JPWO2015041359A1 - Electrical contact structure consisting of movable contact and fixed contact - Google Patents

Electrical contact structure consisting of movable contact and fixed contact Download PDF

Info

Publication number
JPWO2015041359A1
JPWO2015041359A1 JP2015537997A JP2015537997A JPWO2015041359A1 JP WO2015041359 A1 JPWO2015041359 A1 JP WO2015041359A1 JP 2015537997 A JP2015537997 A JP 2015537997A JP 2015537997 A JP2015537997 A JP 2015537997A JP WO2015041359 A1 JPWO2015041359 A1 JP WO2015041359A1
Authority
JP
Japan
Prior art keywords
contact portion
alloy
movable contact
nickel
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015537997A
Other languages
Japanese (ja)
Other versions
JP6284533B2 (en
Inventor
賢一 大賀
賢一 大賀
良聡 小林
良聡 小林
鈴木 智
智 鈴木
圭介 池貝
圭介 池貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Publication of JPWO2015041359A1 publication Critical patent/JPWO2015041359A1/en
Application granted granted Critical
Publication of JP6284533B2 publication Critical patent/JP6284533B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/04Co-operating contacts of different material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/04Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts
    • H01H11/041Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts by bonding of a contact marking face to a contact body portion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/04Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts
    • H01H11/041Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts by bonding of a contact marking face to a contact body portion
    • H01H2011/046Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts by bonding of a contact marking face to a contact body portion by plating

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Contacts (AREA)
  • Push-Button Switches (AREA)

Abstract

可動接点部と固定接点部とを有する電気接点構造であって、前記可動接点部は、導電性基材の表面の少なくとも一部にニッケル、コバルト、ニッケル合金、またはコバルト合金のいずれかからなる可動接点部下地層を有し、銀または銀合金からなる可動接点部表層が形成された可動接点部材部材で構成され、前記固定接点部は、基材上に銅または銅合金からなる固定接点部下地層を有し、前記固定接点部下地層上にニッケル、スズ、亜鉛、ニッケル合金、スズ合金、または亜鉛合金のいずれかからなる固定接点部最表層が形成された固定接点部材部材で構成される電気接点構造。An electric contact structure having a movable contact portion and a fixed contact portion, wherein the movable contact portion is made of nickel, cobalt, nickel alloy, or cobalt alloy on at least a part of the surface of the conductive substrate. It has a contact part base layer, and is composed of a movable contact member member in which a movable contact part surface layer made of silver or a silver alloy is formed. Electric contact structure comprising a fixed contact member member having a fixed contact portion outermost layer made of nickel, tin, zinc, nickel alloy, tin alloy, or zinc alloy on the fixed contact portion base layer .

Description

本発明は、可動接点部と固定接点部とからなる電気接点構造に関する。  The present invention relates to an electrical contact structure including a movable contact portion and a fixed contact portion.

従来、携帯電話機や携帯端末機器、さらにはリモコンスイッチや複合プリンター等に用いられているプッシュスイッチには、可動接点側にリン青銅やベリリウム銅、近年はコルソン系銅合金などの銅合金や、ステンレス鋼などの鉄系合金等、ばね性に優れた導電性基体にめっきを施した材料が使用されてきている。具体的には導電性基体上にニッケルめっきを施したニッケル皮膜材、導電電性基体上にニッケルめっきを施した後、最表層に銀めっきを施した銀皮膜材などがある。
一方、固定接点側は、一般的に樹脂基材上の最表層に金めっきを施した材料が用いられている。これは樹脂基板材料、例えば、ガラス繊維を編みこんだエポキシ基板上に銅箔を張合せて銅下地層を形成し、この銅下地層の表面に中間層としてニッケル層を形成し、このニッケル中間層の表面に導電性に優れた金で被覆された皮膜層を形成した材料を用いるというものである。
Conventionally, push switches used in mobile phones and portable terminal devices, as well as remote control switches and composite printers, have phosphor bronze and beryllium copper on the movable contact side, and recently copper alloys such as Corson copper alloys, stainless steel A material obtained by plating a conductive substrate having excellent spring properties, such as an iron-based alloy such as steel, has been used. Specifically, there are a nickel coating material obtained by performing nickel plating on a conductive substrate, a silver coating material obtained by performing nickel plating on a conductive substrate and then silver-plating the outermost layer.
On the other hand, the fixed contact side is generally made of a material obtained by applying gold plating to the outermost layer on the resin base material. This is because a copper underlayer is formed by laminating a copper foil on a resin substrate material, for example, an epoxy substrate woven with glass fibers, and a nickel layer is formed as an intermediate layer on the surface of the copper underlayer. A material in which a film layer coated with gold having excellent conductivity is formed on the surface of the layer is used.

近年、携帯電話など精密機器に使用される接点部品の低コスト化に向け、固定接点側に金皮膜プリント基板、可動接点側にニッケルめっき皮膜材を用いた接点を適用する技術が用いられる傾向にあった。しかし固定接点側については、樹脂基材上に銅皮膜層を形成したプリント基板が用いられることが多い。そこで良好な導電性を実現するために前記プリント基板の最表層に金または金合金の皮膜層を形成していることが多い。
また下記特許文献1のように、固定接点部側に銀めっき層を形成したものもある。
In recent years, in order to reduce the cost of contact parts used in precision equipment such as mobile phones, there is a tendency to use technology that uses gold-coated printed circuit boards on the fixed contact side and contacts using nickel-plated film material on the movable contact side. there were. However, on the fixed contact side, a printed board in which a copper film layer is formed on a resin base material is often used. Therefore, in order to realize good conductivity, a coating layer of gold or a gold alloy is often formed on the outermost layer of the printed circuit board.
In addition, as disclosed in Patent Document 1 below, there is one in which a silver plating layer is formed on the fixed contact portion side.

特開2011−127225号公報JP 2011-127225 A

しかし、従来の、最表層に金または金合金の皮膜層を有する固定接点部は、低コストを実現するために金層の厚みを極薄にしている。そのためスイッチの電気接点部にピンホールが生じやすく、耐食性が不十分であることがわかった。具体的には耐環境性が十分でない、とう問題があった。すなわち高温雰囲気下や高温高湿環境下では下地層から腐食して接触抵抗が上昇し、接点特性が劣化する問題がある。また、金皮膜が軟らかいため、対抗接点部が硬いニッケル皮膜であると、接点同士の摺動が起こったときに磨耗が早く生じて接触抵抗が上昇し、接点特性が劣化しやすくなるという問題が考えられる。
また特許文献1のように、固定接点側に銀めっきを有する場合、繰り返し摺動後の接触抵抗特性はそれなりに良いものもあるがコスト的に不利であり、同等以上の接触抵抗特性が得られ、かつコスト的に有利な固定接点が求められていた。
However, in the conventional fixed contact portion having a gold or gold alloy film layer on the outermost layer, the thickness of the gold layer is extremely thin in order to realize low cost. Therefore, it was found that pinholes are likely to occur in the electrical contact portion of the switch and the corrosion resistance is insufficient. Specifically, there was a problem that the environmental resistance was not sufficient. That is, in a high temperature atmosphere or a high temperature and high humidity environment, there is a problem that the contact resistance increases due to corrosion from the base layer and the contact characteristics deteriorate. In addition, since the gold film is soft, if the opposing contact part is a hard nickel film, there is a problem that when the contacts slide, wear occurs quickly, the contact resistance increases, and the contact characteristics tend to deteriorate. Conceivable.
In addition, as in Patent Document 1, when silver plating is provided on the fixed contact side, the contact resistance characteristics after repeated sliding may be as good as it is, but it is disadvantageous in terms of cost, and equivalent or higher contact resistance characteristics can be obtained. Further, there has been a demand for a fixed contact that is advantageous in terms of cost.

そこで、本発明は、スイッチングが繰り返されるような環境下において長期間使用されても、表面品質が劣化することのない可動接点部材と固定接点部材とを組み合わせた、電気接点構造およびプッシュスイッチを提供することを課題とする。さらには、長期間使用において接触抵抗の上昇が小さい、可動接点部材と固定接点部材を組み合わせた電気接点構造およびプッシュスイッチを提供することを課題とする。  Therefore, the present invention provides an electric contact structure and a push switch that combine a movable contact member and a fixed contact member that do not deteriorate in surface quality even when used for a long time in an environment where switching is repeated. The task is to do. Furthermore, it is an object of the present invention to provide an electrical contact structure and a push switch in which a movable contact member and a fixed contact member are combined with a small increase in contact resistance during long-term use.

本発明の上記課題は以下の解決手段によって解決された。
(1)可動接点部と固定接点部とを有する電気接点構造であって、
前記可動接点部は、導電性基材の表面の少なくとも一部にニッケル、コバルト、ニッケル合金、またはコバルト合金のいずれかからなる可動接点部下地層を有し、銀または銀合金からなる可動接点部表層が形成された可動接点部材で構成され、
前記固定接点部は、基材上に銅または銅合金からなる固定接点部下地層を有し、前記固定接点部下地層上にニッケル、スズ、亜鉛、ニッケル合金、スズ合金、または亜鉛合金のいずれかからなる固定接点部最表層が形成された固定接点部材で構成されることを特徴とする電気接点構造。
(2)前記可動接点部用材料に使用される導電性基材は、鉄系基材であることを特徴とする(1)に記載の電気接点構造。
(3)前記可動接点部表層の厚さが0.01〜0.3μmであることを特徴とする(1)または(2)に記載の電気接点構造。
(4)前記可動接点部下地層と可動接点部表層の間に、銅または銅合金からなる可動接点部中間層を有することを特徴とする(1)〜(3)のいずれかに記載の電気接点構造。
(5)前記可動接点部中間層の厚さが0.01〜0.09μmであることを特徴とする(4)に記載の電気接点構造。
(6)前記可動接点部表層上に厚さが1〜3μF−1/cmの有機皮膜層を有することを特徴とする(1)〜(5)のいずれかに記載の電気接点構造。
(7)前記固定接点部の基材が、ガラスエポキシ材であることを特徴とする(1)〜(6)のいずれかに記載の電気接点構造。
(8)前記固定接点部最表層の厚さが0.5〜10μmであることを特徴とする(1)〜(7)のいずれかに記載の電気接点構造。
(9)(1)〜(8)のいずれかに記載の電気接点構造を有するプッシュスイッチ。
The above problems of the present invention have been solved by the following means.
(1) An electrical contact structure having a movable contact portion and a fixed contact portion,
The movable contact portion has a movable contact portion base layer made of nickel, cobalt, nickel alloy, or cobalt alloy on at least a part of the surface of the conductive base material, and the movable contact portion surface layer made of silver or silver alloy Is composed of a movable contact member formed,
The fixed contact portion has a fixed contact portion base layer made of copper or a copper alloy on a base material, and nickel, tin, zinc, a nickel alloy, a tin alloy, or a zinc alloy is formed on the fixed contact portion base layer. An electric contact structure comprising a fixed contact member having a fixed contact portion outermost layer formed thereon.
(2) The electrical contact structure according to (1), wherein the conductive substrate used for the movable contact portion material is an iron-based substrate.
(3) The electric contact structure according to (1) or (2), wherein the thickness of the surface layer of the movable contact portion is 0.01 to 0.3 μm.
(4) The electric contact according to any one of (1) to (3), wherein a movable contact portion intermediate layer made of copper or a copper alloy is provided between the movable contact portion base layer and the movable contact portion surface layer. Construction.
(5) The electric contact structure according to (4), wherein the movable contact portion intermediate layer has a thickness of 0.01 to 0.09 μm.
(6) The electrical contact structure according to any one of (1) to (5), wherein an organic film layer having a thickness of 1 to 3 μF −1 / cm 2 is formed on the surface layer of the movable contact portion.
(7) The electrical contact structure according to any one of (1) to (6), wherein a base material of the fixed contact portion is a glass epoxy material.
(8) The electrical contact structure according to any one of (1) to (7), wherein a thickness of the outermost layer of the fixed contact portion is 0.5 to 10 μm.
(9) A push switch having the electrical contact structure according to any one of (1) to (8).

本発明において「〜」を用いて表される数値範囲は、「〜」前後に記載される数値を下限値及び上限値として含む範囲を意味する。  In the present invention, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.

