JPWO2015093394A1 - Active energy ray-curable offset ink composition and printed matter using the same - Google Patents

Active energy ray-curable offset ink composition and printed matter using the same Download PDF

Info

Publication number
JPWO2015093394A1
JPWO2015093394A1 JP2015553509A JP2015553509A JPWO2015093394A1 JP WO2015093394 A1 JPWO2015093394 A1 JP WO2015093394A1 JP 2015553509 A JP2015553509 A JP 2015553509A JP 2015553509 A JP2015553509 A JP 2015553509A JP WO2015093394 A1 JPWO2015093394 A1 JP WO2015093394A1
Authority
JP
Japan
Prior art keywords
active energy
energy ray
acrylate
range
ink composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015553509A
Other languages
Japanese (ja)
Inventor
圭佑 若原
圭佑 若原
育男 松尾
育男 松尾
智昭 南部
智昭 南部
正和 吉澤
正和 吉澤
義信 出口
義信 出口
栄寿 一ノ瀬
栄寿 一ノ瀬
山口 浩一
浩一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
DIC Graphics Corp
Original Assignee
DIC Corp
DIC Graphics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, DIC Graphics Corp filed Critical DIC Corp
Publication of JPWO2015093394A1 publication Critical patent/JPWO2015093394A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing

Abstract

高い硬化性を発現すると共に、優れた乳化適性及びオフセット印刷適性を有するオフセット印刷適性を兼備した活性エネルギー線硬化型印刷インキ組成物、及びその印刷物を提供する。ビスフェノールA型エポキシ樹脂とアクリル酸とを反応させて得られるエポキシアクリレート化合物であって、ビスフェノールA型エポキシ樹脂のグリシジルオキシ基に起因又は由来する末端構造部位の総数に対するα−グリコール基の割合が13C−NMR測定結果で5モル%以下となる割合であるエポキシアクリレート化合物(A)を全量の10〜60質量%の範囲で含有し、更に25℃における粘度が40〜200ミリパスカル秒(mPa・s)の範囲にあり分子量が250〜550の範囲にある1分子当り2つ以上のアクリル基を有する重合性アクリレートモノマー(B)を5〜40質量%の範囲で含有する活性エネルギー線硬化型オフセットインキ組成物。Provided are an active energy ray-curable printing ink composition that exhibits high curability and has both excellent emulsifying ability and offset printing ability, and a printed material thereof. An epoxy acrylate compound obtained by reacting a bisphenol A type epoxy resin with acrylic acid, wherein the ratio of α-glycol group to the total number of terminal structural sites derived from or derived from the glycidyloxy group of the bisphenol A type epoxy resin is 13C -The epoxy acrylate compound (A) which is a ratio of 5 mol% or less in the NMR measurement result is contained in the range of 10 to 60 mass% of the total amount, and the viscosity at 25 ° C is 40 to 200 millipascal seconds (mPa · s). Active energy ray-curable offset ink containing a polymerizable acrylate monomer (B) having a molecular weight of 250 to 550 and having two or more acrylic groups per molecule in a range of 5 to 40% by mass. Composition.

Description

活性エネルギー線硬化型オフセットインキ等の原料として有用な活性エネルギー線硬化型オフセットインキ組成物に関する。さらには、該組成物を用いた印刷物に関する。   The present invention relates to an active energy ray-curable offset ink composition useful as a raw material for an active energy ray-curable offset ink or the like. Furthermore, the present invention relates to a printed material using the composition.

活性エネルギー線硬化型オフセットインキ組成物は、瞬間硬化の特性が評価され、紙器等のパッケージ印刷を中心に広く使用されている。   The active energy ray-curable offset ink composition has been evaluated for its instantaneous curing property and is widely used mainly for package printing of paper containers and the like.

活性エネルギー線硬化型オフセットインキ組成物は、瞬間硬化の特性を持たせるべく、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート等のアクリレート基等の重合性基を有するオリゴマー類が多用されている(例えば、特許文献1参照)。   In the active energy ray-curable offset ink composition, oligomers having a polymerizable group such as an acrylate group such as epoxy acrylate, urethane acrylate, and polyester acrylate are frequently used so as to have an instantaneous curing property (for example, patents). Reference 1).

しかしながら、これらのアクリレート基等の重合性基を有するオリゴマー類は、硬化性に優れる長所はあるものの、親水性の高い重合性基成分の影響で、特にインキの流動性や耐水性が低下するために、酸化重合型である油性オフセットインキと比較して安定した濃度での連続印刷が困難となり、損紙の発生や生産性の低下といった問題を抱えていた。   However, although these oligomers having a polymerizable group such as an acrylate group have the advantage of being excellent in curability, the fluidity and water resistance of the ink are particularly lowered due to the influence of the highly hydrophilic polymerizable group component. In addition, continuous printing at a stable concentration becomes difficult as compared with the oxidative polymerization type oil-based offset ink, and there are problems such as generation of damaged paper and a decrease in productivity.

前記エポキシアクリレート樹脂を用いた場合を例に挙げれば、必要とされる乳化適性に劣る欠点があった。即ち、版面にインキと水を同時に連続的に供給し、インキと水の反発作用を利用することで画像形成を行うオフセット印刷においては、インキに高い乳化適性が要求されるところ、前記エポキシアクリレートは親水性が強く乳化水分を適切に放出する特性が劣っていることから、印刷時にインキが過剰乳化し、印刷濃度低下等の印刷トラブルが発生することが多くあった。一方、乳化特性に優れる活性エネルギー線硬化型のUVインキとしては、ワニスとしてロジン変性フェノール樹脂と活性エネルギー線硬化型モノマーとを併用する技術が知られている(例えば、特許文献2参照)。しかしながら、前記ロジン変性フェノール樹脂は活性エネルギー線に対する重合性を有さないことから、インキ自体の硬化性が低下する問題があった。   Taking the case of using the epoxy acrylate resin as an example, there was a disadvantage that the required emulsification ability was inferior. That is, in the offset printing in which the ink and water are continuously supplied to the printing plate at the same time and image formation is performed by utilizing the repulsive action of the ink and water, the ink is required to have high emulsification ability. Due to the strong hydrophilicity and inferior properties of properly releasing emulsified water, the ink is excessively emulsified during printing, and printing troubles such as a decrease in printing density often occur. On the other hand, as an active energy ray-curable UV ink having excellent emulsifying properties, a technique in which a rosin-modified phenol resin and an active energy ray-curable monomer are used in combination as a varnish is known (for example, see Patent Document 2). However, since the rosin-modified phenol resin does not have polymerizability with respect to active energy rays, there is a problem that the curability of the ink itself is lowered.

このように活性エネルギー線硬化型オフセット印刷インキとして、高い硬化性を発現すると共に、高い乳化適性が得られるものが得られていないのが現状であった。   As described above, there has been no active energy ray-curable offset printing ink that exhibits high curability and has high emulsification ability.

特開昭61−218620号公報Japanese Patent Laid-Open No. Sho 61-218620 特許第4734490号公報Japanese Patent No. 4734490

従って、本発明が解決しようとする課題は、印刷インキに用いた場合に高い硬化性を発現すると共に、優れた乳化適性及びオフセット印刷適性を有する活性エネルギー線硬化型組成物、優れた硬化性、乳化性、オフセット印刷適性を兼備した活性エネルギー線硬化型印刷インキ、及びその印刷物を提供することにある。   Accordingly, the problem to be solved by the present invention is to develop high energy curability when used in printing ink, as well as an active energy ray curable composition having excellent emulsification ability and offset printing ability, excellent curability, An object of the present invention is to provide an active energy ray-curable printing ink having emulsifying properties and offset printing suitability, and a printed matter thereof.

本発明者等は、上記課題を解決すべく鋭意研究を重ねた結果、ビスフェノールA型エポキシ樹脂とアクリル酸とを反応させて得られるエポキシアクリレート化合物であって、前記ビスフェノールA型エポキシ樹脂のグリシジルオキシ基に起因又は由来する末端構造部位の総数に対する、α−グリコール基の割合が13C−NMR測定結果で5モル%以下となる割合に調整し、更に特定の1分子あたり2つ以上のアクリル基を有する重合性アクリレートモノマーとを適量混合することで、優れた硬化性を発現すると共に、印刷インキ自体の乳化特性が飛躍的に改善され良好な印刷特性が得られることを見出し、本発明を完成するに至った。   As a result of earnest research to solve the above problems, the present inventors have obtained an epoxy acrylate compound obtained by reacting a bisphenol A type epoxy resin and acrylic acid, and the glycidyloxy of the bisphenol A type epoxy resin. The ratio of α-glycol groups to the total number of terminal structure sites derived from or derived from groups is adjusted to a ratio of 5 mol% or less in 13C-NMR measurement results, and more than two acrylic groups per specific molecule By mixing an appropriate amount of the polymerizable acrylate monomer with which it is present, the present invention has been found by developing excellent curability and dramatically improving the emulsification characteristics of the printing ink itself and obtaining good printing characteristics. It came to.

即ち、本発明の活性エネルギー線硬化型オフセットインキ組成物は、ビスフェノールA型エポキシ樹脂とアクリル酸とを反応させて得られるエポキシアクリレート化合物であって、前記ビスフェノールA型エポキシ樹脂のグリシジルオキシ基に起因又は由来する末端構造部位の総数に対する、α−グリコール基の割合が13C−NMR測定結果で5モル%以下となる割合であるエポキシアクリレート化合物(A)を全量の10〜60質量%の範囲で含有し、さらに25℃における粘度が40〜200ミリパスカル秒(mPa・s)の範囲にあり分子量が250〜550の範囲にある1分子あたり2つ以上のアクリル基を有する重合性アクリレートモノマー(B)を5〜40質量%の範囲で含有することを特徴とする活性エネルギー線硬化型オフセットインキ組成物に関する。   That is, the active energy ray-curable offset ink composition of the present invention is an epoxy acrylate compound obtained by reacting a bisphenol A type epoxy resin and acrylic acid, and is derived from the glycidyloxy group of the bisphenol A type epoxy resin. Alternatively, the epoxy acrylate compound (A) in which the ratio of α-glycol group to the total number of derived terminal structural sites is 5 mol% or less as a result of 13C-NMR measurement is contained in the range of 10 to 60 mass% of the total amount. And a polymerizable acrylate monomer (B) having a viscosity at 25 ° C. in the range of 40 to 200 millipascal seconds (mPa · s) and a molecular weight in the range of 250 to 550 and having two or more acrylic groups per molecule. Is contained in the range of 5 to 40% by mass. For the set ink compositions.

本発明は、更に、前記活性エネルギー線硬化型オフセットインキ組成物を含有することを特徴とする活性エネルギー線硬化型オフセットインキに関する。   The present invention further relates to an active energy ray-curable offset ink comprising the active energy ray-curable offset ink composition.

本発明は、更に、前記活性エネルギー線硬化型オフセットインキを用い印刷してなる印刷物に関する。   The present invention further relates to a printed matter obtained by printing using the active energy ray-curable offset ink.

本発明によれば、印刷インキ組成物に用いた場合に高い硬化性を発現すると共に、優れた硬化性、乳化性、オフセット印刷適性を兼備した活性エネルギー線硬化型オフセットインキ、及びその印刷物を提供できる。   According to the present invention, an active energy ray-curable offset ink that exhibits high curability when used in a printing ink composition and also has excellent curability, emulsification property, and offset printability, and a printed matter thereof are provided. it can.

本発明の活性エネルギー線硬化型オフセットインキ組成物は、ビスフェノールA型エポキシ樹脂とアクリル酸とを反応させて得られるエポキシアクリレート化合物であって、前記ビスフェノールA型エポキシ樹脂のグリシジルオキシ基に起因又は由来する末端構造部位の総数に対する、α−グリコール基の割合が13C−NMR測定結果で5モル%以下となる割合に調整し、更に特定の1分子あたり2つ以上のアクリル基を有する重合性アクリレートモノマーとを適量混合することで、本発明の効果を奏するものである。   The active energy ray-curable offset ink composition of the present invention is an epoxy acrylate compound obtained by reacting a bisphenol A type epoxy resin and acrylic acid, and is derived from or derived from the glycidyloxy group of the bisphenol A type epoxy resin. The polymerizable acrylate monomer having a ratio of α-glycol group to the total number of terminal structure sites to be adjusted to a ratio of 5 mol% or less in 13C-NMR measurement results, and further having two or more acrylic groups per specific molecule The effects of the present invention can be achieved by mixing a suitable amount of.

