下方向の力(本明細書において、このような力をキャップ部材11による反力又は単に反力と称する)が存在しない。そのため、図3(b)、(c)に示すように、接続部材9を湾曲させることによる、接続部材9から配線部材7が離れようとする力(本明細書において、このような力を、配線部材7を湾曲させることによる応力又は単に応力と称し、湾曲した状態とは応力がかかった状態とする。)が、接続部材9と配線部材7との接着力(本明細書において、このような力を、単に接着力と称することがある)を容易に超えやすく、接続部材9の最外部Nにおいて接続部材9から離れる方向に力が加わって接続部材9と配線部材7との剥離が発生しやすい。   As a result of intensive studies on peeling between the wiring member 7 and the connection member 9, the present inventors have obtained the following knowledge. That is, as shown in FIGS. 3A to 3C, when the cap member 11 does not exist on the wiring member 7, the flexible wiring member 7 (free end side not fixed) is connected. When bending in the direction opposite to the side on which the member 9 is provided (that is, upward in FIGS. 3A to 3C), stress is applied to the outermost N of the joint portion between the connecting member 9 and the wiring member 7. Concentrate. Here, although the case where the wiring member 7 is bent upward with respect to the connection member 9 will be described, a force for peeling the wiring member 7 from the connection member 9 is applied to the wiring member 7 and / or the connection member 9. The wiring member 7 may be in any condition as long as the wiring member 7 is pulled by a force that pulls the wiring member 7 when connecting the terminals of the wiring member 7 or a force that the magnetic sensor 1 pulls the wiring member 7 during the encoder operation. This includes all situations where the wiring member 7 is deformed or tension is applied. When the stress exceeds the adhesive force between the connecting member 9 and the wiring member 7, as shown in FIG. 3B, the wiring member 7 starts to peel from the connecting member 9, and the wiring member 7 is further curved. As shown in 3 (c), the wiring member 7 moves away from the connection member 9. That is, when the cap member 11 is not provided on the upper surface of the wiring member 7 at a position corresponding to the connection member 9, the downward force (the main force of the cap member 11 pushing back the connection member 9 through the wiring member 7 is In the specification, there is no such force) (the reaction force by the cap member 11 or simply referred to as reaction force). Therefore, as shown in FIGS. 3B and 3C, a force that causes the wiring member 7 to be separated from the connection member 9 by bending the connection member 9 (in this specification, such a force is The stress caused by bending the wiring member 7 or simply stress is referred to as a stressed state.) The adhesive force between the connecting member 9 and the wiring member 7 (in the present specification, this is the case). The force is sometimes simply referred to as adhesive force), and force is applied in the direction away from the connection member 9 at the outermost portion N of the connection member 9 to cause separation between the connection member 9 and the wiring member 7. It's easy to do.

しかしながら、図4(a)に示すように、接続部材9と配線部材7との界面の端部に合わせるように、キャップ部材11を配線部材7の上面上に設けることで、接続部材9と配線部材7との剥離が発生しにくくなる効果が得られる。それについて図4(a)〜(c)を用いて説明する。まず、図4(a)に示すように、キャップ部材11を、配線部材7の上面上の、接続部材9に対応する位置に設ける。それにより、図4(b)〜(c)に示すように、配線部材7を上述のように湾曲させたとしても、キャップ部材11の剛性による反力(図4において反力はMにより示す)が働いているため、接続部材9と配線部材7との接合部の最外部(接続部材9と配線部材7との接合部のうち、配線部材7に接続された磁気センサ素子5又は基板13が用いられる場合は磁気センサ素子5が設けられた基板13から最も離れた部分)Nに掛かる応力(図4において応力はPにより示す)が、キャップ部材11による反力Mと、接着部材と配線部材7との接着力(図4において接着力はOにより示す)とを合わせた力を超えにくくなり、接続部材9と配線部材7との剥離が発生しにくくなる。この効果は力をかけた向きに反力Mが加わることが条件となるため、図4(b)〜(c)のように上向きに力が加わった場合、接続部材9の端部とキャップ部材11の端部が同じ位置か、キャップ部材11の端部が接続部材9の端部の外側にあることが好ましい。その逆方向の力も考慮するならば、接続部材9の端部とキャップ部材11の端部とは同じ位置にあることが好ましい。また、センサ側の動きに対しても剥離しにくくなる効果を得るためには右側の端部だけでなく左側の端部も同じ位置にあることが好ましい。   However, as shown in FIG. 4A, the cap member 11 is provided on the upper surface of the wiring member 7 so as to match the end of the interface between the connecting member 9 and the wiring member 7. The effect that peeling with the member 7 does not occur easily is obtained. This will be described with reference to FIGS. First, as shown in FIG. 4A, the cap member 11 is provided on the upper surface of the wiring member 7 at a position corresponding to the connection member 9. Thereby, as shown in FIGS. 4B to 4C, even if the wiring member 7 is curved as described above, the reaction force due to the rigidity of the cap member 11 (the reaction force is indicated by M in FIG. 4). Therefore, the outermost part of the joint between the connection member 9 and the wiring member 7 (the magnetic sensor element 5 or the substrate 13 connected to the wiring member 7 out of the joint between the connection member 9 and the wiring member 7 is When used, the stress applied to N (the portion farthest from the substrate 13 provided with the magnetic sensor element 5) N (stress is indicated by P in FIG. 4) is the reaction force M by the cap member 11, the adhesive member, and the wiring member. 7 is less likely to exceed the combined force with the adhesive force 7 (the adhesive force is indicated by O in FIG. 4), and the connection member 9 and the wiring member 7 are less likely to be peeled off. Since the effect is that the reaction force M is applied in the direction in which the force is applied, when the force is applied upward as shown in FIGS. 4B to 4C, the end portion of the connecting member 9 and the cap member It is preferable that the end portions of 11 are at the same position or the end portion of the cap member 11 is outside the end portion of the connection member 9. Considering the force in the opposite direction, it is preferable that the end of the connection member 9 and the end of the cap member 11 are in the same position. In addition, in order to obtain an effect that makes it difficult to peel even with respect to the movement on the sensor side, it is preferable that not only the right end but also the left end be in the same position.

以上の考察に基いて、本発明者らは、接続部材9に対応する位置にキャップ部材11を設けることにより、接続部材9と配線部材7との剥離が減少するという知見を得、本発明を完成させるに至ったものである。   Based on the above considerations, the present inventors have obtained the knowledge that peeling between the connecting member 9 and the wiring member 7 is reduced by providing the cap member 11 at a position corresponding to the connecting member 9. It has come to be completed.

したがって、本発明の実施の形態1に係るキャップ部材11は、配線部材7の上面上の、接続部材9に対応する位置に設けられている。ここで、「配線部材7の上面上の、接続部材9に対応する位置」とは、配線部材7の上面のうち、キャップ部材11及び配線部材7を上面視した場合にキャップ部材11の投影図が接続部材9の投影図の少なくとも一部と重なり合うような位置を意味するものとする。このように、キャップ部材11が、配線部材7の上面上の、接続部材9に対応する位置にあれば、上述のように配線部材7と接続部材9との剥離を抑制することができる。より好ましくは、キャップ部材11の投影図が、配線部材7と接続部材9との接合部分の最外部(すなわち、配線部材7を接続部材9と反対方向(すなわち、図3において上方向)に湾曲させた場合に最も応力を受ける部分)Nを含むように当該部分Nと重なり合っていることである。このように、キャップ部材11の投影図と接続部材9の投影図とが、上述の最も応力を受ける部分Nを含むように重なっていることにより、当該応力を受けやすい部分にキャップ部材11の反力が働き、配線部材7と接続部材9との剥離を最も効率的に抑制することができる。但し、キャップ部材11の最外周部が支持部材3の最外端Rよりも外側にはみ出すと、配線部材7を引き回して組み付ける作業に支障が出るので避けるべきである。   Therefore, the cap member 11 according to the first embodiment of the present invention is provided on the upper surface of the wiring member 7 at a position corresponding to the connection member 9. Here, the “position corresponding to the connection member 9 on the upper surface of the wiring member 7” means a projection view of the cap member 11 when the cap member 11 and the wiring member 7 are viewed from the upper surface of the wiring member 7. Means a position where at least a part of the projection of the connection member 9 overlaps. As described above, if the cap member 11 is located on the upper surface of the wiring member 7 and corresponds to the connection member 9, peeling between the wiring member 7 and the connection member 9 can be suppressed as described above. More preferably, the projected view of the cap member 11 curves in the outermost part of the joint portion between the wiring member 7 and the connecting member 9 (that is, the wiring member 7 is curved in the direction opposite to the connecting member 9 (ie, upward in FIG. 3)). In this case, the portion N that is most stressed is overlapped with the portion N so as to include the portion N. As described above, the projection view of the cap member 11 and the projection view of the connection member 9 are overlapped so as to include the portion N that receives the most stress as described above. The force works, and the separation between the wiring member 7 and the connection member 9 can be most effectively suppressed. However, if the outermost peripheral portion of the cap member 11 protrudes outside the outermost end R of the support member 3, the wiring member 7 should be routed and assembled, which should be avoided.

以下、本発明の実施の形態1に係るキャップ部材11の詳細について説明する。   Hereinafter, the details of the cap member 11 according to the first embodiment of the present invention will be described.

本発明の実施の形態1に係るキャップ部材11及び接続部材9は、接続部材9に対して反力を及ぼすことができるように配線部材7との接着面に十分な剛性を有していれば、如何なる材料または接続形態であってもよい。また、それぞれが同じ材質であっても異なる材質であっても良い。例えば、金属、合金、セラミックス、樹脂、ゴム等を少なくとも一つ以上使用することができる。金属や合金、セラミックスなどの固体についてはエポキシ樹脂等の接着剤や粘着テープなどを用いて接着したり、金属やセラミックスを混合した樹脂などを使用しても良い。樹脂を用いてキャップ部材11又は接続部材9を作製した場合、剛性を有する、即ち反力が大きく、さらに安価で、かつ任意の位置への形成が容易であるため好ましい。また、キャップ部材11及び接続部材9を樹脂で作製した場合、キャップ部材11を形成する工程と、接続部材9を形成する工程と、を同時に行えるため、効率よくキャップ部材11と接続部材9とを形成することができて好ましい。キャップ部材11及び接続部材9として用いることができる金属、合金、セラミックス、樹脂、ゴム等としては、現在公知となっている全てのものを使用することができる。樹脂については次の段落で詳細に説明するが、他の材料について例示すれば、金属(金属には合金も含まれる)としては、ステンレス鋼(SUS)、アルミニウム、リン青銅等が挙げられる。セラミックスとしては、アルミナ、二酸化ケイ素などのケイ素酸化物、AlTiCなどの混合焼結体等、それらを含む多結晶焼結体、および、ガラス状焼結体等が挙げられる。これらの材料は、特にキャップ部材11及び/又は接続部材9として用いた場合に反力が大きく好ましい。   If the cap member 11 and the connection member 9 according to Embodiment 1 of the present invention have sufficient rigidity on the bonding surface with the wiring member 7 so that a reaction force can be exerted on the connection member 9. Any material or connection form may be used. Moreover, each may be the same material or different materials. For example, at least one metal, alloy, ceramics, resin, rubber or the like can be used. For solids such as metals, alloys, and ceramics, an adhesive such as an epoxy resin or an adhesive tape may be used, or a resin mixed with metal or ceramics may be used. When the cap member 11 or the connecting member 9 is made of resin, it is preferable because it has rigidity, that is, has a large reaction force, is inexpensive, and can be easily formed at an arbitrary position. Further, when the cap member 11 and the connection member 9 are made of resin, the step of forming the cap member 11 and the step of forming the connection member 9 can be performed at the same time. Therefore, the cap member 11 and the connection member 9 can be efficiently formed. It is preferable because it can be formed. As metals, alloys, ceramics, resins, rubbers, and the like that can be used as the cap member 11 and the connection member 9, all of the currently known materials can be used. The resin will be described in detail in the next paragraph, and as an example of other materials, examples of the metal (metal includes an alloy) include stainless steel (SUS), aluminum, and phosphor bronze. Examples of the ceramic include silicon oxides such as alumina and silicon dioxide, mixed sintered bodies such as AlTiC, polycrystalline sintered bodies containing them, and glassy sintered bodies. These materials are preferable because they have a large reaction force particularly when used as the cap member 11 and / or the connection member 9.

