JPWO2015087888A1 - Porous plate filler and heat insulating film - Google Patents

Porous plate filler and heat insulating film Download PDF

Info

Publication number
JPWO2015087888A1
JPWO2015087888A1 JP2015552471A JP2015552471A JPWO2015087888A1 JP WO2015087888 A1 JPWO2015087888 A1 JP WO2015087888A1 JP 2015552471 A JP2015552471 A JP 2015552471A JP 2015552471 A JP2015552471 A JP 2015552471A JP WO2015087888 A1 JPWO2015087888 A1 JP WO2015087888A1
Authority
JP
Japan
Prior art keywords
porous plate
filler
heat insulating
zro
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015552471A
Other languages
Japanese (ja)
Other versions
JP6453235B2 (en
Inventor
博治 小林
博治 小林
崇弘 冨田
崇弘 冨田
晃暢 織部
晃暢 織部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of JPWO2015087888A1 publication Critical patent/JPWO2015087888A1/en
Application granted granted Critical
Publication of JP6453235B2 publication Critical patent/JP6453235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/007Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores
    • C04B38/0074Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores expressed as porosity percentage
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/81Materials characterised by the absence of phases other than the main phase, i.e. single phase materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio

Abstract

断熱性能に優れた断熱膜の材料として用いることができる多孔質板状フィラー、及び断熱膜を提供する。多孔質板状フィラー1は、アスペクト比が3以上の板状で、その最小長が0.1〜50μmであり、気孔率が20〜90%であり、4価の原子でZrの一部が置換され、OとZrのモル比が2<O/Zr<2.4の範囲であり、単一相であるZrO2系多孔質板状フィラー1である。多孔質板状フィラー1を構成するZrO2粒子のZrの一部が他の原子(Ti,Si,Ce,Hf)と置換されていることにより、結晶構造が複雑となりフォノンが散乱しやすくなる。Provided are a porous plate-like filler that can be used as a material for a heat insulating film excellent in heat insulating performance, and a heat insulating film. The porous plate-like filler 1 has a plate shape with an aspect ratio of 3 or more, a minimum length of 0.1 to 50 μm, a porosity of 20 to 90%, a tetravalent atom and a part of Zr. The ZrO 2 porous plate-like filler 1 is substituted and has a molar ratio of O and Zr in the range of 2 <O / Zr <2.4. By replacing a part of Zr of the ZrO2 particles constituting the porous plate-like filler 1 with other atoms (Ti, Si, Ce, Hf), the crystal structure becomes complicated and phonons are easily scattered.

Description

本発明は、多孔質板状フィラー、及び多孔質板状フィラーを含む断熱膜に関する。   The present invention relates to a porous plate-like filler and a heat insulating film containing the porous plate-like filler.

表面に形成することにより、断熱効率や難燃性を向上させるための断熱膜が望まれている。特許文献1には、表面硬度が高く傷付きを防止できるコーティング膜が開示されている。コーティング膜は、シリカ殻からなる中空粒子をバインダーに分散してなる。シリカ殻からなる中空粒子の耐摩耗性及び高硬度によって、コーティング膜が形成された基材の耐摩耗性を向上させることができる。また、シリカ殻からなる中空粒子の断熱性によって難燃性を向上させることができる。   A heat insulating film for improving heat insulating efficiency and flame retardancy is desired by forming on the surface. Patent Document 1 discloses a coating film having a high surface hardness and capable of preventing scratches. The coating film is formed by dispersing hollow particles made of silica shells in a binder. The wear resistance of the hollow particles made of silica shell and the high hardness can improve the wear resistance of the substrate on which the coating film is formed. Moreover, flame retardance can be improved by the heat insulation of the hollow particle which consists of silica shells.

特許文献2には、断熱性能を向上させた構造部材を備える内燃機関が開示されている。特許文献2の内燃機関では、排気通路の内壁に隣接して断熱材が配置され、高温の作動ガス(排気ガス)が、断熱材が形成する流路に沿って流れるように構成されている。断熱材は、平均粒径が0.1〜3μmの球状メソポーラスシリカ(MSS)粒子の各粒子が接合材を介して粒子同士が密集した状態で積層されている。MSS粒子には、平均孔径1〜10nmのメソ孔が無数に形成されている。   Patent Document 2 discloses an internal combustion engine including a structural member with improved heat insulation performance. In the internal combustion engine of Patent Document 2, a heat insulating material is disposed adjacent to the inner wall of the exhaust passage, and high-temperature working gas (exhaust gas) flows along a flow path formed by the heat insulating material. In the heat insulating material, each particle of spherical mesoporous silica (MSS) particles having an average particle size of 0.1 to 3 μm is laminated in a state where the particles are closely packed with each other through a bonding material. Innumerable mesopores having an average pore diameter of 1 to 10 nm are formed in the MSS particles.

特許文献3には、Ln1−xTa1.5+x、または、Ln1−xNb1.5+x(LnはSc、Y及びランタノイド元素からなる群より選択される1種類または2種類以上の元素)で表され、0.13≦x≦0.24を満たす化合物が開示されている。In Patent Document 3, Ln 1-x Ta x O 1.5 + x or Ln 1-x Nb x O 1.5 + x (Ln is one or two kinds selected from the group consisting of Sc, Y and a lanthanoid element) The compounds represented by the above elements) and satisfying 0.13 ≦ x ≦ 0.24 are disclosed.

特開2008−200922号公報JP 2008-200902 A 特開2011−52630号公報JP 2011-52630 A 特開2009−221551号公報JP 2009-221551A

特許文献1では、外径30〜300nm程度のシリカ殻からなる中空粒子を、有機樹脂バインダー、無機高分子バインダー、または有機無機複合バインダー中に分散させることで、形成されるコーティング膜が断熱性を発揮している。また、特許文献2では、平均粒径が0.1〜3μmで平均孔径1〜10nmのメソ孔を有するMSS(球状メソポーラスシリカ)粒子が密集した状態で積層される。そのため、特許文献2では、断熱性能が得られている。特許文献3の化合物は、酸素欠陥が不規則化することにより、従来の希土類安定化ジルコニアと比較して低熱伝導率を有するものである。   In Patent Document 1, hollow particles made of silica shells having an outer diameter of about 30 to 300 nm are dispersed in an organic resin binder, an inorganic polymer binder, or an organic-inorganic composite binder, so that the formed coating film has a heat insulating property. Demonstrating. Further, in Patent Document 2, the MSS (spherical mesoporous silica) particles having mesopores having an average particle diameter of 0.1 to 3 μm and an average pore diameter of 1 to 10 nm are stacked in a dense state. Therefore, in patent document 2, the heat insulation performance is obtained. The compound of Patent Document 3 has a low thermal conductivity as compared with conventional rare earth stabilized zirconia due to disorder of oxygen defects.

しかしながら、特許文献1〜3に記載された材料であっても、この材料を用いて得られる断熱膜の断熱性能が十分ではなく、更に断熱性能に優れた断熱膜の材料の開発が切望されていた。即ち、特許文献1〜3に記載された材料であっても、この材料を用いて得られる断熱膜の熱伝導率は十分に低くなかった。   However, even with the materials described in Patent Documents 1 to 3, the heat insulation performance of the heat insulation film obtained using this material is not sufficient, and further development of a material for the heat insulation film having excellent heat insulation performance has been eagerly desired. It was. That is, even if it is the material described in patent documents 1-3, the heat conductivity of the heat insulation film obtained using this material was not sufficiently low.

本発明の課題は、断熱性能に優れた断熱膜の材料として用いることができる多孔質板状フィラー、及び断熱膜を提供することにある。   The subject of this invention is providing the porous plate-shaped filler which can be used as a material of the heat insulation film | membrane excellent in the heat insulation performance, and a heat insulation film | membrane.

本発明者らは、所定の形状で、Zrの一部が他の所定の原子で置換されたZrO系多孔質板状フィラーは、断熱性が従来よりも向上することを見出した。本発明によれば、以下に示す、多孔質板状フィラー、及び断熱膜が提供される。The inventors of the present invention have found that the heat insulating properties of the ZrO 2 porous plate-like filler having a predetermined shape and a part of Zr substituted with another predetermined atom are improved as compared with the prior art. According to the present invention, the following porous plate-like filler and heat insulating film are provided.

[1] アスペクト比が3以上の板状で、その最小長が0.1〜50μmであり、気孔率が20〜90%であり、4価の原子でZrの一部が置換され、OとZrのモル比が2<O/Zr<2.4の範囲であり、単一相である、ZrO系多孔質板状フィラー。[1] A plate having an aspect ratio of 3 or more, a minimum length of 0.1 to 50 μm, a porosity of 20 to 90%, a part of Zr is substituted with tetravalent atoms, and O and A ZrO 2 porous plate-like filler having a Zr molar ratio in the range of 2 <O / Zr <2.4 and a single phase.

[2] 組成式がZr1−x(Aは、Ti,Si,Ce,Hfからなる群から選ばれた少なくとも1種)であり、0<x<0.18である前記[1]に記載のZrO系多孔質板状フィラー。[2] The composition formula is Zr 1-x O 2 A x (A is at least one selected from the group consisting of Ti, Si, Ce, and Hf), and 0 <x <0.18 1] The ZrO 2 -based porous plate filler described in 1].

[3] 熱伝導率が1W/(m・K)以下である前記[1]または[2]に記載のZrO系多孔質板状フィラー。[3] The ZrO 2 porous plate filler according to [1] or [2], wherein the thermal conductivity is 1 W / (m · K) or less.

[4] 熱容量が250〜2500kJ/(m・K)である前記[1]〜[3]のいずれかに記載のZrO系多孔質板状フィラー。[4] The ZrO 2 porous plate filler according to any one of [1] to [3], wherein the heat capacity is 250 to 2500 kJ / (m 3 · K).

[5] 平均気孔径が10〜500nmの気孔を有する前記[1]〜[4]のいずれかに記載のZrO系多孔質板状フィラー。[5] The ZrO 2 porous plate filler according to any one of the above [1] to [4], which has pores having an average pore diameter of 10 to 500 nm.

[6] 前記[1]〜[5]のいずれかに記載のZrO系多孔質板状フィラーを含む断熱膜。[6] A heat insulating film containing the ZrO 2 -based porous plate filler according to any one of [1] to [5].