本発明の電気接点構造は、スイッチング動作が頻繁に繰り返されるなど、様々の使用環境下において、長期間使用されても、可動接点用として、接触抵抗が低く、繰り返すせん断応力に対して表面めっき層の密着性に優れる。さらに微摺動に起因する接触抵抗の上昇が抑制される。本発明の電気接点構造によれば、電気接点の寿命が改善できる。  The electric contact structure of the present invention has a low contact resistance for a movable contact even when used for a long period of time under various usage environments such as frequent switching operations. Excellent adhesion. Furthermore, an increase in contact resistance due to fine sliding is suppressed. According to the electrical contact structure of the present invention, the life of the electrical contact can be improved.

本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。  The above and other features and advantages of the present invention will become more apparent from the following description, with reference where appropriate to the accompanying drawings.

本発明の実施形態の電気接点構造を用いた一例としてのプッシュスイッチの平面図である。It is a top view of the push switch as an example using the electrical contact structure of the embodiment of the present invention. 図1のA−A線断面図を示すもので、(a)はプッシュスイッチ動作前、(b)はプッシュスイッチ動作時である。FIGS. 2A and 2B are cross-sectional views taken along the line A-A in FIG. 1, in which FIG. 本発明の実施形態の一例のプッシュスイッチの、(a)は可動接点部、(b)は固定接点部3の断面構造をそれぞれ図示するものである。In the push switch according to the embodiment of the present invention, (a) illustrates a movable contact portion, and (b) illustrates a cross-sectional structure of the fixed contact portion 3.

本発明の電気接点構造について、好ましい実施の形態を説明する。  A preferred embodiment of the electrical contact structure of the present invention will be described.

(電気接点構造)
本実施形態の電気接点構造は、可動接点部を構成する可動接点部材と、固定接点部を構成する固定接点部材とで構成されている。
図3(a)は、一例として、可動接点部1、図3(b)は一例として、固定接点部2の断面構造をそれぞれ図示するものである。
図3(a)に示すように、可動接点部1は、導電性基材5の表面の少なくとも一部にニッケル、コバルト、ニッケル合金、またはコバルト合金のいずれかからなる可動接点部下地層6を有し、銀または銀合金からなる可動接点部表層7が形成された可動接点部材8から構成されている。
また図3(b)に示すように、固定接点部2は、たとえば樹脂からなる基材9上に銅または銅合金からなる固定接点部下地層10を有し、固定接点部下地層10上にニッケル、スズ、亜鉛、ニッケル合金、スズ合金、または亜鉛合金のいずれかからなる固定接点部最表層11が形成された固定接点部材12から構成されている。
(Electric contact structure)
The electrical contact structure of the present embodiment includes a movable contact member that constitutes a movable contact portion and a fixed contact member that constitutes a fixed contact portion.
3A shows the movable contact portion 1 as an example, and FIG. 3B shows the cross-sectional structure of the fixed contact portion 2 as an example.
As shown in FIG. 3A, the movable contact portion 1 has a movable contact portion base layer 6 made of nickel, cobalt, nickel alloy, or cobalt alloy on at least a part of the surface of the conductive substrate 5. The movable contact member 8 is formed with a movable contact portion surface layer 7 made of silver or a silver alloy.
As shown in FIG. 3B, the fixed contact portion 2 has a fixed contact portion base layer 10 made of copper or a copper alloy on a base material 9 made of resin, for example, and nickel, It is comprised from the stationary contact member 12 in which the stationary contact part outermost layer 11 which consists of either tin, zinc, a nickel alloy, a tin alloy, or a zinc alloy was formed.

(可動接点部)
本実施形態において前記の導電線製基材5は、鉄系基材、特にステンレス鋼材が好ましい。ステンレス鋼を可動接点に用いるときは、応力緩和特性に優れ疲労破壊し難いSUS301、SUS304、SUS316などの圧延調質材またはテンションアニール材が好ましい。導電性基材5は、鉄基材以外に、銅基材などであってもよい。
(Movable contact)
In the present embodiment, the conductive wire substrate 5 is preferably an iron-based substrate, particularly a stainless steel material. When stainless steel is used for the movable contact, a rolled tempered material or a tension annealed material such as SUS301, SUS304, or SUS316, which has excellent stress relaxation characteristics and is not easily damaged by fatigue, is preferable. The conductive base material 5 may be a copper base material in addition to the iron base material.

前記導電性基材5上に形成される可動接点部下地層6は、密着性を高めるためにニッケル、コバルト、ニッケル合金、コバルト合金のいずれかが選ばれる。この下地層6は、導電性基材5を陰極にして、例えば塩化ニッケルおよび遊離塩酸を含む電解液を用いて電解することにより、厚さを0.05〜2.0μmとしてめっきするのが好ましい。ニッケルまたはニッケル合金の下地層6の厚さは、薄すぎると効果が少なく、厚すぎると導電性基材5の可動接点の作動力が低下する。可動接点部下地層6を形成するニッケル、コバルトとしては、限定するものではないが、ニッケルが特に好ましく、純ニッケルのほかではコバルト(Co)を1〜10質量%含むニッケル合金でも良い。また、ニッケル−リン(Ni−P)合金、ニッケル−スズ(Ni−Sn)合金、ニッケルーコバルト(Ni−Co)合金、ニッケル−コバルト−リン(Ni−Co−P)合金、ニッケル−銅(Ni−Cu)合金、ニッケル−クロム(Ni−Cr)合金、ニッケル−亜鉛(Ni−Zn)合金、ニッケル−鉄(Ni−Fe)合金などを用いても良い。  The movable contact portion base layer 6 formed on the conductive substrate 5 is selected from nickel, cobalt, a nickel alloy, and a cobalt alloy in order to improve adhesion. The underlayer 6 is preferably plated with a thickness of 0.05 to 2.0 μm by electrolysis using, for example, an electrolytic solution containing nickel chloride and free hydrochloric acid using the conductive substrate 5 as a cathode. . If the thickness of the underlayer 6 of nickel or nickel alloy is too thin, the effect is small, and if it is too thick, the operating force of the movable contact of the conductive substrate 5 decreases. The nickel and cobalt forming the movable contact portion base layer 6 are not limited, but nickel is particularly preferable, and nickel alloy containing 1 to 10% by mass of cobalt (Co) may be used in addition to pure nickel. Moreover, nickel-phosphorus (Ni-P) alloy, nickel-tin (Ni-Sn) alloy, nickel-cobalt (Ni-Co) alloy, nickel-cobalt-phosphorus (Ni-Co-P) alloy, nickel-copper ( A Ni-Cu alloy, a nickel-chromium (Ni-Cr) alloy, a nickel-zinc (Ni-Zn) alloy, a nickel-iron (Ni-Fe) alloy, or the like may be used.

従来の銀または銀合金からなる層(可動接点部表層)の密着力低下の原因は、下地層の酸化と大きな繰り返しせん断応力によるものであった。これに対し本実施形態では、下地層6を酸化させない手段として、銅または銅合金から成る中間層13(可動接点部中間層)を配置しても良い。銅または銅合金からなる中間層13の配置によって、銀と銅の拡散が生じ、銀と銅からなる合金層が形成される。その銀−銅合金層が酸素の透過を抑え、密着性の低下を防止する役割を果たす。また、せん断応力に対しては、互いに接する層(銀と銅、銅とニッケル)が固溶する組み合わせにすることで改善される。従来の銀層−ニッケル層では、銀中へのニッケルの固溶濃度は極微量であり、せん断応力に対する破断強度が弱いものであった。発明者等の検討によれば、銀とニッケルの間に銅層を施すことで、銀と銅の界面に合金が形成し、せん断強度が向上するので、この観点でも中間層13の形成は好ましい。  The cause of the decrease in the adhesion strength of a conventional layer made of silver or a silver alloy (surface layer of the movable contact portion) is due to oxidation of the underlayer and large repeated shear stress. On the other hand, in this embodiment, an intermediate layer 13 (movable contact portion intermediate layer) made of copper or a copper alloy may be disposed as means for preventing the base layer 6 from being oxidized. Due to the arrangement of the intermediate layer 13 made of copper or a copper alloy, diffusion of silver and copper occurs, and an alloy layer made of silver and copper is formed. The silver-copper alloy layer plays a role of suppressing permeation of oxygen and preventing a decrease in adhesion. Further, the shear stress can be improved by combining the layers in contact with each other (silver and copper, copper and nickel). In the conventional silver layer-nickel layer, the solid solution concentration of nickel in silver was extremely small, and the breaking strength against shear stress was weak. According to the study by the inventors, an alloy is formed at the interface between silver and copper by applying a copper layer between silver and nickel, and the shear strength is improved. From this viewpoint, the formation of the intermediate layer 13 is preferable. .

このような可動接点部中間層13の厚さは0.01〜0.09μmが好ましい。銅または銅合金層の厚さは、薄すぎると層を設けた効果が少なく、厚すぎると基材の可動接点の作動力が低下するため好ましくない。銅または銅合金としては、特に限定するものではないが、銅、銅−金(Cu−Au)合金、銅−銀(Cu−Ag)合金、銅−スズ(Cu−Sn)合金、銅−ニッケル(Cu−Ni)合金、または銅−インジウム(Cu−In)合金などを用いることができる。また、スズ(Sn)、亜鉛(Zn)、ニッケル(Ni)から選ばれる1種又は2種以上の元素を1〜10質量%含む銅合金でも良い。  The thickness of the movable contact portion intermediate layer 13 is preferably 0.01 to 0.09 μm. If the thickness of the copper or copper alloy layer is too thin, the effect of providing the layer is small, and if it is too thick, the operating force of the movable contact of the substrate is reduced, which is not preferable. Although it does not specifically limit as copper or a copper alloy, Copper, copper-gold (Cu-Au) alloy, copper-silver (Cu-Ag) alloy, copper-tin (Cu-Sn) alloy, copper-nickel A (Cu—Ni) alloy, a copper-indium (Cu—In) alloy, or the like can be used. Moreover, the copper alloy which contains 1-10 mass% of 1 type, or 2 or more types of elements chosen from tin (Sn), zinc (Zn), and nickel (Ni) may be sufficient.

可動接点部1の表層には、銀または銀合金からなる可動接点部表層7を設ける。この層の厚さは0.01〜0.3μmが好ましい。銀合金としては、耐摩耗性向上のために、銀にアンチモン(Sb)を0.1〜2.0質量%添加した合金を用いてもよい。従来用いられていた固定接点部2の金表面に対して、可動接点部の表面はニッケルを用いるのが主流であった。しかし金は高価であることから、固定接点部2は銀やニッケルを最表面とすることが検討されたが、今度は銀のコストやニッケルの表面の接触抵抗の高さが課題となった。このような背景を踏まえ、銀または銀合金からなる層は薄くしている。  A movable contact portion surface layer 7 made of silver or a silver alloy is provided on the surface layer of the movable contact portion 1. The thickness of this layer is preferably 0.01 to 0.3 μm. As the silver alloy, an alloy in which 0.1 to 2.0 mass% of antimony (Sb) is added to silver may be used in order to improve wear resistance. In contrast to the gold surface of the fixed contact portion 2 conventionally used, the surface of the movable contact portion is mainly made of nickel. However, since gold is expensive, it has been studied that the fixed contact portion 2 has silver or nickel as the outermost surface, but this time, the cost of silver and the high contact resistance of the nickel surface have become issues. Based on such a background, the layer made of silver or a silver alloy is thinned.

そのため、可動接点部表層7上には、厚さが1〜3μF−1/cmの有機被膜を設けるのが良い。これは主に銀の防錆を目的として設けられるものである。なお、「μF−1/cm」の定義は明細書の最後に掲載する。本実施形態で有機被膜に用いることのできる有機化合物は、銀または銀合金に対し物理的ないしは化学的結合性の化合物である。なお、本実施形態において物理的結合とはファンデルワールス力などによる弱い結合状態であり、化学的に結合種を持たずに結合や吸着状態を形成している状態をいう。また、化学的結合性の化合物とは、銀または銀合金の表面において、化合物が共有結合や配位結合、ファンデルワールス結合など、化学的結合状態を形成できる状態の結合手や極性等をもつ化合物をいう。Therefore, an organic film having a thickness of 1 to 3 μF −1 / cm 2 is preferably provided on the surface layer 7 of the movable contact portion. This is provided mainly for the purpose of preventing rust of silver. The definition of “μF −1 / cm 2 ” is listed at the end of the specification. The organic compound that can be used for the organic coating in this embodiment is a compound that is physically or chemically bonded to silver or a silver alloy. In this embodiment, the physical bond is a weak bond state due to van der Waals force or the like, and refers to a state in which a bond or an adsorption state is formed without having a chemical bond species. In addition, a chemical bond compound is a bond or polarity that can form a chemical bond state such as a covalent bond, a coordinate bond, or a van der Waals bond on the surface of silver or a silver alloy. Refers to a compound.

