JPWO2015006290A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2015006290A5
JPWO2015006290A5 JP2016525411A JP2016525411A JPWO2015006290A5 JP WO2015006290 A5 JPWO2015006290 A5 JP WO2015006290A5 JP 2016525411 A JP2016525411 A JP 2016525411A JP 2016525411 A JP2016525411 A JP 2016525411A JP WO2015006290 A5 JPWO2015006290 A5 JP WO2015006290A5
Authority
JP
Japan
Prior art keywords
dna
nucleic acid
cell
donor nucleic
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016525411A
Other languages
Japanese (ja)
Other versions
JP2016523559A5 (en
JP7120717B2 (en
JP2016523559A (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2014/045691 external-priority patent/WO2015006290A1/en
Publication of JP2016523559A publication Critical patent/JP2016523559A/en
Publication of JP2016523559A5 publication Critical patent/JP2016523559A5/ja
Publication of JPWO2015006290A5 publication Critical patent/JPWO2015006290A5/ja
Application granted granted Critical
Publication of JP7120717B2 publication Critical patent/JP7120717B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

ある態様によれば、上記繰り返し方法により相同組換え率を上昇させる方法が提供される。ある実施形態によれば、Cas9依存性ゲノムDNA切断により、相同組換え率が劇的に上昇して外来性DNAが刺激される。別の態様によれば、外来性ドナー核酸には、切断部位の両側に隣接(flank)する相同配列またはアームが含まれる。別の態様によれば、外来性ドナー核酸には、切断配列を除去するための配列が含まれる。別の態様によれば、外来性ドナー核酸には、切断部位の両側に隣接(flank)する相同配列またはアーム、および切断部位を除去するための配列が含まれる。このようにして、外来性ドナーDNAを取り込まない細胞に対する負の選択(negative selection)としてCas9を用いることができる。したがって、組換え頻度が高い細胞を同定するための負の選択方法が提供される。 According to one embodiment, a method for increasing the homologous recombination rate is provided by the above-mentioned repeating method. According to one embodiment, Cas9-dependent genomic DNA cleavage dramatically increases the rate of homologous recombination and stimulates exogenous DNA. According to another aspect, the exogenous donor nucleic acid comprises a homologous sequence or arm flanked on either side of the cleavage site. According to another aspect, the exogenous donor nucleic acid comprises a sequence for removing the cleavage sequence. According to another aspect, the exogenous donor nucleic acid comprises a homologous sequence or arm flanked on either side of the cleavage site and a sequence for removing the cleavage site. In this way, Cas9 can be used as a negative selection for cells that do not take up foreign donor DNA. Therefore, a negative selection method for identifying cells with high recombination frequency is provided.

実施例I
酵母におけるCRISPR-Cas9を用いた多重遺伝子編集の一般的プロセス
ストレプトコッカス・ピオゲネス(Streptococcus pyogenes)のCRISPR免疫系由来のCas9を用いて、相同組換えを促進し、サッカロミセス・セレビシエ(Saccharomyces cerevisiae)において形質転換DNAを組み換えない細胞以外を選択する。Cas9を用いたRNA誘導型DNA切断の一般的な方法を図1に示す。Cas9、ガイドRNA、および標的DNAの間で共局在複合体が形成される。Cas9により標的DNA中に二本鎖切断が生じる。次に、相同組換えによりドナーDNAがDNAに挿入される。ドナーDNAには、切断部位の両側に隣接配列、およびCas9切断部位を除去する配列が含まれる。その結果、ドナーDNAが、ゲノムDNAであってもよいDNA中に組み込まれる。
Example I
General Process of Multiple Gene Editing with CRISPR-Cas9 in Yeast Using Cas9 from the CRISPR immune system of Streptococcus pyogenes to promote homologous recombination and transformation in Saccharomyces cerevisiae Select cells other than cells that do not recombinate DNA. A general method of RNA-induced DNA cleavage using Cas9 is shown in FIG. A colocalization complex is formed between Cas9, guide RNA, and target DNA. Cas9 causes double-strand breaks in the target DNA. Next, the donor DNA is inserted into the DNA by homologous recombination. Donor DNA contains sequences flanking both sides of the cleavage site and sequences that remove the Cas9 cleavage site. As a result, the donor DNA is integrated into the DNA, which may be genomic DNA.