本発明のZrO系多孔質板状フィラーは、ZrO粒子のZrの一部が他の原子と置換されたものである。Zrの一部が他の原子と置換されたことにより結晶構造が複雑となり、フォノンが散乱しやすくなり熱伝導率が下がる。さらに、アスペクト比が3以上の板状で、その最小長が0.1〜50μmであり、気孔率が20〜90%であるため、本発明のZrO系多孔質板状フィラーは、断熱性能に優れた断熱膜の材料として用いることができる。The ZrO 2 porous plate-like filler of the present invention is one in which a part of Zr of ZrO 2 particles is substituted with other atoms. Substitution of a part of Zr with other atoms complicates the crystal structure, and phonons are easily scattered, resulting in a decrease in thermal conductivity. Further, since the plate has an aspect ratio of 3 or more, the minimum length is 0.1 to 50 μm, and the porosity is 20 to 90%, the ZrO 2 porous plate filler of the present invention has a heat insulation performance. It can be used as a material for a heat insulating film excellent in the above.

本発明の断熱膜は、本発明のZrO系多孔質板状フィラーを含むものである。そのため、本発明の断熱膜は、断熱性能に優れている。Insulation film of the present invention comprises a ZrO 2 based porous plate-like filler of the present invention. Therefore, the heat insulating film of the present invention is excellent in heat insulating performance.

本発明のZrO系多孔質板状フィラーの一実施形態を模式的に示す斜視図である。One embodiment of the ZrO 2 porous plate-like filler of the present invention is a perspective view schematically showing. 本発明の断熱膜の一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the heat insulation film | membrane of this invention.

以下、本発明の実施の形態について説明する。本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。   Embodiments of the present invention will be described below. The present invention is not limited to the following embodiments, and appropriate modifications and improvements are added to the following embodiments on the basis of ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. It should be understood that what has been described also falls within the scope of the invention.

[1]多孔質板状フィラー:
図1にZrO系多孔質板状フィラー1の一実施形態を示す。本発明のZrO系多孔質板状フィラー1は、アスペクト比が3以上の板状で、その最小長が0.1〜50μmであり、気孔率が20〜90%であり、4価の原子でZrの一部が置換され、OとZrのモル比が2<O/Zr<2.4の範囲であり、単一相である。ZrO系とは、ZrOのZrの一部が他の原子で置換されているものをいう。多孔質板状フィラー1を構成するZrO粒子のZrの一部が他の原子と置換されていることにより、結晶構造が複雑となりフォノンが散乱しやすくなる。このため本発明のZrO系多孔質板状フィラー1(以下、単に多孔質板状フィラーともいう)は、熱伝導率が低いZrの一部が他の原子と置換されていないZrO粒子よりも、さらに熱伝導率が低い。したがって、断熱材料として適している。
[1] Porous plate filler:
FIG. 1 shows an embodiment of a ZrO 2 -based porous plate filler 1. The ZrO 2 -based porous plate-like filler 1 of the present invention has a plate shape with an aspect ratio of 3 or more, a minimum length of 0.1 to 50 μm, a porosity of 20 to 90%, and a tetravalent atom. And Zr is partially substituted, and the molar ratio of O and Zr is in the range of 2 <O / Zr <2.4, which is a single phase. The ZrO 2 system refers to one in which a part of Zr of ZrO 2 is substituted with another atom. When a part of Zr of ZrO 2 particles constituting the porous plate-like filler 1 is replaced with other atoms, the crystal structure becomes complicated and phonons are easily scattered. Therefore, the ZrO 2 -based porous plate-like filler 1 of the present invention (hereinafter also simply referred to as a porous plate-like filler) is more than ZrO 2 particles in which a part of Zr having a low thermal conductivity is not substituted with other atoms. However, the thermal conductivity is lower. Therefore, it is suitable as a heat insulating material.

本明細書において、アスペクト比とは、多孔質板状フィラー1の最大長/最小長で定義される。ここで最大長とは、粒子(多孔質板状フィラー1)を一組の平行な面ではさんだときに最大となる長さである。また、最小長とは同様に粒子を一組の平行な面ではさんだときに最小となる長さのことであり、平板状である場合はいわゆる厚さに相当する。多孔質板状フィラー1の板状とは、アスペクト比が3以上でその最小長が0.1〜50μmであるものであれば、平板状(平らで湾曲していない板)のみならず、湾曲した板状のものや、厚み(最小長)が一定ではない板状のものも含まれる。また、繊維状、針状、塊状等の形状でもよい。このうち、多孔質板状フィラー1は、平板状であることが好ましい。また、板の面形状は、正方形、四角形、三角形、六角形、円形等のいずれの形状であってもよい。つまり、多孔質板状フィラー1は、平板状であれば、どのような形状であってもよい。   In this specification, the aspect ratio is defined as the maximum length / minimum length of the porous plate-like filler 1. Here, the maximum length is the maximum length when the particles (porous plate filler 1) are sandwiched between a pair of parallel surfaces. Similarly, the minimum length is the minimum length when the particles are sandwiched between a pair of parallel surfaces, and corresponds to a so-called thickness in the case of a flat plate shape. The plate shape of the porous plate filler 1 is not only flat plate (flat and uncurved plate) but also curved as long as the aspect ratio is 3 or more and the minimum length is 0.1 to 50 μm. And a plate-like material whose thickness (minimum length) is not constant are also included. Further, the shape may be a fiber shape, a needle shape, a lump shape, or the like. Among these, it is preferable that the porous plate-like filler 1 has a flat plate shape. Further, the surface shape of the plate may be any shape such as a square, a square, a triangle, a hexagon, and a circle. That is, the porous plate-like filler 1 may have any shape as long as it is flat.

多孔質板状フィラー1のアスペクト比は、3以上であることが好ましい。大きければ大きいほど断熱膜3を形成した際に、伝熱経路が屈折して長くなり断熱膜3の熱伝導率が低くなる。しかしながら、アスペクト比が大きすぎると、製造上の取扱いが困難となり、歩留まりが悪くなることがある。例えば、アスペクト比を大きくするために最小長を短くすると、強度を十分なものとすることができなくなることがある。一方、最大長を長くすると、多孔質板状フィラー1が大きくなり、破損することがある。このためアスペクト比は、より好ましくは3以上50以下、さらに好ましくは3.5以上40以下、最も好ましくは4以上30以下である。   The aspect ratio of the porous plate filler 1 is preferably 3 or more. The larger the heat insulation film 3 is, the larger the heat insulation path is refracted and lengthened, and the heat conductivity of the heat insulation film 3 is lowered. However, when the aspect ratio is too large, handling in manufacturing becomes difficult, and the yield may be deteriorated. For example, if the minimum length is shortened to increase the aspect ratio, the strength may not be sufficient. On the other hand, if the maximum length is increased, the porous plate-like filler 1 becomes large and may be damaged. Therefore, the aspect ratio is more preferably 3 to 50, further preferably 3.5 to 40, and most preferably 4 to 30.

多孔質板状フィラー1は、気孔率が20〜90%であることが好ましく、40〜85%であることがより好ましく、50〜80%であることがさらに好ましい。気孔率を20%以上とすることにより、多孔質板状フィラー1の熱伝導率を低くすることができ、気孔率を90%以下とすることにより、強度を確保することができる。本明細書において、気孔率は、次の式により求めたものである。
気孔率(%)=(1−(見かけ粒子密度÷真密度))×100
上記の式において、見かけ粒子密度は、水銀を用いた液浸法により測定する。また、真密度は、多孔質板状フィラー1を十分に粉砕した後、ピクノメータ法で測定する。
The porous plate-like filler 1 preferably has a porosity of 20 to 90%, more preferably 40 to 85%, and still more preferably 50 to 80%. By setting the porosity to 20% or more, the thermal conductivity of the porous plate-like filler 1 can be lowered, and by setting the porosity to 90% or less, the strength can be ensured. In the present specification, the porosity is determined by the following formula.
Porosity (%) = (1− (apparent particle density ÷ true density)) × 100
In the above formula, the apparent particle density is measured by an immersion method using mercury. The true density is measured by a pycnometer method after sufficiently pulverizing the porous plate filler 1.

多孔質板状フィラー1は、平均気孔径が10〜500nmであることが好ましく、10〜300nmであることが更に好ましく、10〜100nmであることが特に好ましい。上記平均気孔径は、小さいほど熱伝導率が低くなるため好ましいが、製造コストが高くなるおそれがある。一方、500nm超であると、熱伝導率が高くなりすぎるおそれがある。ここで、本明細書において「多孔質板状フィラーの平均気孔径」は、0.1〜100nmの範囲ではガス吸着法を用い、100nm〜500μmの範囲では水銀ポロシメーター(水銀圧入法)を用いて測定した値である。   The porous plate-like filler 1 preferably has an average pore diameter of 10 to 500 nm, more preferably 10 to 300 nm, and particularly preferably 10 to 100 nm. The average pore diameter is preferably smaller as the thermal conductivity is lower, but the production cost may be increased. On the other hand, if it exceeds 500 nm, the thermal conductivity may be too high. Here, in this specification, the “average pore diameter of the porous plate-like filler” is a gas adsorption method in the range of 0.1 to 100 nm, and a mercury porosimeter (mercury intrusion method) in the range of 100 nm to 500 μm. It is a measured value.

このような多孔質板状フィラー1が、後述するように断熱膜3に含まれることにより、断熱効果を向上させることができる。   By including such a porous plate-like filler 1 in the heat insulating film 3 as described later, the heat insulating effect can be improved.

多孔質板状フィラー1を構成するZrO粒子は、平均粒子径が10nm〜1μmであることが好ましく、10nm〜500nmであることが更に好ましく、10nm〜100nmであることが特に好ましい。上記平均粒子径は、小さいほど熱伝導率が低くなるために好ましいが、10nm未満であると製造コストが高くなるおそれがある。一方、1μm超であると、熱伝導率が高くなるおそれがある。なお、ZrO粒子の平均粒子径は、多孔質板状フィラーの微構造(FE−SEM)を観察し、粒子一粒の大きさを画像処理で測定し、10個の平均値として求めることができる。The ZrO 2 particles constituting the porous plate-like filler 1 preferably have an average particle diameter of 10 nm to 1 μm, more preferably 10 nm to 500 nm, and particularly preferably 10 nm to 100 nm. The average particle size is preferably as the average particle size is small because the thermal conductivity is low, but if it is less than 10 nm, the production cost may be high. On the other hand, if it exceeds 1 μm, the thermal conductivity may increase. The average particle diameter of the ZrO 2 particles observes the microstructure of the porous plate-like filler (FE-SEM), measuring the size of a grain particles in the image processing, be determined as 10 Mean value it can.