本実施形態で上記有機皮膜に用いることのできる有機化合物としては、例えばエステル、カルボン酸、脂肪族アミン、メルカプタンなどが挙げられ、耐食性に優れた防錆皮膜を形成させることのできる化合物として、脂肪族アミンもしくはメルカプタンがより好ましい。被膜の種類が脂肪族アミン、メルカプタンのいずれかまたは両者の混合物からなることで、形成される有機皮膜厚を容易に調整でき、ボンディング性にも優れた防錆皮膜が得られる。本実施形態に用いられる脂肪族アミン及びメルカプタンの中でも、耐食性および直鎖の長さを考慮して、炭素原子数が30以下の、脂肪族アミン及びメルカプタンが特に好ましく、具体的には、ドデシルアミン、エイコシルアミン、ノニルアミン、オクタデシルアミン、ドデシルメルカプタン、オクタデシルメルカプタン、エイコシルメルカプタン、ノニルメルカプタン、オクタコサンチオール等が挙げられる。  Examples of the organic compound that can be used for the organic film in the present embodiment include esters, carboxylic acids, aliphatic amines, mercaptans, and the like, and compounds that can form a rust-proof film having excellent corrosion resistance include fatty acids. More preferred are group amines or mercaptans. When the type of the coating is composed of either aliphatic amine or mercaptan or a mixture of both, the thickness of the organic coating to be formed can be easily adjusted, and a rust-proof coating excellent in bonding properties can be obtained. Among the aliphatic amines and mercaptans used in the present embodiment, in consideration of corrosion resistance and straight chain length, aliphatic amines and mercaptans having 30 or less carbon atoms are particularly preferable. Specifically, dodecylamine Eicosylamine, nonylamine, octadecylamine, dodecyl mercaptan, octadecyl mercaptan, eicosyl mercaptan, nonyl mercaptan, octacosanthiol and the like.

有機被膜形成方法としては、導電性基体5上に、可動接点部下地層6と、銀または銀合金からなる可動接点部表層7を形成した後、上記有機化合物を含有する溶液中に浸漬する方法で処理することが好ましい。その他、可動接点部表層7を形成後、上記有機化合物を含有する溶液ミスト中を通過させたり、前記溶液を湿らせた布等で拭くなどしたりしても皮膜形成処理をすることができる。上記溶液における銀または銀合金に対し物理的ないしは化学的結合性の有機化合物の濃度は特に制限されることはないが、好ましくは0.01〜10質量%である。溶媒としては、トルエン、アセトン、トリクロロエタン、ラクトン系溶媒、ラクタム系溶媒、環状イミド系の有機溶媒、市販品合成溶剤(例えば、炭化水素系溶剤 NSクリーン100W;商品名、株式会社ジャパンエナジー製)等を使用することができる。これらの溶媒は、表面に残留することなく揮発するため、防錆皮膜における影響はない。また、樹脂密着性も阻害することなく有機皮膜処理を施すことができ、塗布・乾燥が容易に達成される。なお、上記有機化合物皮膜を形成した後、この厚さを本実施形態で規定する厚さに制御する方法として、上記溶媒で0.1〜10秒程度の洗浄を行うことで、銀または銀合金と物理的ないしは化学的結合を生じていない有機化合物の残留分が容易に除去でき、膜厚を制御することが可能である。このときの洗浄工程では、銀または銀合金と結びついた有機皮膜成分は除去されないため、防錆処理効果が失われることはない。  As an organic film forming method, a movable contact portion base layer 6 and a movable contact portion surface layer 7 made of silver or a silver alloy are formed on a conductive substrate 5 and then immersed in a solution containing the organic compound. It is preferable to process. In addition, after the movable contact portion surface layer 7 is formed, the film can be formed by passing the solution through a solution mist containing the organic compound or wiping the solution with a damp cloth. The concentration of the organic compound physically or chemically bound to silver or the silver alloy in the solution is not particularly limited, but is preferably 0.01 to 10% by mass. Solvents include toluene, acetone, trichloroethane, lactone solvents, lactam solvents, cyclic imide organic solvents, commercially available synthetic solvents (for example, hydrocarbon solvent NS Clean 100W; trade name, manufactured by Japan Energy Co., Ltd.), etc. Can be used. Since these solvents volatilize without remaining on the surface, there is no influence on the anticorrosive film. In addition, the organic film treatment can be performed without inhibiting the resin adhesion, and coating and drying can be easily achieved. In addition, after forming the said organic compound membrane | film | coat, as a method of controlling this thickness to the thickness prescribed | regulated by this embodiment, by carrying out washing | cleaning for about 0.1 to 10 second with the said solvent, silver or a silver alloy It is possible to easily remove the residue of the organic compound that does not cause physical or chemical bonding, and to control the film thickness. In the cleaning process at this time, the organic film component associated with silver or the silver alloy is not removed, so that the rust prevention effect is not lost.

防錆皮膜形成の処理温度・処理時間については特に制限はないが、常温(25℃)で0.1秒以上(好ましくは0.5〜10秒)浸漬すれば目的とする防錆皮膜が形成される。この防錆皮膜形成は、1種の有機皮膜を2回以上形成処理したり、2種以上の化合物からなる混合液による有機皮膜を2回以上形成処理したり、さらにはこれらを交互に形成処理したりしても良いが、工程数やコスト面を考慮すると形成処理は3回以内にするのが好ましい。この防錆皮膜はプッシュスイッチの接点構造として作動する前までに、除去されるのが好ましい。  There are no particular restrictions on the treatment temperature and treatment time for the formation of the rust-proof film, but the desired rust-proof film can be formed by immersion for 0.1 seconds or more (preferably 0.5 to 10 seconds) at room temperature (25 ° C). Is done. This rust-preventive film is formed by forming a single organic film twice or more, forming an organic film with a mixture of two or more compounds twice or more, and alternately forming these films. However, in consideration of the number of steps and cost, the formation process is preferably performed three times or less. This rust preventive coating is preferably removed before it operates as a push switch contact structure.

本実施形態において、可動接点部下地層6、可動接点部中間層13、可動接点部表層7の各層は、電気めっき法、無電解めっき法、物理・化学的蒸着法など任意の方法により形成できる。これらの中で電気めっき法が生産性とコストの面などから最も有利である。前記各層は、導電性基材5の全面に形成してもよいが、固定接点部との接点や接点近傍のみに形成するのが経済的である。  In this embodiment, each layer of the movable contact portion base layer 6, the movable contact portion intermediate layer 13, and the movable contact portion surface layer 7 can be formed by any method such as electroplating, electroless plating, physical / chemical vapor deposition. Of these, the electroplating method is the most advantageous in terms of productivity and cost. Each of the layers may be formed on the entire surface of the conductive substrate 5, but it is economical to form the layers only at the contact with the fixed contact portion or in the vicinity of the contact.

更に、密着強度を向上させるために、非酸化性雰囲気中で加熱処理を行うことにより、拡散特に銀の拡散が進行してせん断強度が向上する。これは銀と銅の合金層が厚くなるためであるが、あまりに加熱処理を続けると表層の銀がすべて合金化することとなり、接触安定性が劣化する。また、銀−銅合金層が厚くなると導電性が低下する。銀−銅合金層の厚さは0.1μm以下が好ましく、加熱条件は200〜400℃×1分〜5時間が好ましい。非酸化性の雰囲気ガスとしては、水素、ヘリウム、アルゴン又は窒素を使用することができるが、アルゴンが好ましい。  Furthermore, in order to improve the adhesion strength, by performing the heat treatment in a non-oxidizing atmosphere, diffusion, in particular, diffusion of silver proceeds to improve the shear strength. This is because the alloy layer of silver and copper becomes thick, but if the heat treatment is continued too much, all of the surface silver will be alloyed and contact stability will deteriorate. Moreover, when the silver-copper alloy layer becomes thick, the conductivity decreases. The thickness of the silver-copper alloy layer is preferably 0.1 μm or less, and the heating condition is preferably 200 to 400 ° C. × 1 minute to 5 hours. As the non-oxidizing atmosphere gas, hydrogen, helium, argon or nitrogen can be used, and argon is preferable.

(固定接点部)
本実施形態の固定接点部2は、図3(b)に示すように、基材9上に、銅または銅合金からなる固定接点部下地層10を有し、前記固定接点部下地層10上にニッケル、スズ、亜鉛、ニッケル合金、スズ合金、または亜鉛合金のいずれかからなる固定接点部最表層11を有する固定接点部材12からなる。基材9としては、例えば、FR−4(Flame
Retardant Type 4)などのプリント基板材を用いるのが好ましい。また、固定接点部の基材9と固定接点部下地層10は表面に銅パターンを有するプリント基板であってもよい。すなわち、プリント基板の樹脂部分が基材9であり、プリント基板の銅パターンが固定接点部下地層10である。この場合、プリント基板の銅パターン上に固定接点部最表層11を設けることで、固定接点部材12とすることができる。
(Fixed contact)
As shown in FIG. 3B, the fixed contact portion 2 of the present embodiment has a fixed contact portion base layer 10 made of copper or a copper alloy on a base material 9, and nickel is formed on the fixed contact portion base layer 10. , A fixed contact member 12 having a fixed contact portion outermost layer 11 made of any one of tin, zinc, nickel alloy, tin alloy, and zinc alloy. As the substrate 9, for example, FR-4 (Frame
It is preferable to use a printed circuit board material such as Regentant Type 4). Further, the substrate 9 of the fixed contact portion and the fixed contact portion base layer 10 may be a printed circuit board having a copper pattern on the surface. That is, the resin portion of the printed board is the base material 9, and the copper pattern of the printed board is the fixed contact portion base layer 10. In this case, the fixed contact member 12 can be formed by providing the fixed contact portion outermost layer 11 on the copper pattern of the printed board.

銅または銅合金からなる固定接点部下地層10は、可動接点部下地層6や可動接点部中間層13とは異なり、厚さ50μm以下からなる層である。銅または銅合金としては、特に限定するものではないが、銅、銅−金(Cu−Au)合金、銅−銀(Cu−Ag)合金、銅−スズ(Cu−Sn)合金、銅−ニッケル(Cu−Ni)合金、または銅−インジウム(Cu−In)合金などを用いることができる。また、スズ(Sn)、亜鉛(Zn)、ニッケル(Ni)から選ばれる1種又は2種以上の元素を1〜10質量%含む銅合金でも良い。この下地層はめっきで設けても良いし、たとえば銅箔を樹脂基盤に圧着して設けても良い。  Unlike the movable contact part foundation layer 6 and the movable contact part intermediate layer 13, the fixed contact part foundation layer 10 made of copper or a copper alloy is a layer having a thickness of 50 μm or less. Although it does not specifically limit as copper or a copper alloy, Copper, copper-gold (Cu-Au) alloy, copper-silver (Cu-Ag) alloy, copper-tin (Cu-Sn) alloy, copper-nickel A (Cu—Ni) alloy, a copper-indium (Cu—In) alloy, or the like can be used. Moreover, the copper alloy which contains 1-10 mass% of 1 type, or 2 or more types of elements chosen from tin (Sn), zinc (Zn), and nickel (Ni) may be sufficient. The underlayer may be provided by plating, or may be provided by, for example, pressing a copper foil on a resin substrate.

固定接点部の最表層11は、ニッケル、スズ、亜鉛、ニッケル合金、スズ合金、または亜鉛合金のいずれかからなる。その厚さは0.5〜10μmが好ましい。  The outermost layer 11 of the fixed contact portion is made of nickel, tin, zinc, nickel alloy, tin alloy, or zinc alloy. The thickness is preferably 0.5 to 10 μm.