また、樹脂を用いてキャップ部材11及び接続部材9を作製した場合、安価で、かつ任意の位置への形成が容易であるため好適に用いられる。そのうえ、接続部材として適度な強度を有しつつ弾性変形する樹脂を用いた場合、当該樹脂からなる接続部材により配線部材にかかる張力を緩和できるため好ましい。また、キャップ部材11及び接続部材9をそれぞれ異なる材質により作製したり、異なる工程でこれらの部材を作製した後に組み付ける等の工程が必要ではなく、手間やコストを低減することができ、配線部材との接着面に十分な剛性を有するキャップ部材11及び接続部材9を容易に作製することができるため好ましい。樹脂としては、アクリレート樹脂、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂等を好適に使用することができ、中でも硬化後の剛性が高く、温度等による寸法変化も小さいため、エポキシ樹脂が好ましい。硬化方法としては熱硬化型や光硬化型などを使用できる。特に光硬化型であれば、硬化時間が短く、熱による粘度の低下や樹脂の流出などの影響を受けないため、上述したキャップ部材の高さや径などの寸法を保ちやすいため好ましい。さらに、硬化時間が短く、磁気センサ全体を短時間で作製することができるため、磁気センサの製造コストを抑えることができる。   Moreover, when the cap member 11 and the connection member 9 are produced using resin, it is preferably used because it is inexpensive and can be easily formed at an arbitrary position. In addition, it is preferable to use a resin that has an appropriate strength and is elastically deformed as the connecting member because the connecting member made of the resin can relieve the tension applied to the wiring member. In addition, the cap member 11 and the connecting member 9 are made of different materials, or a process of assembling these members after making them in different processes is not necessary, and labor and cost can be reduced. It is preferable because the cap member 11 and the connection member 9 having sufficient rigidity on the bonding surface can be easily manufactured. As the resin, an acrylate resin, an epoxy resin, a phenol resin, a polyimide resin, or the like can be suitably used. Among them, an epoxy resin is preferable because of high rigidity after curing and small dimensional change due to temperature or the like. As a curing method, a thermosetting type, a photocuring type, or the like can be used. In particular, the photo-curing type is preferable because the curing time is short and it is not affected by the decrease in viscosity due to heat or the outflow of resin, and thus the above-described dimensions such as the height and diameter of the cap member can be easily maintained. Furthermore, since the curing time is short and the entire magnetic sensor can be manufactured in a short time, the manufacturing cost of the magnetic sensor can be reduced.

本発明の実施の形態1に係るキャップ部材11は、上述の剥離抑制効果がある限り如何なる高さを有していても良い。好適には、キャップ部材11の高さの下限値は、0.1mm以上であり、より好ましくは、0.15mm以上であり、さらに好ましくは0.20mm以上である。キャップ部材11の高さがこのような範囲にあれば、キャップ部材11は接続部材9に対して反力を与えることができる。また、キャップ部材11の高さの上限値は、特に限定されるものではないが、キャップ部材11の高さが大きすぎると無駄なスペースが増えるため、キャップ部材11の高さの上限値は、0.40mm以下、より好ましくは0.35mm以下、さらに好ましくは0.30mm以下である。ここで、キャップ部材11の高さとは、キャップ部材11の最大高さ、すなわち、キャップ部材11の高さが最大となる位置におけるキャップ部材11の高さを意味する。キャップ部材11の高さは、測長顕微鏡でキャップ部材11を側面から観測して、キャップ部材11の頂点部分から、キャップ部材11と配線部材7との界面までの距離を計測することにより算出する。   The cap member 11 according to Embodiment 1 of the present invention may have any height as long as it has the above-described peeling suppression effect. Suitably, the lower limit of the height of the cap member 11 is 0.1 mm or more, more preferably 0.15 mm or more, and further preferably 0.20 mm or more. If the height of the cap member 11 is within such a range, the cap member 11 can apply a reaction force to the connection member 9. Further, the upper limit value of the height of the cap member 11 is not particularly limited, but if the height of the cap member 11 is too large, useless space is increased, so the upper limit value of the height of the cap member 11 is It is 0.40 mm or less, More preferably, it is 0.35 mm or less, More preferably, it is 0.30 mm or less. Here, the height of the cap member 11 means the maximum height of the cap member 11, that is, the height of the cap member 11 at a position where the height of the cap member 11 is maximum. The height of the cap member 11 is calculated by observing the cap member 11 from the side with a length measuring microscope and measuring the distance from the apex portion of the cap member 11 to the interface between the cap member 11 and the wiring member 7. .

本発明の実施の形態1に係るキャップ部材11は、上述の剥離抑制効果がある限り如何なる径を有していてもよい。ここで、キャップ部材11の径とは、キャップ部材11を上面視した場合の内接円の径を意味する。したがって、キャップ部材11を上面視した場合の形状が略円形状である場合は、キャップ部材11の径とは直径に相当する。また、キャップ部材11を上面視した場合の形状が矩形状(正方形状を含む)である場合は、矩形形状の辺と対向する辺の間の距離である。   The cap member 11 according to Embodiment 1 of the present invention may have any diameter as long as it has the above-described peeling suppression effect. Here, the diameter of the cap member 11 means the diameter of an inscribed circle when the cap member 11 is viewed from above. Therefore, when the shape of the cap member 11 when viewed from the top is a substantially circular shape, the diameter of the cap member 11 corresponds to the diameter. Moreover, when the shape when the cap member 11 is viewed from above is a rectangular shape (including a square shape), it is the distance between the sides facing the rectangular shape.

本発明の実施の形態1に係るキャップ部材11の直径と、接続部材9の直径(接続部材9の直径のうち、接続部材9と配線部材7とが接する部分における接続部材9の直径)との比率は、上述の剥離抑制効果がある限り如何なる値であってもよいが、好適には、当該比率は、3:1〜1:3であり、より好ましくは、2:1〜1:2であり、さらに好ましくは、1.5:1〜1:1.5である。このような範囲にあれば、接続部材9と配線部材7との剥離を良好に抑えることができる。しかしながら、キャップ部材11の直径が接続部材9の直径より大きすぎると、上述したように支持部材3の最外端Rよりはみ出してしまうことになりかねない。また、配線部材7が湾曲しにくくなり、キャップ部材11の高さが大きくなるため無駄なスペースが増えてしまう。また、キャップ部材11の直径が接続部材9の直径より小さすぎると、接続部材9と配線部材7との接合部分の最外部(すなわち、配線部材7を湾曲させた場合に最も大きな応力を受ける部分)において、キャップ部材11からの反力が働きにくくなると考えられ、配線部材7が接続部材9から剥離しやすい。センサ素子の動きに伴ってかかる力と、配線部材の組み立てなどの際にかかる力を考慮すると両側のキャップ部材及び接続部材の端面が一致するほうが好ましく、すなわち当該比率は、略1:1に近いほうが好ましい。   The diameter of the cap member 11 according to Embodiment 1 of the present invention and the diameter of the connection member 9 (the diameter of the connection member 9 in the portion where the connection member 9 and the wiring member 7 are in contact with each other). The ratio may be any value as long as it has the above-described peeling suppression effect, but preferably the ratio is 3: 1 to 1: 3, more preferably 2: 1 to 1: 2. Yes, and more preferably 1.5: 1 to 1: 1.5. If it exists in such a range, peeling with the connection member 9 and the wiring member 7 can be suppressed favorably. However, if the diameter of the cap member 11 is too larger than the diameter of the connection member 9, the cap member 11 may protrude from the outermost end R of the support member 3 as described above. Further, the wiring member 7 is difficult to bend, and the height of the cap member 11 is increased, so that a useless space is increased. If the diameter of the cap member 11 is too smaller than the diameter of the connecting member 9, the outermost portion of the joint portion between the connecting member 9 and the wiring member 7 (that is, the portion that receives the greatest stress when the wiring member 7 is curved). ), It is considered that the reaction force from the cap member 11 becomes difficult to work, and the wiring member 7 is easily peeled off from the connection member 9. In consideration of the force applied in accordance with the movement of the sensor element and the force applied in assembling the wiring member, it is preferable that the end surfaces of the cap member and the connecting member on both sides coincide, that is, the ratio is close to approximately 1: 1. Is preferred.

硬化性樹脂を用いてキャップ部材11を作製する場合、好ましくは、硬化性樹脂は硬化する直前の液体の状態で35,000(mPa・s)以上の粘度を有し、より好ましくは、40,000(mPa・s)以上の粘度を有し、さらに好ましくは、45,000(mPa・s)以上の粘度を有する。硬化する直前に硬化性樹脂の液体の状態の粘度がこのような範囲にあれば、上述した十分な高さを有するようにキャップ部材11を形成しやすいため好ましい。一方、硬化する直前の硬化性樹脂の液体の状態の粘度の上限値は特に限定されるものではないが、液体で塗布する時の粘度が高すぎると、樹脂を塗布する装置のシリンジなどの塗布口からの吐出に時間がかかるなど、磁気センサ1の生産性が低下する。そのため、液体で塗布する時の硬化性樹脂の液体の状態の粘度は、好ましくは、60,000(mPa・s)以下、より好ましくは、55,000(mPa・s)以下、さらに好ましくは、53,000(mPa・s)以下である。ここで、硬化性樹脂には、紫外線硬化性樹脂等の光硬化性樹脂、熱硬化性樹脂などが含まれる。また、硬化性樹脂の粘度とは、硬化性樹脂が硬化される前の液体の樹脂の粘度を意味する。硬化する直前の液体の状態、および塗布する時の液体の状態の硬化性樹脂の粘度が上述の範囲にあれば、磁気センサ1の生産性、ひいては磁気エンコーダの生産性を向上させることができる。樹脂は温度によって粘度が変化するため、塗布時や硬化時に温度調整が可能な光硬化型の樹脂の方が好ましい。特に紫外線は可視光の中でエネルギーが高く、短時間で硬化が可能であり、十分な高さを保持して形成できるため好ましい。   When the cap member 11 is produced using a curable resin, preferably, the curable resin has a viscosity of 35,000 (mPa · s) or more in a liquid state immediately before curing, and more preferably 40, 000 (mPa · s) or more, and more preferably 45,000 (mPa · s) or more. If the viscosity of the liquid state of the curable resin is in such a range immediately before curing, it is preferable because the cap member 11 can be easily formed to have the above-described sufficient height. On the other hand, the upper limit of the viscosity of the liquid state of the curable resin immediately before curing is not particularly limited, but if the viscosity when applied with the liquid is too high, the application of the syringe or the like of the apparatus for applying the resin The productivity of the magnetic sensor 1 decreases, for example, it takes time to discharge from the mouth. Therefore, the viscosity of the liquid state of the curable resin when applied as a liquid is preferably 60,000 (mPa · s) or less, more preferably 55,000 (mPa · s) or less, and still more preferably, 53,000 (mPa · s) or less. Here, the curable resin includes a photocurable resin such as an ultraviolet curable resin, a thermosetting resin, and the like. The viscosity of the curable resin means the viscosity of the liquid resin before the curable resin is cured. If the viscosity of the curable resin in the liquid state immediately before curing and the liquid state at the time of application are in the above range, the productivity of the magnetic sensor 1 and thus the productivity of the magnetic encoder can be improved. Since the viscosity of the resin changes depending on the temperature, a photo-curing resin that can be adjusted in temperature at the time of coating or curing is preferred. In particular, ultraviolet rays are preferable because they have high energy in visible light, can be cured in a short time, and can be formed while maintaining a sufficient height.

本発明の実施の形態1に係るキャップ部材11は、配線部材7の絶縁部と同じポリイミドなどの材料により、同じ工程において配線部材7と一体的に形成してもよいし、キャップ部材11及び配線部材7を別の工程で形成し、このように別の工程で形成されたキャップ部材11と配線部材7とを接着手段により接着してもよい。このようにキャップ部材11と配線部材7とを別体として作製することにより、精度良くキャップ部材11を接続部材9に対応する位置に配置することができる。このような接着手段としては、キャップ部材11と配線部材7とを適切な強度で接着させることができれば如何なるものを使用してもよく、例示すれば、樹脂接着剤、両面テープ等が挙げられる。   The cap member 11 according to the first embodiment of the present invention may be formed integrally with the wiring member 7 in the same process using the same material such as polyimide as the insulating portion of the wiring member 7, or the cap member 11 and the wiring The member 7 may be formed in a separate process, and the cap member 11 and the wiring member 7 formed in the separate process in this way may be bonded together by an adhesive means. Thus, by producing the cap member 11 and the wiring member 7 as separate bodies, the cap member 11 can be accurately arranged at a position corresponding to the connection member 9. As such an adhering means, any member may be used as long as the cap member 11 and the wiring member 7 can be bonded with appropriate strength, and examples thereof include a resin adhesive and a double-sided tape.

本発明の実施の形態1に係るキャップ部材11は、如何なる形状を有していてもよい。例示すれば、図2に示すような中心部が盛り上がった山状であってもよい。このような形状は例えば樹脂やゴムを単に滴下して硬化させれば容易に形成することができるため好ましい。また、他のキャップ部材11の形状としては、円柱状、多角形の角柱状、円錐状、多角形の角錐状等を挙げることができる。特に、キャップ部材11の、配線部材7との接触面が、円状または楕円などの丸みを帯びた曲線により形成されるような形状を有する場合(例えば、円柱状、円錐状)、角を起点とした割れが発生しにくく、キャップ部材11が破損しにくいと考えられるため好ましい。   The cap member 11 according to Embodiment 1 of the present invention may have any shape. For example, a mountain shape with a raised central portion as shown in FIG. 2 may be used. Such a shape is preferable because it can be easily formed, for example, by simply dropping and curing a resin or rubber. Examples of the shape of the other cap member 11 include a columnar shape, a polygonal prism shape, a conical shape, and a polygonal pyramid shape. In particular, when the contact surface of the cap member 11 with the wiring member 7 has a shape formed by a rounded curve such as a circle or an ellipse (for example, a columnar shape or a cone shape), the starting point is the corner. It is preferable because the cap member 11 is unlikely to break and the cap member 11 is unlikely to break.