図2に示されるように、選択マーカーを用いて1種類または複数種類のガイドRNAについて細胞を選択する。選択された細胞は、1種類または複数種類のガイドRNAを発現する。ガイドRNAと、RNA誘導型エンドヌクレアーゼCas9と、DNAとの1種類または複数種類の共局在複合体が細胞中で形成される。エンドヌクレアーゼによりDNAが切断され、ドナー核酸が相同組換えなどの組換えによって細胞に挿入される。次に、細胞のプラスミドを除去(cure)した後、細胞について必要に応じて上記ステップを1回またはさらに繰り返す。複数のサイクルを行ってもよい。複数のサイクルを経た細胞は、高い組換え頻度を示す。または、細胞をプラスミドの維持について非選択(deselect)とするか、あるいはプラスミドを有する細胞以外を選択するための培地中に細胞を入れる。その後、細胞成長ステップで始まるプロセスを繰り返す。したがって、方法は、前のサイクルで既に改変された細胞を繰り返すか、または前のサイクルから改変されなかった細胞を選択し、この非改変細胞をさらに繰り返して本明細書に記載されるDNAの改変を行うことを含む。 As shown in FIG. 2, cells are selected for one or more guide RNAs using selectable markers. Selected cells express one or more guide RNAs. One or more colocalization complexes of guide RNA, RNA-induced endonuclease Cas9, and DNA are formed in cells. DNA is cleaved by endonucleases and donor nucleic acids are inserted into cells by recombination such as homologous recombination. The cell plasmid is then cured and then the above steps are repeated once or further for the cells as needed. Multiple cycles may be performed. Cells that have undergone multiple cycles show a high recombination frequency. Alternatively , the cells are deselected for plasmid maintenance , or the cells are placed in a medium for selection other than those carrying the plasmid. After that, the process starting with the cell growth step is repeated. Thus, the method repeats cells that have already been modified in the previous cycle, or selects cells that have not been modified from the previous cycle and repeats these unmodified cells further to modify the DNA described herein. Including doing.

実施例II
詳細な繰り返しプロトコール
(ウラシル栄養要求株、構成的Cas9発現)細胞を、5mlのSC酵母培地またはSC+FOA(100μg/ml)中で、光学密度0.8~1.0まで成長させる。細胞を2250×gで3分間スピンし、10mlの水で1回洗浄する。細胞をスピンし、1mlの100mM酢酸リチウムに再懸濁する。細胞をペレット化し、500μlの100mM酢酸リチウムに再懸濁する。50μlの細胞;1nmolの二本鎖オリゴヌクレオチドプール、各5μgのガイドRNA(ウラシルマーカーを有するp426ベクター)を含み、70μlまで水を加えて所望の最終体積にしたDNA混合物;240μlの50%PEG3350;および36μlの1M酢酸リチウムをこの順番で添加することにより、形質転換混合物を調製する。混合物を30℃で30分間インキュベートする。次に、混合物をボルテックスし、混合物を42℃で20分間インキュベートすることにより細胞に熱ショックを与える。次に、細胞をペレット化し、上清を除去する。細胞を5mlのSC-ウラシルに播種して、ウラシル遺伝子を含むgRNAプラスミドを選択する。細胞を2日間回復させる。2日後、100μlの細胞培養物を5mlの新たに調製したSCに播種し、12時間成長させてプラスミド維持について非選択とする。次に、100μlのSC培養細胞を5mlのSC+FOA(100μg/mL)培地に播種して、プラスミドを有する細胞以外を選択する。これにより、プロセスの1サイクルが完了する。このプロセスを、所望のサイクル回数分、反復する。プロセス全体は、1サイクル、2サイクル、3サイクル、4サイクル、5サイクル、6サイクル、7サイクル、8サイクル、9サイクル、10サイクル、15サイクル、20サイクル、25サイクルなどを含んでいてもよい。
Example II
Detailed repeat protocol (uracil auxotrophy, constitutive Cas9 expression) cells are grown to an optical density of 0.8-1.0 in 5 ml SC yeast medium or SC + FOA (100 μg / ml). The cells are spun at 2250 xg for 3 minutes and washed once with 10 ml of water. The cells are spun and resuspended in 1 ml of 100 mM lithium acetate. Cells are pelleted and resuspended in 500 μl 100 mM lithium acetate. 50 μl of cells; 1 nmol double-stranded oligonucleotide pool, each containing 5 μg of guide RNA (p426 vector with uracil marker), water to 70 μl to the desired final volume DNA mixture; 240 μl of 50% PEG3350; And 36 μl of 1M lithium acetate are added in this order to prepare a transformation mixture. Incubate the mixture at 30 ° C. for 30 minutes. The mixture is then vortexed and the cells are heat shocked by incubating the mixture at 42 ° C. for 20 minutes. The cells are then pelleted and the supernatant removed. Cells are seeded in 5 ml SC-uracil and a gRNA plasmid containing the uracil gene is selected. Allow cells to recover for 2 days. After 2 days, 100 μl of cell culture is seeded in 5 ml of freshly prepared SC and grown for 12 hours to be non-selective for plasmid maintenance. Next, 100 μl of cultured SC cells are seeded in 5 ml of SC + FOA (100 μg / mL) medium to select cells other than those having the plasmid. This completes one cycle of the process. This process is repeated for the desired number of cycles. The entire process may include 1 cycle, 2 cycles, 3 cycles, 4 cycles, 5 cycles, 6 cycles, 7 cycles, 8 cycles, 9 cycles, 10 cycles, 15 cycles, 20 cycles, 25 cycles and the like.