ここで、エポキシアクリレート化合物において、グリシジルオキシ基に起因又は由来する末端構造部位とは、原料エポキシ樹脂中のエポキシ基と、重合性不飽和基を有するカルボン酸との反応によって生じる様々な末端構造部位、又は、未反応のまま残存するエポキシ基を意味するものであり、具体的には、下記構造式(i)〜(vi)   Here, in the epoxy acrylate compound, the terminal structure site derived from or derived from the glycidyloxy group is various terminal structure sites generated by the reaction of the epoxy group in the raw material epoxy resin and the carboxylic acid having a polymerizable unsaturated group. Or an epoxy group remaining unreacted, specifically, the following structural formulas (i) to (vi)

Figure 2015093394
(構造式(i)〜(iv)中、R及びRは、水素原子又はメチル基である。)
で表される各種の末端構造である。
言わばエポキシアクリレート不純物であるαグリコール構造部位は新水性が特に強く、印刷インキの乳化適性を低下させる傾向にあることから、αグリコール構造部位の含有率を制御することが好ましい。
本発明では、13C−NMRにて測定可能な末端構造の総数のうち、前記構造式(v)で表されるαグリコール構造部位の含有率が5モル%以下となる割合に調整することにより、該重合性不飽和基含有樹脂を用いた印刷インキにおける硬化性が良好であると共に、優れた乳化特性が発現されるものである。本発明では、特に、3モル%以下であることが印刷インキとして用い、オフセット印刷を行った場合、印刷特性に優れたものとなる点から好ましい。
Figure 2015093394
(In the structural formulas (i) to (iv), R 1 and R 2 are a hydrogen atom or a methyl group.)
Are various terminal structures.
In other words, the α glycol structure site, which is an epoxy acrylate impurity, is particularly strong in new water and tends to reduce the emulsification suitability of the printing ink. Therefore, it is preferable to control the content of the α glycol structure site.
In the present invention, by adjusting the proportion of the α glycol structure moiety represented by the structural formula (v) to 5 mol% or less of the total number of terminal structures measurable by 13 C-NMR. In addition, the curability of the printing ink using the polymerizable unsaturated group-containing resin is good, and excellent emulsification characteristics are exhibited. In the present invention, in particular, it is preferable that the content is 3 mol% or less as printing ink and when offset printing is performed, the printing characteristics are excellent.

なお、本発明では、上記各種末端構造(前記構造式(i)〜(vi))を全て含んでいる必要はなく、これらの中から選択される末端構造の総数を基準に前記αグリコール構造部位の含有率が5モル%以下であればよい。   In the present invention, it is not necessary to include all of the various terminal structures (the structural formulas (i) to (vi)), and the α glycol structural site is based on the total number of terminal structures selected from these. It is sufficient that the content of is 5 mol% or less.

ここで、前記構造式(i)〜(vi)の存在割合は、前記した通り、13C−NMRにて測定することができ、具体的には、下記に*にて示した炭素原子の各ピークの面積比率によって導出できる。なお、各ピークが、他の構造中の他の炭素原子と重複する場合は、当該他の炭素原子による面積分を除いて、比率を求めればよい。Here, the abundance ratio of the structural formulas (i) to (vi) can be measured by 13 C-NMR as described above. Specifically, each of the carbon atoms indicated by * below is indicated. It can be derived by the peak area ratio. When each peak overlaps with another carbon atom in another structure, the ratio may be obtained by excluding the area due to the other carbon atom.

Figure 2015093394
(構造式(i)〜(iv)中、R及びRは、水素原子又はメチル基である。)
Figure 2015093394
(In the structural formulas (i) to (iv), R 1 and R 2 are a hydrogen atom or a methyl group.)

ここで、13C−NMRの測定方法は、以下の条件にて行うことができる。
[機種]日本電子製「JNM−ECA500」
[測定条件]
試料濃度:30%(w/v)
測定溶媒:DMSO−d6
積算回数:4000回
Here, the measurement method of 13 C-NMR can be performed under the following conditions.
[Model] "JNM-ECA500" manufactured by JEOL
[Measurement condition]
Sample concentration: 30% (w / v)
Measuring solvent: DMSO-d6
Integration count: 4000 times

本発明においては、前記構造式(i)〜(vi)の各末端構造部位の存在割合は、前記した通り、構造式(v)で表されるαグリコール構造部位が5モル%以下であればよく、特に3モル%以下であることが好ましいが、その他の末端構造部位は、例えば、構造式(i)で表されるα付加構造部位が70モル%以上であること、更に具体的には、構造式(i)で表されるα付加構造部位が70モル%以上であって、かつ、該構造式(i)で表されるα付加構造部位と、構造式(ii)で表されるβ付加構造部位との合計が84%以上となる割合であることが、硬化性及び乳化性の点から好ましい。また、前記構造式(iii)で表されるαβ付加構造部位は、5モル%以下であることが乳化性の点から好ましく、前記α付加構造に更に重合性不飽和基を有するモノカルボン酸がマイケル付加したマイケル付加構造である前記構造式(iv)で表される構造部位が8モル%以下となる割合であることが、硬化性が良好となる点から好ましい。また、前記構造式(vi)で表されるエポキシ基は、未反応のまま残存するエポキシ基であり、その存在割合は2モル%以下となる割合であること、特に1モル%以下であることが好ましい。   In the present invention, as described above, the existence ratio of each terminal structural site in the structural formulas (i) to (vi) is such that the α glycol structural site represented by the structural formula (v) is 5 mol% or less. In particular, it is preferably 3 mol% or less, but the other terminal structure site is, for example, that the α-addition structure site represented by the structural formula (i) is 70 mol% or more, more specifically, The α-addition structure moiety represented by the structural formula (i) is 70 mol% or more, and the α-addition structure moiety represented by the structural formula (i) is represented by the structural formula (ii). It is preferable from the viewpoint of curability and emulsification that the total amount with the β-addition structure site is 84% or more. In addition, the αβ addition structure site represented by the structural formula (iii) is preferably 5 mol% or less from the viewpoint of emulsification, and the monocarboxylic acid further having a polymerizable unsaturated group in the α addition structure. It is preferable from the point that sclerosis | hardenability becomes favorable that it is the ratio which the structural site | part represented by the said structural formula (iv) which is Michael addition structure is 8 mol% or less. Further, the epoxy group represented by the structural formula (vi) is an epoxy group remaining unreacted, and its abundance ratio is 2 mol% or less, particularly 1 mol% or less. Is preferred.

次に、前記エポキシ樹脂は、一分子中にエポキシ基を2個以上有する化合物であることが好ましく、ビスフェノールA型エポキシ樹脂を必須成分とするが、それ以外の種々エポキシ樹脂を1種以上、混合して使用することができる。例えば、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂、水添ビスフェノールS型エポキシ樹脂、水添ビスフェノールAD型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂等のビスフェノール型エポキシ樹脂;オルソクレゾールノボラック型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、ビスフェノールSノボラック型エポキシ樹脂、メトキシ基含有ノボラック型エポキシ樹脂、ブロム化フェノールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;その他、フェノールアラルキル型エポキシ樹脂(通称ザイロック樹脂のエポキシ化物)、レゾルシンのジグリシジルエーテル、ハイドロキノンのジグリシジルエーテル、カテコールのジグリシジルエーテル、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂等の2官能型エポキシ樹脂;トリグリシジルシソシアヌレート、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂、ビフェニル変性ノボラック型エポキシ樹脂(ビスメチレン基でフェノール核が連結された多価フェノール樹脂のエポキシ化物)、メトキシ基含有フェノールアラルキル樹脂などが挙げられる。   Next, the epoxy resin is preferably a compound having two or more epoxy groups in one molecule, and bisphenol A type epoxy resin is an essential component, but one or more other epoxy resins are mixed. Can be used. For example, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AD type epoxy resin, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, hydrogenated bisphenol S type epoxy resin, hydrogenated bisphenol AD type epoxy Resin, bisphenol type epoxy resin such as tetrabromobisphenol A type epoxy resin; orthocresol novolak type epoxy resin; phenol novolak type epoxy resin, naphthol novolak type epoxy resin, bisphenol A novolak type epoxy resin, brominated phenol novolak type epoxy resin, Alkylphenol novolac epoxy resin, bisphenol S novolac epoxy resin, methoxy group-containing novolac epoxy resin, brominated pheno Novolak type epoxy resins such as luminolac type epoxy resins; other phenol aralkyl type epoxy resins (commonly known as epoxidized zylock resin), resorcin diglycidyl ether, hydroquinone diglycidyl ether, catechol diglycidyl ether, biphenyl type epoxy resin, Bifunctional epoxy resins such as tetramethylbiphenyl type epoxy resin; triglycidyl isocyanurate, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, biphenyl modified novolac type epoxy Examples thereof include resins (epoxidized products of polyhydric phenol resins in which phenol nuclei are linked by bismethylene groups), methoxy group-containing phenol aralkyl resins, and the like.

前記ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂が印刷適性の点から好ましく、特にエポキシ当量170〜500g/eqの範囲にあるビスフェノール型エポキシ樹脂、とりわけビスフェノールA型エポキシ樹脂であることが乳化特性に優れ、印刷インキとして用いた場合に優れた印刷適性が得られる点から好ましい。   The bisphenol-type epoxy resin and the novolac-type epoxy resin are preferable from the viewpoint of printability, and in particular, the bisphenol-type epoxy resin having an epoxy equivalent of 170 to 500 g / eq, particularly the bisphenol A-type epoxy resin has excellent emulsification characteristics, This is preferable from the viewpoint of obtaining excellent printability when used as a printing ink.

一方、上記エポキシ樹脂と反応させる重合性不飽和基を有するモノカルボン酸としては、例えばアクリル酸、メタクリル酸、クロトン酸が挙げられるが、特に印刷適性の点からアクリル酸、メタクリル酸が好ましく、とりわけアクリル酸が好ましいことから、本発明ではビスフェノールA型エポキシ樹脂とアクリル酸とを反応させて得られるエポキシアクリレート化合物を必須成分とした。   On the other hand, examples of the monocarboxylic acid having a polymerizable unsaturated group to be reacted with the epoxy resin include acrylic acid, methacrylic acid, and crotonic acid. Acrylic acid and methacrylic acid are particularly preferable from the viewpoint of printability. Since acrylic acid is preferable, in the present invention, an epoxy acrylate compound obtained by reacting a bisphenol A type epoxy resin and acrylic acid is used as an essential component.

本発明の活性エネルギー線硬化型オフセットインキ組成物で用いるエポキシアクリレート化合物(A)は、前記した通り、ビスフェノールA型エポキシ樹脂とアクリル酸とを反応させることにより製造することができるが、具体的には、窒素含有塩基性触媒の存在下にて反応させることが、αグリコール量を5モル%以下に低減し易い点から好ましい。   As described above, the epoxy acrylate compound (A) used in the active energy ray-curable offset ink composition of the present invention can be produced by reacting a bisphenol A type epoxy resin with acrylic acid. Is preferably carried out in the presence of a nitrogen-containing basic catalyst from the viewpoint of easily reducing the amount of α glycol to 5 mol% or less.

ここで用いる前記窒素含有塩基性触媒は、窒素原子を有する塩基性化合物である。この窒素含有塩基性触媒としては、例えば、n−ブチルアミン、アミルアミン、ヘキシルアミン、シクロヘキシルアミン、オクチルアミン、ベンジルアミンなどの第1級アミン、
ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミン、などの直鎖状2級アミン、アジリジン、アゼチジン、ピロリジン、ピペリジン、アゼパン、アゾカンなどの環状2級アミンおよびこれらのアルキル置換体のような第2級アミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリエチレンジアミン、1,4−ジアザビシクロ[2.2.2]オクタン、キヌクリジンおよび、3−キヌクリジノールのような脂肪族第3級アミン、ジメチルアニリンなどの芳香族第3級アミン、およびイソキノリン、ピリジン、コリジン、ベータピコリンなどの複素環第3級アミン、イミダゾール、プリン、トリアゾール、グアニジンなどの2級アミジン、ピリミジン、トリアジン、1,8−ジアザビシクロ[5.4.0]ウンデカ−7−エン(DBU)及び1,5−ジアザビシクロ[4.3.0]ノナ−5−エン(DBN)などの3級アミジン等の窒素原子含有塩基性触媒が挙げられる。これらの窒素原子含有塩基性触媒は、単独で用いることも2種以上併用してもよい。
The nitrogen-containing basic catalyst used here is a basic compound having a nitrogen atom. Examples of the nitrogen-containing basic catalyst include primary amines such as n-butylamine, amylamine, hexylamine, cyclohexylamine, octylamine, and benzylamine,
Linear secondary amines such as diethylamine, dipropylamine, diisopropylamine and dibutylamine, secondary secondary amines such as aziridine, azetidine, pyrrolidine, piperidine, azepane and azocan and their alkyl substitution Amines, trimethylamine, triethylamine, tripropylamine, tributylamine, triethylenediamine, 1,4-diazabicyclo [2.2.2] octane, quinuclidine and aliphatic tertiary amines such as 3-quinuclidinol, dimethylaniline, etc. Aromatic tertiary amines and heterocyclic tertiary amines such as isoquinoline, pyridine, collidine and betapicoline, secondary amidines such as imidazole, purine, triazole and guanidine, pyrimidines, triazines and 1,8-dia Nitrogen atom-containing basic catalysts such as tertiary amidines such as bicyclo [5.4.0] undec-7-ene (DBU) and 1,5-diazabicyclo [4.3.0] non-5-ene (DBN) Is mentioned. These nitrogen atom-containing basic catalysts may be used alone or in combination of two or more.