本発明の実施の形態1に係るキャップ部材11は、配線部材7の幅方向に拡がりながら、配線部材7の下側に設けられた接続部材9まで配線部材7を超えて延在し、当該接続部材9と結合している部分(以下、延在部分と称する。当該延在部分は図面には示していない。)を有していてもよい。また、接続部材9側を配線部材7を超えて延在しキャップ部材11と結合しても良い。これらにより、上述のキャップ部材11の反力による剥離抑制効果に加えて、当該延在部分により物理的に配線部材7と接続部材9とが強固に接続され、配線部材7と接続部材9との接合強度を向上させることができる。このような延在部分は、キャップ部材11の材料、及び/又は接続部材9の材料と同じ材料により構成されていてもよい。延在部分の材料とキャップ部材11の材料と接続部分の材料とが異なっていてもよい。しかしながら、延在部分を形成するための材料及び工数がかかるため、製造コストを考慮すると、延在部分を設けることなく、キャップ部材11と接続部材9のみで形成することが好ましい。   The cap member 11 according to Embodiment 1 of the present invention extends beyond the wiring member 7 to the connection member 9 provided on the lower side of the wiring member 7 while expanding in the width direction of the wiring member 7, and It may have a portion (hereinafter referred to as an extending portion, which is not shown in the drawing) connected to the member 9. Further, the connecting member 9 side may extend beyond the wiring member 7 and be coupled to the cap member 11. As a result, in addition to the effect of suppressing peeling due to the reaction force of the cap member 11 described above, the wiring member 7 and the connection member 9 are physically firmly connected by the extended portion, and the connection between the wiring member 7 and the connection member 9 Bonding strength can be improved. Such an extended portion may be made of the same material as the material of the cap member 11 and / or the connection member 9. The material of the extending portion, the material of the cap member 11, and the material of the connecting portion may be different. However, since the material and man-hours for forming the extended portion are required, it is preferable to form the cap member 11 and the connecting member 9 only without providing the extended portion, considering the manufacturing cost.

以上、詳細に説明したように、キャップ部材11を、配線部材7の上面上の、接続部材9に対応する位置に設けることにより、配線部材7を上述のように湾曲させたとしても、キャップ部材11の反力が働くことにより、接続部材9と配線部材7との剥離を防止することができる。このため、信頼性が極めて高い磁気センサを提供することができ、このような磁気センサを磁気エンコーダに用いれば、剥離により配線部材7にかかった張力が支持部材3を変形させるなどして磁気センサ1と磁気スケールとの距離が変わって、磁気センサ素子の出力が変化することが無いため、磁気センサ1に対する磁気スケールの位置精度が良好な磁気エンコーダを提供することができる。   As described above in detail, even if the wiring member 7 is curved as described above by providing the cap member 11 at a position corresponding to the connecting member 9 on the upper surface of the wiring member 7, the cap member When the reaction force of 11 acts, peeling between the connection member 9 and the wiring member 7 can be prevented. Therefore, it is possible to provide a magnetic sensor with extremely high reliability. If such a magnetic sensor is used in a magnetic encoder, the tension applied to the wiring member 7 due to peeling causes the support member 3 to be deformed. Since the distance between 1 and the magnetic scale does not change and the output of the magnetic sensor element does not change, it is possible to provide a magnetic encoder having a good position accuracy of the magnetic scale with respect to the magnetic sensor 1.

2.支持部材
本発明の実施の形態1に係る支持部材3は、磁気センサ1を磁気スケール(以下磁気媒体と称することもある。後に説明するが、図6に磁気スケール32を示す。)に相対的に摺動(すなわち、磁気センサ1を磁気スケールに対して摺動させてもよいし、磁気スケールを磁気センサ1に対して摺動させてもよい)させる際に、磁気センサ素子1と磁気スケール32の距離が変わらないように使用されるものである。例えば第1のレンズ鏡筒35に磁気スケール32を設置し、前記磁気スケール32に対して相対的に摺動するように、第2のレンズ鏡筒37に磁気センサ1が設置されている状況において、図20に示すように、支持部材3は、磁気センサ素子5が取り付けられる磁気センサ素子取付部21と、支持部材3を第2のレンズ鏡筒に取り付けるための支持部材取付本体部23と、を有する。さらに、磁気センサ素子取付部21と支持部材取付本体部23とを弾性可能に接続する弾性部25を有していてもよい。弾性部25の作用により、支持部材3は、磁気センサ素子取付部21と支持部材取付本体部23との相対的位置が変化して、磁気センサ1と磁気スケールの距離を一定に保つように弾性変形する。
2. Support Member The support member 3 according to Embodiment 1 of the present invention is configured such that the magnetic sensor 1 is relative to a magnetic scale (hereinafter also referred to as a magnetic medium. The magnetic scale 32 is illustrated in FIG. 6 as will be described later). When the magnetic sensor element 1 and the magnetic scale are slid (that is, the magnetic sensor 1 may be slid with respect to the magnetic scale, or the magnetic scale may be slid with respect to the magnetic sensor 1). It is used so that the distance of 32 does not change. For example, in the situation where the magnetic sensor 1 is installed in the second lens barrel 37 so that the magnetic scale 32 is installed in the first lens barrel 35 and slides relative to the magnetic scale 32. As shown in FIG. 20, the support member 3 includes a magnetic sensor element attachment portion 21 to which the magnetic sensor element 5 is attached, a support member attachment main body portion 23 for attaching the support member 3 to the second lens barrel, Have Furthermore, you may have the elastic part 25 which connects the magnetic sensor element attachment part 21 and the support member attachment main-body part 23 elastically. Due to the action of the elastic portion 25, the support member 3 changes its relative position between the magnetic sensor element attachment portion 21 and the support member attachment main body portion 23, so that the distance between the magnetic sensor 1 and the magnetic scale is kept constant. Deform.

ここで、図5(a)は、本発明の実施の形態に係る磁気センサ1をカメラのレンズ鏡筒に取り付ける前の状態を示しており、図5(b)は、磁気センサ1をレンズ鏡筒に取り付けた後の状態を示している。図5(a)においては、磁気センサ素子5は磁気スケールにより押圧されておらず、変位していない。これに対して、図5(b)においては、磁気センサ素子5は磁気スケール32により押圧され、上方に変位している。この状態において、配線部材7は、支持部材3を固定するための固定部材により隠れた部分において略S字状に撓んでいる。このように磁気センサ素子5が変位できるように、支持部材3は、磁気センサ素子取付部21の位置が支持部材取付本体部23の位置に対して相対的に変化するように弾性変形可能である。このような構成を有することにより、弾性部25の付勢力によって磁気センサ素子5を常に磁気スケール32に接触させることで、距離を一定に保つことができるため、磁気センサ素子5は磁気スケール32からの漏洩磁界を良好に検出することができる。   Here, FIG. 5A shows a state before the magnetic sensor 1 according to the embodiment of the present invention is attached to the lens barrel of the camera, and FIG. 5B shows the magnetic sensor 1 as a lens mirror. The state after attaching to a cylinder is shown. In FIG. 5A, the magnetic sensor element 5 is not pressed by the magnetic scale and is not displaced. On the other hand, in FIG. 5B, the magnetic sensor element 5 is pressed by the magnetic scale 32 and displaced upward. In this state, the wiring member 7 is bent in a substantially S shape in a portion hidden by the fixing member for fixing the support member 3. Thus, the support member 3 can be elastically deformed so that the position of the magnetic sensor element attachment portion 21 changes relative to the position of the support member attachment main body portion 23 so that the magnetic sensor element 5 can be displaced in this manner. . By having such a configuration, the magnetic sensor element 5 can always be kept in contact with the magnetic scale 32 by the urging force of the elastic portion 25, so that the distance can be kept constant. Can be detected well.

弾性部25は、如何なる形状を有していてもよいが、例えば図1(a)に示すように、支持部材取付本体部23から磁気センサ素子取付部21に向かって段階的に幅が狭くなり、弾性部が蛇行する形状であることが好ましい。弾性部25がこのような形状を有することにより、当該弾性部材25に接合された磁気センサ素子取付部21を介して磁気センサ1を磁気スケール32に押し付けながら磁気センサ1を磁気スケール32に対して摺動させるときに、磁気センサ1と磁気スケール32との距離を一定に保つことができる。これにより、出力が安定し、磁気センサで検出する位置の精度が高度となるため好ましい。弾性部25は、磁気スケール32が磁気センサ1に対して摺動する方向又は磁気センサ1が磁気スケール32に対して摺動する方向(以下、摺動方向と称することがある)、すなわち、磁気スケール32と磁気センサ1が相対的に移動する方向に、設けることが好ましい。支持部材取付本体部23の両端には、当該支持部材取付本体部23を固定するための穴27が設けられており、ねじ等で支持部材取付本体部23を例えば図6の第2のレンズ鏡筒37等に固定することができる。   The elastic portion 25 may have any shape. For example, as shown in FIG. 1A, the width gradually decreases from the support member attachment main body portion 23 toward the magnetic sensor element attachment portion 21. The elastic portion preferably has a meandering shape. Since the elastic portion 25 has such a shape, the magnetic sensor 1 is pressed against the magnetic scale 32 while pressing the magnetic sensor 1 against the magnetic scale 32 via the magnetic sensor element mounting portion 21 bonded to the elastic member 25. When sliding, the distance between the magnetic sensor 1 and the magnetic scale 32 can be kept constant. This is preferable because the output is stable and the accuracy of the position detected by the magnetic sensor is high. The elastic portion 25 is a direction in which the magnetic scale 32 slides with respect to the magnetic sensor 1 or a direction in which the magnetic sensor 1 slides with respect to the magnetic scale 32 (hereinafter may be referred to as a sliding direction), that is, magnetic. It is preferable to provide the scale 32 and the magnetic sensor 1 in a direction in which the scale 32 and the magnetic sensor 1 move relative to each other. Holes 27 for fixing the support member mounting main body 23 are provided at both ends of the support member mounting main body 23, and the support member mounting main body 23 is connected to the second lens mirror of FIG. It can be fixed to the cylinder 37 or the like.

本発明の実施の形態1に係る支持部材3は、如何なる材料により構成されていてもよいが、支持部材3は弾性部25を同一材質で構成する場合には、支持部材3の材料は、好適には、金属又は合金が好ましい。金属又は合金を用いた支持部材3は打ち抜きやエッチングなどにより形成され、さらにバネ形状に成形しても良い。ただし、成形によるコストを考慮すると、平面でバネの効果が得られるように形成するほうが好ましい。また、支持部材3に金属または合金を用いた場合、磁気センサ素子5の帯電を抑制することができるため好ましい。例えば、磁気センサ素子と支持部材3との間を導電性樹脂などで電気的に接続することにより、磁気センサ素子5において発生した電気を、貫通電極及び支持部材3を介して放電することができ、磁気センサ素子5の帯電による破壊を抑制することができる。   The support member 3 according to Embodiment 1 of the present invention may be made of any material, but when the support member 3 is made of the same material, the material of the support member 3 is suitable. For these, metals or alloys are preferred. The support member 3 using a metal or alloy is formed by punching or etching, and may be further formed into a spring shape. However, in consideration of the cost of molding, it is preferable to form the spring so as to obtain a spring effect. In addition, it is preferable to use a metal or an alloy for the support member 3 because charging of the magnetic sensor element 5 can be suppressed. For example, by electrically connecting the magnetic sensor element and the support member 3 with a conductive resin or the like, the electricity generated in the magnetic sensor element 5 can be discharged through the through electrode and the support member 3. In addition, destruction of the magnetic sensor element 5 due to charging can be suppressed.

3.磁気センサ素子及び基板
磁気センサ素子5は、例えば磁気スケール32からの磁気信号(例えば電圧と時間や変位量との関係は正弦曲線に近い波形の信号などとなる)を読み取るためのものである。実際の磁気信号は磁気センサ1の角度のズレや位置のズレなどにより、十分な強度を得られないことがある。そのため、複数の磁気抵抗効果膜を組み合わせることで、多少磁気センサ1がずれたりしても、信号強度のずれが小さくなるように磁気センサ1が構成されていることが好ましい。磁気センサ素子5としては、磁気スケール32からの磁気信号を読み取ることができれば如何なるものであってもよい。磁気センサ素子5としては、例えば特許第5365744号などに記載の、少なくとも1つの磁気抵抗効果素子を有する磁気センサなど、公知のものを使用することができる。
3. Magnetic Sensor Element and Substrate The magnetic sensor element 5 is for reading, for example, a magnetic signal from the magnetic scale 32 (for example, the relationship between voltage, time, and displacement is a signal having a waveform close to a sine curve). An actual magnetic signal may not be able to obtain sufficient strength due to an angle shift or a position shift of the magnetic sensor 1. For this reason, it is preferable that the magnetic sensor 1 is configured such that even if the magnetic sensor 1 is slightly shifted by combining a plurality of magnetoresistive films, the shift in signal intensity is reduced. The magnetic sensor element 5 may be any element as long as it can read a magnetic signal from the magnetic scale 32. As the magnetic sensor element 5, a known element such as a magnetic sensor having at least one magnetoresistive effect element described in, for example, Japanese Patent No. 5365744 can be used.