(電気接点構造)
本実施形態の電気接点構造は、具体的にいわゆるプッシュスイッチとして適用可能であるが、上述した可動接点部1と固定接点部2を有するものであれば特にその型は限定するものではない。このような本実施形態の上述した可動接点部1と固定接点部2を対応した、両者の相互作用により、電気接点構造は接触抵抗、摺動後の接触抵抗の上昇(接触抵抗のバラツキ)が抑制され、表層金属の密着性の向上を図ることができる。
(Electric contact structure)
The electrical contact structure of the present embodiment is specifically applicable as a so-called push switch, but the type thereof is not particularly limited as long as it has the movable contact portion 1 and the fixed contact portion 2 described above. Due to the interaction between the movable contact portion 1 and the fixed contact portion 2 described above according to this embodiment, the electrical contact structure has a contact resistance and a contact resistance increase after sliding (contact resistance variation). It is suppressed and the adhesion of the surface metal can be improved.

(プッシュスイッチ)
図1は、本実施形態の電気接点構造を用いた一例となるプッシュスイッチPの平面図である。また図2は、該プッシュスイッチPの図1におけるA−A線断面図である。図2において(a)はスイッチ動作前(押圧前)、(b)はスイッチ動作時(押圧後)である。図1に示すように、プッシュスイッチPは、ドーム型を呈する可動接点部1、固定接点部2から構成される電気接点構造を有しており、これらが樹脂ケース4中に樹脂の充填材3を介して固定されている。
本実施形態のプッシュスイッチPは、電気接点部のピンホールの発生が抑制されるとともに、繰り返し摺動後まで含め、接点抵抗特性が良好である。
(Push switch)
FIG. 1 is a plan view of an exemplary push switch P using the electrical contact structure of the present embodiment. 2 is a cross-sectional view of the push switch P taken along line AA in FIG. In FIG. 2, (a) is before the switch operation (before pressing), and (b) is during the switch operation (after pressing). As shown in FIG. 1, the push switch P has an electric contact structure composed of a movable contact portion 1 and a fixed contact portion 2 having a dome shape, and these include a resin filler 3 in a resin case 4. It is fixed through.
The push switch P according to the present embodiment suppresses the occurrence of pinholes in the electrical contact portion and has good contact resistance characteristics including after repeated sliding.

以下に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこの実施例に限定されるものではない。  Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

(可動接点部1)
厚さ0.05mm、幅180mmの導電性基材に前処理を通常方法で脱脂・酸洗処理を順で実施後、以下の組成からなるめっき浴において所定の厚さ〈平均厚さ〉の下地層、中間層13、表層を形成し、さらに有機被膜層を形成した。下地層6、中間層13、表層7の厚さは、蛍光X線装置(装置名SFT9200、SIIナノテクノロジー社製)により測定した。尚、平均厚さとは材料の3点の測定により得た平均値である。これは後述の固定接点部材の各層の場合も同様である。
(Moving contact part 1)
A conductive substrate having a thickness of 0.05 mm and a width of 180 mm is subjected to a pretreatment and a degreasing / pickling treatment in order by a normal method, and then a predetermined thickness <average thickness> in a plating bath having the following composition: A base layer, an intermediate layer 13 and a surface layer were formed, and an organic coating layer was further formed. The thicknesses of the underlayer 6, the intermediate layer 13, and the surface layer 7 were measured with a fluorescent X-ray apparatus (device name: SFT9200, manufactured by SII Nanotechnology). The average thickness is an average value obtained by measuring three points of the material. The same applies to each layer of the fixed contact member described later.

・前処理条件
[電解脱脂]
脱脂液:NaOH 60g/リットル(水)
脱脂条件:電流密度 2.5A/dm、温度 60℃、脱脂時間 60秒
[酸洗]
酸洗液:HSO 10質量%溶液
酸洗条件:室温浸漬、浸漬時間 30秒
・ Pretreatment conditions [electrolytic degreasing]
Degreasing solution: NaOH 60 g / liter (water)
Degreasing conditions: current density 2.5 A / dm 2 , temperature 60 ° C., degreasing time 60 seconds [pickling]
Pickling solution: H 2 SO 4 10% by weight solution Pickling conditions: room temperature immersion, immersion time 30 seconds

・下地層めっき処理条件
[ニッケルめっき処理]
めっき液:HCl 120g/リットル(水)、NiCl 30g/リットル(水)
めっき条件:電流密度 1.5A/dm、温度 30℃
[ニッケル−コバルトめっき処理]
めっき液:HCl 120g/リットル(水)、NiCl 30g/リットル(水)、CoCl 30g/リットル(水)
めっき条件:電流密度 1.5A/dm、温度 30℃
・ Underlayer plating conditions [nickel plating]
Plating solution: HCl 120 g / liter (water), NiCl 2 30 g / liter (water)
Plating conditions: current density 1.5 A / dm 2 , temperature 30 ° C.
[Nickel-cobalt plating]
Plating solution: HCl 120 g / liter (water), NiCl 2 30 g / liter (water), CoCl 2 30 g / liter (water)
Plating conditions: current density 1.5 A / dm 2 , temperature 30 ° C.

・中間層めっき処理条件
[銅めっき処理]
めっき液:CuSO・5HO 250g/リットル(水)、HSO 50g/リットル(水)、NaCl 0.1g/リットル(水)
めっき条件:電流密度 1〜10A/dm、温度 40℃
・ Interlayer plating conditions [copper plating]
Plating solution: CuSO 4 · 5H 2 O 250 g / liter (water), H 2 SO 4 50 g / liter (water), NaCl 0.1 g / liter (water)
Plating conditions: current density 1-10 A / dm 2 , temperature 40 ° C.

・表層めっき処理条件
[銀ストライクめっき処理]
めっき液:AgCN 5g/リットル(水溶液)、KCN 60g/リットル(水溶液)、KCO 30g/リットル(水溶液)
めっき条件:電流密度 2A/dm、温度 30℃
[銀めっき処理]
めっき液:AgCN 50g/リットル(水溶液)、KCN 100g/リットル(水溶液)、KCO 30g/リットル(水溶液)
めっき条件:電流密度 3A/dm、温度 30℃
・ Surface plating conditions [silver strike plating]
Plating solution: AgCN 5 g / liter (aqueous solution), KCN 60 g / liter (aqueous solution), K 2 CO 3 30 g / liter (aqueous solution)
Plating conditions: current density 2 A / dm 2 , temperature 30 ° C.
[Silver plating]
Plating solution: AgCN 50 g / liter (aqueous solution), KCN 100 g / liter (aqueous solution), K 2 CO 3 30 g / liter (aqueous solution)
Plating conditions: current density 3 A / dm 2 , temperature 30 ° C.

・有機被膜層の形成
メルカプタン系有機化合物の溶液に、必要なめっき処理を行った各サンプルを浸漬して、有機被膜を形成させた。
浸漬溶液:0.5質量%有機化合物溶液(溶剤トルエン)
浸漬条件:常温 5秒浸漬後、溶剤トルエンで5秒洗浄
乾燥:40℃ 30秒
-Formation of organic coating layer Each sample subjected to the necessary plating treatment was immersed in a solution of a mercaptan-based organic compound to form an organic coating.
Immersion solution: 0.5 mass% organic compound solution (solvent toluene)
Immersion conditions: normal temperature 5 seconds after immersion, then solvent toluene for 5 seconds drying: 40 ° C 30 seconds

(固定接点部2)
樹脂基材(FR−4)に、以下の下地層、最表層を形成した。
(Fixed contact part 2)
The following underlayer and outermost layer were formed on the resin substrate (FR-4).

下地層形成条件
樹脂基材上に、厚さ35μmの銅箔(圧延銅箔または電解銅箔)を熱プレスにより貼り付けた。
熱プレス条件:150℃、1時間、圧力1MPa
Underlayer forming conditions A copper foil (rolled copper foil or electrolytic copper foil) having a thickness of 35 μm was stuck on a resin base material by hot pressing.
Hot press conditions: 150 ° C., 1 hour, pressure 1 MPa

前記下地層上に、最表層をめっきにより形成した。
・最表層めっき処理条件
[ニッケルめっき処理]
めっき液:HCl 120g/リットル(水)、NiCl2 30g/リットル(水)
めっき条件:電流密度 1.5A/dm、温度 30℃
[スズめっき処理]
めっき液:硫酸第一錫 60g/リットル(水)、HSO 98g/リットル(水)
めっき条件:電流密度 1A/dm、温度 30℃
[亜鉛めっき処理]
めっき液:硫酸亜鉛 60g/リットル(水)、HSO 98g/リットル(水)
めっき条件:電流密度 1A/dm、温度 30℃
[金めっき処理]
めっき液:メルテックス製 ロノベルC メタル濃度4g/リットル(水)
めっき条件:電流密度 2A/dm、温度 60℃
An outermost layer was formed on the base layer by plating.
・ Outermost layer plating conditions [nickel plating]
Plating solution: HCl 120 g / liter (water), NiCl2 30 g / liter (water)
Plating conditions: current density 1.5 A / dm 2 , temperature 30 ° C.
[Tin plating treatment]
Plating solution: stannous sulfate 60 g / liter (water), H 2 SO 4 98 g / liter (water)
Plating conditions: current density 1 A / dm 2 , temperature 30 ° C.
[Zinc plating treatment]
Plating solution: Zinc sulfate 60 g / liter (water), H 2 SO 4 98 g / liter (water)
Plating conditions: current density 1 A / dm 2 , temperature 30 ° C.
[Gold plating]
Plating solution: Ronel C made by Meltex Metal concentration 4g / liter (water)
Plating conditions: current density 2 A / dm 2 , temperature 60 ° C.

(電気接点構造)
得られた可動接点部1を直径4mmφのドーム型可動接点部材に加工し、得られた固定接点部2を所定の形状に加工して図1、2に示すプッシュスイッチとしての電気接点構造を形成した。これら可動接点部1、固定接点部2の実施例の構成を表1にまとめた。
(Electric contact structure)
The obtained movable contact portion 1 is processed into a dome-shaped movable contact member having a diameter of 4 mmφ, and the obtained fixed contact portion 2 is processed into a predetermined shape to form an electrical contact structure as a push switch shown in FIGS. did. The configurations of the movable contact portion 1 and the fixed contact portion 2 are shown in Table 1.

Figure 2015041359
Figure 2015041359

表1に示された電気接点構造について下記の試験を行った。その結果を表2にまとめた。  The following tests were conducted on the electrical contact structures shown in Table 1. The results are summarized in Table 2.

(摺動無し接触抵抗試験)
電気接点構造の接続性について、4端子法を用いて、初期、大気加熱後(85℃−240hr.)、高温高湿(60℃、95%RH、240hr.)後の接触抵抗測定を行った。
測定条件:供試用可動接点側材料と供試用固定接点側材料とを用意した。この可動接点側材料には曲率半径1.05mmの半球状張出部(凸部外面が最外層面)を設ける。この半球状張出部に固定接点側材料の最外層面を荷重1Nで接触させ、四端子法を用いて5mA通電時の抵抗値を10回測定し、その平均値を算出した。
またその結果を下記の基準により評価した。
A 接触抵抗(すべての条件)の値が40mΩ未満である。
B いずれか1つ以上の条件の接触抵抗の値が40mΩ以上、100mΩ未満である。C 上記以外(いずれか1つ以上の条件の接触抵抗の値が100mΩ以上である。)
(密着性試験)
可動接点部1の試験片を10mm×30mmに切断後、カッターで2mm四方のクロスカットを実施した。その後寺岡製作所製#631Sテープを使用して引き剥がし、めっきの密着性試験を実施した。密着性は、剥離あり(表2中では「剥離」、あるいは一部のみの場合は「NG」と評価)と剥離無し(表2中では「OK」と評価)のいずれかの基準で評価した。
(Contact resistance test without sliding)
Regarding the connectivity of the electrical contact structure, contact resistance measurement was performed using the four-terminal method at the initial stage, after atmospheric heating (85 ° C.-240 hr.), And after high temperature and high humidity (60 ° C., 95% RH, 240 hr.). .
Measurement conditions: A test movable contact side material and a test fixed contact side material were prepared. This movable contact side material is provided with a hemispherical overhanging portion (the outer surface of the convex portion is the outermost layer surface) having a radius of curvature of 1.05 mm. The outermost layer surface of the fixed contact side material was brought into contact with this hemispherical overhanging portion with a load of 1 N, and the resistance value at 5 mA energization was measured 10 times using a four-terminal method, and the average value was calculated.
The results were evaluated according to the following criteria.
A The value of contact resistance (all conditions) is less than 40 mΩ.
B The value of the contact resistance under any one or more conditions is 40 mΩ or more and less than 100 mΩ. C Other than the above (the contact resistance value of any one or more conditions is 100 mΩ or more)
(Adhesion test)
After the test piece of the movable contact portion 1 was cut to 10 mm × 30 mm, a cross cut of 2 mm square was performed with a cutter. Thereafter, it was peeled off using # 631S tape manufactured by Teraoka Seisakusho, and a plating adhesion test was performed. Adhesiveness was evaluated according to any of the standards of peeling (“peeling” in Table 2 or “NG” in the case of only a part) and no peeling (evaluating “OK” in Table 2). .