これらの窒素原子含有塩基性触媒の中でも、トリエチルアミン又はテトラメチルアンモニウムクロライドが、重合性不飽和基含有樹脂中のαグリコール量を5%以下に低減し易い点から好ましい。   Among these nitrogen atom-containing basic catalysts, triethylamine or tetramethylammonium chloride is preferable because the amount of α-glycol in the polymerizable unsaturated group-containing resin can be easily reduced to 5% or less.

ここで、前記窒素原子含有塩基性触媒の使用量は、エポキシアクリレート化合物の総重量100質量%に対して0.01〜0.6質量%、特に0.03〜0.5質量%、とりわけ0.05〜0.3質量%の割合となる範囲であることが、生成する重合性不飽和基含有樹脂中のαグリコール量が低減され、乳化特性が良好となる点から好ましい。   Here, the amount of the nitrogen atom-containing basic catalyst used is 0.01 to 0.6% by mass, particularly 0.03 to 0.5% by mass, especially 0%, based on 100% by mass of the total weight of the epoxy acrylate compound. A range of 0.05 to 0.3% by mass is preferable from the viewpoint that the amount of α-glycol in the polymerizable unsaturated group-containing resin to be produced is reduced and the emulsification characteristics are good.

また、上記エポキシアクリレート化合物(A)を製造する方法は、エポキシ樹脂とアクリル酸とを、窒素原子含有塩基性触媒の存在下で、エポキシ基とカルボキシル基が0.9/1.0〜1.0/0.9(モル比)の範囲の比率で、かつ、窒素原子含有塩基性触媒を、原料成分総重量100質量%に対して0.01〜0.6質量%、好ましくは0.03〜0.5質量%、とりわけ0.05〜0.3質量%となる割合で用い、反応温度80〜125℃の範囲、好ましくは90〜110℃の範囲にて、エポキシ当量が8000g/eq以上または酸価が2.0以下になるまで反応させる方法が、エポキシアクリレート化合物(A)中のαグリコール量を5%以下に低減し易い点から好ましい。   Moreover, the method of manufacturing the said epoxy acrylate compound (A) is an epoxy resin and acrylic acid in presence of a nitrogen atom containing basic catalyst, and an epoxy group and a carboxyl group are 0.9 / 1.0-1. The ratio of 0 / 0.9 (molar ratio) and the nitrogen atom-containing basic catalyst is 0.01 to 0.6% by mass, preferably 0.03% relative to 100% by mass of the total weight of the raw material components. ˜0.5 mass%, particularly 0.05 to 0.3 mass%, and the reaction temperature is in the range of 80 to 125 ° C., preferably in the range of 90 to 110 ° C., and the epoxy equivalent is 8000 g / eq or more. Or the method of making it react until an acid value becomes 2.0 or less is preferable from the point which is easy to reduce the alpha glycol amount in an epoxy acrylate compound (A) to 5% or less.

更に、ビスフェノールA型エポキシ樹脂とアクリル酸との反応は、カルボキシル基とエポキシ基と反応する部位を含有しないラジカル重合性単量体を反応溶媒として用い、該反応溶媒中で行うことも可能である。   Furthermore, the reaction between the bisphenol A type epoxy resin and acrylic acid can be carried out in a reaction solvent using a radical polymerizable monomer that does not contain a site that reacts with a carboxyl group and an epoxy group as a reaction solvent. .

前記カルボキシル基とエポキシ基と反応する部位を含有しないラジカル重合性単量体類としては、例えば、N−ビニルピロリドン、アクリロイルモルホリン、ジシクロペンタジエニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ビスフェノールFのモノ(メタ)アクリレート、アルキレンオキサイド付加ビスフェノールFのモノ(メタ)アクリレート等のモノ(メタ)アクリレート;エチレングリコールジ(メタ)アクリレート、ジシクロペンテニルジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ジメチロールトリシクロデカンジアクリレート、トリプロピレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、アルキレンオキサイド付加1,6−ヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールエステルのジ(メタ)アクリレート、ビスフェノールAのジ(メタ)アクリレート、ビスフェノールFのジ(メタ)アクリレート、アルキレンオキサイド付加ビスフェノールAのジ(メタ)アクリレート、アルキレンオキサイド付加ビスフェノールFのジ(メタ)アクリレート等のジ(メタ)アクリレート; トリメチロールプロパントリ(メタ)アクリレート、アルキレンオキサイド付加トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリアクリレート等のトリ(メタ)アクリレート; ジペンタエリスリトールのヘキサアクリレート等が挙げられる。   Examples of the radical polymerizable monomers that do not contain a site that reacts with the carboxyl group and the epoxy group include N-vinylpyrrolidone, acryloylmorpholine, dicyclopentadienyl (meth) acrylate, dicyclopentenyloxyethyl (meta ) Acrylate, dicyclopentenyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, phenoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, isobornyl (meth) acrylate, mono (meth) acrylate of bisphenol F, alkylene oxide Mono (meth) acrylate such as mono (meth) acrylate of addition bisphenol F; ethylene glycol di (meth) acrylate, dicyclopentenyl di (meth) acrylate, triethylene Recall di (meth) acrylate, tetraethylene glycol di (meth) acrylate, dimethylol tricyclodecane diacrylate, tripropylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol Di (meth) acrylate, alkylene oxide-added 1,6-hexanediol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, hydroxypivalate neo Di (meth) acrylate of pentyl glycol ester, di (meth) acrylate of bisphenol A, di (meth) acrylate of bisphenol F, alkylene oxide addition Di (meth) acrylates such as di (meth) acrylate of phenol A and di (meth) acrylate of alkylene oxide-added bisphenol F; trimethylolpropane tri (meth) acrylate, alkylene oxide-added trimethylolpropane tri (meth) acrylate, penta Examples include tri (meth) acrylates such as erythritol triacrylate; hexaacrylate of dipentaerythritol.

この様にして得られるエポキシアクリレート化合物(A)は、前記した通り、エポキシ当量が8000g/eq以上または酸価が2.0以下の範囲にあるものが好ましい。また、エポキシアクリレート化合物(A)は、酢酸ブチルに溶解させた場合の不揮発分80質量%溶液での溶液粘度が0.5〜30Pa・sの範囲であることが印刷インキにした場合、粘度調整が容易であるほか、印刷インキにした場合の耐ミスチング性とロール転移性に優れる点から好ましく、特に、1.0〜10.0Pa・sの範囲にあるものがこれらの効果が顕著なものとなる点から好ましい。   As described above, the epoxy acrylate compound (A) thus obtained preferably has an epoxy equivalent of 8000 g / eq or more or an acid value of 2.0 or less. In addition, the epoxy acrylate compound (A) is adjusted in viscosity when the printing ink has a solution viscosity in a solution of 80% by mass nonvolatile matter when dissolved in butyl acetate in the range of 0.5 to 30 Pa · s. In addition, it is preferable from the viewpoint of excellent misting resistance and roll transferability when used as a printing ink, and those having a range of 1.0 to 10.0 Pa · s are particularly prominent in these effects. This is preferable.

前記エポキシアクリレート化合物(A)は、インキ組成物全量の10〜60質量%の範囲で含有することが好ましく、さらに25℃における粘度が40〜200ミリパスカル秒(mPa・s)の範囲にあり分子量が250〜550の範囲にある1分子あたり2つ以上のアクリル基を有する重合性アクリレートモノマー(B)をインキ組成物全量の5〜40質量%の範囲で含有することが好ましい。重合性アクリレートモノマー(B)については、1分子あたりのアクリル基が1つである単官能モノマーを多量使用する場合には良好な硬化性が得難いため好ましくなく、また分子量が250未満の場合には印刷機ゴムローラーの膨張と劣化を引き起こす可能性があり、分子量が550を超える場合にはモノマーが高粘度となるため多量使用した場合には相対的にインキ組成物中のエポキシアクリレート化合物(A)の配合量を減らす必要があり、良好な硬化性とオフセット印刷適性を得ることが困難になることから好ましくない。斯かる硬化性とオフセット印刷適性とのバランスが良好なものと点から、特に、前記エポキシアクリレート化合物(A)をインキ組成物全量の33〜60質量%の範囲で含有し、かつ、前記重合性アクリレートモノマー(B)をインキ組成物全量の15.1〜40質量%の範囲で含有し、開始剤、ワックス、顔料等のその他の成分を51.9質量%以下となる割合で含有することが好ましい。   The epoxy acrylate compound (A) is preferably contained in the range of 10 to 60% by mass of the total amount of the ink composition, and has a viscosity at 25 ° C. in the range of 40 to 200 millipascal seconds (mPa · s). It is preferable to contain the polymerizable acrylate monomer (B) having two or more acrylic groups per molecule in the range of 5 to 40% by mass of the total amount of the ink composition. As for the polymerizable acrylate monomer (B), when a large amount of a monofunctional monomer having one acrylic group per molecule is used, it is difficult to obtain good curability, and when the molecular weight is less than 250, There is a possibility of causing expansion and deterioration of the rubber roller of the printing press. When the molecular weight exceeds 550, the monomer has a high viscosity. Therefore, the epoxy acrylate compound (A) in the ink composition is relatively used when used in a large amount. This is not preferable because it is difficult to obtain good curability and offset printing suitability. In particular, the epoxy acrylate compound (A) is contained in a range of 33 to 60% by mass with respect to the total amount of the ink composition in view of a good balance between the curability and the offset printing suitability, and the polymerizable property. The acrylate monomer (B) is contained in the range of 15.1 to 40% by mass of the total amount of the ink composition, and other components such as an initiator, a wax and a pigment are contained in a proportion of 51.9% by mass or less. preferable.

前記重合性アクリレートモノマー(B)としては、2官能又は3官能のアクリル基を含む活性エネルギー線硬化型のモノマーがより好ましく、モノマー分子1モルあたりのエチレンオキサイドの平均付加モル数が2〜4の範囲にあるエチレンオキサイド変性トリメチロールプロパントリアクリレートが特に好ましい。エチレンオキサイド変性トリメチロールプロパントリアクリレートは低粘度であるが為に、相対的に印刷インキ組成物中にエポキシアクリレート化合物(A)をより多く配合することができ、また、絶妙な親水疎水バランスをもたらすことで、より良好なオフセット印刷適性が保持できる。ただしエチレンオキサイド変性トリメチロールプロパントリアクリレートのモノマー分子1モルあたりのエチレンオキサイドの平均付加モル数が4を超える場合はモノマーの親水性が過大となりオフセット印刷適性が悪化する傾向がある。   The polymerizable acrylate monomer (B) is more preferably an active energy ray-curable monomer containing a bifunctional or trifunctional acrylic group, and the average number of moles of ethylene oxide added per mole of monomer molecules is 2 to 4. Ethylene oxide modified trimethylolpropane triacrylate in the range is particularly preferred. Since ethylene oxide-modified trimethylolpropane triacrylate has a low viscosity, it can relatively contain more epoxy acrylate compound (A) in the printing ink composition, and also provides an exquisite hydrophilic / hydrophobic balance. Thus, better offset printing suitability can be maintained. However, when the average added mole number of ethylene oxide per mole of monomer molecule of ethylene oxide-modified trimethylolpropane triacrylate exceeds 4, the hydrophilicity of the monomer becomes excessive and the offset printability tends to deteriorate.