また、本発明の実施の形態1に係る磁気センサ1は、さらに、基板13を有していてもよいが、基板13を必ずしも有している必要はない。例えば特許文献1の図2などに記載のように、支持部材の形状に応じて、適宜設計できる。一例として、図1に示すように、当該基板13は、支持部材3の磁気センサ素子取付部21上に設けられ、当該基板13上に磁気センサ素子5が設けられている。基板13は、好ましくは基板13の上面に、配線部を有する。磁気センサ素子5と基板13の配線部はワイヤーボンディングにより接続されている。また、配線部材7の配線と、基板13の配線部とが電気的に接続されている。これにより、磁気センサ素子5からの電気信号が基板13の配線部及び配線部材7を介して電気的に出力される。   In addition, the magnetic sensor 1 according to the first embodiment of the present invention may further include the substrate 13, but the substrate 13 is not necessarily required. For example, as described in FIG. 2 of Patent Document 1, it can be designed as appropriate according to the shape of the support member. As an example, as shown in FIG. 1, the substrate 13 is provided on the magnetic sensor element mounting portion 21 of the support member 3, and the magnetic sensor element 5 is provided on the substrate 13. The substrate 13 preferably has a wiring portion on the upper surface of the substrate 13. The magnetic sensor element 5 and the wiring portion of the substrate 13 are connected by wire bonding. In addition, the wiring of the wiring member 7 and the wiring portion of the substrate 13 are electrically connected. Thereby, an electric signal from the magnetic sensor element 5 is electrically output via the wiring portion of the substrate 13 and the wiring member 7.

基板13は磁気センサ素子5から支持部材3まで導通する貫通電極を有することが好ましい。磁気センサ素子5は、磁気スケール上を摺動するため、帯電しやすい。このため、上記同様、支持部材3が導電性であり、さらに、基板13が磁気センサ素子5から支持部材3まで導通する貫通電極を有することにより、磁気センサ素子5の帯電による破壊を抑制することができる。   The substrate 13 preferably has a through electrode that conducts from the magnetic sensor element 5 to the support member 3. Since the magnetic sensor element 5 slides on the magnetic scale, it is easily charged. Therefore, as described above, the support member 3 is conductive, and the substrate 13 has a through electrode that conducts from the magnetic sensor element 5 to the support member 3, thereby suppressing breakage of the magnetic sensor element 5 due to charging. Can do.

磁気センサ素子5と基板13、基板13と支持部材3とは如何なる接着手段により固定してもよいが、導電性樹脂を用いて固定することが好ましい。磁気センサ素子5と基板13との固定、及び基板13と支持部材3との固定に導電性樹脂を用いれば、上述したように貫通電極を有する基板13を用いた場合に、磁気センサ素子5に帯電した電気を貫通電極、導電性樹脂、支持部材3を介して放電することができる。これにより、上記同様、磁気センサ素子5の帯電による破壊を抑制することができる。   The magnetic sensor element 5 and the substrate 13 and the substrate 13 and the support member 3 may be fixed by any adhesive means, but are preferably fixed using a conductive resin. If conductive resin is used for fixing the magnetic sensor element 5 and the substrate 13 and fixing the substrate 13 and the support member 3, when the substrate 13 having the through electrode is used as described above, The charged electricity can be discharged through the through electrode, the conductive resin, and the support member 3. Thereby, like the above, destruction of the magnetic sensor element 5 due to charging can be suppressed.

4.配線部材
本発明の実施の形態1に係る配線部材7は、上述した磁気センサ素子5と電気的に接続されることにより、磁気センサ素子5から磁気信号を受領するとともに、磁気センサ素子5に電力を供給するものでもある。配線部材7は、磁気センサ素子5から磁気信号を受領するためだけのものであってもよい。また、配線部材7は、磁気センサ素子5に電力を供給するためだけのものであってもよい。
4). Wiring member The wiring member 7 according to Embodiment 1 of the present invention is electrically connected to the magnetic sensor element 5 described above, thereby receiving a magnetic signal from the magnetic sensor element 5 and supplying power to the magnetic sensor element 5. It is also what supplies. The wiring member 7 may be used only for receiving a magnetic signal from the magnetic sensor element 5. Further, the wiring member 7 may be used only for supplying power to the magnetic sensor element 5.

上述したように、支持部材3の磁気センサ素子取付部21上に基板13が設けられ、さらに基板13上に磁気センサ素子5が設けられ、磁気センサ素子5が電気的に基板13と接続されている。配線部材7が基板13の電極に接続されることにより、配線部材7は、磁気センサ素子5と電気的に接続されている。また、配線部材7が基板13に物理的に接続されることにより、配線部材7と磁気センサ1との固定が図られている。そのため、配線部材7の厚さは磁気センサ素子5の動きを阻害しない可撓性を有する厚さであれば良い。通常は20μm〜300μm程度の厚さである。   As described above, the substrate 13 is provided on the magnetic sensor element mounting portion 21 of the support member 3, the magnetic sensor element 5 is further provided on the substrate 13, and the magnetic sensor element 5 is electrically connected to the substrate 13. Yes. By connecting the wiring member 7 to the electrode of the substrate 13, the wiring member 7 is electrically connected to the magnetic sensor element 5. In addition, the wiring member 7 and the magnetic sensor 1 are fixed by physically connecting the wiring member 7 to the substrate 13. Therefore, the thickness of the wiring member 7 should just be the thickness which has the flexibility which does not inhibit the motion of the magnetic sensor element 5. FIG. Usually, the thickness is about 20 μm to 300 μm.

さらに、上述したように、支持部材3と配線部材7とが接続部材9により接続されることにより、配線部材7と磁気センサ1とのさらなる固定が図られている。このように、少なくとも2点で配線部材7と磁気センサ1とが固定されている。   Furthermore, as described above, the support member 3 and the wiring member 7 are connected by the connection member 9, thereby further fixing the wiring member 7 and the magnetic sensor 1. Thus, the wiring member 7 and the magnetic sensor 1 are fixed at least at two points.

配線部材7は、磁気センサ素子5から磁気信号を受領することができ、又は、磁気センサ素子5に電力を供給することができ、若しくはその両方が可能である限り、如何なるものを使用してもよいが、具体的には、それぞれ電気的に絶縁された複数の導線が、可撓性を有する配線板の内部若しくはその表面に設けられたフレキシブル配線板(FPC:Flexible Printed Circuits)を使用することが好ましい。また、配線部材7の断面はキャップ部材11を載置しやすいように平板状であることが望ましい。   As long as the wiring member 7 can receive a magnetic signal from the magnetic sensor element 5 and / or supply power to the magnetic sensor element 5, any wiring member 7 can be used. More specifically, a plurality of electrically insulated wires, each using a flexible printed circuit (FPC) provided inside or on the surface of a flexible wiring board, may be used. Is preferred. The cross section of the wiring member 7 is preferably flat so that the cap member 11 can be easily placed.

(2)磁気エンコーダ
つづいて、磁気エンコーダ31について説明する。本発明の実施の形態1に係る磁気エンコーダ31は、磁気スケール32と、磁気スケール32上を相対的に摺動可能な上述の磁気センサ1と、を備える。例えば、図6に示すように、第1のレンズ鏡筒35に取り付けられたレンズ群と第2のレンズ鏡筒37に取り付けられたレンズ群が、レンズ鏡筒同士の相対的な回転に応じて前後に移動し、その移動量を検知するための磁気エンコーダ31として、磁気スケール32を第1のレンズ鏡筒35に取り付け、磁気センサ1を第2のレンズ鏡筒37に取り付け、磁気センサ1を磁気スケール32に対して相対的に摺動可能に配置したものを使用する。磁気スケール32は、磁気スケール32が磁気センサ1に対して摺動する方向、又は、磁気センサ1が磁気スケール32に対して摺動する方向(摺動方向)に沿って、例えば正反対の磁化方向を有する2種類の着磁領域が交互に配置されることにより構成されている。例えば、レンズ鏡筒30に磁気スケール32がレンズ鏡筒30の回転方向に沿って設けられ、レンズ鏡筒30を回転させることにより、磁気スケール32上を磁気センサ1が摺動し、磁気スケール32からの磁気変化を当該磁気センサ1で検出する磁気エンコーダ31をレンズ鏡筒30に用いることによりレンズ鏡筒30の回転角度を検出することができる。さらにレンズ鏡筒30を用いたカメラであれば検出された回転角度から焦点位置補正手段などに用いることができるため好ましい。
(2) Magnetic Encoder Next, the magnetic encoder 31 will be described. A magnetic encoder 31 according to Embodiment 1 of the present invention includes a magnetic scale 32 and the above-described magnetic sensor 1 that can slide relatively on the magnetic scale 32. For example, as shown in FIG. 6, the lens group attached to the first lens barrel 35 and the lens group attached to the second lens barrel 37 respond to relative rotation between the lens barrels. As a magnetic encoder 31 for moving back and forth and detecting the amount of movement, the magnetic scale 32 is attached to the first lens barrel 35, the magnetic sensor 1 is attached to the second lens barrel 37, and the magnetic sensor 1 is attached. The one arranged so as to be slidable relative to the magnetic scale 32 is used. The magnetic scale 32 is, for example, the opposite magnetization direction along the direction in which the magnetic scale 32 slides with respect to the magnetic sensor 1 or the direction in which the magnetic sensor 1 slides with respect to the magnetic scale 32 (sliding direction). The two types of magnetized regions having the above are arranged alternately. For example, the magnetic scale 32 is provided in the lens barrel 30 along the rotation direction of the lens barrel 30, and the magnetic sensor 1 slides on the magnetic scale 32 by rotating the lens barrel 30, and the magnetic scale 32. The rotation angle of the lens barrel 30 can be detected by using the magnetic encoder 31 that detects the magnetic change from the magnetic sensor 31 in the lens barrel 30. Further, a camera using the lens barrel 30 is preferable because it can be used as a focal position correction means from the detected rotation angle.

本発明の実施の形態1に係る磁気エンコーダ31によれば、キャップ部材11が、配線部材7の上面上の、接続部材9に対応する位置に設けられているため、キャップ部材11の反力が配線部材7を介して接続部材9に働くことにより、接続部材9と配線部材7との剥離を抑制することができる。よって、位置精度が良好な磁気エンコーダを提供することができる。尚、レンズ鏡筒に形成したロータリーエンコーダの例を示したが、他には一方向の直線の移動量を検出するリニアエンコーダなどが挙げられる。中でもロータリーエンコーダであれば、押し付けられる荷重が回転体の一点に限られるため、摺動時に引っかかりにくくなり好ましい。   According to the magnetic encoder 31 according to the first embodiment of the present invention, since the cap member 11 is provided on the upper surface of the wiring member 7 at a position corresponding to the connection member 9, the reaction force of the cap member 11 is reduced. By acting on the connection member 9 via the wiring member 7, peeling between the connection member 9 and the wiring member 7 can be suppressed. Therefore, a magnetic encoder with good positional accuracy can be provided. In addition, although the example of the rotary encoder formed in the lens barrel was shown, the linear encoder etc. which detect the moving amount | distance of the straight line of one direction are mentioned to others. Among them, a rotary encoder is preferable because the load to be pressed is limited to one point of the rotating body, and is not easily caught during sliding.