Claims (9)

標的DNAに相補的なガイドRNAと共局在複合体を形成し、且つ前記標的DNAを部位特異的に切断するCas9酵素を発現する細胞においてDNAに外来性核酸配列を多重挿入する方法であって、
(a)複数種類のガイドRNAおよび複数種類の外来性ドナー核酸配列を前記細胞に導入すること、ここで、前記複数種類のガイドRNAのそれぞれが前記Cas9酵素と前記DNAの特定の部位で共局在複合体を形成し、
前記Cas9酵素により前記DNAが切断されて切断部位が形成され、該切断部位に前記複数種類の外来性ドナー核酸配列のうちの1つが挿入される、および、
(b)ステップ(a)を複数回繰り返して前記細胞において前記DNAに複数の変化を生じさせることを含み、
前記細胞が真核細胞である、方法。
It is a method of multiple-inserting an exogenous nucleic acid sequence into DNA in a cell expressing Cas9 enzyme that forms a colocalization complex with a guide RNA complementary to the target DNA and cleaves the target DNA in a site-specific manner. ,
(A) Introducing a plurality of types of guide RNAs and a plurality of types of foreign donor nucleic acid sequences into the cells, wherein each of the plurality of types of guide RNAs co-localizes with the Cas9 enzyme at a specific site of the DNA. Form an existing complex,
The DNA is cleaved by the Cas9 enzyme to form a cleavage site, and one of the plurality of foreign donor nucleic acid sequences is inserted into the cleavage site , and
(B) The step (a) is repeated a plurality of times to cause a plurality of changes in the DNA in the cell.
A method in which the cell is a eukaryotic cell.
前記細胞が、酵母細胞、植物細胞、または動物細胞である、請求項1に記載の方法。 The method of claim 1, wherein the cell is a yeast cell, a plant cell, or an animal cell. 前記ガイドRNAが、tracrRNA-crRNA融合体である、請求項1に記載の方法。 The method of claim 1, wherein the guide RNA is a tracrRNA-crRNA fusion. 前記標的DNAが、ゲノムDNA、ミトコンドリアDNA、ウイルスDNA、または外来性DNAである、請求項1に記載の方法。 The method according to claim 1, wherein the target DNA is genomic DNA, mitochondrial DNA, viral DNA, or exogenous DNA. 前記外来性ドナー核酸配列が組換えにより挿入される、請求項1に記載の方法。 The method of claim 1, wherein the foreign donor nucleic acid sequence is recombinantly inserted. 前記外来性ドナー核酸配列が相同組換えにより挿入される、請求項1に記載の方法。 The method of claim 1, wherein the foreign donor nucleic acid sequence is inserted by homologous recombination. 前記ガイドRNAがプラスミド上に存在する、請求項1に記載の方法。 The method of claim 1, wherein the guide RNA is present on a plasmid. 前記外来性ドナー核酸配列が前記切断部位の両側に隣接(flank)する相同配列またはアームを含む、請求項1に記載の方法。 The method of claim 1, wherein the exogenous donor nucleic acid sequence comprises a homologous sequence or arm flanked on either side of the cleavage site. 前記外来性ドナー核酸配列が前記切断部位を除去するための配列を含む、請求項1に記載の方法。 The method of claim 1, wherein the foreign donor nucleic acid sequence comprises a sequence for removing the cleavage site.
JP2016525411A 2013-07-09 2014-07-08 Multiple RNA-guided genome editing Active JP7120717B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361844168P 2013-07-09 2013-07-09
US61/844,168 2013-07-09
PCT/US2014/045691 WO2015006290A1 (en) 2013-07-09 2014-07-08 Multiplex rna-guided genome engineering

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019238862A Division JP7201294B2 (en) 2013-07-09 2019-12-27 Multiple RNA-guided genome editing

Publications (4)

Publication Number Publication Date
JP2016523559A JP2016523559A (en) 2016-08-12
JP2016523559A5 JP2016523559A5 (en) 2017-07-27
JPWO2015006290A5 true JPWO2015006290A5 (en) 2022-02-07
JP7120717B2 JP7120717B2 (en) 2022-08-17

Family

ID=52280509

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016525411A Active JP7120717B2 (en) 2013-07-09 2014-07-08 Multiple RNA-guided genome editing
JP2019238862A Active JP7201294B2 (en) 2013-07-09 2019-12-27 Multiple RNA-guided genome editing
JP2022202204A Pending JP2023021447A (en) 2013-07-09 2022-12-19 Multiplex rna-guided genome engineering

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2019238862A Active JP7201294B2 (en) 2013-07-09 2019-12-27 Multiple RNA-guided genome editing
JP2022202204A Pending JP2023021447A (en) 2013-07-09 2022-12-19 Multiplex rna-guided genome engineering

Country Status (13)

Country Link
US (2) US11459585B2 (en)
EP (2) EP4166669A1 (en)
JP (3) JP7120717B2 (en)
KR (3) KR20220025922A (en)
CN (2) CN105518144A (en)
AU (3) AU2014287393B2 (en)
CA (2) CA2917638A1 (en)
ES (1) ES2929143T3 (en)
HK (1) HK1217967A1 (en)
IL (2) IL303973A (en)
RU (2) RU2706562C2 (en)
SG (3) SG11201600059QA (en)
WO (1) WO2015006290A1 (en)

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013066438A2 (en) 2011-07-22 2013-05-10 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
KR20220139433A (en) * 2012-12-17 2022-10-14 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Rna-guided human genome engineering
AU2014207618A1 (en) 2013-01-16 2015-08-06 Emory University Cas9-nucleic acid complexes and uses related thereto
SG11201508028QA (en) 2013-04-16 2015-10-29 Regeneron Pharma Targeted modification of rat genome
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9322037B2 (en) 2013-09-06 2016-04-26 President And Fellows Of Harvard College Cas9-FokI fusion proteins and uses thereof
US9228207B2 (en) 2013-09-06 2016-01-05 President And Fellows Of Harvard College Switchable gRNAs comprising aptamers
US9737604B2 (en) 2013-09-06 2017-08-22 President And Fellows Of Harvard College Use of cationic lipids to deliver CAS9
TW201542816A (en) 2013-09-18 2015-11-16 Kymab Ltd Methods, cells & organisms
AU2014346559B2 (en) 2013-11-07 2020-07-09 Editas Medicine,Inc. CRISPR-related methods and compositions with governing gRNAs
SG10201700961TA (en) 2013-12-11 2017-04-27 Regeneron Pharma Methods and compositions for the targeted modification of a genome
US9840699B2 (en) 2013-12-12 2017-12-12 President And Fellows Of Harvard College Methods for nucleic acid editing
ES2802984T3 (en) 2014-02-11 2021-01-22 Univ Colorado Regents Multiplex Genome Engineering Using CRISPR
EP3114227B1 (en) 2014-03-05 2021-07-21 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating usher syndrome and retinitis pigmentosa
EP3553176A1 (en) 2014-03-10 2019-10-16 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating leber's congenital amaurosis 10 (lca10)
US11141493B2 (en) 2014-03-10 2021-10-12 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
US11339437B2 (en) 2014-03-10 2022-05-24 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
EP3981876A1 (en) 2014-03-26 2022-04-13 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating sickle cell disease
EP3149170A1 (en) 2014-05-30 2017-04-05 The Board of Trustees of the Leland Stanford Junior University Compositions and methods to treat latent viral infections
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
WO2016073990A2 (en) 2014-11-07 2016-05-12 Editas Medicine, Inc. Methods for improving crispr/cas-mediated genome-editing
WO2016089433A1 (en) 2014-12-03 2016-06-09 Agilent Technologies, Inc. Guide rna with chemical modifications
WO2016123514A1 (en) * 2015-01-29 2016-08-04 University Of Massachusetts Nanoparticle-protein complex for intracellular protein delivery
CA2979975A1 (en) 2015-03-19 2016-09-22 Board Of Regents Of The University Of Texas System Compositions and methods for use of anion channel rhodopsins
EP3280803B1 (en) 2015-04-06 2021-05-26 The Board of Trustees of the Leland Stanford Junior University Chemically modified guide rnas for crispr/cas-mediated gene regulation
US11180793B2 (en) 2015-04-24 2021-11-23 Editas Medicine, Inc. Evaluation of Cas9 molecule/guide RNA molecule complexes
EP4008780A1 (en) * 2015-04-30 2022-06-08 The Trustees of Columbia University in the City of New York Gene therapy for autosomal dominant diseases
WO2016179038A1 (en) * 2015-05-01 2016-11-10 Spark Therapeutics, Inc. ADENO-ASSOCIATED VIRUS-MEDIATED CRISPR-Cas9 TREATMENT OF OCULAR DISEASE
WO2016182959A1 (en) 2015-05-11 2016-11-17 Editas Medicine, Inc. Optimized crispr/cas9 systems and methods for gene editing in stem cells
US10117911B2 (en) 2015-05-29 2018-11-06 Agenovir Corporation Compositions and methods to treat herpes simplex virus infections
WO2016201047A1 (en) 2015-06-09 2016-12-15 Editas Medicine, Inc. Crispr/cas-related methods and compositions for improving transplantation
AU2016326711B2 (en) 2015-09-24 2022-11-03 Editas Medicine, Inc. Use of exonucleases to improve CRISPR/Cas-mediated genome editing
US20190225955A1 (en) 2015-10-23 2019-07-25 President And Fellows Of Harvard College Evolved cas9 proteins for gene editing
WO2017165862A1 (en) 2016-03-25 2017-09-28 Editas Medicine, Inc. Systems and methods for treating alpha 1-antitrypsin (a1at) deficiency
US11597924B2 (en) 2016-03-25 2023-03-07 Editas Medicine, Inc. Genome editing systems comprising repair-modulating enzyme molecules and methods of their use
EP3443086B1 (en) 2016-04-13 2021-11-24 Editas Medicine, Inc. Cas9 fusion molecules, gene editing systems, and methods of use thereof
US10767175B2 (en) 2016-06-08 2020-09-08 Agilent Technologies, Inc. High specificity genome editing using chemically modified guide RNAs
US11293021B1 (en) 2016-06-23 2022-04-05 Inscripta, Inc. Automated cell processing methods, modules, instruments, and systems
LT3474669T (en) 2016-06-24 2022-06-10 The Regents Of The University Of Colorado, A Body Corporate Methods for generating barcoded combinatorial libraries
EP3478852B1 (en) 2016-07-01 2020-08-12 Microsoft Technology Licensing, LLC Storage through iterative dna editing
US10892034B2 (en) 2016-07-01 2021-01-12 Microsoft Technology Licensing, Llc Use of homology direct repair to record timing of a molecular event
US11359234B2 (en) 2016-07-01 2022-06-14 Microsoft Technology Licensing, Llc Barcoding sequences for identification of gene expression
US20190309283A1 (en) * 2016-07-19 2019-10-10 Biodynamics Laboratory, Inc. Method for preparing long-chain single-stranded dna
BR112019001887A2 (en) 2016-08-02 2019-07-09 Editas Medicine Inc compositions and methods for treating cep290-associated disease
IL308426A (en) 2016-08-03 2024-01-01 Harvard College Adenosine nucleobase editors and uses thereof
CA3033327A1 (en) 2016-08-09 2018-02-15 President And Fellows Of Harvard College Programmable cas9-recombinase fusion proteins and uses thereof
KR102594051B1 (en) * 2016-08-20 2023-10-26 아벨리노 랩 유에스에이, 인크. Single guide RNA, CRISPR/Cas9 system, and methods of use thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
WO2018071868A1 (en) 2016-10-14 2018-04-19 President And Fellows Of Harvard College Aav delivery of nucleobase editors
WO2018119359A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Editing of ccr5 receptor gene to protect against hiv infection
AU2018212624A1 (en) * 2017-01-30 2019-08-22 KWS SAAT SE & Co. KGaA Repair template linkage to endonucleases for genome engineering
EP3592853A1 (en) 2017-03-09 2020-01-15 President and Fellows of Harvard College Suppression of pain by gene editing
CN110914310A (en) 2017-03-10 2020-03-24 哈佛大学的校长及成员们 Cytosine to guanine base editor
WO2018170184A1 (en) 2017-03-14 2018-09-20 Editas Medicine, Inc. Systems and methods for the treatment of hemoglobinopathies
SG11201908658TA (en) 2017-03-23 2019-10-30 Harvard College Nucleobase editors comprising nucleic acid programmable dna binding proteins
WO2018201086A1 (en) 2017-04-28 2018-11-01 Editas Medicine, Inc. Methods and systems for analyzing guide rna molecules
EP3622070A2 (en) 2017-05-10 2020-03-18 Editas Medicine, Inc. Crispr/rna-guided nuclease systems and methods
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
CN110997908A (en) 2017-06-09 2020-04-10 爱迪塔斯医药公司 Engineered CAS9 nucleases
US9982279B1 (en) 2017-06-23 2018-05-29 Inscripta, Inc. Nucleic acid-guided nucleases
US10011849B1 (en) 2017-06-23 2018-07-03 Inscripta, Inc. Nucleic acid-guided nucleases
EP3645719B1 (en) 2017-06-30 2022-03-09 Inscripta, Inc. Automated cell processing methods, modules, instruments, and systems
WO2019014564A1 (en) 2017-07-14 2019-01-17 Editas Medicine, Inc. Systems and methods for targeted integration and genome editing and detection thereof using integrated priming sites
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
AU2018320864B2 (en) 2017-08-22 2024-02-22 Napigen, Inc. Organelle genome modification using polynucleotide guided endonuclease
US10738327B2 (en) 2017-08-28 2020-08-11 Inscripta, Inc. Electroporation cuvettes for automation
WO2019139645A2 (en) 2017-08-30 2019-07-18 President And Fellows Of Harvard College High efficiency base editors comprising gam
US10435713B2 (en) 2017-09-30 2019-10-08 Inscripta, Inc. Flow through electroporation instrumentation
AU2018352592A1 (en) 2017-10-16 2020-06-04 Beam Therapeutics, Inc. Uses of adenosine base editors
KR20200119239A (en) 2018-02-08 2020-10-19 지머젠 인코포레이티드 Genome editing using CRISPR in Corynebacterium
US10443031B1 (en) 2018-03-29 2019-10-15 Inscripta, Inc. Methods for controlling the growth of prokaryotic and eukaryotic cells
WO2019200004A1 (en) 2018-04-13 2019-10-17 Inscripta, Inc. Automated cell processing instruments comprising reagent cartridges
US10858761B2 (en) 2018-04-24 2020-12-08 Inscripta, Inc. Nucleic acid-guided editing of exogenous polynucleotides in heterologous cells
US10526598B2 (en) 2018-04-24 2020-01-07 Inscripta, Inc. Methods for identifying T-cell receptor antigens
US10508273B2 (en) 2018-04-24 2019-12-17 Inscripta, Inc. Methods for identifying selective binding pairs
JP2021523745A (en) 2018-05-16 2021-09-09 シンテゴ コーポレイション Methods and systems for guide RNA design and use
CN114854720A (en) 2018-06-30 2022-08-05 因思科瑞普特公司 Apparatus, modules and methods for improved detection of editing sequences in living cells
US10752874B2 (en) 2018-08-14 2020-08-25 Inscripta, Inc. Instruments, modules, and methods for improved detection of edited sequences in live cells
US10532324B1 (en) 2018-08-14 2020-01-14 Inscripta, Inc. Instruments, modules, and methods for improved detection of edited sequences in live cells
US11142740B2 (en) 2018-08-14 2021-10-12 Inscripta, Inc. Detection of nuclease edited sequences in automated modules and instruments
AU2019363487A1 (en) 2018-08-30 2021-04-15 Inscripta, Inc. Improved detection of nuclease edited sequences in automated modules and instruments
US11214781B2 (en) 2018-10-22 2022-01-04 Inscripta, Inc. Engineered enzyme
US10604746B1 (en) 2018-10-22 2020-03-31 Inscripta, Inc. Engineered enzymes
WO2020185590A1 (en) 2019-03-08 2020-09-17 Zymergen Inc. Iterative genome editing in microbes
US11053515B2 (en) 2019-03-08 2021-07-06 Zymergen Inc. Pooled genome editing in microbes
CN113710802A (en) * 2019-03-08 2021-11-26 齐默尔根公司 Convergent genome editing in microorganisms
WO2020191246A1 (en) 2019-03-19 2020-09-24 The Broad Institute, Inc. Methods and compositions for editing nucleotide sequences
US11001831B2 (en) 2019-03-25 2021-05-11 Inscripta, Inc. Simultaneous multiplex genome editing in yeast
CA3134168A1 (en) 2019-03-25 2020-10-01 Inscripta, Inc. Simultaneous multiplex genome editing in yeast
WO2020247587A1 (en) 2019-06-06 2020-12-10 Inscripta, Inc. Curing for recursive nucleic acid-guided cell editing
US10907125B2 (en) 2019-06-20 2021-02-02 Inscripta, Inc. Flow through electroporation modules and instrumentation
AU2020297499A1 (en) 2019-06-21 2022-02-03 Inscripta, Inc. Genome-wide rationally-designed mutations leading to enhanced lysine production in E. coli
US10927385B2 (en) 2019-06-25 2021-02-23 Inscripta, Inc. Increased nucleic-acid guided cell editing in yeast
WO2021102059A1 (en) 2019-11-19 2021-05-27 Inscripta, Inc. Methods for increasing observed editing in bacteria
EP4069837A4 (en) 2019-12-10 2024-03-13 Inscripta Inc Novel mad nucleases
US10704033B1 (en) 2019-12-13 2020-07-07 Inscripta, Inc. Nucleic acid-guided nucleases
CN114829607A (en) 2019-12-18 2022-07-29 因思科瑞普特公司 Cascade/dCas3 complementation assay for in vivo detection of nucleic acid guided nuclease edited cells
US10689669B1 (en) 2020-01-11 2020-06-23 Inscripta, Inc. Automated multi-module cell processing methods, instruments, and systems
CA3157061A1 (en) 2020-01-27 2021-08-05 Christian SILTANEN Electroporation modules and instrumentation
US20210332388A1 (en) 2020-04-24 2021-10-28 Inscripta, Inc. Compositions, methods, modules and instruments for automated nucleic acid-guided nuclease editing in mammalian cells
MX2022014008A (en) 2020-05-08 2023-02-09 Broad Inst Inc Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence.
US11787841B2 (en) 2020-05-19 2023-10-17 Inscripta, Inc. Rationally-designed mutations to the thrA gene for enhanced lysine production in E. coli
US11299731B1 (en) 2020-09-15 2022-04-12 Inscripta, Inc. CRISPR editing to embed nucleic acid landing pads into genomes of live cells
US11512297B2 (en) 2020-11-09 2022-11-29 Inscripta, Inc. Affinity tag for recombination protein recruitment
WO2022146497A1 (en) 2021-01-04 2022-07-07 Inscripta, Inc. Mad nucleases
WO2022150269A1 (en) 2021-01-07 2022-07-14 Inscripta, Inc. Mad nucleases
US11884924B2 (en) 2021-02-16 2024-01-30 Inscripta, Inc. Dual strand nucleic acid-guided nickase editing
WO2023039586A1 (en) 2021-09-10 2023-03-16 Agilent Technologies, Inc. Guide rnas with chemical modification for prime editing

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935357A (en) 1986-02-05 1990-06-19 New England Biolabs, Inc. Universal restriction endonuclease
US6326204B1 (en) 1997-01-17 2001-12-04 Maxygen, Inc. Evolution of whole cells and organisms by recursive sequence recombination
US20100076057A1 (en) * 2008-09-23 2010-03-25 Northwestern University TARGET DNA INTERFERENCE WITH crRNA
CN102858985A (en) * 2009-07-24 2013-01-02 西格马-奥尔德里奇有限责任公司 Method for genome editing
CA2776757A1 (en) 2009-08-10 2011-02-17 Shital Tripathi Positive and negative selectable markers for use in thermophilic organisms
JP2013520989A (en) 2010-03-05 2013-06-10 シンセティック ジェノミクス インコーポレーテッド Methods for genome cloning and manipulation
DK3241902T3 (en) * 2012-05-25 2018-05-07 Univ California METHODS AND COMPOSITIONS FOR RNA DIRECTIVE TARGET DNA MODIFICATION AND FOR RNA DIRECTIVE MODULATION OF TRANSCRIPTION
CA3233048A1 (en) * 2012-10-23 2014-05-01 Toolgen Incorporated Composition for cleaving a target dna comprising a guide rna specific for the target dna and cas protein-encoding nucleic acid or cas protein, and use thereof
WO2014093701A1 (en) * 2012-12-12 2014-06-19 The Broad Institute, Inc. Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof
CN105263312A (en) * 2013-04-05 2016-01-20 美国陶氏益农公司 Methods and compositions for integration of an exogenous sequence within the genome of plants

Similar Documents

Publication Publication Date Title
JP2020062044A5 (en)
JPWO2015006290A5 (en)
CN106916820B (en) SgRNA and its application of porcine ROSA 26 gene can effectively be edited
Patel et al. CRISPR–Cas9 system for genome engineering of photosynthetic microalgae
RU2706562C2 (en) Multiplex rna-guided genome engineering
CN107937432A (en) It is a kind of based on the genome edit methods of CRISPR systems and its application
CN109136248B (en) Multi-target editing vector and construction method and application thereof
CN105821075A (en) Establishment method of caffeine synthetase CRISPR/Cas9 genome editing vector
US20040126883A1 (en) Method for producing a multi-gene recombinant vector construct and the application
CN107365793A (en) A kind of method of extensive genome editor suitable for plant
CN108384812B (en) A kind of Yeast genome editor carrier and its construction method and application
CN108034671A (en) One plasmid vector and establish the method for plant population using it
CN111088275A (en) Cloning method of DNA large fragment
CN113801891A (en) Construction method and application of beet BvCENH3 gene haploid induction line
CN113584028B (en) sgRNA target sequence for gene editing, vector, editing system and application
CN111850050B (en) Gene editing tool, preparation method thereof and multi-round gene editing method
CN113493786B (en) Method for blocking or weakening expression of OsMIR3979 in rice to improve rice seed shape
WO2017214615A1 (en) Library-scale engineering of metabolic pathways
CN113493787B (en) Method for blocking or weakening expression of rice OsMIR7695 to improve seed shape
CN114891791B (en) sgRNA of specific targeting canine Rosa26 gene and application thereof
Bruschi et al. Yeast artificial chromosomes
CN114606254B (en) Construction method of vibrio parahaemolyticus gene efficient knockout plasmid
CN115747242B (en) Kit for eliminating plasmids, plasmid combination and gene editing, preparation method and application
CN106755116B (en) Method for repairing yeast chromosome structural abnormality
CN116497064A (en) Adenine base editor and preparation method and application thereof