次に、本発明の活性エネルギー線硬化型オフセットインキ組成物が紫外線硬化型組成物である場合に用いる光重合開始剤は、分子内開裂型光重合開始剤及び水素引き抜き型光重合開始剤が挙げられる。分子内開裂型光重合開始剤としては、例えば、ジエトキシアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、ベンジルジメチルケタール、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、4−(2−ヒドロキシエトキシ)フェニル−(2−ヒドロキシ−2−プロピル)ケトン、1−ヒドロキシシクロヘキシル−フェニルケトン、2−ヒドロキシ−1−{4−[4−(2−ヒドロキシ−2−メチル−プロピオニル)−ベンジル]−フェニル}−2−メチル−プロパン−1−オン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、2,2−ジエトキシ−1,2−ジフェニルエタン−1−オン等のアセトフェノン系化合物;1−[4−(フェニルチオ)−,2−(O−ベンゾイルオキシム)]、1−[9−エチル−6−(2−メチルベンゾイル)−9H−カルバゾール−3−イル]−,1−(O−アセチルオキシム)等のオキシム系化合物、3,6−ビス(2−メチル−2−モルフォリノプロパノニル)−9−ブチルカルバゾール等のカルバゾール系化合物、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン系化合物;   Next, examples of the photopolymerization initiator used when the active energy ray-curable offset ink composition of the present invention is an ultraviolet curable composition include an intramolecular cleavage type photopolymerization initiator and a hydrogen abstraction type photopolymerization initiator. It is done. Examples of the intramolecular cleavage type photopolymerization initiator include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy. 2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl-phenylketone, 2-hydroxy-1- {4- [4 -(2-hydroxy-2-methyl-propionyl) -benzyl] -phenyl} -2-methyl-propan-1-one, 2,2-dimethoxy-1,2-diphenylethane-1-one, 2,2- Acetophenone compounds such as diethoxy-1,2-diphenylethane-1-one; 1- [4- (phenylthio)-, 2- O-benzoyloxime)], 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime), 3, 6 A carbazole compound such as bis (2-methyl-2-morpholinopropanonyl) -9-butylcarbazole, a benzoin compound such as benzoin, benzoin methyl ether, and benzoin isopropyl ether;

2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)ブタン−1−オン、2−(ジメチルアミノ)−2−(4−メチルベンジル)−1−(4−モルフォリノフェニル)ブタン−1−オン、2−メチル−2−モルホリノ((4−メチルチオ)フェニル)プロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタノン等のアミノアルキルフェノン系化合物;ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフォスフィンオキサイド等のアシルホスフィンオキシド系化合物;ベンジル、メチルフェニルグリオキシエステル等が挙げられる。 2-Benzyl-2-dimethylamino-1- (4-morpholinophenyl) butan-1-one, 2- (dimethylamino) -2- (4-methylbenzyl) -1- (4-morpholinophenyl) butane Aminoalkylphenones such as -1-one, 2-methyl-2-morpholino ((4-methylthio) phenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone Compounds: bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl -Acylphosphine oxide compounds such as pentylphosphine oxide; benzyl, methylphenyl Li oxy esters.

一方、水素引き抜き型光重合開始剤としては、例えば、ベンゾフェノン、o−ベンゾイル安息香酸メチル−4−フェニルベンゾフェノン、4,4’−ジクロロベンゾフェノン、
ヒドロキシベンゾフェノン、4−ベンゾイル−4’−メチル−ジフェニルサルファイド、
アクリル化ベンゾフェノン、3,3’,4,4’−テトラ(t−ブチルペルオキシカルボニル)ベンゾフェノン、3,3’−ジメチル−4−メトキシベンゾフェノン等のベンゾフェノン系化合物;2−イソプロピルチオキサントン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2,4−ジクロロチオキサントン等のチオキサントン系化合物;4,4’−ビスジメチルアミノベンゾフェノン、4,4’−ビスジエチルアミノベンゾフェノン等のアミノベンゾフェノン系化合物;その他10−ブチル−2−クロロアクリドン、2−エチルアンスラキノン、9,10−フェナンスレンキノン、カンファーキノン等が挙げられる。これらの光重合開始剤は、単独で用いることも、2種以上を併用することもできる。これらのなかでも特に硬化性に優れる点からアミノアルキルフェノン系化合物が好ましく、また、特に発光ピーク波長が350〜420nmの範囲の紫外線を発生するUV−LED光源を活性エネルギー線源として用いた場合には、アミノアルキルフェノン系化合物、アシルホスフィンオキシド系化合物、及びアミノベンゾフェノン系化合物を併用することが硬化性に優れる点から好ましい。
On the other hand, as the hydrogen abstraction type photopolymerization initiator, for example, benzophenone, methyl 4-phenylbenzophenone o-benzoylbenzoate, 4,4′-dichlorobenzophenone,
Hydroxybenzophenone, 4-benzoyl-4'-methyl-diphenyl sulfide,
Benzophenone compounds such as acrylated benzophenone, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 3,3′-dimethyl-4-methoxybenzophenone; 2-isopropylthioxanthone, 2,4- Thioxanthone compounds such as dimethylthioxanthone, 2,4-diethylthioxanthone and 2,4-dichlorothioxanthone; aminobenzophenone compounds such as 4,4′-bisdimethylaminobenzophenone and 4,4′-bisdiethylaminobenzophenone; Examples include butyl-2-chloroacridone, 2-ethylanthraquinone, 9,10-phenanthrenequinone, camphorquinone, and the like. These photopolymerization initiators can be used alone or in combination of two or more. Among these, aminoalkylphenone compounds are preferable from the viewpoint of excellent curability, and particularly when a UV-LED light source that generates ultraviolet rays having an emission peak wavelength in the range of 350 to 420 nm is used as an active energy ray source. Is preferably used in combination with an aminoalkylphenone compound, an acylphosphine oxide compound, and an aminobenzophenone compound from the viewpoint of excellent curability.

これらの重合開始剤の使用量は、本発明の活性エネルギー線硬化型オフセットインキ組成物中の不揮発成分100質量%に対し、その合計使用量として1〜20質量%となる範囲であることが好ましい。即ち、重合開始剤の合計使用量が1質量%以上の場合は良好な硬化性を得ることができ、また20質量%以下の場合は、未反応の重合開始剤が硬化物中に残存することによるマイグレーション、耐溶剤性、耐候性等の物性低下といった問題を回避できる。これらの性能バランスがより良好なものとなる点から、特に、本発明の活性エネルギー線硬化型インキ組成物中の不揮発成分100質量%に対し、その合計使用量が3〜15質量%となる範囲であることがより好ましい。   The amount of these polymerization initiators used is preferably in the range of 1 to 20% by mass as the total amount of use with respect to 100% by mass of the non-volatile components in the active energy ray-curable offset ink composition of the present invention. . That is, when the total amount of polymerization initiator used is 1% by mass or more, good curability can be obtained, and when it is 20% by mass or less, an unreacted polymerization initiator remains in the cured product. The problem of physical properties such as migration, solvent resistance, weather resistance and the like can be avoided. From the point that these performance balances become better, in particular, a range in which the total amount used is 3 to 15% by mass with respect to 100% by mass of the nonvolatile components in the active energy ray-curable ink composition of the present invention. It is more preferable that

また、活性エネルギー線として紫外線を照射して硬化塗膜とする場合には、前記した重合開始剤の他に、光増感剤を利用することで硬化性を一層向上させることが可能である。斯かる光増感剤は、例えば、脂肪族アミン等のアミン化合物、o−トリルチオ尿素等の尿素類、ナトリウムジエチルジチオホスフェート、s−ベンジルイソチウロニウム−p−トルエンスルホネート等の硫黄化合物などが挙げられる。これら光増感剤の使用量は、硬化性向上の効果が良好なものとなる点から本発明の活性エネルギー線硬化型インキ組成物中の不揮発成分100質量%に対し、その合計使用量として1〜20質量%となる範囲であることが好ましく、特に前記エポキシアクリレート化合物(A)や前記重合性アクリレートモノマー(B)の配合割合を高めて硬化性と印刷適性とのバランスを図ることができる点からは、インキ組成物全量の1〜10質量%の範囲であることが好ましい。   Moreover, when irradiating an ultraviolet-ray as an active energy ray and setting it as a cured coating film, sclerosis | hardenability can be improved further by utilizing a photosensitizer besides the above-mentioned polymerization initiator. Such photosensitizers include, for example, amine compounds such as aliphatic amines, ureas such as o-tolylthiourea, sulfur compounds such as sodium diethyldithiophosphate, s-benzylisothiouronium-p-toluenesulfonate, and the like. It is done. The use amount of these photosensitizers is 1 as the total use amount with respect to 100% by mass of the non-volatile component in the active energy ray-curable ink composition of the present invention from the viewpoint that the effect of improving curability is good. It is preferably in the range of ˜20% by mass, and in particular, the blending ratio of the epoxy acrylate compound (A) and the polymerizable acrylate monomer (B) can be increased to achieve a balance between curability and printability. Is preferably in the range of 1 to 10% by mass of the total amount of the ink composition.

本発明の活性エネルギー線硬化型組成物は、前記重合性アクリレートモノマー(B)をインキ組成物全量の5〜40質量%の範囲、好ましくは15〜40質量%の範囲で含有することを特徴としているが、その他公知公用のエチレン性二重結合を有するモノマー化合物を併用してもよい。メタクリレートモノマーを適宜併用することも可能であるが、本発明においてはより硬化性の優れるアクリレートモノマーを用いることが好ましい。またオフセットインキ組成物においては、単官能モノマーよりも、より反応性の高い2官能以上のアクリレートモノマーを用いることが好ましいが、用途に応じて印刷基材への接着性、硬化塗膜の柔軟性等の必要物性を得る為に、適宜単官能アクリレートモノマーを併用することが可能である。   The active energy ray-curable composition of the present invention contains the polymerizable acrylate monomer (B) in a range of 5 to 40% by mass, preferably in a range of 15 to 40% by mass, based on the total amount of the ink composition. However, other known and used monomer compounds having an ethylenic double bond may be used in combination. Although a methacrylate monomer can be used in combination as appropriate, in the present invention, it is preferable to use an acrylate monomer having better curability. In addition, in the offset ink composition, it is preferable to use a bifunctional or higher functional acrylate monomer, which is more reactive than a monofunctional monomer, but depending on the application, adhesion to a printing substrate, flexibility of a cured coating film In order to obtain the necessary physical properties such as, it is possible to use a monofunctional acrylate monomer as appropriate.

前記単官能アクリレートモノマーとしては、例えば、エチルアクリレート、ブチルアクリレート、2−エチルヘキシルアクリレート、ノニルアクリレート、ラウリルアクリレート、トリデシルアクリレート、ヘキサデシルアクリレート、オクタデシルアクリレート、イソアミルアクリレート、イソデシルアクリレート、イソステアリルアクリレート、シクロヘキシルアクリレート、ベンジルアクリレート、メトキシエチルアクリレート、ブトキシエチルアクリレート、フェノキシエチルアクリレート、フェノキシジエチレングリコールアクリレート、ノニルフェノキシエチルアクリレート、テトラヒドロフルフリルアクリレート、グリシジルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシ−3−フェノキシプロピルアクリレート、3−クロロ−2−ヒドロキシプロピルアクリレート、ジエチルアミノエチルアクリレート、ノニルフェノキシエチルテトラヒドロフルフリルアクリレート、カプロラクトン変性テトラヒドロフルフリルアクリレート、イソボルニルアクリレート、ジシクロペンタニルアクリレート、ジシクロペンテニロキシエチルアクリレート等が挙げられる。   Examples of the monofunctional acrylate monomer include ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, lauryl acrylate, tridecyl acrylate, hexadecyl acrylate, octadecyl acrylate, isoamyl acrylate, isodecyl acrylate, isostearyl acrylate, and cyclohexyl. Acrylate, benzyl acrylate, methoxyethyl acrylate, butoxyethyl acrylate, phenoxyethyl acrylate, phenoxydiethylene glycol acrylate, nonylphenoxyethyl acrylate, tetrahydrofurfuryl acrylate, glycidyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxy-3-phenoxypropyl acetate Rate, 3-chloro-2-hydroxypropyl acrylate, diethylaminoethyl acrylate, nonylphenoxyethyl tetrahydrofurfuryl acrylate, caprolactone-modified tetrahydrofurfuryl acrylate, isobornyl acrylate, dicyclopentanyl acrylate, dicyclopentenyloxy ethyl acrylate, etc. Is mentioned.

前記2官能以上のアクリレートモノマーとしては、例えば、1,4−ブタンジオールジアクリレート、3−メチル−1,5−ペンタンジオールジアクリレート、1,6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、2−メチル−1,8−オクタンジオールジアクリレート、2−ブチル−2−エチル−1,3−プロパンジオールジアクリレート、トリシクロデカンジメタノールジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート等の2価アルコールのジアクリレート、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、トリス(2−ヒドロキシエチル)イソシアヌレートのジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールのポリアクリレート等の3価以上の多価アルコールのポリアクリレート、ネオペンチルグリコール1モルに2モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオールのジアクリレート、グリセリン1モルに3モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たトリオールのトリアクリレート、トリメチロールプロパン1モルに3モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たトリオールのジ又はトリアクリレート、ビスフェノールA1モルに2モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオールのジアクリレート等のポリオキシアルキレンポリオールのポリアクリレート等が挙げられる。   Examples of the bifunctional or higher acrylate monomer include 1,4-butanediol diacrylate, 3-methyl-1,5-pentanediol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, 2 -Methyl-1,8-octanediol diacrylate, 2-butyl-2-ethyl-1,3-propanediol diacrylate, tricyclodecane dimethanol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate Diacrylate of dihydric alcohol such as acrylate, dipropylene glycol diacrylate, tripropylene glycol diacrylate, polyethylene glycol diacrylate, polypropylene glycol di Trivalent or more polyvalent polyacrylates such as acrylate, tris (2-hydroxyethyl) isocyanurate diacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, ditrimethylolpropane tetraacrylate, dipentaerythritol polyacrylate Diacrylate of a diol obtained by adding 2 mol or more of ethylene oxide or propylene oxide to 1 mol of polyhydric alcohol, 1 mol of neopentyl glycol, obtained by adding 3 mol or more of ethylene oxide or propylene oxide to 1 mol of glycerin Triol triacrylate, 3 moles of ethylene oxide or propylene oxide per mole of trimethylolpropane Pressurized to triol di- or tri-acrylates obtained, polyacrylate polyoxyalkylene polyols and di acrylate of a diol obtained by adding 2 moles or more of ethylene oxide or propylene oxide to bisphenol A1 molar and the like.