また、本発明の実施の形態1に係る磁気センサ1の別の態様では、図7に示すように、基板13を有せず、配線部材7の配線が磁気センサ素子5に直接接続されていてもよい。上記の図1の態様では、配線部を有する基板13が含まれ、当該配線部を介して、磁気センサ素子5と配線部材7の配線とが電気的に接続されているのに対して、ここで説明する図7の態様においては、配線部を有する基板13を有せず、配線部材7の配線が磁気センサ素子5に直接接続されている点で、図7の態様は図1の態様と異なる。図7の態様においては、配線部を有する基板13を有しないため、磁気センサ素子取付部21の上に直接磁気センサ素子5が取り付けられ、磁気センサ素子5に、配線部材7が接続されている。磁気センサ素子取付部21は磁気センサ素子の厚さが小さい場合、磁気センサ取付部21を台座状に厚さを有する構造としても良い。上記同様、支持部材3と配線部材7とは接続部材9により接続され、キャップ部材11が、配線部材7の上面上の、接続部材9に対応する位置に設けられている。この図7の態様においては、配線部を有する基板13が含まれず、磁気センサ素子取付部21の上に直接磁気センサ素子5が取り付けられていることにより、部品点数を減らせるためコストが抑えられる。さらに配線部を有する基板13として樹脂基板を使用していた場合、磁気センサ素子と樹脂基板の合計の厚み精度であったのに対して、磁気センサ素子の厚み精度のみとなるため、組み立てた後の支持部材に対する磁気センサ素子の位置精度がよくなる。   In another aspect of the magnetic sensor 1 according to the first embodiment of the present invention, as shown in FIG. 7, the wiring of the wiring member 7 is directly connected to the magnetic sensor element 5 without the substrate 13. Also good. 1 includes the substrate 13 having the wiring portion, and the magnetic sensor element 5 and the wiring of the wiring member 7 are electrically connected via the wiring portion. 7 described with reference to FIG. 7 does not have the substrate 13 having the wiring portion, and the wiring of the wiring member 7 is directly connected to the magnetic sensor element 5. Different. In the aspect of FIG. 7, since the substrate 13 having the wiring portion is not provided, the magnetic sensor element 5 is directly mounted on the magnetic sensor element mounting portion 21, and the wiring member 7 is connected to the magnetic sensor element 5. . When the thickness of the magnetic sensor element mounting portion 21 is small, the magnetic sensor mounting portion 21 may have a structure having a pedestal thickness. Similarly to the above, the support member 3 and the wiring member 7 are connected by the connection member 9, and the cap member 11 is provided on the upper surface of the wiring member 7 at a position corresponding to the connection member 9. In the embodiment of FIG. 7, the substrate 13 having the wiring portion is not included, and the magnetic sensor element 5 is directly mounted on the magnetic sensor element mounting portion 21, so that the number of parts can be reduced and the cost can be reduced. . Further, when a resin substrate is used as the substrate 13 having the wiring portion, the total thickness accuracy of the magnetic sensor element and the resin substrate is only the thickness accuracy of the magnetic sensor element. The positional accuracy of the magnetic sensor element with respect to the support member is improved.

また、本発明の実施の形態1に係る磁気センサ1のさらに別の態様では、図8に示すように、基板13を有するが、基板13は配線部を有しなくてもよい。上記の図1の態様では、基板13は配線部を有し、当該配線部を介して磁気センサ素子5と配線部材7の配線とが接続されているのに対して、図8の態様では、磁気センサ1は基板13を有するものの基板13は配線部を有しないため、磁気センサ素子5と配線部材7の配線とはワイヤーボンディング40により直接接続されている点で、図8の態様は、図1の態様と異なる。図8の態様においては、磁気センサ素子取付部21の上に基板13が取り付けられ、基板13の上に磁気センサ素子5が取り付けられている。基板13の上面であって磁気センサ素子5に近接する位置に配線部材7が取り付けられ、配線部材7の配線と磁気センサ素子5とがワイヤーボンディング40により接続されている。上記同様、支持部材3と配線部材7とは接続部材9により接続され、キャップ部材11が、配線部材7の上面上の、接続部材9に対応する位置に設けられている。この態様においては、基板13に配線部が含まれず、配線部材7と磁気センサ素子5とがワイヤーボンディング40により接続されていることにより、基板13として配線部を有する必要が無い。様々な材質を用いることができるため、安価な材質を用いても良いし、高精度に加工できる材質を用いることで組み立てた後の支持部材に対する磁気センサ素子の位置精度がよくなる。   Further, in still another aspect of the magnetic sensor 1 according to the first embodiment of the present invention, as shown in FIG. 8, the substrate 13 is provided, but the substrate 13 may not have a wiring part. In the aspect of FIG. 1 described above, the substrate 13 has a wiring portion, and the magnetic sensor element 5 and the wiring of the wiring member 7 are connected via the wiring portion, whereas in the aspect of FIG. Although the magnetic sensor 1 has the substrate 13 but the substrate 13 does not have a wiring portion, the magnetic sensor element 5 and the wiring of the wiring member 7 are directly connected by wire bonding 40. Different from the first aspect. In the embodiment of FIG. 8, the substrate 13 is attached on the magnetic sensor element attachment portion 21, and the magnetic sensor element 5 is attached on the substrate 13. A wiring member 7 is attached to the upper surface of the substrate 13 at a position close to the magnetic sensor element 5, and the wiring of the wiring member 7 and the magnetic sensor element 5 are connected by wire bonding 40. Similarly to the above, the support member 3 and the wiring member 7 are connected by the connection member 9, and the cap member 11 is provided on the upper surface of the wiring member 7 at a position corresponding to the connection member 9. In this aspect, since the wiring part is not included in the substrate 13 and the wiring member 7 and the magnetic sensor element 5 are connected by the wire bonding 40, it is not necessary to have the wiring part as the substrate 13. Since various materials can be used, an inexpensive material may be used, and the use of a material that can be processed with high accuracy improves the positional accuracy of the magnetic sensor element with respect to the support member after assembly.

ここまで説明してきた支持部材3とは異なる支持部材3´として、図9に示すように、磁気センサ素子取付部21が、支持部材取付本体部23に対して上方に変位して配置された支持部材3´を用いてもよい。このとき、磁気センサ素子取付部21と支持部材取付本体部23とを弾性的に接続する弾性部25は、当該磁気センサ1を磁気エンコーダとして磁気スケールと組み合わせたときに、磁気センサ素子取付部21に取り付けた磁気センサ素子5を磁気スケールに押し付ける力を付与している。磁気センサ素子取付部21が、支持部材取付本体部23に対して上方に変位して配置されていることにより、磁気センサ1を磁気スケールに対して摺動させた場合に、支持部材取付本体部23を磁気スケールに必要以上に接近させずとも弾性部25により押し付ける力が加わるため磁気センサ1と磁気スケールとの接触が良好となり、信頼性の高い磁気エンコーダを得ることができる。   As shown in FIG. 9, as a support member 3 ′ different from the support member 3 described so far, as shown in FIG. 9, the magnetic sensor element mounting portion 21 is disposed so as to be displaced upward with respect to the support member mounting main body portion 23. The member 3 ′ may be used. At this time, the elastic portion 25 that elastically connects the magnetic sensor element mounting portion 21 and the support member mounting main body portion 23 is combined with the magnetic scale as the magnetic sensor 1 as a magnetic encoder. A force for pressing the magnetic sensor element 5 attached to the magnetic scale is applied. Since the magnetic sensor element mounting portion 21 is disposed so as to be displaced upward with respect to the support member mounting main body portion 23, when the magnetic sensor 1 is slid with respect to the magnetic scale, the support member mounting main body portion. Since the pressing force is applied by the elastic portion 25 without bringing the magnetic scale 23 closer to the magnetic scale than necessary, the contact between the magnetic sensor 1 and the magnetic scale is improved, and a highly reliable magnetic encoder can be obtained.

このような磁気センサ1を含む磁気エンコーダをレンズ鏡筒に取り付けた場合、図10に示すように、磁気センサ素子5が磁気スケール32に押し付けられた状態となり、磁気センサ素子5は磁気スケール32からの漏洩磁界を良好に検出することができる。分解能を高めるために、一つあたりの磁化領域を小さくした場合に漏洩磁界が小さくなるため、分解能の高い磁気エンコーダにおいて特に有効である。   When such a magnetic encoder including the magnetic sensor 1 is attached to the lens barrel, the magnetic sensor element 5 is pressed against the magnetic scale 32 as shown in FIG. Can be detected well. In order to increase the resolution, when the magnetization area per one is reduced, the leakage magnetic field is reduced, which is particularly effective in a magnetic encoder having a high resolution.

本発明の実施の形態1に係る磁気センサ1を含む磁気エンコーダは上述のようにロータリーエンコーダとしてレンズ鏡筒に適用することができる(図6参照)。本発明の実施の形態1に係る磁気センサ1においては、上述のように、キャップ部材11により配線部材7は接続部材9から剥離しにくい。配線部材7が接続部材9から剥離しやすい場合、配線部材7を急峻に湾曲させると配線部材7が接続部材9から剥離してしまうため、配線部材7を急峻に湾曲させることは難しい。しかしながら、上述のように配線部材7は接続部材9から剥離しにくいため、配線部材7を急峻に湾曲させることが可能である。このように急峻に配線部材7を湾曲させれば、デッドスペースを減らすことができ、省スペース化が可能となる。したがって、実施の形態1に係る磁気センサ1を含む磁気エンコーダを備えるレンズ鏡筒は、その中に含まれるデッドスペースを減らすことができ、コンパクト化が可能となる。また、このようなレンズ鏡筒を備えるカメラについても、デッドスペースを減らすことができるため、同様に、コンパクト化が可能である。   The magnetic encoder including the magnetic sensor 1 according to Embodiment 1 of the present invention can be applied to a lens barrel as a rotary encoder as described above (see FIG. 6). In the magnetic sensor 1 according to the first embodiment of the present invention, as described above, the wiring member 7 is hardly peeled off from the connection member 9 by the cap member 11. When the wiring member 7 is easily peeled off from the connection member 9, if the wiring member 7 is sharply bent, the wiring member 7 is peeled off from the connection member 9, so that it is difficult to bend the wiring member 7 sharply. However, since the wiring member 7 is difficult to peel from the connection member 9 as described above, the wiring member 7 can be bent sharply. If the wiring member 7 is bent sharply in this way, dead space can be reduced and space saving can be achieved. Therefore, the lens barrel including the magnetic encoder including the magnetic sensor 1 according to the first embodiment can reduce the dead space included therein and can be made compact. Moreover, since a dead space can be reduced also about a camera provided with such a lens barrel, it can similarly be made compact.

(3)磁気センサの製造方法
以下、本発明の実施の形態1に係る磁気センサの製造方法について説明する。図11を用いて工程毎に説明するが、各工程は、以下に記載された順番で行わなければならないというものではない。可能な範囲で工程を入れ替えてもよいことは理解されよう。
(3) Manufacturing Method of Magnetic Sensor Hereinafter, a manufacturing method of the magnetic sensor according to Embodiment 1 of the present invention will be described. Although it demonstrates for every process using FIG. 11, each process does not have to be performed in the order described below. It will be understood that the steps may be interchanged to the extent possible.

I.磁気センサ素子の準備(工程(a))
例えばシリコン基板上に磁性膜パターンを形成し、配線パターンを形成する。その後、配線パターン上に保護膜を形成する。その後、このように磁性膜パターン等を形成したシリコン基板をダイシングして個片化して磁気センサ素子5を作製する。磁気センサ素子の大きさとしては、例えば0.6mm×3mmなどである。ダイシングされた磁気センサ素子5の接触面を面取りしてもよい。このようにして磁気センサ素子5を作製することにより準備する。
また、このような磁気センサ素子5を購入することにより準備してもよい。
I. Preparation of magnetic sensor element (step (a))
For example, a magnetic film pattern is formed on a silicon substrate, and a wiring pattern is formed. Thereafter, a protective film is formed on the wiring pattern. Thereafter, the silicon substrate on which the magnetic film pattern or the like is formed as described above is diced into individual pieces, and the magnetic sensor element 5 is manufactured. The size of the magnetic sensor element is, for example, 0.6 mm × 3 mm. The contact surface of the diced magnetic sensor element 5 may be chamfered. In this way, the magnetic sensor element 5 is prepared.
Moreover, you may prepare by purchasing such a magnetic sensor element 5. FIG.

II.磁気センサ素子のマウント(工程(b))
複数の貫通電極が整列して形成された一枚の基板13を準備する。上述のようにして得られた複数の磁気センサ素子5を上記一枚の基板13上に整列させて配置する。この際、貫通電極と磁気センサ素子5は導通するように、且つ、磁気センサ素子5の方向が一致するように配置する。磁気センサ素子5を基板13上に固定する際、導電性樹脂(例えば、銀の粉末を含む樹脂など)を用いることが好ましい。上記したように、磁気センサ素子5の帯電を抑制することができるとともに、静電耐圧が向上する。
II. Mounting of magnetic sensor element (process (b))
A single substrate 13 in which a plurality of through electrodes are formed in alignment is prepared. A plurality of magnetic sensor elements 5 obtained as described above are arranged in alignment on the single substrate 13. At this time, the through electrode and the magnetic sensor element 5 are arranged so as to be conductive and the directions of the magnetic sensor element 5 are aligned. When the magnetic sensor element 5 is fixed on the substrate 13, it is preferable to use a conductive resin (for example, a resin containing silver powder). As described above, charging of the magnetic sensor element 5 can be suppressed and the electrostatic withstand voltage is improved.

III.ワイヤーボンディング(工程(c))
磁気センサ素子5に設けられた電極と基板13の電極との導通を図るため、これらの電極をワイヤーボンディングにより電気的に接続する。また、ワイヤーボンディングだけでなく、バンプ接続でも良い。
III. Wire bonding (process (c))
In order to establish conduction between the electrodes provided on the magnetic sensor element 5 and the electrodes of the substrate 13, these electrodes are electrically connected by wire bonding. Further, not only wire bonding but also bump connection may be used.