(摺動後接触抵抗試験)
摺動後接触抵抗試験(微摺動磨耗試験)は次のようにして行った。
可動接点部1と固定接点部2の供試用めっき材料とを用意した。可動接点部1のめっき材料には曲率半径1.05mmの半球状張出部(凸部外面が最外層面)を設けた。この半球状張出部に固定接点部めっき材料の最外層面をそれぞれ脱脂洗浄後に接触圧力1Nで接触させ、この状態で両者を、温度20℃、湿度50%の環境下で、摺動距離10μmで往復摺動させ、両めっき材料の間に開放電圧20mVを負荷して定電流5mAを流し、摺動中の電圧降下を4端子法により測定して電気抵抗の変化を1秒ごとに求めた。微摺動試験前の接触抵抗値(初期値)と微摺動試験中の最大接触抵抗値(最大値)を表2に示した。なお、往復運動の周波数は約6.8Hzで行った。ここでは1往復を1回とカウントした。
またその結果を下記の基準により判定した。
A 接触抵抗(すべての条件)の値が40mΩ未満である。
B いずれか1つ以上の条件の接触抵抗の値が40mΩ以上、60mΩ未満である。
C いずれか1つ以上の条件の接触抵抗の値が60mΩ以上、100mΩ未満である。
D いずれか1つ以上の条件の接触抵抗の値が100mΩ以上である。
(総合特性)
総合特性の評価は次の判断基準でおこなった。
A:摺動無し接触抵抗試験の判定がA、摺動後接触抵抗試験の判定がA〜C判定であり、密着性試験の判定がOKの結果であった。
B:摺動無し接触抵抗試験の判定がB、摺動後接触抵抗試験の判定がA〜C判定であり、密着性試験の判定がOKの結果であった。
C:摺動無し接触抵抗試験の判定がC、摺動後接触抵抗試験の判定がA〜C判定であり、密着性試験の判定がOK、であったもの。
D:摺動後接触抵抗試験の判定がDまたは密着性試験の判定がNGであるもの
(Contact resistance test after sliding)
The contact resistance test after sliding (fine sliding wear test) was performed as follows.
Test plating materials for the movable contact portion 1 and the fixed contact portion 2 were prepared. The plating material for the movable contact portion 1 was provided with a hemispherical overhanging portion having a curvature radius of 1.05 mm (the convex outer surface is the outermost layer surface). The outermost layer surface of the fixed contact portion plating material is contacted with a contact pressure of 1 N after degreasing and washing with this hemispherical overhanging portion. Was slid back and forth, a constant current of 5 mA was applied between the plating materials with an open voltage of 20 mV, and the voltage drop during sliding was measured by the 4-terminal method to determine the change in electrical resistance every second. . Table 2 shows the contact resistance value (initial value) before the fine sliding test and the maximum contact resistance value (maximum value) during the fine sliding test. The reciprocating frequency was about 6.8 Hz. Here, one round trip was counted as one round.
The results were determined according to the following criteria.
A The value of contact resistance (all conditions) is less than 40 mΩ.
B The contact resistance value under any one or more conditions is 40 mΩ or more and less than 60 mΩ.
C The value of the contact resistance under any one or more conditions is 60 mΩ or more and less than 100 mΩ.
D The value of the contact resistance under any one or more conditions is 100 mΩ or more.
(Overall characteristics)
The overall characteristics were evaluated according to the following criteria.
A: The determination of the contact resistance test without sliding was A, the determination of the contact resistance test after sliding was AC determination, and the determination of the adhesion test was OK.
B: The determination of the non-sliding contact resistance test was B, the determination of the contact resistance test after sliding was AC determination, and the determination of the adhesion test was OK.
C: The determination in the contact resistance test without sliding was C, the determination in the contact resistance test after sliding was AC determination, and the determination in the adhesion test was OK.
D: The judgment of the contact resistance test after sliding is D or the judgment of the adhesion test is NG

Figure 2015041359
Figure 2015041359

表1、2を総合した結果から、従来例1は総合判定がDであり、実用上、不適であった。一方、発明例1〜41に示した本実施例品は、総合判定がA〜Cに入っており、とくに摺動後接触抵抗試験後において優れた接触抵抗特性を有し、優れた可動接点構造を備えていることが分かる。また、大気中における加熱処理後においても接触抵抗が非常に低く、かつ皮膜密着性において、大変良好であることがわかる。
摺動無し接触抵抗試験の結果については、本実施例品において、結果A〜Cとばらついた。なかでも発明例14のものが最も良く、その他の結果との関係から勘案して、前記可動接点部表層7の厚さが0.01〜0.3μmであり(さらに好適には0.03〜0.2μm)、前記可動接点部中間層13の厚さが0.01〜0.09μmであり(さらに好適には0.15〜0.05μm)、固定接点部最表層11の厚さが0.5〜10μm(さらに好適には3〜8μm)である場合最も良い特性が得られると考えられ、それらそれぞれの数値範囲のいずれか1つ以上を満たす場合には本実施形態として好適であることが分かった。
From the result of integrating Tables 1 and 2, Conventional Example 1 has a comprehensive judgment of D, which is unsuitable for practical use. On the other hand, the present embodiment products shown in Invention Examples 1 to 41 have comprehensive judgments A to C, and particularly have excellent contact resistance characteristics after a contact resistance test after sliding, and an excellent movable contact structure. It can be seen that It can also be seen that the contact resistance is very low even after heat treatment in the atmosphere and the film adhesion is very good.
About the result of the non-sliding contact resistance test, the results A to C varied in the product of this example. Among them, the example of Invention Example 14 is the best, and the thickness of the movable contact portion surface layer 7 is 0.01 to 0.3 μm in consideration of the relationship with other results (more preferably 0.03 to 0.03 μm). 0.2 μm), the movable contact portion intermediate layer 13 has a thickness of 0.01 to 0.09 μm (more preferably 0.15 to 0.05 μm), and the fixed contact portion outermost layer 11 has a thickness of 0. It is considered that the best characteristics can be obtained when the thickness is 5 to 10 μm (more preferably 3 to 8 μm), and it is suitable as this embodiment when satisfying any one or more of their respective numerical ranges. I understood.

以上の実施形態、実施例において固定接点部2側の基材として樹脂基材を使用したが、とくに限定されるものではなく、例えばガラスエポキシ板のようなリジット基板、また、PETフィルムやポリイミドフィルムのような可撓性のあるフィルム材料、黄銅や無酸素銅などの銅または銅合金、SUS301などの鉄または鉄合金、Al1071のようなアルミ銅合金などの材質の基材を使用してもよい。
(本明細書における「μF−1/cm」という単位の定義および測定方法)
「μF−1/cm」とは電気二重層容量を用いる金属上の有機皮膜の厚さを規定する単位であり、電気二重層容量の逆数1/Cである。
その測定方法は、原理としては4端子法に従い、より具体的には、電解質水溶液中に被測定試料を浸漬し、対極との間にステップ電流を流し、参照電極と被測定試料のあいだの電圧の過渡特性を電子回路で演算することにより、電気二重層容量Cを測定するものである。ここでCと試料の厚さdには以下の関係がある。
1/C=A・d+B(A,Bは比例定数)
したがって1/Cの値を求めることによって試料表面の誘電体薄膜厚さの相対値を求めることができる。
Although the resin base material was used as the base material on the fixed contact portion 2 side in the above embodiments and examples, it is not particularly limited, for example, a rigid substrate such as a glass epoxy plate, PET film or polyimide film A flexible film material such as copper, a copper or copper alloy such as brass or oxygen-free copper, an iron or iron alloy such as SUS301, or an aluminum copper alloy such as Al1071 may be used. .
(Definition of unit of “μF −1 / cm 2 ” and measurement method in this specification)
“ΜF −1 / cm 2 ” is a unit that defines the thickness of the organic film on the metal using the electric double layer capacity, and is the reciprocal 1 / C of the electric double layer capacity.
The measurement method is based on the four-terminal method in principle. More specifically, the sample to be measured is immersed in an aqueous electrolyte solution, a step current is passed between the counter electrode and the voltage between the reference electrode and the sample to be measured. The electric double layer capacitance C is measured by calculating the transient characteristics of the above by an electronic circuit. Here, C and the thickness d of the sample have the following relationship.
1 / C = A · d + B (A and B are proportional constants)
Therefore, the relative value of the thickness of the dielectric thin film on the sample surface can be obtained by obtaining the value of 1 / C.

本願は、2013年9月21日に日本国で特許出願された特願2013−196281に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。  This application claims the priority based on Japanese Patent Application No. 2013-196281 for which it applied for a patent in Japan on September 21, 2013, and this is referred to here for the contents of this specification. Capture as part.

P プッシュスイッチ
1 可動接点部
2 固定接点部
5 導電性基材
6 可動接点部下地層
7 可動接点部表層
8 可動接点部材
9 基材
10 固定接点部下地層
11 固定接点部最表層
12 固定接点部材
13 可動接点部中間層
P Push switch 1 Movable contact part 2 Fixed contact part 5 Conductive base material 6 Movable contact part base layer 7 Movable contact part surface layer 8 Movable contact member 9 Base material 10 Fixed contact part base layer 11 Fixed contact part outermost layer 12 Fixed contact member 13 Movable Contact layer

そこで、本発明は、スイッチングが繰り返されるような環境下において長期間使用されても、表面品質が劣化することのない可動接点材と固定接点材とを組み合わせた、電気接点構造およびプッシュスイッチを提供することを課題とする。さらには、長期間使用において接触抵抗の上昇が小さい、可動接点材と固定接点材を組み合わせた電気接点構造およびプッシュスイッチを提供することを課題とする。
Accordingly, the present invention may be used for a long period of time in an environment such as the switching is repeated, combines with that no movable contact point member surface quality deteriorates and stationary contact point member, the electrical contact structure and a push switch It is an issue to provide. Furthermore, increase in the contact resistance in long-term use is small, it is an object to provide an electrical contact structure and a push switch in combination with the movable contact point member fixed contact point member.