本発明の活性エネルギー硬化型オフセットインキ組成物では、硬化性を向上させる目的でワックスを添加することができる。前記ワックスとしては、パラフィンワックス、カルナバワックス、みつろう、マイクロクリスタリンワックス、ポリエチレンワックス、酸化ポリエチレンワックス、ポリテトラフルオロエチレンワックス、アマイドワックスなどのワックス、ヤシ油脂肪酸や大豆油脂肪酸などのC8〜C18程度の範囲にある脂肪酸等を挙げることができる。一方で、溶融型ワックスは本発明で用いるエポキシアクリレート化合物(A)との相溶性が悪いが為に、インキ流動性が低下してしまう傾向があるが、ポリエチレンワックス、酸化ポリエチレンワックスに代表されるパウダータイプ又は粒子タイプのポリオレフィンワックスであれば相溶性に影響はなく、インキ流動性が良好に維持され好ましい。さらに前記ポリオレフィンワックスの融点が90〜130℃の範囲にありかつ平均粒子径D50が1〜10マイクロメートルの範囲にあるポリオレフィンワックスであればより好ましい。平均粒子径D50が1マイクロメートル未満の場合は硬化性を向上させることが難しく、10マイクロメートルを超える場合は印刷機上のインキ転移性が著しく低下しオフセット印刷適性を損なうことから好ましくない。また本発明の活性エネルギー線硬化型組成物中の不揮発成分100質量%に対し、ワックスの総使用量が0.1〜5質量%となる範囲であることが好ましい。   In the active energy curable offset ink composition of the present invention, a wax can be added for the purpose of improving curability. Examples of the wax include paraffin wax, carnauba wax, beeswax, microcrystalline wax, polyethylene wax, polyethylene oxide wax, polytetrafluoroethylene wax, amide wax and the like, and C8-C18 grades such as coconut oil fatty acid and soybean oil fatty acid. The fatty acid etc. which are in the range can be mentioned. On the other hand, although melt-type wax has poor compatibility with the epoxy acrylate compound (A) used in the present invention, ink fluidity tends to decrease, but polyethylene wax and polyethylene oxide wax are representative. A powder type or particle type polyolefin wax is preferred because it does not affect the compatibility and maintains good ink fluidity. Furthermore, it is more preferable if the polyolefin wax has a melting point in the range of 90 to 130 ° C and an average particle diameter D50 in the range of 1 to 10 micrometers. When the average particle diameter D50 is less than 1 micrometer, it is difficult to improve the curability, and when it exceeds 10 micrometers, the ink transfer property on the printing press is remarkably deteriorated and the offset printability is impaired. Moreover, it is preferable that the total amount of wax used is 0.1 to 5% by mass with respect to 100% by mass of the nonvolatile component in the active energy ray-curable composition of the present invention.

尚、前記平均粒径の測定法としては、日立製作所操作型電子顕微鏡S−3400Nで測定した度数分布の状況から算出したものである。   In addition, as a measuring method of the said average particle diameter, it computed from the condition of the frequency distribution measured with Hitachi Ltd. operation type electron microscope S-3400N.

本発明の活性エネルギー線硬化型オフセットインキ組成物では、上記した各成分の他の配合物として、顔料、染料、体質顔料、有機又は無機フィラー、有機溶剤、帯電防止剤、消泡剤、粘度調整剤、耐光安定剤、耐候安定剤、耐熱安定剤、紫外線吸収剤、酸化防止剤、レベリング剤、顔料分散剤等の添加剤を使用することができる。   In the active energy ray-curable offset ink composition of the present invention, pigments, dyes, extender pigments, organic or inorganic fillers, organic solvents, antistatic agents, antifoaming agents, viscosity adjustments as other blends of the above-described components Additives such as an agent, a light-resistant stabilizer, a weather-resistant stabilizer, a heat-resistant stabilizer, an ultraviolet absorber, an antioxidant, a leveling agent, and a pigment dispersant can be used.

本発明の活性エネルギー線硬化型オフセットインキ組成物は、基材に印刷後、活性エネルギー線を照射することで硬化塗膜とすることができる。この活性エネルギー線とは、紫外線、電子線、α線、β線、γ線等の電離放射線が挙げられる。これらのなかでも特に、硬化性および利便性の点から紫外線が好ましい。   The active energy ray-curable offset ink composition of the present invention can be formed into a cured coating film by irradiating active energy rays after printing on a substrate. Examples of the active energy rays include ionizing radiation such as ultraviolet rays, electron beams, α rays, β rays, and γ rays. Among these, ultraviolet rays are particularly preferable from the viewpoint of curability and convenience.

本発明の活性エネルギー線硬化型オフセットインキを硬化させる活性エネルギー線としては、上記の通り、紫外線、電子線、α線、β線、γ線のような電離放射線であるが、具体的なエネルギー源又は硬化装置としては、例えば、殺菌灯、紫外線用蛍光灯、UV−LED(紫外線発光ダイオード)、カーボンアーク、キセノンランプ、複写用高圧水銀灯、中圧又は高圧水銀灯、超高圧水銀灯、無電極ランプ、メタルハライドランプ、自然光等を光源とする紫外線、又は走査型、カーテン型電子線加速器による電子線等が挙げられる。   As described above, the active energy rays for curing the active energy ray-curable offset ink of the present invention are ionizing radiations such as ultraviolet rays, electron beams, α rays, β rays, and γ rays. Or, as a curing device, for example, germicidal lamp, ultraviolet fluorescent lamp, UV-LED (ultraviolet light emitting diode), carbon arc, xenon lamp, high pressure mercury lamp for copying, medium or high pressure mercury lamp, ultrahigh pressure mercury lamp, electrodeless lamp, Examples thereof include a metal halide lamp, ultraviolet rays using natural light as a light source, or an electron beam using a scanning type or curtain type electron beam accelerator.

また、本発明の活性エネルギー線硬化型オフセットインキに用いる顔料としては、公知公用の着色用有機顔料を挙げることができ、例えば「有機顔料ハンドブック(著者:橋本勲、発行所:カラーオフィス、2006年初版)」に掲載される印刷インキ用有機顔料等が挙げられ、溶性アゾ顔料、不溶性アゾ顔料、縮合アゾ顔料、金属フタロシアニン顔料、無金属フタロシアニン顔料、キナクリドン顔料、ペリレン顔料、ペリノン顔料、イソインドリノン顔料、イソインドリン顔料、ジオキサジン顔料、チオインジゴ顔料、アンスラキノン系顔料、キノフタロン顔料、金属錯体顔料、ジケトピロロピロール顔料、カーボンブラック顔料、その他多環式顔料等、また、白インキ用として酸化チタンが挙げられる。これらの顔料の配合割合は、例えば、白インキの場合にはインキ組成物中40〜70質量%の割合が好ましいが、通常の色インキの場合には10〜25質量%の範囲であることが好ましい。   Examples of the pigment used in the active energy ray-curable offset ink of the present invention include publicly known organic pigments for coloring. For example, “Organic Pigment Handbook (Author: Isao Hashimoto, Publisher: Color Office, 2006) Organic pigments for printing inks published in the first edition), soluble azo pigments, insoluble azo pigments, condensed azo pigments, metal phthalocyanine pigments, metal-free phthalocyanine pigments, quinacridone pigments, perylene pigments, perinone pigments, isoindolinones Pigments, isoindoline pigments, dioxazine pigments, thioindigo pigments, anthraquinone pigments, quinophthalone pigments, metal complex pigments, diketopyrrolopyrrole pigments, carbon black pigments, other polycyclic pigments, and titanium oxide for white ink Can be mentioned. The blending ratio of these pigments is, for example, preferably 40 to 70% by mass in the ink composition in the case of white ink, but in the range of 10 to 25% by mass in the case of ordinary color ink. preferable.

また、本発明の活性エネルギー線硬化型オフセットインキには、体質顔料として無機微粒子を用いてもよい。無機微粒子としては、酸化チタン、クラファイト、亜鉛華等の無機着色顔料;炭酸石灰粉、沈降性炭酸カルシウム、石膏、クレー(ChinaClay)、シリカ粉、珪藻土、タルク、カオリン、アルミナホワイト、硫酸バリウム、ステアリン酸アルミニウム、炭酸マグネシウム、バライト粉、砥の粉等の無機体質顔料や、シリコーン、ガラスビーズなどがあげられる。これらの体質顔料として用いる無機微粒子は、インキ組成物中に0.1〜20質量%の範囲で使用することにより、インキの流動性調整、ミスチング防止、紙等の印刷基材への浸透防止といった効果を得ることが可能である。   In the active energy ray-curable offset ink of the present invention, inorganic fine particles may be used as extender pigments. As inorganic fine particles, inorganic coloring pigments such as titanium oxide, kraftite, zinc white; lime carbonate powder, precipitated calcium carbonate, gypsum, clay (ChinaClay), silica powder, diatomaceous earth, talc, kaolin, alumina white, barium sulfate, Examples thereof include inorganic extender pigments such as aluminum stearate, magnesium carbonate, barite powder, and abrasive powder, silicone, and glass beads. The inorganic fine particles used as these extender pigments are used in the ink composition in the range of 0.1 to 20% by mass, thereby adjusting the fluidity of the ink, preventing misting, and preventing penetration into printing substrates such as paper. An effect can be obtained.

また、本発明の活性エネルギー線硬化型オフセットインキに適する印刷基材としては、カタログ、ポスター、チラシ、CDジャケット、ダイレクトメール、パンフレット、化粧品や飲料、医薬品、おもちゃ、機器等のパッケージ等に用いる紙基材;ポリプロピレンフィルム、ポリエチレンテレフタレート(PET)フィルム等の各種食品包装用資材に用いられるフィルム、アルミニウムフォイル、合成紙、その他従来から印刷基材として使用されている各種基材を挙げることが出来る。   The printing substrate suitable for the active energy ray-curable offset ink of the present invention includes a catalog, a poster, a flyer, a CD jacket, a direct mail, a brochure, a paper used for cosmetics, beverages, pharmaceuticals, toys, equipment packages, etc. Base materials: Films used for various food packaging materials such as polypropylene film and polyethylene terephthalate (PET) film, aluminum foil, synthetic paper, and other various base materials conventionally used as printing base materials.

本発明は、インキの乳化特性が向上する点において、特に版面に水を連続的に供給する平版オフセット印刷において好適に利用することができる。水を連続供給するオフセット印刷機は多数の印刷機メーカーによって製造販売されており、一例としてハイデルベルグ社、小森コーポレーション社、三菱重工印刷紙工機械社、マンローランド社、リョービ社、KBA社等を挙げることができ、またシート形態の印刷用紙を用いる枚葉オフセット印刷機、リール形態の印刷用紙を用いるオフセット輪転印刷機、いずれの用紙供給方式においても本発明を好適に利用することが可能である。更に具体的には、ハイデルベルグ社製スピードマスターシリーズ、小森コーポレーション社製リスロンシリーズ、三菱重工印刷紙工機械社製ダイヤモンドシリーズ等のオフセット印刷機を挙げることができる。   The present invention can be suitably used particularly in lithographic offset printing in which water is continuously supplied to the plate surface in that the emulsification characteristics of the ink are improved. Offset printers that supply water continuously are manufactured and sold by a large number of printer manufacturers. Examples include Heidelberg, Komori Corporation, Mitsubishi Heavy Industries Printing Paper Machinery, Man Roland, Ryobi, and KBA. In addition, the present invention can be suitably used in any sheet feeding system, such as a sheet-fed offset printing machine using a sheet form printing paper, an offset rotary printing machine using a reel form printing paper. More specifically, offset printing machines such as Heidelberg's Speedmaster series, Komori Corporation's Lithrone series, and Mitsubishi Heavy Industries Printing Paper Machine Co., Ltd.'s Diamond series can be mentioned.

以下、実施例により本発明をより詳細に説明する。なお、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to these examples.