IV.封止樹脂による封止及びダイシング(個片化)(工程(d))
上述のワイヤーボンディング部分を絶縁樹脂15により封止する。これにより、ワイヤー同士の不意の接触を抑制することができる。その後、一枚の基板13を少なくとも1つの磁気センサ素子5が含まれるようにダイシングして個片化する。基板の大きさとしては、例えば1.5mm×4.5mmなどである。
IV. Sealing and dicing with sealing resin (individualization) (step (d))
The above-described wire bonding portion is sealed with an insulating resin 15. Thereby, the unexpected contact between wires can be suppressed. Thereafter, the single substrate 13 is diced so as to include at least one magnetic sensor element 5 and is separated into individual pieces. The size of the substrate is, for example, 1.5 mm × 4.5 mm.

V.個片化された基板の支持部材へのマウント(工程(e))
個片化された基板13を支持部材3の磁気センサ素子取付部21にマウントする。基板13を支持部材3の磁気センサ素子取付部21上に固定する際、上記同様、導電性樹脂を用いることが好ましい。上記したように、磁気センサ素子5の帯電を抑制することができるとともに、静電耐圧が向上する。
V. Mounting the separated substrate on the support member (step (e))
The separated substrate 13 is mounted on the magnetic sensor element mounting portion 21 of the support member 3. When the substrate 13 is fixed on the magnetic sensor element mounting portion 21 of the support member 3, it is preferable to use a conductive resin as described above. As described above, charging of the magnetic sensor element 5 can be suppressed and the electrostatic withstand voltage is improved.

VI.フレキシブル配線板の接合(工程(f))
フレキシブル配線板を基板13の電極と半田により接続する。その後、この接続部分に絶縁樹脂15を塗布して端子部を補強する。
VI. Bonding of flexible wiring board (process (f))
The flexible wiring board is connected to the electrode of the substrate 13 by soldering. Thereafter, an insulating resin 15 is applied to the connection portion to reinforce the terminal portion.

VII.接続部材の形成及びキャップ部材の形成
配線部材7と支持部材3との間に接続部材9を配置して配線部材7と支持部材3とを接続する。また、キャップ部材11を配線部材7の上面上の接続部材9に対応する領域に形成する。具体的には、図12に示すように、支持部材3と配線部材7との間に、接続部材9の原料となる硬化前の例えば紫外線硬化性樹脂を配置し、さらに配線部材7の上面の、接続部材9の真上の領域に同じ硬化前の紫外線硬化性樹脂を配置する。そして、2つ以上の光(例えば紫外線)照射装置17により、キャップ部材11及び接続部材9となる原料に対して両側から光を照射する。照射される光の交差位置が接続部材9又はキャップ部材11となる部分内にあることが好ましい。照射の角度は、図12に示すように斜め上方向から照射した場合に、配線部材7の裏側において反射や屈折により硬化が可能であるような角度であり、配線部材に遮られないように、放射される光が配線部材7の裏面に対して平行であってもよい。このように設定することにより光の未到達部分が減少し未硬化の樹脂を減少させることができる。
VII. Formation of Connection Member and Formation of Cap Member The connection member 9 is disposed between the wiring member 7 and the support member 3 to connect the wiring member 7 and the support member 3. Further, the cap member 11 is formed in a region corresponding to the connection member 9 on the upper surface of the wiring member 7. Specifically, as shown in FIG. 12, for example, an ultraviolet curable resin before curing, which is a raw material of the connection member 9, is disposed between the support member 3 and the wiring member 7, and further, on the upper surface of the wiring member 7. The same uncured ultraviolet curable resin is disposed in the region directly above the connecting member 9. Then, two or more light (for example, ultraviolet rays) irradiation devices 17 irradiate the raw material to be the cap member 11 and the connection member 9 from both sides. It is preferable that the crossing position of the irradiated light is in a portion to be the connection member 9 or the cap member 11. The irradiation angle is an angle that can be cured by reflection or refraction on the back side of the wiring member 7 when irradiated from an obliquely upward direction as shown in FIG. The emitted light may be parallel to the back surface of the wiring member 7. By setting in this way, the unreachable portion of light can be reduced and uncured resin can be reduced.

以上、詳細に説明したように、本発明の実施の形態1に係る磁気センサの作製方法によれば、キャップ部材11を、配線部材7の上面上の、接続部材9に対応する位置に設けることができ、これにより、配線部材7を上述のように湾曲させたとしても、キャップ部材11の反力が働くことにより、接続部材9と配線部材7との剥離を抑制することができる。   As described above in detail, according to the method for manufacturing the magnetic sensor according to the first embodiment of the present invention, the cap member 11 is provided on the upper surface of the wiring member 7 at a position corresponding to the connection member 9. As a result, even if the wiring member 7 is bent as described above, the reaction force of the cap member 11 acts to suppress the separation between the connection member 9 and the wiring member 7.

本発明の実施の形態に基づき磁気センサ、磁気エンコーダを作製した。このようにして作製された磁気センサ、磁気エンコーダについて様々な実験を行い、キャップ部材11を設けたことによる効果を確認した。   A magnetic sensor and a magnetic encoder were manufactured based on the embodiment of the present invention. Various experiments were performed on the magnetic sensor and the magnetic encoder thus manufactured, and the effect of providing the cap member 11 was confirmed.

(キャップ部材の高さと接合強度(ピール強度)との関係)
図13は、キャップ部材の高さHs(キャップ高さHs)と、配線部材7と接続部材9との間の接合強度(すなわちピール強度)との関係を示したグラフである。横軸をキャップ部材の高さHsとし、縦軸をピール強度としている。横軸のキャップ部材の高さHsの単位はミリメートル(mm)、ピール強度の単位はグラム重(gf)である。
(Relationship between cap member height and bonding strength (peel strength))
FIG. 13 is a graph showing the relationship between the height Hs of the cap member (cap height Hs) and the bonding strength (that is, peel strength) between the wiring member 7 and the connection member 9. The horizontal axis is the height Hs of the cap member, and the vertical axis is the peel strength. The unit of height Hs of the cap member on the horizontal axis is millimeter (mm), and the unit of peel strength is gram weight (gf).

配線部材7として、ポリイミドで被覆されたフレキシブル配線板を用いた。また、支持部材3として銅板を用い、図1に示すような支持部材3を作製した。支持部材3と配線部材7とを接続部材9で固定し、配線部材7の上面の接続部材9と対応する位置にキャップ部材11を形成した。接続部材9及びキャップ部材11としては紫外線硬化性エポキシ樹脂を用いた。   A flexible wiring board covered with polyimide was used as the wiring member 7. Moreover, the support member 3 as shown in FIG. 1 was produced using the copper plate as the support member 3. The support member 3 and the wiring member 7 were fixed by the connecting member 9, and the cap member 11 was formed at a position corresponding to the connecting member 9 on the upper surface of the wiring member 7. As the connection member 9 and the cap member 11, an ultraviolet curable epoxy resin was used.

図13に示すように、キャップ部材11の高さが0mm、すなわち、キャップ部材11が存在しない場合のピール強度は、34gf(333.2mN)、39gf(382.2mN)であった。しかしながら、キャップ部材11の高さが高くなるにしたがって、ピール強度は大きくなっていった。具体的には、キャップ部材11の高さが0.104mmである場合、ピール強度は71gf(695.8mN)であったのに対して、キャップ部材11の高さが0.20mmである場合、ピール強度は130gf(1274mN)、キャップ部材11の高さが0.303mmである場合、ピール強度は295gf(2891mN)であった。   As shown in FIG. 13, the peel strength when the height of the cap member 11 was 0 mm, that is, when the cap member 11 was not present was 34 gf (333.2 mN) and 39 gf (382.2 mN). However, the peel strength increased as the height of the cap member 11 increased. Specifically, when the height of the cap member 11 is 0.104 mm, the peel strength is 71 gf (695.8 mN), whereas when the height of the cap member 11 is 0.20 mm, When the peel strength was 130 gf (1274 mN) and the height of the cap member 11 was 0.303 mm, the peel strength was 295 gf (2891 mN).

以上のことから、キャップ部材11を設けることにより、ピール強度が向上することが確認された。また、キャップ部材11の高さを大きくするにしたがってピール強度は極めて高くなることが確認できた。特に、キャップ部材11の高さが0.1mm以上であれば、ピール強度は少なくとも70gf(686mN)以上となり、キャップ部材11を用いない場合のピール強度34gf(333.2mN)の約2倍となった。   From the above, it was confirmed that the peel strength is improved by providing the cap member 11. Further, it was confirmed that the peel strength became extremely high as the height of the cap member 11 was increased. In particular, when the height of the cap member 11 is 0.1 mm or more, the peel strength is at least 70 gf (686 mN) or more, which is about twice the peel strength 34 gf (333.2 mN) when the cap member 11 is not used. It was.

(接続部材の高さと磁気センサ素子の追随性との関係)
図14は、接続部材9の高さHtと、磁気センサ素子5の磁気スケール32への追随性との関係を示したグラフである。横軸は接続部材9の高さHtであり、縦軸は磁気センサ素子5の磁気スケール32への追随性、すなわち、磁気センサ素子5が磁気スケール32に良好に接触しているか(良好に接触している場合をOKとする)、磁気センサ素子5と磁気スケール32との接触が良好でないか(良好に接触していない場合をNGとする)を示している。磁気センサ素子5が磁気スケール32に良好に接触している場合、磁気センサ素子5から磁気信号の出力が良好に読み取れる。一方、磁気センサ素子5が磁気スケール32との接触が良好でない場合、磁気センサ素子5からの磁気信号の出力が著しく低下し、磁気信号の出力が読み取れない。
(Relationship between height of connecting member and followability of magnetic sensor element)
FIG. 14 is a graph showing the relationship between the height Ht of the connecting member 9 and the followability of the magnetic sensor element 5 to the magnetic scale 32. The horizontal axis is the height Ht of the connecting member 9, and the vertical axis is the followability of the magnetic sensor element 5 to the magnetic scale 32, that is, whether the magnetic sensor element 5 is in good contact with the magnetic scale 32 (good contact). It is shown that the contact between the magnetic sensor element 5 and the magnetic scale 32 is not good (the case where it is not in good contact is NG). When the magnetic sensor element 5 is in good contact with the magnetic scale 32, the output of the magnetic signal can be read well from the magnetic sensor element 5. On the other hand, when the magnetic sensor element 5 is not in good contact with the magnetic scale 32, the output of the magnetic signal from the magnetic sensor element 5 is remarkably lowered, and the output of the magnetic signal cannot be read.

図14では、基板厚さが0.8mmである場合について接続部材9の高さHtと、磁気センサ素子5の磁気スケール32への追随性との関係を示している。   FIG. 14 shows the relationship between the height Ht of the connecting member 9 and the followability of the magnetic sensor element 5 to the magnetic scale 32 when the substrate thickness is 0.8 mm.

図14に示すように、接続部材9の高さHtが0.71mm以下では、磁気センサ素子5が磁気スケール32に良好に接触しておらず、磁気センサ素子5からの磁気信号を読み取れない。一方、接続部材9の高さHtが0.72mm以上では、磁気センサ素子5が磁気スケール32に良好に接触し、磁気センサ素子5からの磁気信号を良好に読み取れる。   As shown in FIG. 14, when the height Ht of the connecting member 9 is 0.71 mm or less, the magnetic sensor element 5 is not in good contact with the magnetic scale 32 and the magnetic signal from the magnetic sensor element 5 cannot be read. On the other hand, when the height Ht of the connecting member 9 is 0.72 mm or more, the magnetic sensor element 5 is in good contact with the magnetic scale 32 and the magnetic signal from the magnetic sensor element 5 can be read well.

したがって、接続部材9の高さHtは、0.72mm以上であることが好ましい。ここで、基板13自体、約±0.05mm程度のばらつきを有するため、接続部材9の高さHtは約0.67mm以上であることが好ましい。接続部材9の高さHtを基板厚さ0.8mmで除して規格化すると、接続部材9の高さは、基板13の厚さに対して、0.85倍以上となる。
一方、省スペース化を図るためには、接続部材9の高さは基板13の厚さに対して、1.15倍以下であることが好ましい。
以上のことから、接続部材9の高さ/基板13の厚さは、0.85〜1.15であることが好ましいことが分かった。
さらに配線部を有しない基板であって、より厚さ精度の良い材質を使用することで、上述した基板13の厚さのばらつきが小さくなるため、より厚さ精度の良い材質からなる、配線部を有しない基板を使用することが好ましい。接続部材9の高さも基板13の厚さに対して0.9倍以上がより好ましく、さらに0.95倍以上が好ましい。また、別の態様では、基板13が配線部を有するか否かに拘わらず、接続部材9の高さ/基板13の厚さは、上記と同様、0.85〜1.15であることが好ましい。
Therefore, the height Ht of the connecting member 9 is preferably 0.72 mm or more. Here, since the substrate 13 itself has a variation of about ± 0.05 mm, the height Ht of the connecting member 9 is preferably about 0.67 mm or more. When the height Ht of the connection member 9 is divided by the substrate thickness of 0.8 mm and normalized, the height of the connection member 9 is 0.85 times or more the thickness of the substrate 13.
On the other hand, in order to save space, the height of the connection member 9 is preferably 1.15 times or less with respect to the thickness of the substrate 13.
From the above, it was found that the height of the connection member 9 / the thickness of the substrate 13 is preferably 0.85 to 1.15.
Furthermore, since the variation in the thickness of the substrate 13 described above is reduced by using a material with higher thickness accuracy, which is a substrate that does not have a wiring portion, the wiring portion is made of a material with higher thickness accuracy. It is preferable to use a substrate that does not have any. The height of the connecting member 9 is more preferably 0.9 times or more with respect to the thickness of the substrate 13, and further preferably 0.95 times or more. In another aspect, the height of the connection member 9 / the thickness of the substrate 13 is 0.85 to 1.15, as described above, regardless of whether or not the substrate 13 has a wiring portion. preferable.