本発明の上記課題は以下の解決手段によって解決された。
(1)可動接点部と固定接点部とを有する電気接点構造であって、
前記可動接点部は、導電性基材の表面の少なくとも一部にニッケル、コバルト、ニッケル合金、またはコバルト合金(ただし、ニッケル−銅合金を除く)のいずれかからなる可動接点部下地層を有し、銀または銀合金からなる可動接点部表層を有する可動接点材で構成され、
前記固定接点部は、基材上に銅または銅合金からなる固定接点部下地層を有し、前記固定接点部下地層上にニッケル、スズ、亜鉛、ニッケル合金、スズ合金、または亜鉛合金のいずれかからなる固定接点部最表層を有する固定接点材で構成されることを特徴とする電気接点構造。
(2)前記可動接点部導電性基材は、鉄系基材であることを特徴とする(1)に記載の電気接点構造。
(3)前記可動接点部表層の厚さが0.01〜0.3μmであることを特徴とする(1)または(2)に記載の電気接点構造。
(4)前記可動接点部下地層と可動接点部表層の間に、銅または銅合金からなる可動接点部中間層を有することを特徴とする(1)〜(3)のいずれか1項に記載の電気接点構造。
(5)前記可動接点部中間層の厚さが0.01〜0.09μmであることを特徴とする(4)に記載の電気接点構造。
(6)前記可動接点部表層上に厚さが1〜3μF−1/cmの有機皮膜層を有することを特徴とする(1)〜(5)のいずれか1項に記載の電気接点構造。
(7)前記固定接点の基材が、ガラスエポキシ材であることを特徴とする(1)〜(6)のいずれか1項に記載の電気接点構造。
(8)前記固定接点部最表層の厚さが0.5〜10μmであることを特徴とする(1)〜(7)のいずれか1項に記載の電気接点構造。
(9)(1)〜(8)のいずれか1項に記載の電気接点構造を有するプッシュスイッチ。
The above problems of the present invention have been solved by the following means.
(1) An electrical contact structure having a movable contact portion and a fixed contact portion,
The movable contact portion has a movable contact portion base layer made of nickel, cobalt, nickel alloy, or cobalt alloy (excluding nickel-copper alloy) on at least a part of the surface of the conductive substrate, consists of a movable contact point member having a movable contact portion surface composed of silver or a silver alloy,
The fixed contact portion has a fixed contact portion base layer made of copper or a copper alloy on a base material, and nickel, tin, zinc, a nickel alloy, a tin alloy, or a zinc alloy is formed on the fixed contact portion base layer. electrical contact structure characterized in that it is constituted by a fixed contact point member having a stationary contact portion outermost layer composed.
(2) The electrical contact structure according to (1), wherein the conductive base material of the movable contact portion is an iron-based base material.
(3) The electric contact structure according to (1) or (2), wherein the thickness of the surface layer of the movable contact portion is 0.01 to 0.3 μm.
(4) between the movable contact subordinate formations and the movable contact portion surface, and having a movable contact portion intermediate layer made of copper or a copper alloy (1) to according to any one of (3) Electrical contact structure.
(5) The electric contact structure according to (4), wherein the movable contact portion intermediate layer has a thickness of 0.01 to 0.09 μm.
(6) the thickness of the movable contact on the surface layer and having an organic coating layer of 1~3μF -1 / cm 2 (1) electrical contact structure according to any one of - (5) .
(7) a base of the fixed contact member is, electrical contact structure as claimed in any one of characterized in that it is a glass epoxy material (1) to (6).
(8) the electrical contact structure according to any one of the thickness of the fixed contact portion outermost layer, characterized in that a 0.5 to 10 [mu] m (1) ~ (7).
(9) (1) push switch having an electrical contact structure according to any one of - (8).

(電気接点構造)
本実施形態の電気接点構造は、可動接点部を構成する可動接点材と、固定接点部を構成する固定接点材とで構成されている。
図3(a)は、一例として、可動接点部1、図3(b)は一例として、固定接点部2の断面構造をそれぞれ図示するものである。
図3(a)に示すように、可動接点部1は、導電性基材5の表面の少なくとも一部にニッケル、コバルト、ニッケル合金、またはコバルト合金(ただし、ニッケル−銅合金を除く)のいずれかからなる可動接点部下地層6を有し、銀または銀合金からなる可動接点部表層7が形成された可動接点材8から構成されている。
また図3(b)に示すように、固定接点部2は、たとえば樹脂からなる基材9上に銅または銅合金からなる固定接点部下地層10を有し、固定接点部下地層10上にニッケル、スズ、亜鉛、ニッケル合金、スズ合金、または亜鉛合金のいずれかからなる固定接点部最表層11が形成された固定接点材12から構成されている。
(Electric contact structure)
Electrical contact structure of the present embodiment, the movable contact point material constituting the movable contact portion, and a stationary contact point material constituting the fixed contact portion.
3A shows the movable contact portion 1 as an example, and FIG. 3B shows the cross-sectional structure of the fixed contact portion 2 as an example.
As shown in FIG. 3A, the movable contact portion 1 is made of nickel, cobalt, a nickel alloy, or a cobalt alloy (excluding a nickel-copper alloy) on at least a part of the surface of the conductive substrate 5. less composed has a movable contact subordinate formation 6, the movable contact portion surface 7 of silver or a silver alloy and a movable contact point member 8 formed.
As shown in FIG. 3B, the fixed contact portion 2 has a fixed contact portion base layer 10 made of copper or a copper alloy on a base material 9 made of resin, for example, and nickel, tin, zinc, nickel alloy, and a tin alloy or fixed contact point member 12 which fixed contact portion outermost layer 11 consisting of either zinc alloy is formed.

前記導電性基材5上に形成される可動接点部下地層6は、密着性を高めるためにニッケル、コバルト、ニッケル合金、コバルト合金(ただし、ニッケル−銅合金を除く)のいずれかが選ばれる。この下地層6は、導電性基材5を陰極にして、例えば塩化ニッケルおよび遊離塩酸を含む電解液を用いて電解することにより、厚さを0.05〜2.0μmとしてめっきするのが好ましい。ニッケルまたはニッケル合金の下地層6の厚さは、薄すぎると効果が少なく、厚すぎると導電性基材5の可動接点の作動力が低下する。可動接点部下地層6を形成するニッケル、コバルトとしては、限定するものではないが、ニッケルが特に好ましく、純ニッケルのほかではコバルト(Co)を1〜10質量%含むニッケル合金でも良い。また、ニッケル−リン(Ni−P)合金、ニッケル−スズ(Ni−Sn)合金、ニッケルーコバルト(Ni−Co)合金、ニッケル−コバルト−リン(Ni−Co−P)合金、ニッケル−クロム(Ni−Cr)合金、ニッケル−亜鉛(Ni−Zn)合金、ニッケル−鉄(Ni−Fe)合金などを用いても良い。
The movable contact portion base layer 6 formed on the conductive substrate 5 is selected from nickel, cobalt, nickel alloy, and cobalt alloy (excluding nickel-copper alloy) in order to improve adhesion. . The underlayer 6 is preferably plated with a thickness of 0.05 to 2.0 μm by electrolysis using, for example, an electrolytic solution containing nickel chloride and free hydrochloric acid using the conductive substrate 5 as a cathode. . If the thickness of the underlayer 6 of nickel or nickel alloy is too thin, the effect is small, and if it is too thick, the operating force of the movable contact of the conductive substrate 5 decreases. The nickel and cobalt forming the movable contact portion base layer 6 are not limited, but nickel is particularly preferable, and nickel alloy containing 1 to 10% by mass of cobalt (Co) may be used in addition to pure nickel. Also, nickel - phosphorous (Ni-P) alloy, a nickel - tin (Ni-Sn) alloy, a nickel-cobalt (Ni-Co) alloy, a nickel - cobalt - phosphorous (Ni-Co-P) alloy, nickel - chromium A (Ni—Cr) alloy, a nickel-zinc (Ni—Zn) alloy, a nickel-iron (Ni—Fe) alloy, or the like may be used.

(固定接点部)
本実施形態の固定接点部2は、図3(b)に示すように、基材9上に、銅または銅合金からなる固定接点部下地層10を有し、前記固定接点部下地層10上にニッケル、スズ、亜鉛、ニッケル合金、スズ合金、または亜鉛合金のいずれかからなる固定接点部最表層11を有する固定接点材12からなる。基材9としては、例えば、FR−4(Flame Retardant Type 4)などのプリント基板材を用いるのが好ましい。また、固定接点部の基材9と固定接点部下地層10は表面に銅パターンを有するプリント基板であってもよい。すなわち、プリント基板の樹脂部分が基材9であり、プリント基板の銅パターンが固定接点部下地層10である。この場合、プリント基板の銅パターン上に固定接点部最表層11を設けることで、固定接点材12とすることができる。
(Fixed contact)
As shown in FIG. 3B, the fixed contact portion 2 of the present embodiment has a fixed contact portion base layer 10 made of copper or a copper alloy on a base material 9, and nickel is formed on the fixed contact portion base layer 10. , tin, zinc, nickel alloy, consisting of the fixed contact point member 12 having a tin alloy or the fixed contact portion outermost layer 11 consisting of either zinc alloy. As the base material 9, for example, a printed board material such as FR-4 (Frame Regentant Type 4) is preferably used. Further, the substrate 9 of the fixed contact portion and the fixed contact portion base layer 10 may be a printed circuit board having a copper pattern on the surface. That is, the resin portion of the printed board is the base material 9, and the copper pattern of the printed board is the fixed contact portion base layer 10. In this case, by providing the fixed contact portion outermost layer 11 on the copper pattern of the printed circuit board may be a stationary contact point member 12.

(可動接点部1)
厚さ0.05mm、幅180mmの導電性基材に前処理を通常方法で脱脂・酸洗処理を順で実施後、以下の組成からなるめっき浴において所定の厚さ〈平均厚さ〉の下地層、中間層13、表層を形成し、さらに有機被膜層を形成した。下地層6、中間層13、表層7の厚さは、蛍光X線装置(装置名SFT9200、SIIナノテクノロジー社製)により測定した。尚、平均厚さとは材料の3点の測定により得た平均値である。これは後述の固定接点材の各層の場合も同様である。
(Moving contact part 1)
A conductive substrate having a thickness of 0.05 mm and a width of 180 mm is subjected to a pretreatment and a degreasing / pickling treatment in order by a normal method, and then a predetermined thickness <average thickness> in a plating bath having the following composition: A base layer, an intermediate layer 13 and a surface layer were formed, and an organic coating layer was further formed. The thicknesses of the underlayer 6, the intermediate layer 13, and the surface layer 7 were measured with a fluorescent X-ray apparatus (device name: SFT9200, manufactured by SII Nanotechnology). The average thickness is an average value obtained by measuring three points of the material. This is also the case of each layer of the fixed contact point member which will be described later.

(電気接点構造)
得られた可動接点部1を直径4mmφのドーム型可動接点材に加工し、得られた固定接点部2を所定の形状に加工して図1、2に示すプッシュスイッチとしての電気接点構造を形成した。これら可動接点部1、固定接点部2の実施例の構成を表1にまとめた。
(Electric contact structure)
The resulting processed movable contact 1 domed movable contact point having a diameter of 4 mm diameter, by processing the stationary contact portion 2 obtained into a predetermined shape electric contact structure as a push switch shown in FIGS Formed. The configurations of the movable contact portion 1 and the fixed contact portion 2 are shown in Table 1.

P プッシュスイッチ
1 可動接点部
2 固定接点部
5 導電性基材
6 可動接点部下地層
7 可動接点部表層
8 可動接点材
9 基材
10 固定接点部下地層
11 固定接点部最表層
12 固定接点材
13 可動接点部中間層
P push switch 1 movable contact 2 fixed contact part 5 conductive substrate 6 movable contact subordinate formations 7 movable contact surface layer 8 movable contact point member 9 substrate 10 fixed contact subordinate formations 11 fixed contact portion outermost layer 12 stationary contact point member 13 Movable contact layer intermediate layer

本発明の上記課題は以下の解決手段によって解決された。
(1)可動接点部と固定接点部とを有する電気接点構造であって、
前記可動接点部は、導電性基材の表面の少なくとも一部にニッケル、コバルト、ニッケル合金、またはコバルト合金(ただし、ニッケル−銅合金を除く)のいずれかからなる可動接点部下地層を有し、銀または銀合金からなり被覆厚が0.005〜0.29μmである可動接点部表層を有する可動接点材で構成され、
前記固定接点部は、基材上に銅または銅合金からなる固定接点部下地層を有し、前記固定接点部下地層上にニッケル、スズ、亜鉛、ニッケル合金、スズ合金、または亜鉛合金のいずれかからなる固定接点部最表層を有する固定接点材で構成されることを特徴とする電気接点構造
(2)前記可動接点部下地層と可動接点部表層の間に、銅または銅合金からなる可動接点部中間層を有し、その被覆厚が0.005μm〜0.95μmであることを特徴とする(1)に記載の電気接点構造
(3)前記可動接点部表層上に厚さが1〜3μF−1/cmの有機皮膜層を有することを特徴とする(1)又は(2)に記載の電気接点構造。
)前記固定接点材の基材が、ガラスエポキシ材であることを特徴とする(1)〜()のいずれか1項に記載の電気接点構造。
)前記固定接点部最表層の厚さが0.5〜10μmであることを特徴とする(1)〜()のいずれか1項に記載の電気接点構造。
)(1)〜()のいずれか1項に記載の電気接点構造を有するプッシュスイッチ。
The above problems of the present invention have been solved by the following means.
(1) An electrical contact structure having a movable contact portion and a fixed contact portion,
The movable contact portion has a movable contact portion base layer made of nickel, cobalt, nickel alloy, or cobalt alloy (excluding nickel-copper alloy) on at least a part of the surface of the conductive substrate, Ri coating thickness Do of silver or a silver alloy is formed by a movable contact member having a movable contact portion surface is 0.005~0.29Myuemu,
The fixed contact portion has a fixed contact portion base layer made of copper or a copper alloy on a base material, and nickel, tin, zinc, a nickel alloy, a tin alloy, or a zinc alloy is formed on the fixed contact portion base layer. An electric contact structure comprising a fixed contact material having a fixed contact portion outermost layer .
(2) between the movable contact subordinate formations and the movable contact portion surface, it has a movable contact portion intermediate layer made of copper or a copper alloy, the coating thickness and wherein 0.005μm~0.95μm der Rukoto The electrical contact structure according to (1 ) .
(3 ) The electrical contact structure according to (1) or (2) , wherein an organic film layer having a thickness of 1 to 3 μF −1 / cm 2 is formed on the surface layer of the movable contact portion.
( 4 ) The electrical contact structure according to any one of (1) to ( 3 ), wherein a base material of the fixed contact material is a glass epoxy material.
( 5 ) The electrical contact structure according to any one of (1) to ( 4 ), wherein a thickness of the outermost layer of the fixed contact portion is 0.5 to 10 μm.
( 6 ) A push switch having the electrical contact structure according to any one of (1) to ( 5 ).