多孔質板状フィラー1の最小長は、0.1〜50μmであり、より好ましくは0.5〜20μmであり、さらに好ましくは2〜15μm、最も好ましくは2〜10μmである。多孔質板状フィラー1の最小長が0.1μmより短いと、製造工程中に多孔質板状フィラー1の形状を保つことが困難であり、多孔質板状フィラー1の最小長が50μmより長いと、断熱膜3に含ませた際に多孔質板状フィラー1の積層数が減るため、伝熱経路が直線に近くなることで短くなり、断熱膜3の熱伝導率が高くなる。また、多孔質板状フィラー1の最小長が短いと、断熱膜3を薄くすることができる。すなわち、薄い断熱膜3であっても、断熱効果を向上させることができる。   The minimum length of the porous platy filler 1 is 0.1 to 50 μm, more preferably 0.5 to 20 μm, still more preferably 2 to 15 μm, and most preferably 2 to 10 μm. If the minimum length of the porous plate-like filler 1 is shorter than 0.1 μm, it is difficult to maintain the shape of the porous plate-like filler 1 during the manufacturing process, and the minimum length of the porous plate-like filler 1 is longer than 50 μm. When the heat insulating film 3 is included, the number of laminated porous plate-like fillers 1 is reduced. Therefore, the heat transfer path is shortened by being close to a straight line, and the heat conductivity of the heat insulating film 3 is increased. Moreover, when the minimum length of the porous plate-like filler 1 is short, the heat insulating film 3 can be made thin. That is, even if it is the thin heat insulation film 3, the heat insulation effect can be improved.

多孔質板状フィラー1は、熱伝導率が1W/(m・K)以下であることが好ましい。熱伝導率は、より好ましくは0.7W/(m・K)以下、さらに好ましくは0.5W/(m・K)以下、最も好ましくは0.3W/(m・K)以下である。このような熱伝導率の多孔質板状フィラー1が断熱膜3に含まれると、断熱効果を向上させることができる。   The porous plate-like filler 1 preferably has a thermal conductivity of 1 W / (m · K) or less. The thermal conductivity is more preferably 0.7 W / (m · K) or less, further preferably 0.5 W / (m · K) or less, and most preferably 0.3 W / (m · K) or less. When the porous plate-like filler 1 having such a thermal conductivity is included in the heat insulating film 3, the heat insulating effect can be improved.

「多孔質板状フィラーの熱伝導率」は、以下のようにして算出される値である。まず、水銀ポロシメーターで多孔質板状フィラー1の密度を測定する。次に、DSC法で多孔質板状フィラー1の比熱を測定する。次に、光交流法で多孔質板状フィラー1の熱拡散率を測定する。その後、熱拡散率×比熱×密度=熱伝導率の関係式から、多孔質板状フィラー1の熱伝導率を算出する。   The “thermal conductivity of the porous plate filler” is a value calculated as follows. First, the density of the porous plate filler 1 is measured with a mercury porosimeter. Next, the specific heat of the porous plate filler 1 is measured by DSC method. Next, the thermal diffusivity of the porous plate filler 1 is measured by an optical alternating current method. Thereafter, the thermal conductivity of the porous plate filler 1 is calculated from the relational expression of thermal diffusivity × specific heat × density = thermal conductivity.

多孔質板状フィラー1は、熱容量が250〜2500kJ/(m・K)であることが好ましい。熱容量は、より好ましくは250〜2300kJ/(m・K)、さらに好ましくは250〜2000kJ/(m・K)である。このような範囲の熱容量の多孔質板状フィラー1が断熱膜3に含まれると、断熱効果を向上させることができる。なお、熱容量は気孔率によって変化するが、ZrO系多孔質板状フィラー1は、気孔率が20%の場合に2500kJ/(m・K)程度、気孔率90%の場合に250kJ/(m・K)程度となる。また、本明細書において、熱容量は、一般的には容積比熱と呼ばれる単位体積当たりで議論することとするため、単位はkJ/(m・K)である。The porous plate-like filler 1 preferably has a heat capacity of 250 to 2500 kJ / (m 3 · K). The heat capacity is more preferably 250 to 2300 kJ / (m 3 · K), and further preferably 250 to 2000 kJ / (m 3 · K). When the porous plate-like filler 1 having a heat capacity in such a range is included in the heat insulating film 3, the heat insulating effect can be improved. Although the heat capacity varies depending on the porosity, the ZrO 2 porous plate-like filler 1 has a porosity of about 2500 kJ / (m 3 · K) when the porosity is 20% and 250 kJ / (when the porosity is 90%. the m 3 · K) degree. In this specification, since the heat capacity is generally discussed per unit volume called volume specific heat, the unit is kJ / (m 3 · K).

「多孔質板状フィラーの熱容量」は、以下のようにして算出される値である。DSC法により比熱を測定し、比熱、密度(見かけ粒子密度)の積を多孔質板状フィラー1の熱容量とする。見かけ粒子密度は、水銀を用いた液浸法により測定する。   “The heat capacity of the porous plate filler” is a value calculated as follows. Specific heat is measured by the DSC method, and the product of specific heat and density (apparent particle density) is defined as the heat capacity of the porous plate-like filler 1. The apparent particle density is measured by an immersion method using mercury.

以下、Zrの一部が他の原子と置換されているZrO系多孔質板状フィラー1の実施形態についてさらに説明する。本発明のZrO系多孔質板状フィラー1は、Zrの一部が他の原子と置換されていることにより、OとZrのモル比が2<O/Zr<2.4の範囲であることが好ましい。より好ましくは、2.01<O/Zr<2.3、さらに好ましくは、2.02<O/Zr<2.25である。Zrの一部が他の原子と置換されていることにより結晶中のZrが減り、OとZrのモル比O/Zrが2からずれる。これにより、結晶構造が複雑となりフォノンが散乱しやすくなり、熱伝導率が下がる。2<O/Zrであることにより、熱伝導率低下の効果が得られやすい。一方、O/Zr<2.4とすることにより、ZrOの低熱伝導性を生かしつつさらに低熱伝導とすることができる。Hereinafter, embodiments of the ZrO 2 -based porous plate filler 1 in which a part of Zr is substituted with other atoms will be further described. The ZrO 2 porous plate-like filler 1 of the present invention has a molar ratio of O and Zr in the range of 2 <O / Zr <2.4 because part of Zr is substituted with other atoms. It is preferable. More preferably, 2.01 <O / Zr <2.3, and still more preferably 2.02 <O / Zr <2.25. When a part of Zr is substituted with another atom, Zr in the crystal decreases, and the molar ratio O / Zr of O and Zr deviates from 2. As a result, the crystal structure becomes complicated, phonons are easily scattered, and the thermal conductivity is lowered. By 2 <O / Zr, the effect of lowering the thermal conductivity is easily obtained. On the other hand, by setting O / Zr <2.4, it is possible to further reduce the thermal conductivity while taking advantage of the low thermal conductivity of ZrO 2 .

ZrO系多孔質板状フィラー1は、具体的には、組成式がZr1−x(Aは、Ti,Si,Ce,Hfからなる群から選ばれた少なくとも1種)であり、0<x<0.18である。A(以下、置換原子ともいう)は、Zrと置換が容易な原子であり、Zrと価数が等しい4価の原子であり、結晶内で酸素欠陥は発生しない。Aは、1種でも、2種以上であってもよい。Aが2種以上の場合(A1、A2・・・)、それぞれの比率x1、x2・・・を足したものがxである(x=x1+x2+・・・)。置換原子として上記のような原子をZrOに導入することにより、Zr原子と置換原子との置換が起こり、O/Zrが2よりも大きくなる。それに伴い結晶構造の乱れが発生し、フォノンが散乱されやすくなる。置換原子を多く入れすぎると、結晶構造が乱れすぎ、高熱伝導率な異相が生じ、高熱伝導率化することがある。Specifically, the ZrO 2 -based porous plate-like filler 1 has a composition formula of Zr 1-x O 2 A x (A is at least one selected from the group consisting of Ti, Si, Ce, and Hf). Yes, 0 <x <0.18. A (hereinafter also referred to as a substituted atom) is an atom that can be easily substituted with Zr, is a tetravalent atom having the same valence as Zr, and does not generate oxygen defects in the crystal. A may be one type or two or more types. When A is 2 or more types (A1, A2,...), The sum of the respective ratios x1, x2,... Is x (x = x1 + x2 +...). By introducing an atom as described above as a substitution atom into ZrO 2 , the substitution between the Zr atom and the substitution atom occurs, and O / Zr becomes larger than 2. As a result, disorder of the crystal structure occurs and phonons are easily scattered. If too many substitution atoms are added, the crystal structure is too disordered, a heterogeneous phase having a high thermal conductivity is generated, and the thermal conductivity may be increased.

置換原子の含有割合は、0<x<0.18であることが好ましく、0.005<x<0.13であることが更に好ましく、0.01<x<0.11であることが特に好ましい。上記範囲内であることにより、ZrOの特性を維持したまま、熱伝導率をさらに低減できるという利点がある。置換原子の含有割合が上記下限値未満であると、熱伝導率の低減効果が不十分であるおそれがある。上記上限値超であると、ZrOの有する耐熱性や強度などの材料特性において不具合が生じるおそれがある。The content ratio of the substituted atoms is preferably 0 <x <0.18, more preferably 0.005 <x <0.13, and particularly preferably 0.01 <x <0.11. preferable. By being in the above range, there is an advantage that the thermal conductivity can be further reduced while maintaining the characteristics of ZrO 2 . There exists a possibility that the reduction effect of thermal conductivity may be inadequate that the content rate of a substituted atom is less than the said lower limit. If it exceeds the above upper limit value, there is a possibility that problems may occur in the material properties such as heat resistance and strength of ZrO 2 .

なお、化学分析(JIS R1603)によりZr、O、置換原子の割合を測定し、その結果より、O/Zr(モル比)を計算して求める。   In addition, the ratio of Zr, O, and a substituted atom is measured by chemical analysis (JIS R1603), and O / Zr (molar ratio) is calculated from the result.