[エポキシアクリレートのグリコール末端基量の分析方法]
合成例1及び2にて製造したエポキシアクリレート樹脂(EPA1)及び(EPA2)のグリコール末端基量を、13C−NMRにて分析した。
具体的には、各重合性不飽和基含有樹脂の末端構造である、下記構造式で示されるα付加構造、β付加構造、αβ付加構造、αグリコール、前記α付加構造に更にアクリル酸がマイケル付加したマイケル付加構造、及び残存エポキシ基の他の*印で示した炭素原子の存在比率を13C−NMRチャートのピーク面積比から各官能基のモル比を算出、これらの百分率にて評価を行なった。
なお、ここで下記構造式(1)〜(7)におけるA〜Gで示した各炭素原子の化学シフトは、測定溶媒であるDMSO-d6のピークを39.5ppmとした場合に以下の通りとなる。
Aで示した炭素原子の化学シフト:71.1ppm
Bで示した炭素原子の化学シフト:65.6ppm
Cで示した炭素原子の化学シフト:63.0ppm
Dで示した炭素原子の化学シフト:62.5ppm
Eで示した炭素原子の化学シフト:59.7ppm
Fで示した炭素原子の化学シフト:60.0ppm
Gで示した炭素原子の化学シフト:43.9ppm
また、下記構造式(1)のα付加構造の*印を付した炭素原子(Bで示したもの)のピークは、下記構造式(6)に示した樹脂構造中に存在する構造部位の*印の炭素原子(Bで示したもの)と重なる為、α付加構造の存在割合は、Bのピーク面積から、下記構造式(6)中のAで示した炭素原子のピーク面積を差し引いた値を用いた。
[Analytical method of glycol end group content of epoxy acrylate]
The amount of glycol end groups of the epoxy acrylate resins (EPA1) and (EPA2) produced in Synthesis Examples 1 and 2 was analyzed by 13 C-NMR.
Specifically, the terminal structure of each polymerizable unsaturated group-containing resin is an α addition structure, a β addition structure, an αβ addition structure, an α glycol represented by the following structural formula, and acrylic acid added to the α addition structure. Calculate the molar ratio of each functional group from the peak area ratio of the 13 C-NMR chart for the abundance ratio of carbon atoms indicated by the asterisk of the added Michael addition structure and the remaining epoxy group, and evaluated with these percentages. I did it.
In addition, the chemical shift of each carbon atom shown by AG in following Structural formula (1)-(7) is as follows when the peak of DMSO-d6 which is a measurement solvent is 39.5 ppm. Become.
Chemical shift of the carbon atom indicated by A: 71.1 ppm
Chemical shift of the carbon atom indicated by B: 65.6 ppm
Chemical shift of carbon atom indicated by C: 63.0 ppm
Chemical shift of carbon atom indicated by D: 62.5 ppm
Chemical shift of carbon atom represented by E: 59.7 ppm
Chemical shift of carbon atom represented by F: 60.0 ppm
Chemical shift of carbon atom indicated by G: 43.9 ppm
In addition, the peak of the carbon atom (shown by B) marked with * in the α addition structure of the following structural formula (1) is the * of the structural site present in the resin structure shown in the following structural formula (6). Since it overlaps with the carbon atom marked (marked with B), the existence ratio of the α-added structure is a value obtained by subtracting the peak area of the carbon atom represented by A in the following structural formula (6) from the peak area of B Was used.

Figure 2015093394
13C−NMRの測定条件)
[機種]日本電子製「JNM−ECA500」
[測定条件]
試料濃度:30%(w/v)
測定溶媒:DMSO−d6
積算回数:4000回
Figure 2015093394
(Measurement conditions for 13 C-NMR)
[Model] "JNM-ECA500" manufactured by JEOL
[Measurement condition]
Sample concentration: 30% (w / v)
Measuring solvent: DMSO-d6
Integration count: 4000 times

〔エポキシアクリレートの合成例〕
合成例1
攪拌機、温度計及び冷却管を備えた4つ口のフラスコに、液状ビスフェノールA型エポキシ樹脂(DIC株式会社製「エピクロン850、エポキシ当量188g/eq.;以下、「液状BPA型エポキシ樹脂」と略記する。)435.1質量部、アクリル酸163.6質量部、及びメトキノン(重合禁止剤;以下、「MQ」と略記する。)0.1質量部を仕込み、100℃に昇温した後、トリエチルアミン(触媒;以下、「TEA」と略記する。)1.2質量部を加えた。100℃で15時間反応を行い、エポキシ当量が18,000g/eq.、酸価が0.4mgKOH/g、溶液粘度(酢酸ブチル不揮発分80質量%溶液)1.8Pa・sであるエポキシアクリレート化合物(EPA1)を得た。得られた重合エポキシアクリレート化合物(EPA1)の13C−NMRを測定に基づく各末端構造部位の存在割合を表1に示した。
[Synthesis example of epoxy acrylate]
Synthesis example 1
In a four-necked flask equipped with a stirrer, a thermometer and a cooling pipe, a liquid bisphenol A type epoxy resin (“Epiclon 850, epoxy equivalent 188 g / eq. Manufactured by DIC Corporation; hereinafter abbreviated as“ liquid BPA type epoxy resin ”). 435.1 parts by mass, acrylic acid 163.6 parts by mass, and methoquinone (polymerization inhibitor; hereinafter abbreviated as “MQ”) 0.1 part by mass were charged and heated to 100 ° C. 1.2 parts by mass of triethylamine (catalyst; hereinafter abbreviated as “TEA”) was added. The reaction was carried out at 100 ° C. for 15 hours, and the epoxy equivalent was 18,000 g / eq. An epoxy acrylate compound (EPA1) having an acid value of 0.4 mgKOH / g and a solution viscosity (80% by mass solution of butyl acetate in a nonvolatile content) of 1.8 Pa · s was obtained. Table 1 shows the abundance ratio of each terminal structure site based on 13 C-NMR measurement of the obtained polymerized epoxy acrylate compound (EPA1).

合成例2
攪拌機、温度計及び冷却管を備えた4つ口のフラスコに、液状ビスフェノールA型エポキシ樹脂(DIC株式会社製「エピクロン850、エポキシ当量188g/eq.;以下、「液状BPA型エポキシ樹脂」と略記する。)435.1質量部、アクリル酸163.6質量部、及びメトキノン(重合禁止剤;以下、「MQ」と略記する。)0.1質量部を仕込み、100℃に昇温した後、トリフェニルホスフィン(触媒;以下、「TPP」と略記する。)1.2質量部を加えた。100℃で15時間反応を行うことで、エポキシ当量が20,000g/eq.であり、酸価が0.5mgKOH/g、溶液粘度(酢酸ブチル不揮発分80質量%溶液)1.8Pa・sであるであるエポキシアクリレート化合物(EPA2)を得た。得られたエポキシアクリレート化合物(EPA2)の13C−NMRを測定に基づく各末端構造部位の存在割合を表1に示した。
Synthesis example 2
In a four-necked flask equipped with a stirrer, a thermometer and a cooling pipe, a liquid bisphenol A type epoxy resin (“Epiclon 850, epoxy equivalent 188 g / eq. Manufactured by DIC Corporation; hereinafter abbreviated as“ liquid BPA type epoxy resin ”). 435.1 parts by mass, acrylic acid 163.6 parts by mass, and methoquinone (polymerization inhibitor; hereinafter abbreviated as “MQ”) 0.1 part by mass were charged and heated to 100 ° C. 1.2 parts by mass of triphenylphosphine (catalyst; hereinafter abbreviated as “TPP”) was added. By carrying out the reaction at 100 ° C. for 15 hours, the epoxy equivalent is 20,000 g / eq. An epoxy acrylate compound (EPA2) having an acid value of 0.5 mgKOH / g and a solution viscosity (80% by mass solution of butyl acetate in a nonvolatile content) of 1.8 Pa · s was obtained. Table 1 shows the proportion of each terminal structure site based on the measurement of 13 C-NMR of the obtained epoxy acrylate compound (EPA2).

[活性エネルギー線硬化型オフセットインキの製造]
表2及び表3の組成に従って、実施例1及び2、比較例1〜8のインキを3本ロールミルにて練肉することによって、各種のインキ組成物を得た。尚、表2及び表3の数値は質量%である。なお、インキのタックバリュー(TV)の数値が10になるよう、エポキシアクリレートとアクリレートモノマーの配合割合を表2及び表3に示す通りに調整した。高粘度のアクリレートモノマーを使用した場合には、タックバリューを合わせるためには相対的にエポキシアクリレートの配合量を減らす必要がある。タックバリューとはインキの粘着性を示す数値であり、すなわち数値が大きいほど粘着性及び粘度が高くなる。測定においては、評価インキ1.31mlをインコメーター(東洋精機株式会社製)のゴムロール上にのせ、32℃、400rpmで1分間回転させた時点におけるタックバリューの数値を記録した。
なお実施例1及び2、比較例1〜8のインキには着色成分として藍顔料(Pigment Blue15:3、フタロシアニンブルー)を使用した。
[Production of active energy ray-curable offset ink]
According to the composition of Table 2 and Table 3, various ink compositions were obtained by kneading the inks of Examples 1 and 2 and Comparative Examples 1 to 8 with a three-roll mill. In addition, the numerical value of Table 2 and Table 3 is the mass%. The mixing ratio of the epoxy acrylate and the acrylate monomer was adjusted as shown in Tables 2 and 3 so that the tack value (TV) of the ink was 10. When a high viscosity acrylate monomer is used, it is necessary to relatively reduce the blending amount of epoxy acrylate in order to match the tack value. The tack value is a numerical value indicating the tackiness of the ink, that is, the larger the numerical value, the higher the tackiness and viscosity. In the measurement, 1.31 ml of evaluation ink was placed on a rubber roll of an incometer (manufactured by Toyo Seiki Co., Ltd.), and the tack value at the time when the ink was rotated at 32 ° C. and 400 rpm for 1 minute was recorded.
In addition, indigo pigments (Pigment Blue 15: 3, phthalocyanine blue) were used as coloring components in the inks of Examples 1 and 2 and Comparative Examples 1 to 8.

[展色物の製造方法]
この様にして得られた活性エネルギー線硬化型インキ組成物を、簡易展色機(RIテスター、豊栄精工社製)を用い、インキ0.10mlを使用して、RIテスターのゴムロール及び金属ロール上に均一に引き伸ばし、コート紙(王子製紙社製「OKトップコートプラス57.5kg、A判」)の表面に、200cmの面積にわたって藍濃度1.6(X−Rite社製SpectroEye濃度計で計測)で均一に塗布されるように展色し、展色物を作製した。なおRIテスターとは、紙やフィルムにインキを展色する試験機であり、インキの転移量や印圧を調整することが可能である。
[Production method of exhibition color]
The active energy ray-curable ink composition thus obtained was used on a rubber roll and metal roll of the RI tester using a simple color developing machine (RI tester, manufactured by Toyoe Seiko Co., Ltd.) and using 0.10 ml of ink. Stretched uniformly over the surface of coated paper (“OK Top Coat Plus 57.5 kg, A size” manufactured by Oji Paper Co., Ltd.) over an area of 200 cm 2 , measured with an indigo density of 1.6 (SpectroEye densitometer manufactured by X-Rite) The color was developed so that it could be applied uniformly, and a color-extracted product was produced. The RI tester is a test machine that develops ink on paper or film, and can adjust the amount of ink transferred and the printing pressure.

[UVランプ光源による硬化方法]
インキ塗布後の展色物に活性エネルギー線である紫外線(UV)照射を行い、インキ皮膜を硬化させた。水冷メタルハライドランプ(出力100W/cm1灯)およびベルトコンベアを搭載したUV照射装置(アイグラフィックス社製、コールドミラー付属)を使用し、展色物をコンベア上に載せ、ランプ直下(照射距離11cm)を分速100メートルの速度で通過させることにより、インキ皮膜を硬化させた。各条件における紫外線照射量は紫外線積算光量計(ウシオ電機社製UNIMETER UIT−150−A/受光機UVD−C365)を用いて測定した。
[Curing method using UV lamp light source]
Irradiation with ultraviolet rays (UV), which is an active energy ray, was performed on the color-extended product after the ink application to cure the ink film. Using a UV irradiation device equipped with a water-cooled metal halide lamp (output: 100 W / cm1 light) and a belt conveyor (made by Eye Graphics Co., Ltd., with a cold mirror), the color-exposed product is placed on the conveyor and directly under the lamp (irradiation distance: 11 cm) Was passed through at a speed of 100 meters per minute to cure the ink film. The ultraviolet irradiation amount in each condition was measured using an ultraviolet integrated light meter (UNIMETER UIT-150-A / receiver UVD-C365 manufactured by USHIO INC.).

[活性エネルギー線硬化型インキ組成物の評価方法1:流動性]
インキ流動性はスプレッドメーター法(平行板粘度計)によりJIS K5101,5701に則った方法で測定を実施し、水平に置いた2枚の平行板の間に挟まれたインキが、荷重板の自重(115グラム)によって、同心円状に広がる特性を経時的に観察し、60秒後のインキの広がり直径をダイアメーター値(DM[mm])とし、次の2段階で評価した。本評価項目においてDMが27mm未満となる組成では、インキ流動性が不足することから印刷機上で壺切れ、インキローラ間の転移不良といった印刷適性面での不良が発現し易くなる。
○:DM27mm以上であり、流動性は良好である
×:DM27mm未満であり、流動性は不良である
[Evaluation method 1 of active energy ray-curable ink composition 1: fluidity]
Ink fluidity is measured by a spread meter method (parallel plate viscometer) according to JIS K5101, 5701. The ink sandwiched between two parallel plates placed horizontally is the weight of the load plate (115 Gram), the characteristics spreading concentrically were observed over time, and the spread diameter of the ink after 60 seconds was taken as a diameter value (DM [mm]) and evaluated in the following two stages. In the composition in which DM is less than 27 mm in this evaluation item, the ink fluidity is insufficient, so that defects in printability such as breakage on the printing press and transfer failure between ink rollers are likely to occur.
○: DM is 27 mm or more, and fluidity is good. X: DM is less than 27 mm, and fluidity is poor.