このような可動接点部中間層13の厚さは0.0050.95μmが好ましい。銅または銅合金層の厚さは、薄すぎると層を設けた効果が少なく、厚すぎると基材の可動接点の作動力が低下するため好ましくない。銅または銅合金としては、特に限定するものではないが、銅、銅−金(Cu−Au)合金、銅−銀(Cu−Ag)合金、銅−スズ(Cu−Sn)合金、銅−ニッケル(Cu−Ni)合金、または銅−インジウム(Cu−In)合金などを用いることができる。また、スズ(Sn)、亜鉛(Zn)、ニッケル(Ni)から選ばれる1種又は2種以上の元素を1〜10質量%含む銅合金でも良い。
The thickness of the movable contact portion intermediate layer 13 is preferably 0.005 to 0.95 μm. If the thickness of the copper or copper alloy layer is too thin, the effect of providing the layer is small, and if it is too thick, the operating force of the movable contact of the substrate is reduced, which is not preferable. Although it does not specifically limit as copper or a copper alloy, Copper, copper-gold (Cu-Au) alloy, copper-silver (Cu-Ag) alloy, copper-tin (Cu-Sn) alloy, copper-nickel A (Cu—Ni) alloy, a copper-indium (Cu—In) alloy, or the like can be used. Moreover, the copper alloy which contains 1-10 mass% of 1 type, or 2 or more types of elements chosen from tin (Sn), zinc (Zn), and nickel (Ni) may be sufficient.

可動接点部1の表層には、銀または銀合金からなる可動接点部表層7を設ける。この層の厚さは0.005〜0.29μmが好ましい。銀合金としては、耐摩耗性向上のために、銀にアンチモン(Sb)を0.1〜2.0質量%添加した合金を用いてもよい。従来用いられていた固定接点部2の金表面に対して、可動接点部の表面はニッケルを用いるのが主流であった。しかし金は高価であることから、固定接点部2は銀やニッケルを最表面とすることが検討されたが、今度は銀のコストやニッケルの表面の接触抵抗の高さが課題となった。このような背景を踏まえ、銀または銀合金からなる層は薄くしている。
A movable contact portion surface layer 7 made of silver or a silver alloy is provided on the surface layer of the movable contact portion 1. The thickness of this layer is preferably 0.005 to 0.29 μm. As the silver alloy, an alloy in which 0.1 to 2.0 mass% of antimony (Sb) is added to silver may be used in order to improve wear resistance. In contrast to the gold surface of the fixed contact portion 2 conventionally used, the surface of the movable contact portion is mainly made of nickel. However, since gold is expensive, it has been studied that the fixed contact portion 2 has silver or nickel as the outermost surface, but this time, the cost of silver and the high contact resistance of the nickel surface have become issues. Based on such a background, the layer made of silver or a silver alloy is thinned.

Figure 2015041359
Figure 2015041359

Figure 2015041359
Figure 2015041359

表1、2を総合した結果から、従来例1は総合判定がDであり、実用上、不適であった。一方、発明例1〜10と12〜32と34〜41に示した本実施例品は、総合判定がA〜Cに入っており、とくに摺動後接触抵抗試験後において優れた接触抵抗特性を有し、優れた可動接点構造を備えていることが分かる。また、大気中における加熱処理後においても接触抵抗が非常に低く、かつ皮膜密着性において、大変良好であることがわかる。
摺動無し接触抵抗試験の結果については、本実施例品において、結果A〜Cとばらついた。なかでも発明例14のものが最も良く、その他の結果との関係から勘案して、前記可動接点部表層7の厚さが0.005〜0.29μmであり(好適には0.01〜0.29μm、さらに好適には0.03〜0.2μm)、前記可動接点部中間層13の厚さが0.0050.95μmであり(好適には0.01〜0.09μm、さらに好適には0.15〜0.05μm)、固定接点部最表層11の厚さが0.5〜10μm(さらに好適には3〜8μm)である場合最も良い特性が得られると考えられ、それらそれぞれの数値範囲のいずれか1つ以上を満たす場合には本実施形態として好適であることが分かった。
From the result of integrating Tables 1 and 2, Conventional Example 1 has a comprehensive judgment of D, which is unsuitable for practical use. On the other hand, the present example products shown in Invention Examples 1 to 10, 12 to 32, and 34 to 41 have comprehensive judgments A to C, and have excellent contact resistance characteristics particularly after a contact resistance test after sliding. It can be seen that it has an excellent movable contact structure. It can also be seen that the contact resistance is very low even after heat treatment in the atmosphere and the film adhesion is very good.
About the result of the non-sliding contact resistance test, the results A to C varied in the product of this example. Among them, the example of Invention Example 14 is the best, and the thickness of the movable contact portion surface layer 7 is 0.005 to 0.29 μm in consideration of the relationship with other results ( preferably 0.01 to 0.29 μm , more preferably 0.03 to 0.2 μm), and the thickness of the movable contact portion intermediate layer 13 is 0.005 to 0.95 μm ( preferably 0.01 to 0.09 μm , More preferably 0.15 to 0.05 μm), and it is considered that the best characteristics can be obtained when the thickness of the fixed contact portion outermost layer 11 is 0.5 to 10 μm (more preferably 3 to 8 μm), It was found that the present embodiment is suitable when any one or more of the respective numerical ranges are satisfied.

本発明の上記課題は以下の解決手段によって解決された。
(1)可動接点部と固定接点部とを有する電気接点構造であって、
前記可動接点部は、導電性基材の表面の少なくとも一部にニッケル、コバルト、ニッケル合金、またはコバルト合金(ただし、ニッケル−銅合金を除く)のいずれかからなる可動接点部下地層を有し、銀または銀合金からなり被覆厚が0.01〜0.3μmである可動接点部表層を有する可動接点材で構成され、
前記固定接点部は、基材上に銅または銅合金からなる固定接点部下地層を有し、前記固定接点部下地層上にニッケル、スズ、亜鉛、ニッケル合金、スズ合金、または亜鉛合金のいずれかからなる固定接点部最表層を有する固定接点材で構成され
前記可動接点部表層上に厚さが1〜1.4μF −1 /cm の有機皮膜層を有し、100000回摺動後の接触抵抗が35mΩ未満であることを特徴とする電気接点構造。
(2)前記可動接点部下地層と可動接点部表層の間に、銅または銅合金からなる可動接点部中間層を有し、その被覆厚が0.01〜0.09μmであることを特徴とする(1)に記載の電気接点構造
(3)前記固定接点材の基材が、ガラスエポキシ材であることを特徴とする(1)または(2)に記載の電気接点構造。
)前記固定接点部最表層の厚さが0.5〜10μmであることを特徴とする(1)〜()のいずれか1項に記載の電気接点構造。
)(1)〜()のいずれか1項に記載の電気接点構造を有するプッシュスイッチ。
The above problems of the present invention have been solved by the following means.
(1) An electrical contact structure having a movable contact portion and a fixed contact portion,
The movable contact portion has a movable contact portion base layer made of nickel, cobalt, nickel alloy, or cobalt alloy (excluding nickel-copper alloy) on at least a part of the surface of the conductive substrate, It is composed of a movable contact material having a movable contact portion surface layer made of silver or a silver alloy and having a coating thickness of 0.01 to 0.3 μm.
The fixed contact portion has a fixed contact portion base layer made of copper or a copper alloy on a base material, and nickel, tin, zinc, a nickel alloy, a tin alloy, or a zinc alloy is formed on the fixed contact portion base layer. The fixed contact portion is composed of a fixed contact material having the outermost layer ,
Electrical contact structure thickness to the movable contact on the surface layer has an organic film layer of 1~1.4μF -1 / cm 2, the contact resistance after 100000 sliding characterized der Rukoto less than 35mΩ .
(2) A movable contact portion intermediate layer made of copper or a copper alloy is provided between the movable contact portion base layer and the movable contact portion surface layer, and a coating thickness thereof is 0.01 to 0.09 μm. The electrical contact structure according to (1) .
(3 ) The electrical contact structure according to (1) or (2), wherein a base material of the fixed contact material is a glass epoxy material.
( 4 ) The electrical contact structure according to any one of (1) to ( 3 ), wherein a thickness of the outermost layer of the fixed contact portion is 0.5 to 10 μm.
( 5 ) A push switch having the electrical contact structure according to any one of (1) to ( 4 ).

このような可動接点部中間層13の厚さは0.01〜0.09μmが好ましい。銅または銅合金層の厚さは、薄すぎると層を設けた効果が少なく、厚すぎると基材の可動接点の作動力が低下するため好ましくない。銅または銅合金としては、特に限定するものではないが、銅、銅−金(Cu−Au)合金、銅−銀(Cu−Ag)合金、銅−スズ(Cu−Sn)合金、銅−ニッケル(Cu−Ni)合金、または銅−インジウム(Cu−In)合金などを用いることができる。また、スズ(Sn)、亜鉛(Zn)、ニッケル(Ni)から選ばれる1種又は2種以上の元素を1〜10質量%含む銅合金でも良い。
The thickness of the movable contact portion intermediate layer 13 is preferably 0.01 to 0.09 μm. If the thickness of the copper or copper alloy layer is too thin, the effect of providing the layer is small, and if it is too thick, the operating force of the movable contact of the substrate is reduced, which is not preferable. Although it does not specifically limit as copper or a copper alloy, Copper, copper-gold (Cu-Au) alloy, copper-silver (Cu-Ag) alloy, copper-tin (Cu-Sn) alloy, copper-nickel A (Cu—Ni) alloy, a copper-indium (Cu—In) alloy, or the like can be used. Moreover, the copper alloy which contains 1-10 mass% of 1 type, or 2 or more types of elements chosen from tin (Sn), zinc (Zn), and nickel (Ni) may be sufficient.

可動接点部1の表層には、銀または銀合金からなる可動接点部表層7を設ける。この層の厚さは0.01〜0.3μmが好ましい。銀合金としては、耐摩耗性向上のために、銀にアンチモン(Sb)を0.1〜2.0質量%添加した合金を用いてもよい。従来用いられていた固定接点部2の金表面に対して、可動接点部の表面はニッケルを用いるのが主流であった。しかし金は高価であることから、固定接点部2は銀やニッケルを最表面とすることが検討されたが、今度は銀のコストやニッケルの表面の接触抵抗の高さが課題となった。このような背景を踏まえ、銀または銀合金からなる層は薄くしている。
A movable contact portion surface layer 7 made of silver or a silver alloy is provided on the surface layer of the movable contact portion 1. The thickness of this layer is preferably 0.01 to 0.3 μm. As the silver alloy, an alloy in which 0.1 to 2.0 mass% of antimony (Sb) is added to silver may be used in order to improve wear resistance. In contrast to the gold surface of the fixed contact portion 2 conventionally used, the surface of the movable contact portion is mainly made of nickel. However, since gold is expensive, it has been studied that the fixed contact portion 2 has silver or nickel as the outermost surface, but this time, the cost of silver and the high contact resistance of the nickel surface have become issues. Based on such a background, the layer made of silver or a silver alloy is thinned.