置換原子は、ZrO粒子内に固溶している。このようにZrO粒子内に置換原子が固溶すると、更に熱伝導率を低くすることができる。The substitution atoms are dissolved in the ZrO 2 particles. Thus, when a substituted atom dissolves in ZrO 2 particles, the thermal conductivity can be further lowered.

なお、「ZrO粒子内に置換原子が固溶する」とは、ZrO粒子内に置換原子を構成する元素の一部がZrO粒子の結晶構造内に存在している状態であることを意味する。例えば、ZrO粒子の結晶構造中のZrのサイトに、置換原子であるTiOのTiが置換することを意味する。このような状態であることは、多孔質板状フィラー1の化学分析を行い、構成する元素を特定すると共に、X線回折による結晶構造解析をすることで確認することができる。The "substituted atoms is dissolved in ZrO 2 in particles" that part of the elements constituting the substituted atom ZrO 2 in the particle is in a state that is present in the crystal structure of ZrO 2 particles means. For example, it means that Ti of TiO 2 as a substitution atom is substituted at the Zr site in the crystal structure of the ZrO 2 particle. Such a state can be confirmed by conducting a chemical analysis of the porous plate-like filler 1 to identify constituent elements and analyzing the crystal structure by X-ray diffraction.

置換原子が2種類である場合、これらの体積比の値は、1/9〜9であることが好ましい。上記比の値が上記範囲外であると、両者を共添加する効果が認められなくなる場合がある。   When there are two kinds of substituent atoms, the value of these volume ratios is preferably 1/9 to 9. If the value of the ratio is outside the above range, the effect of adding both may not be recognized.

ZrO系多孔質板状フィラー1は、多孔質板状フィラー1の結晶構造が単一であるという意味である。例えば、X線解析を行ったときにZrOのみが検出され、添加剤(後述)のTiOなどが検出されない状態をいう。つまり、置換できる限界以下の添加剤が添加されている状態である。単一相であると、熱伝導率の高いTiOなどの結晶がなく、熱伝導率の低いZr(1−x)(2−x)だけで構成されるため、熱伝導率が低くなる。The ZrO 2 -based porous plate filler 1 means that the porous plate filler 1 has a single crystal structure. For example, it means a state where only ZrO 2 is detected when X-ray analysis is performed, and TiO 2 as an additive (described later) is not detected. That is, it is a state where an additive below the limit that can be replaced is added. Since it is composed of only Zr (1-x) O (2-x) A x having a low thermal conductivity without a crystal such as TiO 2 having a high thermal conductivity when it is a single phase, the thermal conductivity is Lower.

置換原子を含む添加剤をZrOに添加し、熱処理することにより、置換原子をZrO内に導入することができる。置換原子を含む添加剤としては、TiO、SiO、CeO、HfOが挙げられる。添加剤の直径は、ZrO粒子の直径よりも小さいことが好ましい。このようにすることで、ZrOの特性を維持し易くなるという利点がある。なお、「添加剤の直径」とは、添加剤の平均粒子径ということもできる。また、「ZrO粒子の直径」とは、ZrO粒子の平均粒子径ということもできる。An additive comprising a substitution atoms is added to ZrO 2, by heat treatment, can be introduced substitutions atoms in ZrO 2. Examples of the additive containing a substituent atom include TiO 2 , SiO 2 , CeO 2 , and HfO 2 . The diameter of the additive is preferably smaller than the diameter of the ZrO 2 particles. In this way, there is an advantage that tends to maintain the characteristics of ZrO 2. The “additive diameter” can also be referred to as the average particle diameter of the additive. The “diameter of ZrO 2 particles” can also be referred to as an average particle diameter of ZrO 2 particles.

添加剤は、平均粒子径が0.1〜300nmであることが好ましく、0.1〜100nmであることが更に好ましく、0.1〜50nmであることが特に好ましい。上記平均粒子径は、小さいほど好ましいが0.1nm未満であると製造コストが高くなるおそれがある。一方、300nm超であると、焼成時にZrOと添加剤との接触が十分に得られないことで反応が不十分になる可能性がある。また、ZrOの有する耐熱性や強度などの材料特性において不具合が生じるおそれがある。つまり、耐熱性が低くなったり、強度が低下したりするおそれがある。なお、「添加剤の平均粒子径」は、上述したZrO粒子の平均粒子径と同様にして測定した値である。The additive preferably has an average particle size of 0.1 to 300 nm, more preferably 0.1 to 100 nm, and particularly preferably 0.1 to 50 nm. The average particle diameter is preferably as small as possible, but if it is less than 0.1 nm, the production cost may increase. On the other hand, if it exceeds 300 nm, there is a possibility that the reaction may be insufficient due to insufficient contact between ZrO 2 and the additive during firing. In addition, there is a risk that defects may occur in material properties such as heat resistance and strength of ZrO 2 . That is, there is a possibility that the heat resistance is lowered or the strength is lowered. The “average particle diameter of the additive” is a value measured in the same manner as the average particle diameter of the ZrO 2 particles described above.

[2]多孔質板状フィラーの製造方法:
本発明の多孔質板状フィラー1の製造方法の一の実施形態は、グリーンシート形成用スラリーを調製するスラリー調製工程と、グリーンシートを形成するグリーンシート形成工程と、焼成体を作製する焼成体作製工程と、焼成体を解砕して多孔質板状フィラー1を得る解砕工程と、を有する。上記スラリー調製工程は、ZrO粒子、置換原子を含む添加剤、及び造孔材を含むグリーンシート形成用スラリーを調製する工程である。上記グリーンシート形成工程は、グリーンシート形成用スラリーを膜状に形成してグリーンシートを形成する工程である。上記焼成体作製工程は、形成したグリーンシートを焼成して膜状の焼成体を作製する工程である。上記解砕工程は、焼成体を解砕して多孔質板状フィラー1を得る工程である。
[2] Method for producing porous plate filler:
One embodiment of the method for producing the porous plate-like filler 1 of the present invention includes a slurry preparing step for preparing a slurry for forming a green sheet, a green sheet forming step for forming a green sheet, and a fired body for producing a fired body. A production step and a crushing step of crushing the fired body to obtain the porous plate-like filler 1. The slurry preparation step is a step of preparing a slurry for forming a green sheet containing ZrO 2 particles, an additive containing a substituent atom, and a pore former. The green sheet forming step is a step of forming a green sheet by forming a slurry for forming a green sheet into a film shape. The fired body preparation step is a step of baking the formed green sheet to produce a film-like fired body. The crushing step is a step of obtaining the porous plate filler 1 by crushing the fired body.

このような多孔質板状フィラー1の製造方法は、上記各工程を有するため、断熱性能に優れた断熱膜の材料として用いることができる多孔質板状フィラー1を製造することができる。   Since the manufacturing method of such a porous plate-shaped filler 1 has said each process, the porous plate-shaped filler 1 which can be used as a material of the heat insulation film excellent in heat insulation performance can be manufactured.

[2−1]スラリー調製工程:
グリーンシート形成用スラリーに含まれるZrO粒子及び置換原子は、上述した本発明の多孔質板状フィラー1のZrO粒子及び置換原子と同様のものである。
[2-1] Slurry preparation process:
Green ZrO 2 particles and substituted atoms contained in the sheet-forming slurry is the same as the porous plate ZrO 2 particles and substituted atoms of the filler of the present invention described above.

造孔材は、焼成体作製工程において消失して複数の気孔を形成するものであれば特に制限はない。造孔材としては、例えば、カーボンブラック、ラテックス粒子、メラミン樹脂粒子、ポリメチルメタクリレート(PMMA)粒子、ポリエチレン粒子、ポリスチレン粒子、発泡樹脂、吸水性樹脂等を挙げることができる。これらの中でも、粒子サイズが小さく、多孔質板状フィラー1に小さな気孔を形成しやすいという利点があるため、カーボンブラックが好ましい。   The pore former is not particularly limited as long as it is a material that disappears and forms a plurality of pores in the fired body manufacturing step. Examples of the pore former include carbon black, latex particles, melamine resin particles, polymethyl methacrylate (PMMA) particles, polyethylene particles, polystyrene particles, foamed resins, water absorbent resins and the like. Among these, carbon black is preferable because of the advantage that the particle size is small and small pores are easily formed in the porous plate-like filler 1.

グリーンシート形成用スラリーには、ZrO粒子、置換原子を含む添加剤、及び造孔材以外に、バインダー、可塑剤、溶剤などのその他の成分を含有させることができる。Zrの一部を置換原子で置換するために、置換原子を含む添加剤は、結晶性が悪い方が好ましく、例えば、非晶質のTiOなどを用いることが好ましいが、これに限定されるものではない。The green sheet forming slurry may contain other components such as a binder, a plasticizer, and a solvent in addition to the ZrO 2 particles, the additive containing a substituent atom, and the pore former. In order to replace a part of Zr with a substituent atom, the additive containing a substituent atom preferably has poor crystallinity, for example, amorphous TiO 2 is preferably used, but is not limited thereto. It is not a thing.

バインダーとしては、ポリビニルブチラール樹脂(PVB)、ポリビニルアルコール樹脂・ポリ酢酸ビニル樹脂・ポリアクリル樹脂等を挙げることができる。可塑剤としては、フタル酸ジブチル(DBP)、フタル酸ジオクチル(DOP)等を挙げることができる。溶剤としては、キシレン、1−ブタノール等を挙げることができる。   Examples of the binder include polyvinyl butyral resin (PVB), polyvinyl alcohol resin / polyvinyl acetate resin / polyacrylic resin, and the like. Examples of the plasticizer include dibutyl phthalate (DBP) and dioctyl phthalate (DOP). Examples of the solvent include xylene and 1-butanol.

グリーンシート形成用スラリー中のZrO粒子の含有割合は、5〜20体積%であることが好ましい。The content ratio of ZrO 2 particles in the green sheet forming slurry is preferably 5 to 20% by volume.

グリーンシート形成用スラリー中の添加剤(複数導入する場合は、すべての合計)の含有割合は、0.1〜5体積%であることが好ましい。   It is preferable that the content rate of the additive (all the sum total when introduce | transducing two or more) in the slurry for green sheet formation is 0.1-5 volume%.

グリーンシート形成用スラリー中の造孔材の含有割合は、2〜20体積%であることが好ましい。   The content of the pore former in the green sheet forming slurry is preferably 2 to 20% by volume.