(B−A寸法と最大押込み量との関係)
図15(a)は、B−A寸法を説明するための図面であり、図15(b)は、B−A寸法と最大押込み量との関係を示したグラフである。最大押込み量とは、磁気センサ素子5が磁気スケール32に良好に接触した状態の最大の押込み量である。図15(b)において、横軸をB−A寸法とし、縦軸を最大押込み量とする。B−A寸法の単位は、ミリメートル(mm)であり、最大押込み量の単位はマイクロメートル(μm)である。
(Relation between B-A dimension and maximum push-in amount)
FIG. 15A is a diagram for explaining the B-A dimension, and FIG. 15B is a graph showing the relationship between the B-A dimension and the maximum pushing amount. The maximum pressing amount is the maximum pressing amount when the magnetic sensor element 5 is in good contact with the magnetic scale 32. In FIG. 15B, the horizontal axis is the B-A dimension, and the vertical axis is the maximum pushing amount. The unit of the B-A dimension is millimeter (mm), and the unit of the maximum pushing amount is micrometer (μm).

図15(a)において、B−A寸法は、接続部材9と封止樹脂15との最短距離を示している。すなわち、B−A寸法は、配線部材7がキャップ部材11、支持部材3、封止樹脂15により被覆されておらず自由に湾曲可能な部分(可動部分)の長さに相当する。   In FIG. 15A, the dimension B-A indicates the shortest distance between the connection member 9 and the sealing resin 15. That is, the dimension B-A corresponds to the length of a portion (movable portion) in which the wiring member 7 is not covered with the cap member 11, the support member 3, and the sealing resin 15 and can be bent freely.

図15(b)に示すように、B−A寸法が増加するにしたがって最大押込み量は増加した。特に、磁気エンコーダをレンズ鏡筒において使用する場合、最大押込み量は少なくとも500μm以上であることが要求される。したがって、最大押込み量を500μm以上とするためにはB−A寸法を2.5mm以上とする必要があることが分かった。   As shown in FIG. 15 (b), the maximum pushing amount increased as the B-A dimension increased. In particular, when the magnetic encoder is used in a lens barrel, the maximum push amount is required to be at least 500 μm. Therefore, it was found that the B-A dimension needs to be 2.5 mm or more in order to make the maximum pushing amount 500 μm or more.

(樹脂粘度とキャップ部材の高さとの関係)
図16は、樹脂粘度と高さHsとの関係を示したグラフである。横軸を樹脂粘度とし、縦軸を高さとする。樹脂粘度の単位はミリパスカル秒(mPa・s)であり、高さの単位はミリメートル(mm)である。
(Relationship between resin viscosity and cap member height)
FIG. 16 is a graph showing the relationship between the resin viscosity and the height Hs. The horizontal axis is the resin viscosity, and the vertical axis is the height. The unit of resin viscosity is millipascal second (mPa · s), and the unit of height is millimeter (mm).

樹脂粘度が上昇するにしたがって、高さが上昇することが分かった。特に、樹脂が35,000(mPa・s)以上の粘度を有する場合、配線部材の幅を超えない径の範囲で、高さを0.20mm以上とすることができるため、樹脂の粘度は35,000(mPa・s)以上であることが好ましいことが分かった。ここで、樹脂の粘度とは、樹脂の硬化前の粘度を意味する。   It was found that the height increases as the resin viscosity increases. In particular, when the resin has a viscosity of 35,000 (mPa · s) or more, the height can be 0.20 mm or more within a diameter range that does not exceed the width of the wiring member. It was found that it was preferable to be 1,000 (mPa · s) or more. Here, the viscosity of the resin means the viscosity of the resin before curing.

(放射強度又は積算放射量と接着強度との関係)
図17(a)は、放射強度と接着強度との関係を示したグラフである。横軸を放射強度とし、縦軸を接着強度とする。放射強度の単位は、ミリワット/平方センチメートル(mW/cm)であり、接着強度の単位はグラム重(gf)である。
(Relationship between radiation intensity or accumulated radiation amount and adhesive strength)
FIG. 17A is a graph showing the relationship between radiation intensity and adhesive strength. The horizontal axis is radiation intensity, and the vertical axis is adhesive strength. The unit of radiant intensity is milliwatt / square centimeter (mW / cm 2 ), and the unit of adhesive strength is gram weight (gf).

また、図17(b)は、放射強度を積算放射量に換算したものであり、積算放射量と接着強度との関係を示したグラフである。横軸を積算放射量とし、縦軸を接着強度とする。積算放射量の単位は、ミリジュール/平方センチメートル(mJ/cm)であり、接着強度の単位はグラム重(gf)である。
樹脂としては、上記同様、紫外線硬化性エポキシ樹脂を用いた。
FIG. 17B is a graph showing the relationship between the integrated radiation amount and the adhesive strength, which is obtained by converting the radiation intensity into an integrated radiation amount. The horizontal axis is the integrated radiation amount, and the vertical axis is the adhesive strength. The unit of the integrated radiation amount is millijoule / square centimeter (mJ / cm 2 ), and the unit of the adhesive strength is gram weight (gf).
As the resin, an ultraviolet curable epoxy resin was used as described above.

図17(a)に示すように、放射強度1000mW/cmまでは放射強度が上昇するにしたがって接着強度は上昇し(約235gf(2303mN)まで上昇する)、放射強度1000mW/cmを超えると放射強度が上昇するにしたがって接着強度は下降した。また、図17(b)に示すように、積算放射量3000mJ/cmまでは積算放射量が上昇するにしたがって接着強度は上昇し(約235gf(2303mN)まで上昇する)、積算放射量が上昇するにしたがって接着強度は下降した。As shown in FIG. 17 (a), until the radiation intensity 1000 mW / cm 2 (rises to about 235gf (2303mN)) adhesive strength according to the radiation intensity is increased is increased and exceeds the radiation intensity 1000 mW / cm 2 The bond strength decreased as the radiation intensity increased. Further, as shown in FIG. 17B, the adhesive strength increases as the integrated radiation amount increases up to the integrated radiation amount of 3000 mJ / cm 2 (increases to about 235 gf (2303 mN)), and the integrated radiation amount increases. As a result, the adhesive strength decreased.

図17(a)より、この紫外線硬化性エポキシ樹脂において、十分な強度(150〜170gf(1470〜1666mN))を得るためには、500mW/cm以上の放射強度が必要であることが分かった。また、図17(b)より、1500mJ/cm以上の積算放射量が必要であることが分かった。From FIG. 17 (a), it was found that a radiation intensity of 500 mW / cm 2 or more is necessary to obtain sufficient strength (150 to 170 gf (1470 to 1666 mN)) in this ultraviolet curable epoxy resin. . Also, from FIG. 17B, it was found that an integrated radiation amount of 1500 mJ / cm 2 or more is necessary.

(照射時間と接着強度との関係)
図18は、照射時間と接着強度との関係を示したグラフである。横軸を照射時間とし、縦軸を接着強度とする。照射時間の単位は秒(s)であり、接着強度の単位はグラム重(gf)である。照射時間が0〜3秒の領域においては、接着強度は照射時間が長くなるにしたがって上昇する(144gf(1411.2mN)から226gf(2214.8mN)まで上昇)。そして、照射時間が3〜15秒の領域では、接着強度は略一定であり220gf(2156mN)〜250gf(2450mN)の範囲に含まれる。照射時間が15〜20秒の領域では、接着強度は照射時間が長くなるにしたがって下降する(224gf(2195.2mN)から60gf(588mN)まで下降)。
(Relationship between irradiation time and adhesive strength)
FIG. 18 is a graph showing the relationship between irradiation time and adhesive strength. The horizontal axis is irradiation time, and the vertical axis is adhesive strength. The unit of irradiation time is seconds (s), and the unit of adhesive strength is gram weight (gf). In the region where the irradiation time is 0 to 3 seconds, the adhesive strength increases as the irradiation time becomes longer (from 144 gf (1411.2 mN) to 226 gf (2214.8 mN)). In the region where the irradiation time is 3 to 15 seconds, the adhesive strength is substantially constant and is included in the range of 220 gf (2156 mN) to 250 gf (2450 mN). In the region where the irradiation time is 15 to 20 seconds, the adhesive strength decreases as the irradiation time becomes longer (from 224 gf (2195.2 mN) to 60 gf (588 mN)).

したがって、図18より、高い接着強度(220gf(2156mN)〜250gf(2450mN))を確保するためには照射時間が3〜15秒が好ましいことが分かった。   Accordingly, FIG. 18 indicates that the irradiation time is preferably 3 to 15 seconds in order to ensure high adhesive strength (220 gf (2156 mN) to 250 gf (2450 mN)).

(印加電圧と抵抗変化率との関係)
図19は、印加電圧と抵抗変化率との関係を示したグラフである。横軸を印加電圧とし、縦軸を抵抗変化率とする。印加電圧の単位は、キロボルト(kV)であり、抵抗変化率の単位は、パーセント(%)である。
(Relationship between applied voltage and resistance change rate)
FIG. 19 is a graph showing the relationship between the applied voltage and the resistance change rate. The horizontal axis is applied voltage, and the vertical axis is resistance change rate. The unit of applied voltage is kilovolt (kV), and the unit of resistance change rate is percent (%).

図19に示すように、○は本発明について示しており、●は従来の製品について示している。具体的には、本発明として、支持部材の磁気センサ素子取付部に貫通電極を有する基板を介して導電性樹脂を用いて磁気センサ素子を固定した磁気センサと、従来の製品として、支持部材の磁気センサ素子取付部に貫通電極を有しない基板を介して絶縁性樹脂を用いて磁気センサ素子を固定した磁気センサとを比較した。従来の製品については印加電圧が0.6kVを超えると抵抗変化率が低下する。一方、本発明については印加電圧が0.9kVまでは抵抗変化率は低下せず一定(約12.3%)に保たれている。したがって、本発明では高い印加電圧耐性を有することが分かった。   As shown in FIG. 19, a circle indicates the present invention, and a circle indicates a conventional product. Specifically, according to the present invention, a magnetic sensor in which a magnetic sensor element is fixed using a conductive resin through a substrate having a through electrode at a magnetic sensor element mounting portion of the support member, and a conventional product, Comparison was made with a magnetic sensor in which a magnetic sensor element was fixed using an insulating resin through a substrate having no through electrode in the magnetic sensor element mounting portion. For conventional products, the resistance change rate decreases when the applied voltage exceeds 0.6 kV. On the other hand, in the present invention, the rate of change in resistance does not decrease until the applied voltage is 0.9 kV, and is kept constant (about 12.3%). Therefore, it was found that the present invention has high applied voltage tolerance.

(キャップ部材の材質について)
キャップ部材としてSUS304を使用し、板状の部材から円形状に切り抜き、接続部材の投影面上に合わせて、樹脂で接着したところ上述した実施例と同様の効果が得られた。
(About the material of the cap member)
When SUS304 was used as the cap member, the plate-shaped member was cut out into a circular shape, and aligned with the projection surface of the connecting member and adhered with a resin, the same effect as in the above-described embodiment was obtained.