[活性エネルギー線硬化型インキ組成物の評価方法2:硬化性]
硬化性は、紫外線照射直後に爪スクラッチ法にて展色物表面の傷付きの有無を確認し次の2段階で評価した。爪で擦ってインキ硬化皮膜に傷が発生する組成では、印刷物の断裁や製函、輸送といった各工程において、印刷物が損傷し易くなる。
○:爪スクラッチで傷が発生せず、硬化性は良好である
×:爪スクラッチで傷が発生し、硬化性は不良である
[Evaluation method 2 of active energy ray-curable ink composition 2: curability]
The curability was evaluated by the following two steps after checking the presence or absence of scratches on the surface of the developed product by the nail scratch method immediately after the ultraviolet irradiation. In the composition in which the ink cured film is scratched by rubbing with a nail, the printed material is easily damaged in each process such as cutting, box making and transportation of the printed material.
○: No scratches are generated in the nail scratches, and the curability is good. X: Scratches are generated in the nail scratches, and the curability is poor.

[活性エネルギー線硬化型インキ組成物のオフセット印刷方法]
製造された実施例1及び2、比較例1〜8の活性エネルギー線硬化型インキについて、オフセット印刷適性を評価した。紫外線照射装置としてアイグラフィックス社製水冷メタルハライドランプ(出力160W/cm、3灯使用)を搭載したマンローランド社製オフセット印刷機(ローランドR700印刷機、幅40インチ機)を用いて、毎時9000枚の印刷速度にてオフセット印刷を実施した。印刷用紙には王子製紙社製OKトップコートプラス(57.5kg、A判)を使用した。版面に供給される湿し水は、水道水98質量%とエッチ液(FST−700、DIC社製)2質量%を混合した水溶液を用いた。
[Offset printing method of active energy ray-curable ink composition]
With respect to the produced active energy ray-curable inks of Examples 1 and 2 and Comparative Examples 1 to 8, the offset printability was evaluated. 9000 sheets per hour using a Man Roland offset printing machine (Roland R700 printing machine, 40-inch wide machine) equipped with a water-cooled metal halide lamp (output: 160 W / cm, 3 lamps used) as an ultraviolet irradiation device. Offset printing was performed at a printing speed of. For the printing paper, OK Top Coat Plus (57.5 kg, A size) manufactured by Oji Paper Co., Ltd. was used. The dampening water supplied to the printing plate was an aqueous solution in which 98% by mass of tap water and 2% by mass of an etchant (FST-700, manufactured by DIC) were mixed.

[活性エネルギー線硬化型インキ組成物の評価方法3:オフセット印刷適性]
オフセットインキ印刷適性の評価方法としては、まず印刷機の水供給ダイヤルを40(標準水量)にセットし、印刷物濃度が標準プロセス藍濃度1.6(X−Rite社製SpectroEye濃度計で計測)となるようインキ供給キーを操作し、濃度が安定した時点でインキ供給キーを固定した。その後インキ供給キーを固定したままの条件で、水供給ダイヤルを40から55に変更し水供給量を増やした条件で300枚印刷し、300枚後の印刷物の藍濃度を測定した。水供給量を増やした状態においても印刷物の濃度低下が少ないほど、乳化適性に優れ、印刷適性に優れたインキと評価できる。下記の基準に従って活性エネルギー線硬化型インキの印刷適性を評価した。
3:印刷物の藍濃度が1.5以上であり、オフセット印刷適性は良好である
2:印刷物の藍濃度が1.4以上〜1.5未満であり、オフセット印刷適性は中位であ

1:印刷物の藍濃度が1.4未満であり、オフセット印刷適性は不良である
[Evaluation method 3 of active energy ray-curable ink composition: suitability for offset printing]
As an evaluation method of offset ink printing suitability, first, set the water supply dial of the printing press to 40 (standard water amount), and the printed material density is standard process indigo density 1.6 (measured with X-Rite SpectroEye densitometer). The ink supply key was operated so that the ink supply key was fixed when the density was stabilized. Thereafter, 300 sheets were printed under the condition that the water supply dial was changed from 40 to 55 and the water supply amount was increased with the ink supply key fixed, and the indigo density of the printed material after 300 sheets was measured. Even when the amount of water supply is increased, the smaller the decrease in the density of the printed matter, the better the emulsification suitability and the better the printability. The printability of the active energy ray-curable ink was evaluated according to the following criteria.
3: The indigo density of the printed material is 1.5 or more, and the offset printability is good 2: The indigo density of the printed material is 1.4 or more and less than 1.5, and the offset printability is medium 1: The indigo density of the printed material is less than 1.4, and the offset printability is poor.

(重量平均分子量の測定)
尚、本発明におけるGPCによる重量平均分子量(ポリスチレン換算)の測定は東ソー(株)社製HLC8220システムを用い以下の条件で行った。
分離カラム:東ソー(株)製TSKgelGMHHR−Nを4本使用。カラム温度:40℃。移動層:和光純薬工業(株)製テトラヒドロフラン。流速:1.0ml/分。試料濃度:1.0質量%。試料注入量:100マイクロリットル。検出器:示差屈折計。
(Measurement of weight average molecular weight)
In addition, the measurement of the weight average molecular weight (polystyrene conversion) by GPC in this invention was performed on condition of the following using the Tosoh Corp. HLC8220 system.
Separation column: 4 TSKgelGMH HR- N manufactured by Tosoh Corporation are used. Column temperature: 40 ° C. Moving layer: Tetrahydrofuran manufactured by Wako Pure Chemical Industries, Ltd. Flow rate: 1.0 ml / min. Sample concentration: 1.0 mass%. Sample injection volume: 100 microliters. Detector: differential refractometer.

Figure 2015093394
Figure 2015093394

Figure 2015093394
Figure 2015093394







Figure 2015093394

ミラマーM3130:エチレンオキサイド(平均3モル)変性トリメチロールプロパントリアクリレート(EO3−TMPTA)、MIWON社製、25℃におけるモノマー粘度60ミリパスカル秒、重量平均分子量428
ミラマーM300:トリメチロールプロパントリアクリレート(TMPTA)、MIWON社製、25℃におけるモノマー粘度100ミリパスカル秒、重量平均分子量296
ミラマーM410:ジトリメチロールプロパンテトラアクリレート(DTMPTA)、MIWON社製、25℃におけるモノマー粘度600ミリパスカル秒、重量平均分子量466
ミラマーM600:ジペンタエリスリトールヘキサアクリレート(DPHA)、MIWON社製、25℃におけるモノマー粘度5250ミリパスカル秒、重量平均分子量578
ミラマーM3160:エチレンオキサイド(平均6モル)変性トリメチロールプロパントリアクリレート(EO6−TMPTA)、MIWON社製、25℃におけるモノマー粘度80ミリパスカル秒、重量平均分子量560
PETA−K:ペンタエリスリトールテトラアクリレート(PETA)、ダイセル・オルネクス社製、25℃におけるモノマー粘度800ミリパスカル秒、重量平均分子量352
ミラマーM240:エチレンオキサイド(平均4モル)変性ビスフェノールAジアクリレート(BisA−EO4−DA)、MIWON社製、25℃におけるモノマー粘度1100ミリパスカル秒、重量平均分子量512
S−381−N1:粉体ポリオレフィンワックス、シャムロック社製、平均粒子径D50=5ミクロン、融点97℃
HELIOGEN BLUE D7079:Pigment Blue15:3(フタロシアニンブルー、藍顔料)、BASF社製
ハイフィラー #5000PJ:タルク(含水ケイ酸マグネシウム)、松村産業社製
炭酸マグネシウムTT:塩基性炭酸マグネシウム、ナイカイ塩業社製
Irgacure907:2−メチル−1−[4−(メチルチオ)フェニル]−2−モノフォリノプロパン−1−オン、BASF社製
EAB―SS:4,4’−ビス(ジエチルアミノ)ベンゾフェノン、大同化成工業社製
Q−1301:N−ニトロソフェニルヒドロキシルアミンアルミニウム塩、和光純薬工業社製
Figure 2015093394

Miramar M3130: Ethylene oxide (average 3 mol) modified trimethylolpropane triacrylate (EO3-TMPTA), manufactured by MIWON, monomer viscosity at 25 ° C. 60 millipascal seconds, weight average molecular weight 428
Miramar M300: Trimethylolpropane triacrylate (TMPTA), manufactured by MIWON, monomer viscosity at 25 ° C. 100 millipascal seconds, weight average molecular weight 296
Miramar M410: ditrimethylolpropane tetraacrylate (DTMPTA), manufactured by MIWON, monomer viscosity at 25 ° C. 600 millipascal seconds, weight average molecular weight 466
Miramar M600: Dipentaerythritol hexaacrylate (DPHA), manufactured by MIWON, monomer viscosity at 25 ° C., 5250 millipascal seconds, weight average molecular weight 578
Miramar M3160: ethylene oxide (average 6 mol) modified trimethylolpropane triacrylate (EO6-TMPTA), manufactured by MIWON, monomer viscosity at 25 ° C., 80 millipascal seconds, weight average molecular weight 560
PETA-K: Pentaerythritol tetraacrylate (PETA), manufactured by Daicel Ornex Co., Ltd., monomer viscosity at 25 ° C., 800 millipascal seconds, weight average molecular weight 352
Miramar M240: ethylene oxide (average 4 mol) modified bisphenol A diacrylate (BisA-EO4-DA), manufactured by MIWON, monomer viscosity at 25 ° C. 1100 millipascal seconds, weight average molecular weight 512
S-381-N1: Powdered polyolefin wax, manufactured by Shamrock, average particle diameter D50 = 5 microns, melting point 97 ° C.
HELIOGEN BLUE D7079: Pigment Blue 15: 3 (phthalocyanine blue, indigo pigment), high filler manufactured by BASF # 5000PJ: talc (hydrous magnesium silicate), magnesium carbonate TT manufactured by Matsumura Sangyo Co., Ltd. Irgacure 907: 2-methyl-1- [4- (methylthio) phenyl] -2-monoforinopropan-1-one, EAB-SS manufactured by BASF: 4,4′-bis (diethylamino) benzophenone, Daido Kasei Kogyo Co., Ltd. Q-1301: N-nitrosophenylhydroxylamine aluminum salt, manufactured by Wako Pure Chemical Industries, Ltd.

本発明者等は、上記課題を解決すべく鋭意研究を重ねた結果、ビスフェノールA型エポキシ樹脂とアクリル酸とを反応させて得られるエポキシアクリレート化合物であって、前記ビスフェノールA型エポキシ樹脂のグリシジルオキシ基に起因又は由来する末端構造部位の総数に対する、α付加構造部位が70モル%以上、α−グリコール基の割合が13C−NMR測定結果で5モル%以下となる割合に調整し、更に特定の1分子あたり2つ以上のアクリル基を有する重合性アクリレートモノマーとを適量混合することで、優れた硬化性を発現すると共に、印刷インキ自体の乳化特性が飛躍的に改善され良好な印刷特性が得られることを見出し、本発明を完成するに至った。
As a result of earnest research to solve the above problems, the present inventors have obtained an epoxy acrylate compound obtained by reacting a bisphenol A type epoxy resin and acrylic acid, and the glycidyloxy of the bisphenol A type epoxy resin. The α addition structure site is adjusted to a ratio of 70 mol% or more and the α-glycol group ratio to 5 mol% or less in the 13C-NMR measurement result with respect to the total number of terminal structure sites derived from or derived from the group, and further specified By mixing an appropriate amount of a polymerizable acrylate monomer having two or more acrylic groups per molecule, it exhibits excellent curability and drastically improves the emulsifying properties of the printing ink itself, resulting in good printing properties. As a result, the present invention has been completed.

即ち、本発明の活性エネルギー線硬化型オフセットインキ組成物は、ビスフェノールA型エポキシ樹脂とアクリル酸とを反応させて得られるエポキシアクリレート化合物であって、前記ビスフェノールA型エポキシ樹脂のグリシジルオキシ基に起因又は由来する末端構造部位の総数に対する、α付加構造部位が70モル%以上、α−グリコール基の割合が13C−NMR測定結果で5モル%以下となる割合であるエポキシアクリレート化合物(A)を全量の10〜60質量%の範囲で含有し、さらに25℃における粘度が40〜200ミリパスカル秒(mPa・s)の範囲にあり分子量が250〜550の範囲にある1分子あたり2つ以上のアクリル基を有する重合性アクリレートモノマー(B)を5〜40質量%の範囲で含有することを特徴とする活性エネルギー線硬化型オフセットインキ組成物に関する。 That is, the active energy ray-curable offset ink composition of the present invention is an epoxy acrylate compound obtained by reacting a bisphenol A type epoxy resin and acrylic acid, and is derived from the glycidyloxy group of the bisphenol A type epoxy resin. Or the total amount of the epoxy acrylate compound (A) in which the α-addition structure site is 70 mol% or more and the α-glycol group ratio is 5 mol% or less in the 13C-NMR measurement result with respect to the total number of terminal structure sites derived In the range of 10 to 60% by mass, and the viscosity at 25 ° C. is in the range of 40 to 200 millipascal seconds (mPa · s) and the molecular weight is in the range of 250 to 550, and two or more acrylics per molecule The polymerizable acrylate monomer (B) having a group is contained in the range of 5 to 40% by mass. To the active energy ray-curable offset ink composition to.