グリーンシート形成用スラリー中の「その他の成分」の含有割合は、70〜90体積%であることが好ましい。   The content ratio of “other components” in the slurry for forming a green sheet is preferably 70 to 90% by volume.

グリーンシート形成用スラリーの粘度は、0.1〜10Pa・sが好ましい。なお、このような粘度とするには、真空脱泡処理を施す方法が挙げられる。   The viscosity of the slurry for forming a green sheet is preferably 0.1 to 10 Pa · s. In addition, the method of performing a vacuum defoaming process is mentioned to make such a viscosity.

[2−2]グリーンシート形成工程:
グリーンシートは、焼成後の厚さが10〜50μmとなるような膜状であることが好ましい。
[2-2] Green sheet forming step:
The green sheet is preferably in the form of a film having a thickness after firing of 10 to 50 μm.

グリーンシート形成用スラリーを膜状に形成する方法としては、従来公知の方法を採用することができるが、例えば、ドクターブレード装置を用いた方法を採用することができる。   As a method of forming the green sheet forming slurry into a film shape, a conventionally known method can be adopted. For example, a method using a doctor blade device can be adopted.

[2−3]焼成体作製工程:
グリーンシートの焼成条件は、適宜設定することができるが、例えば、大気中にて800〜2300℃で0.5〜20時間とすることが好ましく、800〜1800℃で5〜20時間であることが更に好ましく、800〜1300℃で5〜20時間であることが特に好ましい。
[2-3] Firing body manufacturing process:
The firing conditions of the green sheet can be appropriately set. For example, it is preferably 0.5 to 20 hours at 800 to 2300 ° C. in the air, and 5 to 20 hours at 800 to 1800 ° C. Is more preferable, and it is particularly preferable that the temperature is 800 to 1300 ° C. for 5 to 20 hours.

[2−4]解砕工程:
焼成体を解砕する方法としては、例えば、乾式ビーズミル、ローラーミルなどを用いて焼成体を室温で解砕することができる。特に、「アスペクト比が3以上の板状で、最小長が0.1〜50μmである」多孔質粒子を得るためには、気流式分級機を用い、整粒(分級)することが好ましい。
[2-4] Crushing step:
As a method for crushing the fired body, for example, the fired body can be crushed at room temperature using a dry bead mill, a roller mill or the like. In particular, in order to obtain a porous particle “a plate having an aspect ratio of 3 or more and a minimum length of 0.1 to 50 μm”, it is preferable to use an airflow classifier to perform sizing (classification).

[3]断熱膜:
本発明の断熱膜3は、本発明の多孔質板状フィラー1を材料として含むものである。このような断熱膜3は、断熱性能に優れている。
[3] Thermal insulation film:
The heat insulating film 3 of the present invention includes the porous plate-like filler 1 of the present invention as a material. Such a heat insulating film 3 is excellent in heat insulating performance.

図2を用いて、断熱膜3を説明する。図2は、本発明の断熱膜の一実施形態を模式的に示す膜厚方向に平行な断面図である。断熱膜3は、本発明の一実施形態の多孔質板状フィラー1と、この多孔質板状フィラー1を分散させるマトリックス3mと、を有している。つまり、多孔質板状フィラー1が、この多孔質板状フィラー1を結合するためのマトリックス3mに分散して配置されている。マトリックス3mとは、多孔質板状フィラー1の周囲やこれらの粒子間に存在する成分であり、これらの粒子間を結合する成分である。   The heat insulation film | membrane 3 is demonstrated using FIG. FIG. 2 is a cross-sectional view parallel to the film thickness direction schematically showing one embodiment of the heat insulating film of the present invention. The heat insulating film 3 includes the porous plate-like filler 1 according to an embodiment of the present invention and a matrix 3m in which the porous plate-like filler 1 is dispersed. That is, the porous plate-like filler 1 is disposed in a dispersed manner in the matrix 3m for bonding the porous plate-like filler 1. The matrix 3m is a component that exists around the porous plate-like filler 1 and between these particles, and is a component that binds between these particles.

本発明の断熱膜3は、多孔質板状フィラー1が層状に配置(積層)されていることが好ましい。ここで言う層状に配置とは、多孔質板状フィラー1の最小長の方向が、断熱膜3の厚さ方向と平行になる方向に、多数の多孔質板状フィラー1が配向した状態でマトリックス3m中に存在することを言う。なお、このとき、多孔質板状フィラー1の位置(重心の位置)は、断熱膜3のX、Y、Z方向(ただし、Z方向を厚さ(膜厚)方向とする)に整然と周期的に配置される必要はなく、ランダムに存在していても問題ない。積層数は1以上であれば問題ないが、積層数が多い方が好ましく、5以上であることが望ましい。多孔質板状フィラー1が断熱膜3の中で、層状に積層されていることにより、伝熱経路が屈折して長くなり、断熱効果を向上させることができる。特に、多孔質板状フィラー1の位置は、図2に示すように、Z方向に整然と並んでいない方が(互い違いにずれている方が)、伝熱経路がより屈折して長くなるため、好ましい。   In the heat insulating film 3 of the present invention, the porous plate-like filler 1 is preferably arranged (laminated) in layers. The term “layered arrangement” as used herein refers to a matrix in which a number of porous plate-like fillers 1 are oriented in a direction in which the minimum length of the porous plate-like filler 1 is parallel to the thickness direction of the heat insulating film 3. It says that it exists in 3m. At this time, the position (position of the center of gravity) of the porous plate filler 1 is regularly and periodically arranged in the X, Y, and Z directions of the heat insulating film 3 (where the Z direction is the thickness (film thickness) direction). It is not necessary to be arranged in the space, and there is no problem even if they are present at random. There is no problem as long as the number of stacked layers is 1 or more. By laminating the porous plate-like filler 1 in the heat insulating film 3, the heat transfer path is refracted and lengthened, and the heat insulating effect can be improved. In particular, as shown in FIG. 2, the position of the porous plate-like filler 1 is not aligned in the Z direction (which is shifted alternately), because the heat transfer path is refracted and becomes longer, preferable.

図2に示すように、熱伝導率が高いマトリックス3m部分が主な伝熱経路となるが、本発明の断熱膜3は、多孔質板状フィラー1を含み、伝熱経路は、熱を伝えたくない方向(膜厚方向)に対して迂回が多くなる。すなわち、伝熱経路の長さが長くなるため、熱伝導率を低くすることができる。また、マトリックス3mを介した多孔質板状フィラー1間の結合面積は、球状フィラーよりも広くなるため、断熱膜全体の強度が高められ、エロージョンや剥離などが起こりにくくなる。   As shown in FIG. 2, the matrix 3m portion having a high thermal conductivity is the main heat transfer path, but the heat insulating film 3 of the present invention includes the porous plate-like filler 1, and the heat transfer path transfers heat. There are many detours in the direction (thickness direction) that you do not want. That is, since the length of the heat transfer path is increased, the thermal conductivity can be lowered. Further, since the bonding area between the porous plate-like fillers 1 through the matrix 3m is wider than that of the spherical filler, the strength of the entire heat insulating film is increased, and erosion and peeling are less likely to occur.

本発明の断熱膜3は、マトリックス3mとして、セラミックス、ガラス、及び樹脂の少なくとも一種を含むことが好ましい。耐熱性が良好となるという観点から、マトリックス3mとしてはセラミックスまたはガラスがより好ましい。より具体的には、マトリックスとなる材料としては、例えば、シリカ、アルミナ、ムライト、ジルコニア、チタニア、窒化けい素、酸窒化けい素、炭化けい素、酸炭化けい素、カルシウムシリケート、カルシウムアルミネート、カルシウムアルミノシリケート、リン酸アルミニウム、アルミノシリケート、カリウムアルミノシリケート、ガラス等を挙げることができる。これらは熱伝導率が低くなるという観点から非晶質であることが好ましい。あるいは、マトリックス3mの材料がセラミックスの場合は、粒径が500nm以下の微粒子の集合体であることが望ましい。粒径が500nm以下の微粒子の集合体をマトリックス3mとすることにより、熱伝導率を更に低くすることができる。また、マトリックス3mとなる材料が樹脂の場合は、シリコーン樹脂、ポリイミド樹脂、ポリアミド樹脂、アクリル樹脂、エポキシ樹脂等を挙げることができる。   The heat insulating film 3 of the present invention preferably contains at least one of ceramics, glass, and resin as the matrix 3m. From the viewpoint of good heat resistance, the matrix 3m is more preferably ceramics or glass. More specifically, examples of the matrix material include silica, alumina, mullite, zirconia, titania, silicon nitride, silicon oxynitride, silicon carbide, silicon oxycarbide, calcium silicate, calcium aluminate, Calcium aluminosilicate, aluminum phosphate, aluminosilicate, potassium aluminosilicate, glass and the like can be mentioned. These are preferably amorphous from the viewpoint of low thermal conductivity. Or when the material of the matrix 3m is ceramics, it is desirable to be an aggregate of fine particles having a particle size of 500 nm or less. By making an aggregate of fine particles having a particle diameter of 500 nm or less into the matrix 3 m, the thermal conductivity can be further lowered. Moreover, when the material used as the matrix 3m is resin, a silicone resin, a polyimide resin, a polyamide resin, an acrylic resin, an epoxy resin, etc. can be mentioned.

断熱膜3は、この断熱膜3の全体の気孔率が10〜90%であり、マトリックス3mの気孔率が0〜70%であることが好ましい。   The heat insulating film 3 preferably has an overall porosity of 10 to 90%, and the matrix 3m has a porosity of 0 to 70%.

断熱膜3は、厚さが0.1〜5mmであることが好ましい。このような厚さとすることにより、断熱膜3によって被覆される基材の特性に悪影響を与えることなく、断熱効果を得ることができる。なお、断熱膜3の厚さは、その用途に応じて上記範囲内で適宜選択することができる。   The heat insulating film 3 preferably has a thickness of 0.1 to 5 mm. By setting it as such thickness, the heat insulation effect can be acquired, without having a bad influence on the characteristic of the base material coat | covered with the heat insulation film | membrane 3. In addition, the thickness of the heat insulation film | membrane 3 can be suitably selected within the said range according to the use.