そのため、可動接点部表層7上には、厚さが1〜1.4μF−1/cmの有機被膜を設ける。これは主に銀の防錆を目的として設けられるものである。なお、「μF−1/cm」の定義は明細書の最後に掲載する。本実施形態で有機被膜に用いることのできる有機化合物は、銀または銀合金に対し物理的ないしは化学的結合性の化合物である。なお、本実施形態において物理的結合とはファンデルワールス力などによる弱い結合状態であり、化学的に結合種を持たずに結合や吸着状態を形成している状態をいう。また、化学的結合性の化合物とは、銀または銀合金の表面において、化合物が共有結合や配位結合、ファンデルワールス結合など、化学的結合状態を形成できる状態の結合手や極性等をもつ化合物をいう。
Therefore, on the movable contact portion surface layer 7 has a thickness Ru provided an organic coating of 1~1.4 μF -1 / cm 2. This is provided mainly for the purpose of preventing rust of silver. The definition of “μF −1 / cm 2 ” is listed at the end of the specification. The organic compound that can be used for the organic coating in this embodiment is a compound that is physically or chemically bonded to silver or a silver alloy. In this embodiment, the physical bond is a weak bond state due to van der Waals force or the like, and refers to a state in which a bond or an adsorption state is formed without having a chemical bond species. In addition, a chemical bond compound is a bond or polarity that can form a chemical bond state such as a covalent bond, a coordinate bond, or a van der Waals bond on the surface of silver or a silver alloy. Refers to a compound.

Figure 2015041359
Figure 2015041359

Figure 2015041359
Figure 2015041359

表1、2を総合した結果から、従来例1は総合判定がDであり、実用上、不適であった。一方、発明例4〜7、9、16〜17、26〜28、30〜31と38に示した本実施例品は、総合判定がA〜Cに入っており、とくに摺動後接触抵抗試験後において優れた接触抵抗特性を有し、優れた可動接点構造を備えていることが分かる。また、大気中における加熱処理後においても接触抵抗が非常に低く、かつ皮膜密着性において、大変良好であることがわかる。
摺動無し接触抵抗試験の結果については、本実施例品において、結果A〜Cとばらついた。その他の結果との関係から勘案して、前記可動接点部表層7の厚さが0.01〜0.3μmμmであり(さらに好適には0.03〜0.2μm)、前記可動接点部中間層13の厚さが0.01〜0.09μmであり(さらに好適には0.15〜0.05μm)、固定接点部最表層11の厚さが0.5〜10μm(さらに好適には3〜8μm)である場合最も良い特性が得られると考えられ、それらそれぞれの数値範囲のいずれか1つ以上を満たす場合には本実施形態として好適であることが分かった。
From the result of integrating Tables 1 and 2, Conventional Example 1 has a comprehensive judgment of D, which is unsuitable for practical use. On the other hand, the present embodiment products shown in Invention Examples 4 to 7, 9, 16 to 17 , 26 to 28, 30 to 31 and 38 have a comprehensive judgment of A to C, and particularly a contact resistance test after sliding. It can be seen later that it has excellent contact resistance characteristics and has an excellent movable contact structure. It can also be seen that the contact resistance is very low even after heat treatment in the atmosphere and the film adhesion is very good.
About the result of the non-sliding contact resistance test, the results A to C varied in the product of this example . By considering the relationship with other results of its said has a thickness of 0.01 to 0.3 [mu] m [mu] m movable contact surface layer 7 (0.03 to 0.2 .mu.m is preferably in is al), the has a thickness of 0.01~0.09μm movable contact intermediate layer 13 (0.15~0.05μm is preferably in is al), the thickness of the fixed contact portion outermost layer 11 is 0.5~10μm It is considered that the best characteristics can be obtained when it is (more preferably 3 to 8 μm), and it is suitable as this embodiment when satisfying any one or more of their respective numerical ranges.

Claims (9)

可動接点部と固定接点部とを有する電気接点構造であって、
前記可動接点部は、導電性基材の表面の少なくとも一部にニッケル、コバルト、ニッケル合金、またはコバルト合金のいずれかからなる可動接点部下地層を有し、銀または銀合金からなる可動接点部表層が形成された可動接点部材部材で構成され、
前記固定接点部は、基材上に銅または銅合金からなる固定接点部下地層を有し、前記固定接点部下地層上にニッケル、スズ、亜鉛、ニッケル合金、スズ合金、または亜鉛合金のいずれかからなる固定接点部最表層が形成された固定接点部材部材で構成されることを特徴とする電気接点構造。
An electrical contact structure having a movable contact portion and a fixed contact portion,
The movable contact portion has a movable contact portion base layer made of nickel, cobalt, nickel alloy, or cobalt alloy on at least a part of the surface of the conductive base material, and the movable contact portion surface layer made of silver or silver alloy Is composed of a movable contact member member formed,
The fixed contact portion has a fixed contact portion base layer made of copper or a copper alloy on a base material, and nickel, tin, zinc, a nickel alloy, a tin alloy, or a zinc alloy is formed on the fixed contact portion base layer. An electric contact structure comprising a fixed contact member member having a fixed contact portion outermost layer formed thereon.
前記可動接点部の導電性基材は、鉄系基材であることを特徴とする請求項1に記載の電気接点構造。  The electrical contact structure according to claim 1, wherein the conductive base material of the movable contact portion is an iron-based base material. 前記可動接点部表層の厚さが0.01〜0.3μmであることを特徴とする請求項1または2に記載の電気接点構造。  The electrical contact structure according to claim 1 or 2, wherein a thickness of the surface layer of the movable contact portion is 0.01 to 0.3 µm. 前記可動接点部下地層と可動接点部表層の間に、銅または銅合金からなる可動接点部中間層を有することを特徴とする請求項1〜3のいずれかに記載の電気接点構造。  The electric contact structure according to claim 1, further comprising a movable contact portion intermediate layer made of copper or a copper alloy between the movable contact portion base layer and the movable contact portion surface layer. 前記可動接点部中間層の厚さが0.01〜0.09μmであることを特徴とする請求項4に記載の電気接点構造。  The electrical contact structure according to claim 4, wherein the movable contact portion intermediate layer has a thickness of 0.01 to 0.09 μm. 前記可動接点部表層上に厚さが1〜3μF−1/cmの有機皮膜層を有することを特徴とする請求項1〜5のいずれかに記載の電気接点構造。6. The electrical contact structure according to claim 1, further comprising an organic film layer having a thickness of 1 to 3 μF −1 / cm 2 on the surface of the movable contact portion. 前記固定接点部材の基材が、ガラスエポキシ材であることを特徴とする請求項1〜6のいずれかに記載の電気接点構造。  The electrical contact structure according to claim 1, wherein a base material of the fixed contact member is a glass epoxy material. 前記固定接点部最表層の厚さが0.5〜10μmであることを特徴とする請求項1〜7のいずれかに記載の電気接点構造。  The electrical contact structure according to any one of claims 1 to 7, wherein the outermost layer of the fixed contact portion has a thickness of 0.5 to 10 µm. 前記請求項1〜8のいずれかに記載の電気接点構造を有するプッシュスイッチ。  A push switch having the electrical contact structure according to claim 1.
JP2015537997A 2013-09-21 2014-09-19 Electrical contact structure consisting of movable contact and fixed contact Active JP6284533B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013196281 2013-09-21
JP2013196281 2013-09-21
PCT/JP2014/074977 WO2015041359A1 (en) 2013-09-21 2014-09-19 Electrical contact structure comprising movable contact part and fixed contact part

Publications (2)

Publication Number Publication Date
JPWO2015041359A1 true JPWO2015041359A1 (en) 2017-03-02
JP6284533B2 JP6284533B2 (en) 2018-02-28

Family

ID=52689006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015537997A Active JP6284533B2 (en) 2013-09-21 2014-09-19 Electrical contact structure consisting of movable contact and fixed contact

Country Status (5)

Country Link
JP (1) JP6284533B2 (en)
KR (1) KR101863465B1 (en)
CN (1) CN105531780B (en)
TW (1) TWI569296B (en)
WO (1) WO2015041359A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104966650A (en) * 2015-05-28 2015-10-07 北京航空航天大学 Vacuum explosion chamber and contact structure thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4015378B1 (en) * 1962-02-13 1965-07-19
JP2007291510A (en) * 2006-03-28 2007-11-08 Furukawa Electric Co Ltd:The Silver coated composite material for movable contact and method for producing the same
JP2008273189A (en) * 2007-04-03 2008-11-13 Furukawa Electric Co Ltd:The Electric contact material, its manufacturing method, and electric contact

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121220A (en) * 1979-03-09 1980-09-18 Matsushita Electric Works Ltd Electric contact
JPS6161306A (en) * 1984-08-31 1986-03-29 オムロン株式会社 Contact mechanism
JP4015378B2 (en) * 2001-05-29 2007-11-28 富士フイルム株式会社 Camera with strap and its display method
WO2007116717A1 (en) * 2006-03-28 2007-10-18 The Furukawa Electric Co., Ltd. Silver coated composite material for movable contact and method for producing same
JP4834022B2 (en) * 2007-03-27 2011-12-07 古河電気工業株式会社 Silver coating material for movable contact parts and manufacturing method thereof
JP4834023B2 (en) * 2007-03-27 2011-12-07 古河電気工業株式会社 Silver coating material for movable contact parts and manufacturing method thereof
CN201829364U (en) * 2010-11-01 2011-05-11 温州银泰合金材料有限公司 Copper-based compound tin oxide contact provided with welded layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4015378B1 (en) * 1962-02-13 1965-07-19
JP2007291510A (en) * 2006-03-28 2007-11-08 Furukawa Electric Co Ltd:The Silver coated composite material for movable contact and method for producing the same
JP2008273189A (en) * 2007-04-03 2008-11-13 Furukawa Electric Co Ltd:The Electric contact material, its manufacturing method, and electric contact

Also Published As

Publication number Publication date
KR20160056890A (en) 2016-05-20
WO2015041359A1 (en) 2015-03-26
CN105531780A (en) 2016-04-27
TW201526054A (en) 2015-07-01
KR101863465B1 (en) 2018-06-29
CN105531780B (en) 2019-07-16
TWI569296B (en) 2017-02-01
JP6284533B2 (en) 2018-02-28

Similar Documents

Publication Publication Date Title
JP5128153B2 (en) Electrical contact material and manufacturing method thereof
EP2175460A1 (en) Silver-coated material for movable contact component and method for manufacturing such silver-coated material
CN108352639B (en) Tin-plated copper terminal material, terminal and electric wire terminal structure
JP6247926B2 (en) MATERIAL FOR MOVEABLE CONTACT PARTS AND METHOD FOR MANUFACTURING THE SAME
JP5705738B2 (en) Silver-coated composite material for movable contact parts, manufacturing method thereof, and movable contact parts
KR101387832B1 (en) Electric contact material, method for manufacturing the electric contact material, and electric contact
KR100521550B1 (en) Terminal with Ruthenium Layer and Part Having the Same
JP5896882B2 (en) Composite multilayer nickel electroplating layer and electroplating method thereof
US8410367B2 (en) Electric contact member
JP2004300489A (en) Electric contact made of stainless steel
US20160247592A1 (en) Electric contact material for connector, and method for producing same
TWI612884B (en) Metal foil for electromagnetic wave shielding, electromagnetic wave shielding material, and shielded cable
JPH09330629A (en) Electric contact point material, its manufacture, and operation switch with it
JP6284533B2 (en) Electrical contact structure consisting of movable contact and fixed contact
JP2012049041A (en) Silver coating material for movable contact component and method for manufacturing the same
JP2011214965A (en) Probe
JP5598851B2 (en) Silver-coated composite material for movable contact part, method for producing the same, and movable contact part
JP2009245659A (en) Slide contact material for electric motor
CA2069390A1 (en) Corrosion resistant high temperature contacts or electrical connectors and method of fabrication thereof
JP5685061B2 (en) Copper foil for printed wiring board and printed wiring board
JPH06158353A (en) Steel wire for battery spring
EP4083271A1 (en) Silver-plated material and method for manufacturing same
JPH0244106B2 (en) DENKYOSETSUTEN
CN117089838A (en) Layered plating stack for improved contact resistance in corrosive environments
KR101340350B1 (en) Pcb having wear resistant terminal with high hardness and method of manufacturing the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170616

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170914

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180130

R151 Written notification of patent or utility model registration

Ref document number: 6284533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350