本発明の活性エネルギー線硬化型オフセットインキ組成物は、ビスフェノールA型エポキシ樹脂とアクリル酸とを反応させて得られるエポキシアクリレート化合物であって、前記ビスフェノールA型エポキシ樹脂のグリシジルオキシ基に起因又は由来する末端構造部位の総数に対する、α付加構造部位が70モル%以上、α−グリコール基の割合が13C−NMR測定結果で5モル%以下となる割合に調整し、更に特定の1分子あたり2つ以上のアクリル基を有する重合性アクリレートモノマーとを適量混合することで、本発明の効果を奏するものである。 The active energy ray-curable offset ink composition of the present invention is an epoxy acrylate compound obtained by reacting a bisphenol A type epoxy resin and acrylic acid, and is derived from or derived from the glycidyloxy group of the bisphenol A type epoxy resin. The ratio of α-addition structure sites to the total number of terminal structure sites to be adjusted is 70 mol% or more, and the proportion of α-glycol groups is 5 mol% or less as determined by 13C-NMR measurement. By mixing an appropriate amount of the above polymerizable acrylate monomer having an acrylic group, the effects of the present invention are achieved.

なお、本発明では、上記各種末端構造(前記構造式(i)〜(vi))を全て含んでいる必要はなく、これらの中から選択される末端構造の総数を基準に、α付加構造部位が70モル%以上、かつ、前記αグリコール構造部位の含有率が5モル%以下であればよい。 In the present invention, it is not necessary to include all of the various terminal structures (the structural formulas (i) to (vi)), and the α-added structure site is based on the total number of terminal structures selected from these. May be 70 mol% or more and the content of the α glycol structure site may be 5 mol% or less.

本発明の活性エネルギー線硬化型オフセットインキ組成物で用いるエポキシアクリレート化合物(A)は、前記した通り、ビスフェノールA型エポキシ樹脂とアクリル酸とを反応させることにより製造することができるが、具体的には、窒素含有塩基性触媒の存在下にて反応させることが、α付加構造部位を70モル%以上、かつ、αグリコール量を5モル%以下に調節し易い点から好ましい。 As described above, the epoxy acrylate compound (A) used in the active energy ray-curable offset ink composition of the present invention can be produced by reacting a bisphenol A type epoxy resin with acrylic acid. It is preferable to react in the presence of a nitrogen-containing basic catalyst from the viewpoint that the α-addition structure site can be easily adjusted to 70 mol% or more and the amount of αglycol can be adjusted to 5 mol% or less.

これらの窒素原子含有塩基性触媒の中でも、トリエチルアミン又はテトラメチルアンモニウムクロライドが、重合性不飽和基含有樹脂中のα付加構造部位が70モル%以上、かつ、αグリコール量を5%以下に調節し易い点から好ましい。 Among these nitrogen atom-containing basic catalysts, triethylamine or tetramethylammonium chloride adjusts the α-addition structure site in the polymerizable unsaturated group-containing resin to 70 mol% or more and the α glycol amount to 5% or less. It is preferable because it is easy.

また、上記エポキシアクリレート化合物(A)を製造する方法は、エポキシ樹脂とアクリル酸とを、窒素原子含有塩基性触媒の存在下で、エポキシ基とカルボキシル基が0.9/1.0〜1.0/0.9(モル比)の範囲の比率で、かつ、窒素原子含有塩基性触媒を、原料成分総重量100質量%に対して0.01〜0.6質量%、好ましくは0.03〜0.5質量%、とりわけ0.05〜0.3質量%となる割合で用い、反応温度80〜125℃の範囲、好ましくは90〜110℃の範囲にて、エポキシ当量が8000g/eq以上または酸価が2.0以下になるまで反応させる方法が、エポキシアクリレート化合物(A)中のα付加構造部位が70モル%以上、かつ、αグリコール量を5%以下に調節し易い点から好ましい。
Moreover, the method of manufacturing the said epoxy acrylate compound (A) is an epoxy resin and acrylic acid in presence of a nitrogen atom containing basic catalyst, and an epoxy group and a carboxyl group are 0.9 / 1.0-1. The ratio of 0 / 0.9 (molar ratio) and the nitrogen atom-containing basic catalyst is 0.01 to 0.6% by mass, preferably 0.03% relative to 100% by mass of the total weight of the raw material components. ˜0.5 mass%, particularly 0.05 to 0.3 mass%, and the reaction temperature is in the range of 80 to 125 ° C., preferably in the range of 90 to 110 ° C., and the epoxy equivalent is 8000 g / eq or more. Alternatively, the method of reacting until the acid value is 2.0 or less is preferable because the α-addition structure site in the epoxy acrylate compound (A) is 70 mol% or more and the α glycol amount is easily adjusted to 5% or less. .

Claims (4)

ビスフェノールA型エポキシ樹脂とアクリル酸とを反応させて得られるエポキシアクリレート化合物であって、前記ビスフェノールA型エポキシ樹脂のグリシジルオキシ基に起因又は由来する末端構造部位の総数に対する、α−グリコール基の割合が13C−NMR測定結果で5モル%以下となる割合であるエポキシアクリレート化合物(A)をインキ組成物全量の10〜60質量%の範囲で含有し、さらに25℃における粘度が40〜200ミリパスカル秒(mPa・s)の範囲にあり分子量が250〜550の範囲にある1分子あたり2つ以上のアクリル基を有する重合性アクリレートモノマー(B)を5〜40質量%の範囲で含有することを特徴とする活性エネルギー線硬化型オフセットインキ組成物。Ratio of α-glycol group to the total number of terminal structure sites derived from or derived from glycidyloxy group of bisphenol A type epoxy resin, which is an epoxy acrylate compound obtained by reacting bisphenol A type epoxy resin and acrylic acid Contains an epoxy acrylate compound (A) in a proportion of 5 mol% or less in 13 C-NMR measurement results in a range of 10 to 60 mass% of the total amount of the ink composition, and further has a viscosity at 25 ° C. of 40 to 200 mm. A polymerizable acrylate monomer (B) having two or more acrylic groups per molecule in a range of Pascal second (mPa · s) and a molecular weight in a range of 250 to 550 is contained in a range of 5 to 40% by mass. An active energy ray-curable offset ink composition. 前記重合性アクリレートモノマー(B)がエチレンオキサイド変性トリメチロールプロパントリアクリレートであり、モノマー分子1モルあたりのエチレンオキサイドの平均付加モル数が2〜4の範囲にある請求項1に記載の活性エネルギー線硬化型オフセットインキ組成物。 The active energy ray according to claim 1, wherein the polymerizable acrylate monomer (B) is ethylene oxide-modified trimethylolpropane triacrylate, and the average number of moles of ethylene oxide added per mole of monomer molecules is in the range of 2 to 4. A curable offset ink composition. 更に融点が90〜130℃の範囲にありかつ平均粒径D50が1〜10マイクロメートルの範囲にあるポリオレフィンワックス(C)を含有する請求項1又は2の何れかに記載の活性エネルギー線硬化型オフセットインキ組成物。 The active energy ray-curable type according to claim 1, further comprising a polyolefin wax (C) having a melting point in the range of 90 to 130 ° C and an average particle diameter D50 in the range of 1 to 10 micrometers. Offset ink composition. 請求項1〜3の何れか1つに記載の活性エネルギー線硬化型オフセットインキ組成物を印刷してなる印刷物。 The printed matter formed by printing the active energy ray hardening-type offset ink composition as described in any one of Claims 1-3.
JP2015553509A 2013-12-19 2014-12-11 Active energy ray-curable offset ink composition and printed matter using the same Pending JPWO2015093394A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013262461 2013-12-19
JP2013262461 2013-12-19
PCT/JP2014/082862 WO2015093394A1 (en) 2013-12-19 2014-12-11 Active energy ray-curable offset ink composition and printed article using same

Publications (1)

Publication Number Publication Date
JPWO2015093394A1 true JPWO2015093394A1 (en) 2017-03-16

Family

ID=53402741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015553509A Pending JPWO2015093394A1 (en) 2013-12-19 2014-12-11 Active energy ray-curable offset ink composition and printed matter using the same

Country Status (3)

Country Link
JP (1) JPWO2015093394A1 (en)
TW (1) TW201529761A (en)
WO (1) WO2015093394A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108774426B (en) * 2018-07-06 2021-08-24 南雄市科鼎化工有限公司 High-performance surface mounting ink and preparation method thereof
KR102636596B1 (en) * 2019-01-31 2024-02-13 주식회사 엘지화학 Antibacterial polymer coating composition and antibacterial polymer film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825374A (en) * 1981-08-07 1983-02-15 Taiyo Ink Seizo Kk Ultraviolet-curing solder-resistant ink composition for dry lithography
JP2000302997A (en) * 1999-04-19 2000-10-31 Toyo Ink Mfg Co Ltd Activating-energy radiation curing composition and formation of cured film
JP2002047320A (en) * 2000-08-02 2002-02-12 Showa Highpolymer Co Ltd Thermosetting resin composition and optical material using it
JP2011241384A (en) * 2010-04-22 2011-12-01 Canon Inc Active energy ray curable ink jet recording liquid composition, and ink jet recording method using the same
JP2012521386A (en) * 2009-03-24 2012-09-13 ビーエーエスエフ ソシエタス・ヨーロピア Novel oligofunctional photoinitiators

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3363080B2 (en) * 1997-11-19 2003-01-07 三菱レイヨン株式会社 Composition for plastic lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825374A (en) * 1981-08-07 1983-02-15 Taiyo Ink Seizo Kk Ultraviolet-curing solder-resistant ink composition for dry lithography
JP2000302997A (en) * 1999-04-19 2000-10-31 Toyo Ink Mfg Co Ltd Activating-energy radiation curing composition and formation of cured film
JP2002047320A (en) * 2000-08-02 2002-02-12 Showa Highpolymer Co Ltd Thermosetting resin composition and optical material using it
JP2012521386A (en) * 2009-03-24 2012-09-13 ビーエーエスエフ ソシエタス・ヨーロピア Novel oligofunctional photoinitiators
JP2011241384A (en) * 2010-04-22 2011-12-01 Canon Inc Active energy ray curable ink jet recording liquid composition, and ink jet recording method using the same

Also Published As

Publication number Publication date
TW201529761A (en) 2015-08-01
WO2015093394A1 (en) 2015-06-25

Similar Documents

Publication Publication Date Title
JP5815913B1 (en) Active energy ray-curable offset ink composition
JP5866061B2 (en) Active energy ray curable composition, active energy ray curable printing ink using the same, and printed matter
JP2020169251A (en) Active energy ray-curable ink, method of producing ink-cured product, and printed matter
JP2021070718A (en) Active energy ray-curable ink for lithographic offset printing, method of producing ink cured product, and printed material
JPWO2015093394A1 (en) Active energy ray-curable offset ink composition and printed matter using the same
JP6451978B2 (en) Active energy ray-curable offset ink composition
JP7236262B2 (en) Printed matter manufacturing method
JP2019001090A (en) Method for manufacturing laminate
JP6674736B2 (en) Active energy ray-curable composition
JP7066833B2 (en) Active energy ray-curable ink, manufacturing method of cured ink, and printed matter
JP2021038330A (en) Active energy ray-curable ink for lithographic offset printing, method for producing ink cured product, and printed matter
JP2017186419A (en) (meth)acrylate resin and printing ink
JP5797359B2 (en) Active energy ray curable composition, active energy ray curable printing ink using the same, and printed matter
JP6289229B2 (en) Active energy ray-curable offset ink composition
JP7463198B2 (en) Active energy ray curable ink for lithographic offset printing and method for producing cured ink
CN111801393B (en) Active energy ray-curable ink, method for producing cured ink, and printed matter
US20230185197A1 (en) A composition
JP2023000194A (en) Active energy ray-curable ink for lithographic offset printing, production method of the same, production method of ink cured product, and printed matter
JP2017186421A (en) (meth)acrylate resin and printing ink
JP2023146160A (en) Active energy ray-curable offset printing ink, printed matter using the same, and production method of printed matter
JP2023169576A (en) Active energy ray-curable offset ink, printed material using the same, and method for producing printed material
WO2015072388A1 (en) Ultraviolet ray-curable coating varnish composition

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160510