断熱膜3は、熱容量が1500kJ/(m・K)以下であることが好ましく、1300kJ/(m・K)以下であることがより好ましく、1000kJ/(m・K)以下であることが更に好ましく、500kJ/(m・K)以下であることが最も好ましい。このように低熱容量であると、例えば、エンジン燃焼室に断熱膜3を形成した場合、燃料の排気後、エンジン燃焼室内のガス温度を低下させ易くなる。これにより、エンジンの異常燃焼などの問題を抑制することができる。Insulation film 3 is preferably heat capacity is 1500kJ / (m 3 · K) or less, more preferably 1300kJ / (m 3 · K) or less, 1000kJ / (m 3 · K ) that less is Is more preferable, and most preferably 500 kJ / (m 3 · K) or less. When the heat insulating film 3 is formed in the engine combustion chamber with such a low heat capacity, for example, the gas temperature in the engine combustion chamber is easily lowered after the fuel is exhausted. Thereby, problems such as abnormal combustion of the engine can be suppressed.

断熱膜3は、熱伝導率が1.5W/(m・K)以下であることが好ましく、1W/(m・K)以下が更に好ましく、0.5W/(m・K)以下が特に好ましい。このように低熱伝導率であることにより、伝熱を抑制することができる。   The heat insulating film 3 preferably has a thermal conductivity of 1.5 W / (m · K) or less, more preferably 1 W / (m · K) or less, and particularly preferably 0.5 W / (m · K) or less. . Thus, heat transfer can be suppressed by having low thermal conductivity.

本発明の断熱膜は、例えば、「エンジン燃焼室を構成する表面」上に形成される断熱膜として用いることができる。また、本発明の断熱膜3は、「自動車の排気管の内壁」に形成される断熱膜、発熱部からの熱を遮りたい場合の断熱膜として用いることができる。   The heat insulating film of the present invention can be used, for example, as a heat insulating film formed on the “surface constituting the engine combustion chamber”. The heat insulating film 3 of the present invention can be used as a heat insulating film formed on an “inner wall of an automobile exhaust pipe” or a heat insulating film when it is desired to block heat from a heat generating portion.

本発明の断熱膜は、コーティング組成物を基材上に塗布し、乾燥して形成させることができる。また、乾燥後に熱処理して形成させることもできる。このとき、塗布と乾燥または熱処理とを繰り返し行うことで断熱膜3を積層させて厚い断熱膜3(断熱膜の積層体)を形成することができる。または、断熱膜3を仮の基材8上に形成させた後、この仮の基材を除去することで、単独で薄板状に形成させた断熱膜3を作製し、この断熱膜3を、目的とする基材(「仮の基材」とは異なる基材)に接着または接合させてもよい。   The heat insulating film of the present invention can be formed by applying a coating composition on a substrate and drying it. It can also be formed by heat treatment after drying. At this time, the heat insulating film 3 can be laminated by repeatedly performing application and drying or heat treatment to form a thick heat insulating film 3 (a laminated body of heat insulating films). Or after forming the heat insulation film | membrane 3 on the temporary base material 8, by removing this temporary base material, the heat insulation film 3 formed in the shape of a thin plate independently is produced, and this heat insulation film | membrane 3 is You may adhere | attach or join to the target base material (base material different from a "temporary base material").

基材としては、金属、セラミックス、ガラス、プラスチック、木材、布、紙等を用いることができる。特に、基材が金属の場合の例として、鉄、鉄合金、ステンレス、アルミニウム、アルミニウム合金、ニッケル合金、コバルト合金、タングステン合金、銅合金などが挙げられる。   As the substrate, metal, ceramics, glass, plastic, wood, cloth, paper, or the like can be used. In particular, examples where the substrate is a metal include iron, iron alloy, stainless steel, aluminum, aluminum alloy, nickel alloy, cobalt alloy, tungsten alloy, and copper alloy.

コーティング組成物は、上記多孔質板状フィラー1と、無機バインダー、無機高分子、有機無機ハイブリッド材料、酸化物ゾル、及び水ガラスからなる群より選択される一種以上と、を含むものを用いることができる。更に、緻密質なフィラー、粘性調整剤、溶媒、分散剤等を含んでいてもよい。   The coating composition uses the porous plate-like filler 1 and one or more selected from the group consisting of an inorganic binder, an inorganic polymer, an organic-inorganic hybrid material, an oxide sol, and water glass. Can do. Furthermore, a dense filler, a viscosity modifier, a solvent, a dispersant, and the like may be included.

コーティング組成物に含まれる具体的な物質は、セメント、ベントナイト、リン酸アルミニウム、シリカゾル、アルミナゾル、ベーマイトゾル、ジルコニアゾル、チタニアゾル、オルトケイ酸テトラメチル、オルトケイ酸テトラエチル、ポリシラザン、ポリカルボシラン、ポリビニルシラン、ポリメチルシラン、ポリシロキサン、ポリシルセスキオキサンシリコーン、ジオポリマー、ケイ酸ナトリウム等である。また、有機無機ハイブリッド材料の場合、アクリル−シリカ系ハイブリッド材料、エボキシ−シリカ系ハイブリッド材料、フェノール−シリカ系ハイブリッド材料、ポリカーボネート−シリカ系ハイブリッド材料、ナイロン−シリカ系ハイブリッド材料、ナイロン−クレイ系ハイブリッド材料、アクリル−アルミナ系ハイブリッド材料、アクリル−ケイ酸カルシウム水和物系ハイブリッド材料などが望ましい。   Specific materials included in the coating composition include cement, bentonite, aluminum phosphate, silica sol, alumina sol, boehmite sol, zirconia sol, titania sol, tetramethyl orthosilicate, tetraethyl orthosilicate, polysilazane, polycarbosilane, polyvinyl silane, Polymethylsilane, polysiloxane, polysilsesquioxane silicone, geopolymer, sodium silicate and the like. In the case of organic-inorganic hybrid materials, acrylic-silica hybrid materials, epoxy-silica hybrid materials, phenol-silica hybrid materials, polycarbonate-silica hybrid materials, nylon-silica hybrid materials, nylon-clay hybrid materials An acrylic-alumina hybrid material, an acrylic-calcium silicate hydrate hybrid material, and the like are desirable.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.

(実施例1)
ZrO原料(ZrO粒子)であるジルコニア粉末に、置換原子を含む添加剤としてTiO、造孔材としてカーボンブラック、バインダーとしてポリビニルブチラール樹脂(PVB)、可塑剤としてフタル酸ジオクチル(DOP)、及び、溶剤としてキシレンと1−ブタノールを加えた。これを原料組成物とした。原料組成物中の各成分の添加量(調合量)は、ジルコニア粉末0.99mol、TiO0.01molとした(ZrとTiの合計が1mol。なお、実際に置換された割合は、後述するように化学分析にて調べた。調合については表1、分析結果については表2に示す。)。さらに、ZrO粒子、置換原子の合計に対し、カーボンブラック6体積%、バインダー9体積%、可塑剤4体積%、溶剤74.3体積%であった。
Example 1
ZrO 2 raw material (ZrO 2 particles) zirconia powder, TiO 2 as an additive containing a substituent atom, carbon black as a pore former, polyvinyl butyral resin (PVB) as a binder, dioctyl phthalate (DOP) as a plasticizer, And xylene and 1-butanol were added as a solvent. This was made into the raw material composition. The addition amount (preparation amount) of each component in the raw material composition was 0.99 mol of zirconia powder and 0.01 mol of TiO 2 (total of Zr and Ti was 1 mol. The actual substitution ratio will be described later. (Table 1 shows the formulation and Table 2 shows the analysis results.) Furthermore, they were 6% by volume of carbon black, 9% by volume of binder, 4% by volume of plasticizer, and 74.3% by volume of solvent with respect to the total of ZrO 2 particles and substituted atoms.

次に、この原料組成物をボールミルにて30時間混合し、グリーンシート成形用スラリー(コーティング組成物)を調製した。その後、このスラリーに真空脱泡処理を行った後、粘度を4Pa・sに調整した。その後、上記スラリーを、ドクターブレード装置によって焼成後の厚さが10μmとなるように膜状に塗工し、グリーンシートを形成した。このグリーンシートを縦50mm×横50mmの寸法となるように切断した。その後、この成形体を、600℃で5時間脱脂した後、1100℃で2時間焼成して、薄板状の焼成体を得た。その後、得られた焼成体を、乾式ビーズミルを用いて解砕して、多孔質板状フィラー1を得た。   Next, this raw material composition was mixed in a ball mill for 30 hours to prepare a slurry for forming a green sheet (coating composition). Thereafter, the slurry was vacuum defoamed, and the viscosity was adjusted to 4 Pa · s. Thereafter, the slurry was applied in the form of a film so that the thickness after firing was 10 μm by a doctor blade device to form a green sheet. The green sheet was cut to have a size of 50 mm long × 50 mm wide. Thereafter, the compact was degreased at 600 ° C. for 5 hours and then fired at 1100 ° C. for 2 hours to obtain a thin plate-like fired body. Thereafter, the obtained fired body was crushed using a dry bead mill to obtain a porous plate filler 1.

次に、得られた多孔質板状フィラー1は、ZrO粒子の直径が50nmであった。多孔質板状フィラー1は、平均気孔径が0.13μmであり、気孔率が60%であった。また、多孔質板状フィラー1は、熱伝導率が0.15W/(m・K)であった。なお、「多孔質板状フィラーの熱伝導率」は、焼成体(解砕前のもの)の熱伝導率を測定した値のことである。また、得られた多孔質板状フィラー1の任意の20個について測定したところ、アスペクト比が4で、最小長が10μmであった。Next, in the obtained porous plate-like filler 1, the diameter of the ZrO 2 particles was 50 nm. The porous plate-like filler 1 had an average pore diameter of 0.13 μm and a porosity of 60%. The porous plate-like filler 1 had a thermal conductivity of 0.15 W / (m · K). The “thermal conductivity of the porous plate filler” is a value obtained by measuring the thermal conductivity of the fired body (before pulverization). Further, when 20 arbitrary porous plate-like fillers 1 were measured, the aspect ratio was 4 and the minimum length was 10 μm.

なお、気孔率は下記式で求めた。
気孔率(%)=(1−(見かけ粒子密度÷真密度))×100
上記の式において、見かけ粒子密度は、水銀を用いた液浸法により測定した。また、真密度は、多孔質板状フィラーを十分に粉砕した後、ピクノメータ法で測定した。
In addition, the porosity was calculated | required by the following formula.
Porosity (%) = (1− (apparent particle density ÷ true density)) × 100
In the above formula, the apparent particle density was measured by an immersion method using mercury. The true density was measured by a pycnometer method after sufficiently pulverizing the porous plate-like filler.

また、粒子径は多孔質板状フィラーの微構造(FE−SEM)を観察し、粒子一粒の大きさを画像処理で測定し、10個の平均値を求めた。   Moreover, the particle diameter observed the fine structure (FE-SEM) of the porous plate-shaped filler, measured the magnitude | size of one particle by image processing, and calculated | required the average value of ten pieces.

多孔質板状フィラー1に含まれる原子の割合を化学分析(JIS R1603)により測定した。その結果より、O/Zr(モル比)を計算して求めた。表2に、Zr1−xのx、O/Zrを示す。なお、置換原子が1種類の場合、置換原子A1とし、その添加量をx1として表した(この場合、A1、x1がZr1−xのA、xに相当する)。置換原子が2種類の場合、置換原子A1、A2とし、それぞれの添加量をx1、x2とした(この場合、A1、A2がZr1−xのAに相当し、x1+x2がZr1−xのxに相当する。)。また、X線解析により単一相であるか(TiO等の異相が存在するか)を確認した。The proportion of atoms contained in the porous plate filler 1 was measured by chemical analysis (JIS R1603). From the result, O / Zr (molar ratio) was calculated and obtained. Table 2 shows x of Zr 1-x O 2 A x, the O / Zr. In addition, when there was one kind of substituent atom, it was set as the substituted atom A1 and the addition amount was expressed as x1 (in this case, A1 and x1 correspond to A and x of Zr 1-x O 2 A x ). When there are two kinds of substituent atoms, the substituent atoms are A1 and A2, and the respective addition amounts are x1 and x2 (in this case, A1 and A2 correspond to A of Zr 1-x O 2 A x , and x1 + x2 is Zr 1-x corresponds to x of O 2 A x ). Moreover, it was confirmed by X-ray analysis whether it is a single phase (whether a different phase such as TiO 2 exists).

[熱伝導率]
多孔質板状フィラー1の熱伝導率は、以下のように測定した。まず、多孔質板状フィラー1と同材料を別途、0.5mm×5mm×30mmに成形したものを焼成し、光交流法により熱拡散率を、同材料をDSC法により比熱を測定し、熱拡散率、比熱、密度(見かけ粒子密度)の積を多孔質板状フィラー1の熱伝導率とした。見かけ粒子密度は、水銀を用いた液浸法により測定した。
[Thermal conductivity]
The thermal conductivity of the porous plate filler 1 was measured as follows. First, the porous plate filler 1 and the same material separately molded into 0.5 mm × 5 mm × 30 mm are fired, the thermal diffusivity is measured by the optical alternating current method, and the specific heat is measured by the DSC method. The product of the diffusivity, specific heat, and density (apparent particle density) was defined as the thermal conductivity of the porous plate filler 1. The apparent particle density was measured by an immersion method using mercury.

[熱容量]
多孔質板状フィラー1の熱容量は、以下のように測定した。まず、多孔質板状フィラー1と同材料を別途、0.5mm×5mm×30mmに成形したものを焼成し、DSC法により比熱を測定し、比熱、密度(見かけ粒子密度)の積を多孔質板状フィラー1の熱容量とした。見かけ粒子密度は、水銀を用いた液浸法により測定した。
[Heat capacity]
The heat capacity of the porous plate filler 1 was measured as follows. First, the same material as the porous plate filler 1 is separately molded into 0.5 mm × 5 mm × 30 mm, fired, the specific heat is measured by DSC method, and the product of specific heat and density (apparent particle density) is porous. The heat capacity of the plate filler 1 was used. The apparent particle density was measured by an immersion method using mercury.

次に、マトリックス3mとなるポリシロキサンと多孔質板状フィラー1を体積比で20:80になるように混合した。そして、この組成物を、基材であるアルミニウム合金上に塗布し、乾燥後、200℃で2時間熱処理して、基材上に断熱膜3(厚さ150μm)を形成した。   Next, the polysiloxane used as the matrix 3m and the porous plate-like filler 1 were mixed at a volume ratio of 20:80. And this composition was apply | coated on the aluminum alloy which is a base material, and after drying, it heat-processed at 200 degreeC for 2 hours, and formed the heat insulation film 3 (150 micrometers in thickness) on a base material.

断熱膜3の熱伝導率及び熱容量は、上記多孔質板状フィラー1の熱伝導率及び熱容量の測定方法と同様にして測定した。   The heat conductivity and heat capacity of the heat insulating film 3 were measured in the same manner as the method for measuring the heat conductivity and heat capacity of the porous plate filler 1.

(比較例1)
添加剤を入れずに大気雰囲気中で焼成して多孔質板状フィラー1を作製した。その他は実施例1と同様に行った。多孔質板状フィラー1の気孔率は、60%であった。
(Comparative Example 1)
The porous plate filler 1 was produced by firing in the air atmosphere without adding the additive. Others were the same as in Example 1. The porosity of the porous plate filler 1 was 60%.

(実施例2〜7、比較例2)
表2のように添加剤、その添加量を変えて実施例1のように多孔質板状フィラー1を作製した。なお、添加剤の置換原子(Ti,Si,Ce,Hf)とZrとの合計が1molとなるようにZrOの量と添加剤の量とを決めた。分析結果を表3に示す。実施例2〜7、比較例2の多孔質板状フィラー1の気孔率は、60%であった。
(Examples 2-7, Comparative Example 2)
As shown in Table 2, the porous plate-like filler 1 was produced as in Example 1 by changing the additive and the amount of addition. The amount of ZrO 2 and the amount of additive were determined so that the sum of the substitution atoms (Ti, Si, Ce, Hf) and Zr of the additive was 1 mol. The analysis results are shown in Table 3. The porosity of the porous plate-like filler 1 of Examples 2 to 7 and Comparative Example 2 was 60%.

(実施例8〜17)
原料組成物中の各成分の添加量(調合量)を、ジルコニア粉末0.9mol、TiO0.1molとした(ZrとTiの合計が1mol)。そして、焼成後のアスペクト比、最小長、気孔率、平均気孔径、及び平均粒子径の値が表1の多孔質板状フィラー1を作成した。その他は実施例3と同様に行った。分析結果を表3に示す。
(Examples 8 to 17)
The addition amount (preparation amount) of each component in the raw material composition was 0.9 mol of zirconia powder and 0.1 mol of TiO 2 (total of Zr and Ti was 1 mol). And the porous plate-like filler 1 of Table 1 having the values of the aspect ratio, minimum length, porosity, average pore diameter, and average particle diameter after firing was prepared. Others were the same as in Example 3. The analysis results are shown in Table 3.

Figure 2015087888
Figure 2015087888

Figure 2015087888
Figure 2015087888

Figure 2015087888
Figure 2015087888

Zrの一部がTi,Si,Ce,Hfで置換され、OとZrのモル比が2<O/Zr<2.4の範囲で、かつ単一相である実施例1〜17の多孔質板状フィラー1は、比較例1に対し、熱伝導率が低下し、熱容量が大きくなった。この多孔質板状フィラー1を用いた断熱膜3においても、同様に、熱伝導率が低下し、熱容量が大きくなった。比較例2は、添加剤の添加量が多く異相を生じたため、結果が良くなかった。   Porous materials of Examples 1 to 17 in which a part of Zr is substituted with Ti, Si, Ce, and Hf, the molar ratio of O and Zr is in the range of 2 <O / Zr <2.4, and is a single phase The plate-like filler 1 has a lower thermal conductivity and a larger heat capacity than Comparative Example 1. Similarly, in the heat insulating film 3 using the porous plate-like filler 1, the thermal conductivity was lowered and the heat capacity was increased. In Comparative Example 2, the result was not good because the amount of the additive added was large and a different phase was generated.

実施例1〜3は、Zrの一部をTiで置換した。TiOの添加量が多く、OとZrのモル比が大きいと、多孔質板状フィラー1の熱伝導率が低下し、熱容量が大きくなった。この多孔質板状フィラー1を用いた断熱膜3においても、熱伝導率が低下し、熱容量が大きくなった。また、実施例7は2種の原子で置換している。実施例3と実施例7を比較すると、Tiのみで置換するよりも、TiとSiで置換した方が多孔質板状フィラー1の熱伝導率が低下した。この多孔質板状フィラー1を用いた断熱膜3の熱伝導率も低下した。In Examples 1 to 3, a part of Zr was substituted with Ti. When the amount of TiO 2 added was large and the molar ratio of O and Zr was large, the thermal conductivity of the porous plate-like filler 1 was lowered and the heat capacity was increased. Also in the heat insulating film 3 using this porous plate-like filler 1, the thermal conductivity was lowered and the heat capacity was increased. Further, Example 7 is substituted with two kinds of atoms. When Example 3 and Example 7 were compared, the thermal conductivity of the porous plate-like filler 1 was lowered when Ti and Si were substituted rather than being substituted with Ti alone. The thermal conductivity of the heat insulating film 3 using the porous plate filler 1 was also lowered.

実施例8と実施例3を比較すると、実施例8の方が多孔質板状フィラー1のアスペクト比が大きい。このため、実施例8の断熱膜3の方が実施例3の断熱膜3よりも熱伝導率が低かった。実施例9と実施例3を比較すると、実施例9の方が多孔質板状フィラー1のアスペクト比が大きく、最小長が短い。このため、実施例9の断熱膜3の方が実施例3よりも熱伝導率が低かった。実施例10と実施例3を比較すると、実施例10の方が多孔質板状フィラー1の最小長が短い。このため、実施例10の断熱膜3の方が実施例3よりも熱伝導率が低かった。また、実施例11と実施例3を比較すると、実施例11の方が多孔質板状フィラー1の最小長が短い。このため、実施例11の断熱膜3の方が、実施例3よりも熱伝導率が低かった。   When Example 8 and Example 3 are compared, Example 8 has a larger aspect ratio of the porous plate-like filler 1. For this reason, the heat conductivity of the heat insulating film 3 of Example 8 was lower than that of the heat insulating film 3 of Example 3. When Example 9 and Example 3 are compared, Example 9 has a larger aspect ratio of the porous plate-like filler 1 and a shorter minimum length. For this reason, the heat conductivity of the heat insulating film 3 of Example 9 was lower than that of Example 3. When Example 10 and Example 3 are compared, Example 10 has a shorter minimum length of the porous plate filler 1. For this reason, the heat conductivity of the heat insulating film 3 of Example 10 was lower than that of Example 3. Further, when Example 11 and Example 3 are compared, Example 11 has a shorter minimum length of porous plate filler 1. For this reason, the heat conductivity of the heat insulating film 3 of Example 11 was lower than that of Example 3.

実施例12の多孔質板状フィラーは実施例3よりも最小長が長い。このため、実施例12の断熱膜3は実施例3よりも熱伝導率が高かった。   The porous plate-like filler of Example 12 has a minimum length longer than that of Example 3. For this reason, the heat insulating film 3 of Example 12 had higher thermal conductivity than Example 3.

実施例13と実施例3を比較すると、実施例13の方が多孔質板状フィラー1の気孔率が低く、平均気孔径が小さく、熱伝導率が高い。このため、実施例13の断熱膜3は、実施例3の断熱膜3よりも熱伝導率が高かった。その一方で、実施例14と実施例3を比較すると、実施例14の多孔質板状フィラー1の気孔率が高く、平均気孔径が大きく、熱伝導率が低い。このため、実施例14の断熱膜3は実施例3の断熱膜3よりも熱伝導率が低かった。実施例15の多孔質板状フィラー1は、実施例14の多孔質板状フィラー1よりも、さらに気孔率が高く、平均気孔径が大きく、熱伝導率が低い。このため、実施例15の断熱膜3は、実施例14の断熱膜3よりも、さらに熱伝導率が低かった。   When Example 13 is compared with Example 3, Example 13 has a lower porosity of porous plate-like filler 1, a smaller average pore diameter, and a higher thermal conductivity. For this reason, the heat insulating film 3 of Example 13 had higher thermal conductivity than the heat insulating film 3 of Example 3. On the other hand, when Example 14 and Example 3 are compared, the porosity of the porous plate-like filler 1 of Example 14 is high, the average pore diameter is large, and the thermal conductivity is low. For this reason, the heat insulating film 3 of Example 14 had lower thermal conductivity than the heat insulating film 3 of Example 3. The porous plate-like filler 1 of Example 15 has a higher porosity, a larger average pore diameter, and a lower thermal conductivity than the porous plate-like filler 1 of Example 14. For this reason, the heat insulating film 3 of Example 15 was lower in thermal conductivity than the heat insulating film 3 of Example 14.

実施例16と実施例3を比較すると、実施例16の方が多孔質板状フィラー1の平均粒子径が小さく、熱伝導率が低い。このため、実施例16の断熱膜3は、実施例3の断熱膜3よりも熱伝導率が低かった。その一方で、実施例17と実施例3を比較すると、実施例17の方が多孔質板状フィラー1の平均粒子径が大きく、熱伝導率が高い。このため、実施例17の断熱膜3は、実施例3の断熱膜3よりも熱伝導率が高かった。   Comparing Example 16 and Example 3, Example 16 has a smaller average particle diameter of the porous plate filler 1 and a lower thermal conductivity. For this reason, the heat insulation film 3 of Example 16 had lower thermal conductivity than the heat insulation film 3 of Example 3. On the other hand, when Example 17 and Example 3 are compared, Example 17 has a larger average particle diameter of the porous plate-like filler 1 and higher thermal conductivity. For this reason, the heat insulating film 3 of Example 17 had higher thermal conductivity than the heat insulating film 3 of Example 3.

本発明の多孔質板状フィラーは、断熱性能に優れた断熱膜の材料として用いることができる。本発明の断熱膜は、例えば「エンジン燃焼室を構成する表面」上に形成される断熱膜として用いることができる。   The porous plate-like filler of the present invention can be used as a material for a heat insulating film excellent in heat insulating performance. The heat insulating film of the present invention can be used, for example, as a heat insulating film formed on the “surface constituting the engine combustion chamber”.

1:多孔質板状フィラー、3:断熱膜、3m:マトリックス、8:基材。 1: porous plate-like filler, 3: heat insulation film, 3m: matrix, 8: substrate.

Claims (6)

アスペクト比が3以上の板状で、その最小長が0.1〜50μmであり、気孔率が20〜90%であり、4価の原子でZrの一部が置換され、OとZrのモル比が2<O/Zr<2.4の範囲であり、単一相である、ZrO系多孔質板状フィラー。The plate has an aspect ratio of 3 or more, the minimum length is 0.1 to 50 μm, the porosity is 20 to 90%, a part of Zr is substituted with tetravalent atoms, and the moles of O and Zr A ZrO 2 -based porous plate filler having a ratio of 2 <O / Zr <2.4 and a single phase. 組成式がZr1−x(Aは、Ti,Si,Ce,Hfからなる群から選ばれた少なくとも1種)であり、0<x<0.18である請求項1に記載のZrO系多孔質板状フィラー。The composition formula is Zr 1-x O 2 A x (A is at least one selected from the group consisting of Ti, Si, Ce, and Hf), and 0 <x <0.18. ZrO 2 -based porous plate filler. 熱伝導率が1W/(m・K)以下である請求項1または2に記載のZrO系多孔質板状フィラー。The ZrO 2 porous plate filler according to claim 1 or 2, wherein the thermal conductivity is 1 W / (m · K) or less. 熱容量が250〜2500kJ/(m・K)である請求項1〜3のいずれか1項に記載のZrO系多孔質板状フィラー。The ZrO 2 porous plate filler according to any one of claims 1 to 3 , wherein the heat capacity is 250 to 2500 kJ / (m 3 · K). 平均気孔径が10〜500nmの気孔を有する請求項1〜4のいずれか1項に記載のZrO系多孔質板状フィラー。The ZrO 2 porous plate filler according to any one of claims 1 to 4, which has pores having an average pore diameter of 10 to 500 nm. 請求項1〜5のいずれか1項に記載のZrO系多孔質板状フィラーを含む断熱膜。Insulation film containing ZrO 2 based porous plate-like filler according to any one of claims 1 to 5.
JP2015552471A 2013-12-11 2014-12-09 Porous plate filler and heat insulating film Active JP6453235B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013256427 2013-12-11
JP2013256427 2013-12-11
PCT/JP2014/082600 WO2015087888A1 (en) 2013-12-11 2014-12-09 Porous plate-shaped filler and heat-insulating film

Publications (2)

Publication Number Publication Date
JPWO2015087888A1 true JPWO2015087888A1 (en) 2017-03-16
JP6453235B2 JP6453235B2 (en) 2019-01-16

Family

ID=53371190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015552471A Active JP6453235B2 (en) 2013-12-11 2014-12-09 Porous plate filler and heat insulating film

Country Status (2)

Country Link
JP (1) JP6453235B2 (en)
WO (1) WO2015087888A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3135737B1 (en) 2014-04-23 2019-12-04 NGK Insulators, Ltd. Porous plate-shaped filler, method for producing same, and heat insulation film
DE112016003208B4 (en) * 2015-07-16 2020-01-23 Ngk Insulators, Ltd. Porous ceramic particle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504094A (en) * 2008-09-30 2012-02-16 サン−ゴベン・セントル・ドゥ・レシェルシェ・エ・デチュード・ユーロペアン Zirconium oxide powder
WO2013191263A1 (en) * 2012-06-20 2013-12-27 日本碍子株式会社 Porous plate-shaped filler, coating composition, heat-insulating film, and heat-insulating film structure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195123A (en) * 1987-02-10 1988-08-12 Taiyo Yuden Co Ltd Laminar zirconia based single crystal fine particle and production thereof
JPH04342461A (en) * 1991-05-20 1992-11-27 Ngk Insulators Ltd Zirconia porcelain and electrochemical cell utilizing the same
JPH08277194A (en) * 1995-03-31 1996-10-22 Etsuro Kato Production of flaky monoclinic zirconia fine crystal
JP3286181B2 (en) * 1995-11-17 2002-05-27 ティーディーケイ株式会社 Recording medium, method of manufacturing the same, and information processing apparatus
JP2004067500A (en) * 2002-06-12 2004-03-04 Nippon Sheet Glass Co Ltd Porous metal oxide flake and its manufacturing method, and flake-blended cosmetic, paint composition, resin composition, ink composition and paper
EP2004760A2 (en) * 2006-04-11 2008-12-24 Ciba Specialty Chemicals Holding, Inc. Process for producing metal oxide flakes
KR20130116789A (en) * 2012-02-24 2013-10-24 가부시키가이샤 히타치세이사쿠쇼 Electrode for lithium-ion secondary battery, and lithium-ion secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504094A (en) * 2008-09-30 2012-02-16 サン−ゴベン・セントル・ドゥ・レシェルシェ・エ・デチュード・ユーロペアン Zirconium oxide powder
WO2013191263A1 (en) * 2012-06-20 2013-12-27 日本碍子株式会社 Porous plate-shaped filler, coating composition, heat-insulating film, and heat-insulating film structure

Also Published As

Publication number Publication date
JP6453235B2 (en) 2019-01-16
WO2015087888A1 (en) 2015-06-18

Similar Documents

Publication Publication Date Title
JP6407887B2 (en) Porous material and heat insulating film
JP6072787B2 (en) Porous plate filler for heat insulation, coating composition, heat insulation film, and heat insulation film structure
JP6472384B2 (en) Thermal insulation film and thermal insulation film structure
JP6562841B2 (en) Porous plate filler
JP6527139B2 (en) Porous plate-like filler, heat insulating film, and method for producing porous plate-like filler
CN101861288A (en) Aluminum titanate based ceramic honeycomb structure, process for production of the same and raw material powder for the production thereof
JP2021121701A (en) Alumina fiber assembly and method for producing the same
JP6453235B2 (en) Porous plate filler and heat insulating film
JP6423360B2 (en) Thermal insulation film and thermal insulation film structure
JP6453234B2 (en) Insulation film
WO2015115668A1 (en) Porous plate-shaped filler and thermal insulation film
JP6373866B2 (en) Thermal insulation film and thermal insulation film structure
JP6319769B2 (en) Insulation
WO2020008561A1 (en) Porous material and heat insulation material
WO2020008562A1 (en) Porous material and heat insulation material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181212

R150 Certificate of patent or registration of utility model

Ref document number: 6453235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150