1 磁気センサ
3 支持部材
5 磁気センサ素子
7 配線部材
9 接続部材
11 キャップ部材
DESCRIPTION OF SYMBOLS 1 Magnetic sensor 3 Support member 5 Magnetic sensor element 7 Wiring member 9 Connection member 11 Cap member

Claims (19)

磁気センサ素子取付部を弾性的に支持する弾性部を有する支持部材と、
前記磁気センサ素子取付部に設けられた、磁界を検出し電気的に出力する磁気センサ素子と、
前記磁気センサ素子に電気的に接続された可撓性を有する配線部材と、
前記支持部材と前記配線部材とを接続する接続部材と、
前記配線部材の少なくとも上面上の、前記接続部材に対応する位置に設けられたキャップ部材と、を備える磁気センサ。
A support member having an elastic portion for elastically supporting the magnetic sensor element mounting portion;
A magnetic sensor element provided in the magnetic sensor element mounting portion for detecting and electrically outputting a magnetic field;
A flexible wiring member electrically connected to the magnetic sensor element;
A connection member for connecting the support member and the wiring member;
And a cap member provided at a position corresponding to the connection member on at least the upper surface of the wiring member.
前記接続部材及び/又は前記キャップ部材は樹脂である請求項1に記載の磁気センサ。   The magnetic sensor according to claim 1, wherein the connection member and / or the cap member is a resin. 前記接続部材及び/又は前記キャップ部材を構成する樹脂が光硬化性樹脂である請求項2記載の磁気センサ。   The magnetic sensor according to claim 2, wherein the resin constituting the connection member and / or the cap member is a photocurable resin. 前記光硬化性樹脂が、紫外線硬化性樹脂である請求項3記載の磁気センサ。   The magnetic sensor according to claim 3, wherein the photocurable resin is an ultraviolet curable resin. 前記キャップ部材の高さが、0.1mm以上である請求項1〜4のいずれかに記載の磁気センサ。   The magnetic sensor according to claim 1, wherein a height of the cap member is 0.1 mm or more. 前記磁気センサ素子取付部と前記磁気センサ素子との間に配線部を有する基板あるいは配線部を有さない基板を有し、前記基板上に前記磁気センサ素子が設けられた請求項1〜5のいずれかに記載の磁気センサ。   The substrate according to claim 1, further comprising a substrate having a wiring portion or a substrate having no wiring portion between the magnetic sensor element mounting portion and the magnetic sensor element, wherein the magnetic sensor element is provided on the substrate. The magnetic sensor in any one. 前記接続部材の高さは、前記基板の厚さに対して、0.85倍〜1.15倍である請求項6に記載の磁気センサ。   The magnetic sensor according to claim 6, wherein a height of the connection member is 0.85 to 1.15 times the thickness of the substrate. 前記磁気センサ素子と前記基板との間、及び、前記基板と前記支持部材との間に導電性樹脂層が介在し、前記磁気センサ素子の電気的に出力する端子以外の部分と前記基板とが前記導電性樹脂層により固定され、さらに前記基板と前記支持部材とが前記導電性樹脂層により固定されている請求項6または7に記載の磁気センサ。   A conductive resin layer is interposed between the magnetic sensor element and the substrate, and between the substrate and the support member, and a portion other than an electrically output terminal of the magnetic sensor element and the substrate are The magnetic sensor according to claim 6, wherein the magnetic sensor is fixed by the conductive resin layer, and the substrate and the support member are fixed by the conductive resin layer. 磁気スケールと、前記磁気スケール上を相対的に摺動可能な請求項1〜8のいずれかに記載の磁気センサと、を備える磁気エンコーダ。   A magnetic encoder comprising: a magnetic scale; and the magnetic sensor according to any one of claims 1 to 8, which is slidable on the magnetic scale. 請求項9に記載の磁気エンコーダを備えるレンズ鏡筒。   A lens barrel comprising the magnetic encoder according to claim 9. 請求項10に記載のレンズ鏡筒を備えるカメラ。   A camera comprising the lens barrel according to claim 10. 磁気センサ素子取付部を弾性的に支持する弾性部を有する支持部材と、前記磁気センサ素子取付部に設けられた、磁界を検出し電気的に出力する磁気センサ素子と、前記磁気センサ素子に電気的に接続された可撓性を有する配線部材と、前記支持部材と前記配線部材とを接続する接続部材と、前記配線部材の少なくとも上面上の、前記接続部材に対応する位置に設けられたキャップ部材と、を備える磁気センサを作製する方法であって、
前記磁気センサ素子と前記支持部材とを固定する工程と、
前記磁気センサ素子と前記配線部材とを電気的に接続する工程と、
前記配線部材と前記支持部材との間に接続部材を形成する工程と、
前記接続部材に対応する位置にキャップ部材を形成する工程と、を備える磁気センサの製造方法。
A support member having an elastic portion that elastically supports the magnetic sensor element mounting portion, a magnetic sensor element provided in the magnetic sensor element mounting portion for detecting and electrically outputting a magnetic field, and electric power to the magnetic sensor element Connected flexible wiring member, connecting member connecting the support member and the wiring member, and a cap provided at a position corresponding to the connecting member on at least the upper surface of the wiring member A magnetic sensor comprising a member,
Fixing the magnetic sensor element and the support member;
Electrically connecting the magnetic sensor element and the wiring member;
Forming a connection member between the wiring member and the support member;
Forming a cap member at a position corresponding to the connection member.
前記磁気センサは、さらに、前記支持部材と前記磁気センサ素子との間に、配線部を有する基板を備え、
前記磁気センサを作製する方法において、前記磁気センサ素子と前記支持部材とを固定する工程は、前記支持部材と前記基板とを固定し、さらに、前記基板と前記磁気センサ素子とを固定する工程であり、
前記磁気センサ素子と前記配線部材の配線部とを電気的に接続する工程は、前記基板の配線部を介して磁気センサ素子と前記配線部材の配線部とを電気的に接続する工程である請求項12に記載の磁気センサの製造方法。
The magnetic sensor further includes a substrate having a wiring portion between the support member and the magnetic sensor element,
In the method of manufacturing the magnetic sensor, the step of fixing the magnetic sensor element and the support member is a step of fixing the support member and the substrate, and further fixing the substrate and the magnetic sensor element. Yes,
The step of electrically connecting the magnetic sensor element and the wiring portion of the wiring member is a step of electrically connecting the magnetic sensor element and the wiring portion of the wiring member via the wiring portion of the substrate. Item 13. A method for manufacturing a magnetic sensor according to Item 12.
前記接続部材を形成する工程と、前記キャップ部材を形成する工程とを、同時に行う請求項12または13に記載の磁気センサの製造方法。   The method of manufacturing a magnetic sensor according to claim 12 or 13, wherein the step of forming the connection member and the step of forming the cap member are performed simultaneously. 前記接続部材を形成する工程及び/又は前記キャップ部材を形成する工程は、液状の樹脂を硬化させて接続部材及び/又はキャップ部材を形成する工程である請求項12〜14のいずれかに記載の磁気センサの製造方法。   15. The step of forming the connection member and / or the step of forming the cap member is a step of curing the liquid resin to form the connection member and / or the cap member. Manufacturing method of magnetic sensor. 前記樹脂は35,000(mPa・s)以上の粘度を有する請求項15に記載の磁気センサの製造方法。   The method of manufacturing a magnetic sensor according to claim 15, wherein the resin has a viscosity of 35,000 (mPa · s) or more. 前記接続部材を形成する工程及び/又は前記キャップ部材を形成する工程は、紫外線硬化性樹脂を用いて、紫外線を紫外線硬化性樹脂に照射して当該紫外線硬化性樹脂を硬化させ形成する工程である請求項15又は16に記載の磁気センサの製造方法。   The step of forming the connecting member and / or the step of forming the cap member is a step of using an ultraviolet curable resin and irradiating the ultraviolet curable resin with ultraviolet rays to cure the ultraviolet curable resin. The manufacturing method of the magnetic sensor of Claim 15 or 16. 前記接続部材を形成する工程及び/又は前記キャップ部材を形成する工程は、紫外線を、前記接続部材及び/又は前記キャップ部材の両側から照射する工程である請求項15〜17のいずれかに記載の磁気センサの製造方法。   The process of forming the said connection member and / or the process of forming the said cap member are the processes of irradiating an ultraviolet-ray from the both sides of the said connection member and / or the said cap member. Manufacturing method of magnetic sensor. 前記磁気センサ素子の電気的に出力する端子以外の部分と前記基板とを導電性樹脂により固定し、及び、前記基板と前記支持部材とを導電性樹脂により固定する請求項13〜18のいずれかに記載の磁気センサの製造方法。   The part other than the electrical output terminal of the magnetic sensor element and the substrate are fixed with a conductive resin, and the substrate and the support member are fixed with a conductive resin. The manufacturing method of the magnetic sensor as described in 1.
JP2015555025A 2013-12-27 2014-12-25 Magnetic sensor, magnetic encoder using the same, lens barrel, camera, and method of manufacturing magnetic sensor Expired - Fee Related JP6436098B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013272689 2013-12-27
JP2013272689 2013-12-27
PCT/JP2014/084409 WO2015099088A1 (en) 2013-12-27 2014-12-25 Magnetic sensor, magnetic encoder using same, lens barrel, camera and method for manufacturing magnetic sensor

Publications (2)

Publication Number Publication Date
JPWO2015099088A1 true JPWO2015099088A1 (en) 2017-03-23
JP6436098B2 JP6436098B2 (en) 2018-12-12

Family

ID=53478929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015555025A Expired - Fee Related JP6436098B2 (en) 2013-12-27 2014-12-25 Magnetic sensor, magnetic encoder using the same, lens barrel, camera, and method of manufacturing magnetic sensor

Country Status (3)

Country Link
JP (1) JP6436098B2 (en)
CN (1) CN105793672A (en)
WO (1) WO2015099088A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7272289B2 (en) * 2020-01-23 2023-05-12 株式会社デンソー magnet holder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293656A (en) * 1995-04-25 1996-11-05 Kyocera Corp Wiring connection structure
JP2004289943A (en) * 2003-03-24 2004-10-14 Nok Corp Gasket and manufacturing method therefor
JP2009031239A (en) * 2007-03-28 2009-02-12 Hitachi Metals Ltd Magnetic encoder
JP2009189157A (en) * 2008-02-06 2009-08-20 Nippon Densan Corp Electric motor and recording disk drive
WO2011145563A1 (en) * 2010-05-17 2011-11-24 日立金属株式会社 Magnetic encoder
JP2013003311A (en) * 2011-06-15 2013-01-07 Sigma Corp Position detector using magnetic resistance element and lens barrel using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086439A (en) * 2004-09-17 2006-03-30 Nidec Sankyo Corp Magnetoresistive element
CN102650531B (en) * 2011-02-22 2016-02-17 日本电产三协株式会社 Rotary encoder
JP5651040B2 (en) * 2011-02-22 2015-01-07 日本電産サンキョー株式会社 Sensor unit and composite substrate
CN202013461U (en) * 2011-04-29 2011-10-19 广东欧珀移动通信有限公司 Structure capable of improving electro-static discharge (ESD) performance of display screen of mobile phone
JP5703518B2 (en) * 2011-10-12 2015-04-22 アルプス・グリーンデバイス株式会社 Current sensor
JP5912701B2 (en) * 2012-03-15 2016-04-27 アルプス電気株式会社 Method for manufacturing magnetic detection device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293656A (en) * 1995-04-25 1996-11-05 Kyocera Corp Wiring connection structure
JP2004289943A (en) * 2003-03-24 2004-10-14 Nok Corp Gasket and manufacturing method therefor
JP2009031239A (en) * 2007-03-28 2009-02-12 Hitachi Metals Ltd Magnetic encoder
JP2009189157A (en) * 2008-02-06 2009-08-20 Nippon Densan Corp Electric motor and recording disk drive
WO2011145563A1 (en) * 2010-05-17 2011-11-24 日立金属株式会社 Magnetic encoder
JP2013003311A (en) * 2011-06-15 2013-01-07 Sigma Corp Position detector using magnetic resistance element and lens barrel using the same

Also Published As

Publication number Publication date
JP6436098B2 (en) 2018-12-12
WO2015099088A1 (en) 2015-07-02
CN105793672A (en) 2016-07-20

Similar Documents

Publication Publication Date Title
JP4692544B2 (en) Electronic circuit device and manufacturing method thereof
RU2573252C2 (en) Electronic component and electronic device
US20140355226A1 (en) Anisotropic conductive film laminate, display device having the same, and method for manufacturing the display device
JP2013243339A (en) Electronic component, electronic module, and manufacturing method of these
TW201205701A (en) Electronic packaging device and method
TW584972B (en) Optical device module and method of fabrication
CN102385136A (en) Driver module and electronic device
US20180035548A1 (en) Patterned layer compound
JP2007294607A (en) Pressing head and pressing device
WO2014061204A1 (en) Semiconductor device and method for manufacturing same
JP2007042087A (en) Rfid tag and production method therefor
JP6436098B2 (en) Magnetic sensor, magnetic encoder using the same, lens barrel, camera, and method of manufacturing magnetic sensor
CN215340495U (en) Optical element driving mechanism
JPWO2021024453A1 (en) Optical sensor module
JP6316086B2 (en) Resin-encapsulated power semiconductor device and manufacturing method thereof
US20110079351A1 (en) Method of filing adhesive and method of manufacturing head suspension
JP2015015335A (en) Semiconductor device
JP5336711B2 (en) Resin-sealed semiconductor device
JP4893281B2 (en) Cover cap mounting structure
JP2016188773A (en) Magnetic sensor and magnetic encoder using the same, lens barrel and camera
WO2011162282A1 (en) Manufacturing method for radiation detectors, and radiation detector
JP2009218498A (en) Method for mounting semiconductor chip and liquid crystal panel
JP2013210490A (en) Optical element and auxiliary light source unit
JPH0536960A (en) Manufacture of image sensor
WO2013146479A1 (en) Method for manufacturing connector, method for connecting electronic component, connecting member, and method for manufacturing connecting member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181029

R150 Certificate of patent or registration of utility model

Ref document number: 6436098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees