JPWO2014199423A1 - Steel member and method for manufacturing steel member - Google Patents

Steel member and method for manufacturing steel member Download PDF

Info

Publication number
JPWO2014199423A1
JPWO2014199423A1 JP2015522272A JP2015522272A JPWO2014199423A1 JP WO2014199423 A1 JPWO2014199423 A1 JP WO2014199423A1 JP 2015522272 A JP2015522272 A JP 2015522272A JP 2015522272 A JP2015522272 A JP 2015522272A JP WO2014199423 A1 JPWO2014199423 A1 JP WO2014199423A1
Authority
JP
Japan
Prior art keywords
layer
steel
carbon concentration
powder
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015522272A
Other languages
Japanese (ja)
Other versions
JP6062048B2 (en
Inventor
孝介 桑原
孝介 桑原
ミンソク 朴
ミンソク 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Application granted granted Critical
Publication of JP6062048B2 publication Critical patent/JP6062048B2/en
Publication of JPWO2014199423A1 publication Critical patent/JPWO2014199423A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/62Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
    • C23C8/64Carburising
    • C23C8/66Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

鉄鋼製の被処理材の少なくとも一部に、炭素濃度が前記被処理材よりも高く1.0wt.%以下である複数の層が積層され、前記複数の層のうち最表面層の炭素濃度が最も高い。鉄鋼製の被処理材の少なくとも一部に、炭素を含む粉体を噴霧して炭素濃度が前記被処理材よりも高い第一の層を形成する工程と、前記第一の層の少なくとも一部に、炭素を含む粉体を噴霧して炭素濃度が前記第一の層よりも高い第二の層を形成する工程とを少なくとも備え、前記第一の層と前記第二の層とを含む複数の層の炭素濃度が1.0wt.%以下である。At least part of the steel material to be treated has a carbon concentration higher than that of the material to be treated and 1.0 wt. % Or less, and the carbon concentration of the outermost surface layer is the highest among the plurality of layers. A step of spraying powder containing carbon on at least a part of the steel material to be treated to form a first layer having a carbon concentration higher than that of the material to be treated; and at least a part of the first layer. A step of spraying a powder containing carbon to form a second layer having a carbon concentration higher than that of the first layer, and including a plurality of the first layer and the second layer. The carbon concentration of the layer of 1.0 wt. % Or less.

Description

本発明は、鉄鋼部材およびその製造方法に関する。   The present invention relates to a steel member and a manufacturing method thereof.

駆動部品、歯車、軸受などの機械部品は高い負荷が常に加わる環境で用いられるため、高い機械強度、例えば硬度や疲労強度が求められる。このような機械部品には炭素鋼、クロム鋼、クロムモリブデン鋼、ニッケルクロムモリブデン鋼などの機械構造用鋼が用いられる。   Since mechanical parts such as drive parts, gears, and bearings are used in an environment where a high load is constantly applied, high mechanical strength such as hardness and fatigue strength is required. For such machine parts, steel for machine structure such as carbon steel, chrome steel, chrome molybdenum steel, nickel chrome molybdenum steel is used.

機械構造用鋼は、表面の疲労耐性が高く、材料自体は部品の衝撃耐性を確保するためにじん性を確保するという外部と内部で相反する性質が求められることがある。材料としては例えば低合金鋼(JIS−G4104に規定されるSCM415など)のように比較的炭素濃度が低くじん性の高い材料を母材とし、材料表面に炭素を固溶させて炭素濃度を高め、硬度や疲労耐性を高くする浸炭処理や浸炭窒化処理を施すことが多い。   Mechanical structural steel has high surface fatigue resistance, and the material itself may be required to have a contradictory nature between the outside and the inside to ensure toughness in order to ensure the impact resistance of the parts. As a material, for example, a material having a relatively low carbon concentration and high toughness such as low alloy steel (such as SCM415 defined in JIS-G4104) is used as a base material, and the carbon concentration is increased by dissolving carbon on the material surface. Carburizing treatment and carbonitriding treatment are often performed to increase hardness and fatigue resistance.

しかしながら、単に炭素拡散させると表面硬化層の炭素濃度分布は傾斜を持ち、必要な炭素濃度の組織を厚く形成することが困難である。また、表面硬化層を厚くしようとすると表面に過剰に浸炭させる(過浸炭)ことになり、表面硬化層が脆化する。例えば、特許文献1には、母材の表面に高炭素鋼ないしは高炭素低合金鋼の硬質被膜を形成し、次いで加熱処理により母材と硬質被膜とを拡散接合して所望の強度を確保する手法が開示されている。   However, when carbon is simply diffused, the carbon concentration distribution of the surface hardened layer has a slope, and it is difficult to form a thick structure having the necessary carbon concentration. Further, if the surface hardened layer is to be thickened, the surface is excessively carburized (over carburized), and the surface hardened layer becomes brittle. For example, in Patent Document 1, a hard coating of high carbon steel or high carbon low alloy steel is formed on the surface of a base material, and then the base material and the hard coating are diffusion-bonded by heat treatment to ensure a desired strength. A technique is disclosed.

特開平11−222663号公報JP-A-11-222663

しかし、特許文献1のものでは、被処理材である母材と高炭素鋼の被膜との炭素濃度差が大きく、母材と被膜との間で剥離し易いという課題がある。   However, the thing of patent document 1 has the subject that the carbon concentration difference of the base material which is a to-be-processed material, and the coating film of high carbon steel is large, and it is easy to peel between a base material and a coating film.

本発明の目的は、被処理材と表面硬化層とが剥離し難くすることにある。   An object of the present invention is to make it difficult for the material to be treated and the surface hardened layer to peel off.

上記目的を達成するために、例えば特許請求の範囲に記載の構成を採用する。   In order to achieve the above object, for example, the configuration described in the claims is adopted.

本発明によれば、被処理材と表面硬化層とが剥離し難くすることができる。   According to the present invention, the material to be treated and the surface hardened layer can be made difficult to peel off.

鉄鋼部材の構成図の例である。It is an example of the block diagram of a steel member. 鉄鋼部材の構成図の例である。It is an example of the block diagram of a steel member. 被処理材への第一の層、第二の層の形成方法を説明する工程図の例である。It is an example of process drawing explaining the formation method of the 1st layer and the 2nd layer to to-be-processed material. 第2の実施例で示す鉄鋼部材の模式図の例である。It is an example of the schematic diagram of the steel member shown in the 2nd Example. 第2の実施例で示す鉄鋼部材の断面を示す模式図の例である。It is an example of the schematic diagram which shows the cross section of the steel member shown in the 2nd Example. 第2の実施例で示す鉄鋼部材の形成方法を説明する工程図の例である。It is an example of process drawing explaining the formation method of the steel member shown in the 2nd example.

本発明の鉄鋼部材は、被処理材(鉄鋼部材)の表面に被処理材よりも炭素濃度が高い層(高炭素鋼層)を複数層備える。高炭素鋼層は全て炭素濃度が1.0wt.%以下であり、表面に最も近い層が最も炭素濃度が高い。   The steel member of the present invention includes a plurality of layers (high carbon steel layers) having a higher carbon concentration than the material to be treated on the surface of the material to be treated (steel member). All high carbon steel layers have a carbon concentration of 1.0 wt. %, And the layer closest to the surface has the highest carbon concentration.

本発明の実施形態を図1に示す。被処理材101の少なくとも一部に、炭素濃度が被処理材よりも高く1.0wt.%以下である高炭素鋼層である第一の層102、第二の層103を順次積層して鉄鋼部材100を形成する。第二の層の炭素濃度を第一の層よりも高くする。   An embodiment of the present invention is shown in FIG. At least a part of the material to be processed 101 has a carbon concentration higher than that of the material to be processed and 1.0 wt. The steel member 100 is formed by sequentially laminating the first layer 102 and the second layer 103, which are high-carbon steel layers that are not more than%. The carbon concentration of the second layer is set higher than that of the first layer.

また、別の実施形態を図2に示す。本実施形態は図1に示す鉄鋼部材の第二の層の上に、第二の層よりも炭素濃度が高く、かつ炭素濃度が1.0wt.%以下である第三の層104を積層する。   Another embodiment is shown in FIG. In the present embodiment, the carbon concentration is higher than that of the second layer and the carbon concentration is 1.0 wt. The third layer 104 which is not more than% is stacked.

表面処理を施される被処理材の例として、低炭素鋼、低炭素合金鋼が挙げられる。例えばクロム鋼、クロムモリブデン鋼、クロムモリブデンニッケル鋼、クロムマンガン鋼、クロムニッケル鋼(ステンレス鋼)などのじん性の高い材料が挙げられ、それぞれの合金組成はJIS、ASTMなどの国内外の諸規格にて規定されている。   Low carbon steel and low carbon alloy steel are mentioned as an example of the material to be surface treated. Examples include highly tough materials such as chrome steel, chrome molybdenum steel, chrome molybdenum nickel steel, chrome manganese steel, and chrome nickel steel (stainless steel). Stipulated in

被処理材に被覆する複数の高炭素鋼層は、何れも炭素濃度が被処理材よりも高く、かつ、1.0wt.%以下であることが求められる。各層の炭素濃度を被処理材よりも高くすることで疲労強度に優れた層とすることができる。また、各層の炭素濃度を1.0wt.%以下とすることで、結晶粒界において過剰に網目状セメンタイトを析出することを防止できるので、表面脆化を低減することができ、疲労寿命の長い層とすることができる。高炭素鋼層は、少なくとも第一の層、第二の層を備え、必要に応じてさらにその上に一以上の層を形成し、被処理材から最表面層に向かって炭素濃度が高くなっている。   Each of the plurality of high carbon steel layers coated on the material to be treated has a carbon concentration higher than that of the material to be treated, and 1.0 wt. % Or less is required. It can be set as the layer excellent in fatigue strength by making carbon concentration of each layer higher than a processed material. Further, the carbon concentration of each layer is set to 1.0 wt. By setting the ratio to not more than%, it is possible to prevent excessive precipitation of reticulated cementite at the grain boundaries, so that surface embrittlement can be reduced and a layer having a long fatigue life can be obtained. The high carbon steel layer includes at least a first layer and a second layer, and if necessary, further forms one or more layers thereon, and the carbon concentration increases from the material to be processed toward the outermost surface layer. ing.

浸炭拡散ではなく、層を被処理材に被覆して鉄鋼部材の方面の炭素濃度を高める場合、層を複数設けることにより層間の炭素濃度差を小さくすることができるので、被処理材と高炭素鋼層との間の剥離、高炭素鋼層の層間の剥離やクラック等を低減することができる。更に、必要な炭素濃度と層の厚さを自由に調節することができる。層が三層以上の多層になると、最表面層と被処理材との炭素濃度差が大きい場合でも、各層の炭素濃度差を小さくすることができるので、被処理材と層との間の剥離、層間の剥離等を低減することができる。   Instead of carburizing diffusion, when the layer is coated on the material to be treated to increase the carbon concentration in the direction of the steel member, the difference in carbon concentration between the layers can be reduced by providing multiple layers. Peeling between steel layers, peeling between high carbon steel layers, cracks, and the like can be reduced. Furthermore, the required carbon concentration and layer thickness can be freely adjusted. When the number of layers is three or more, even if there is a large difference in carbon concentration between the outermost surface layer and the material to be processed, the difference in carbon concentration between the layers can be reduced. Further, peeling between layers can be reduced.

なお、図では層間が明確に区切られているが、炭素濃度の高い層から低い層へ若干の炭素拡散が生じるため、層と層の境界では膜厚方向に緩やかな炭素濃度の傾斜が存在する。本発明では、炭素濃度が傾斜する部分を層間(境界)として許容するものとする。   Although the layers are clearly separated in the figure, a slight carbon diffusion occurs from the layer with a high carbon concentration to the layer with a low carbon concentration, so there is a gradual carbon concentration gradient in the film thickness direction between the layers. . In the present invention, a portion where the carbon concentration is inclined is allowed as an interlayer (boundary).

各層の炭素以外の合金組成に特に限定は無いが、このような鋼材の一例としては高炭素鋼、高炭素合金鋼が挙げられる。特に、炭素以外の合金元素の組成が被処理材と略一致する第一の層、第二の層、必要に応じて形成するその上の一以上の層(以下、複数の高炭素鋼層と称する)とすると被処理体との一体性に優れ、局所的な複合化合物の発生を防ぐことができるために好適であるが、疲労耐性の他に耐食性や耐熱性など他の特性の改善を同時に図るべく他の合金元素を加減することは可能である。   The alloy composition other than carbon in each layer is not particularly limited, but examples of such steel materials include high carbon steel and high carbon alloy steel. In particular, the first layer, the second layer, and the one or more layers formed as necessary (hereinafter referred to as a plurality of high carbon steel layers) in which the composition of alloy elements other than carbon substantially matches the material to be treated. It is suitable because it is excellent in integrity with the object to be processed and can prevent the generation of local composite compounds. In addition to fatigue resistance, other properties such as corrosion resistance and heat resistance are improved at the same time. It is possible to adjust other alloy elements to achieve this.

また、複数の高炭素鋼層は、被処理材の表面全体に同一厚さで形成しても良いが、被処理材の表面で各層に厚み分布を持たせたり、被処理材の一部に限定して形成したりすることもできる。特に機械部品で例を挙げるとすれば、シャフトであれば軸受との接触部、歯車であれば歯先、プレスロールであれば部材との接触部のような特に高い疲労強度を求められる部位に限定して各層を形成することもできる。このような部分的な処理は、じん性を持たせたい箇所と疲労耐性を持たせたい箇所の特性を個別に制御する際に好適である。また、被処理材の表面で、層を形成しない箇所、第一の層のみを形成する箇所、第一の層と第二の層を形成する箇所、というように被処理材表面で分布を付けて各層を形成することも可能である。同様に、第二の層の上に形成する一以上の層についても被処理材上に部分的に形成することができる。   Further, the plurality of high carbon steel layers may be formed with the same thickness on the entire surface of the material to be processed, but each layer has a thickness distribution on the surface of the material to be processed, or a part of the material to be processed. It can also be formed in a limited manner. For example, in the case of mechanical parts, if the shaft is a contact part with a bearing, if it is a gear, it is a tooth tip, and if it is a press roll, it is a part that requires particularly high fatigue strength, such as a contact part with a member. Each layer can be formed in a limited manner. Such a partial process is suitable when individually controlling the characteristics of a location where toughness is desired and a location where fatigue resistance is desired. Also, on the surface of the material to be treated, a distribution is given on the surface of the material to be treated, such as a place where no layer is formed, a place where only the first layer is formed, a place where the first layer and the second layer are formed. It is also possible to form each layer. Similarly, one or more layers formed on the second layer can be partially formed on the material to be processed.

このような複数の高炭素鋼層の形成方法については様々な手法があるが、形成速度と被処理材への密着性に優れた手法として例えばコールドスプレー法、ウォームスプレー法、プラズマ溶射法、アーク溶射法、フレーム溶射法、肉盛溶接法、エアロゾルデポジション法などが挙げられ、図3に示すように各層を逐次形成する手法が挙げられる。   There are various methods for forming such a plurality of high carbon steel layers. Examples of methods that are excellent in forming speed and adhesion to a material to be processed include a cold spray method, a warm spray method, a plasma spray method, an arc method, and the like. Examples include a thermal spraying method, a flame spraying method, a build-up welding method, and an aerosol deposition method, and a method of sequentially forming each layer as shown in FIG.

(a)高炭素鋼層が形成される被処理材101を準備する。   (A) A material 101 to be processed on which a high carbon steel layer is formed is prepared.

(b)被処理材101に第一の層102を形成する。各層の材料は各手法に適合するように粉体、線材、棒材等の形で供給される。本図では粉体を噴霧して被処理材に堆積させる手法を用いる。例えば炭素濃度の低い粉体(第一の粉体)を用いて上記の手法で成膜する。この粉体の炭素濃度は、被処理材よりも高く、1.0wt.%以下である。第一の粉体は炭素と他の粉末を混合したものを用いてもよい。層を形成したときに、層の全体に含まれる炭素の濃度が被処理材よりも高く、1.0wt.%以下であればよい。   (B) The first layer 102 is formed on the workpiece 101. The material of each layer is supplied in the form of powder, wire, bar, etc. so as to suit each method. In this figure, a method of spraying powder and depositing it on the material to be processed is used. For example, the film is formed by the above method using a powder having a low carbon concentration (first powder). The carbon concentration of this powder is higher than that of the material to be treated, and is 1.0 wt. % Or less. The first powder may be a mixture of carbon and another powder. When the layer is formed, the concentration of carbon contained in the entire layer is higher than that of the material to be processed, and 1.0 wt. % Or less.

(c)第一の層102上に第二の層102を形成する。第二の層は、第一の層よりも炭素濃度の高い粉体(第二の粉体)を用いて第一の層102上に成膜する。第二の粉体も第一の分体と同様に、炭素と他の粉末を混合したものを用いてもよい。層を形成したときに、層の全体に含まれる炭素の濃度が第一の層よりも高く、1.0wt.%以下であればよい。   (C) The second layer 102 is formed on the first layer 102. The second layer is formed on the first layer 102 using a powder (second powder) having a higher carbon concentration than the first layer. The second powder may be a mixture of carbon and other powders as in the first split. When the layer is formed, the concentration of carbon contained in the entire layer is higher than that of the first layer, and 1.0 wt. % Or less.

(d)高炭素鋼層が2層の場合の鉄鋼部材100が形成される。   (D) The steel member 100 in the case of two high carbon steel layers is formed.

炭素濃度の異なる複数種の粉体の混合比を変えれば、高炭素鋼層を多層とする場合でも、層形成に必要な原料の種類を減らすことができるためより好適となる。成膜条件は用いる手法や被処理材、各層の材料に応じて適宜調整されるが、成膜時の被処理材の温度を室温以上とすると、成膜効率が改善し、各層の被処理材への密着力を高め、さらに各層界面で相互拡散を促進できるために好適である。ただし、成膜温度は被処理材、各層の材料の耐熱性や耐酸化性などの諸条件に応じて調整することが望ましい。上記層の形成だけでなく、その後さらに焼入れ、焼戻しなどの熱処理や浸炭、窒化などの表面処理を施すことも可能である。   Changing the mixing ratio of a plurality of types of powders having different carbon concentrations is more preferable because the types of raw materials required for layer formation can be reduced even when the high-carbon steel layer is a multilayer. The film formation conditions are appropriately adjusted according to the method used, the material to be processed, and the material of each layer. However, when the temperature of the material to be processed at the time of film formation is room temperature or higher, the film formation efficiency is improved, and the material to be processed for each layer This is suitable because it can increase the adhesion to the substrate and promote interdiffusion at the interface of each layer. However, it is desirable to adjust the film formation temperature according to various conditions such as the heat resistance and oxidation resistance of the material to be processed and the material of each layer. In addition to the formation of the above layers, it is possible to further perform heat treatment such as quenching and tempering and surface treatment such as carburizing and nitriding.

以下、図面を用いて実施例を説明する。   Embodiments will be described below with reference to the drawings.

本実施例では、鉄鋼部材100を板材とした実施例について説明する。本実施例における鉄鋼部材100の構成図は図1のとおりである。本実施例では鉄鋼部材100に用いる被処理材101に、長さ50mm、幅50mm、厚さ10mmのステンレス鋼(JIS規格:SUS304、日新製鋼製、0.05wt.%)を用いた。   In this embodiment, an embodiment in which the steel member 100 is a plate material will be described. The block diagram of the steel member 100 in a present Example is as FIG. In this embodiment, stainless steel (JIS standard: SUS304, manufactured by Nisshin Steel Co., Ltd., 0.05 wt.%) Having a length of 50 mm, a width of 50 mm, and a thickness of 10 mm was used as the material 101 to be processed for the steel member 100.

第一の層102、第二の層103はステンレス粉(DAP304L、大同特殊鋼製)を原料とし、無添加のステンレス粉Aと、2.0wt.%の黒鉛粉(シグマアルドリッチ製)を表面に担持したステンレス粉Bの2種の粉末を規定の重量比で混合することでそれぞれの原料粉とした。本実施例では第一の層102の原料粉は炭素濃度0.4wt.%(ステンレス粉A:ステンレス粉B = 8:2 (重量比))、第二の層103の原料粉は炭素濃度0.8wt.%(ステンレス粉A:ステンレス粉B = 6:4 (重量比))となるように混合し、V型混合機で均一に混合することで各層の原料粉とした。なお、図1中は各層を区別し易くするための模式図であり、実際に成膜した厚さは後に示す表1のとおりである。理論的には、粉末調整時の炭素濃度と成膜後の層の炭素濃度は一致するが、炭素は材料調整時や成膜過程で損なわれるので、層の炭素濃度は原料粉の濃度よりも若干低い値となる。   The first layer 102 and the second layer 103 are made of stainless steel powder (DAP304L, manufactured by Daido Special Steel), with additive-free stainless steel powder A and 2.0 wt.% Graphite powder (manufactured by Sigma-Aldrich) on the surface. The two powders of the supported stainless steel powder B were mixed at a specified weight ratio to obtain respective raw material powders. In this embodiment, the raw material powder of the first layer 102 has a carbon concentration of 0.4 wt.% (Stainless steel powder A: stainless steel powder B = 8: 2 (weight ratio)), and the raw material powder of the second layer 103 has a carbon concentration of 0. .8 wt.% (Stainless powder A: stainless powder B = 6: 4 (weight ratio)) and mixed uniformly with a V-type mixer to obtain a raw material powder for each layer. Note that FIG. 1 is a schematic diagram for easily distinguishing each layer, and the actual film thickness is as shown in Table 1 shown later. Theoretically, the carbon concentration at the time of powder adjustment matches the carbon concentration of the layer after film formation, but carbon is damaged during the material adjustment and film formation process, so the carbon concentration of the layer is higher than the concentration of the raw material powder. Slightly lower value.

本実施例における第一の層、第二の層の形成方法は図3のとおりである。第一の層、第二の層の形成にはコールドスプレー法を用い、窒素ガスをキャリアガスとして圧力4MPa、被処理材温度400℃、ノズル距離20mmの条件で第一の層、第二の層を形成した。被処理材を加熱すると粉体が付着しやすく、層間の密着性が更に向上する。その後、原料粉を変更して同条件のコールドスプレー法によって第二の層を形成した。そして、ステンレス粉Bに担持した黒鉛粉を各層中で固溶させるために800℃・30分の熱処理を施し、毎秒100℃以上で急冷する事によって鉄鋼部材100とした。   The method of forming the first layer and the second layer in this example is as shown in FIG. The first layer and the second layer are formed using a cold spray method, using nitrogen gas as a carrier gas, a pressure of 4 MPa, a material temperature of 400 ° C., and a nozzle distance of 20 mm. Formed. When the material to be treated is heated, the powder easily adheres, and the adhesion between the layers is further improved. Thereafter, the raw material powder was changed to form a second layer by the cold spray method under the same conditions. And in order to make the graphite powder carry | supported by the stainless steel powder B dissolve in each layer, it heat-processed for 800 degreeC and 30 minutes, and it was set as the steel member 100 by rapidly cooling at 100 degreeC or more per second.

比較例1Comparative Example 1

実施例1の構成のうち、第一の層の炭素濃度を0.8wt.%としてコールドスプレー法で形成し、第二の層は形成しなかった。その他の形成条件は実施例1と同一である。   In the configuration of Example 1, the carbon concentration of the first layer is 0.8 wt. % Was formed by the cold spray method, and the second layer was not formed. Other formation conditions are the same as those in the first embodiment.

実施例1のものでは、鉄鋼部材100の表面に厚さ約1mm、ビッカース硬度(Hv)920でファレックス試験後においても層間剥離の無く密着性に優れた表面処理層が得られた。しかし、比較例1のものでは被処理材101と第一の層102の間に微小な剥離が見られ、密着性に問題が生じた。   In the example 1, a surface treatment layer having a thickness of about 1 mm and a Vickers hardness (Hv) of 920 on the surface of the steel member 100 and having excellent adhesion without delamination even after the Falex test was obtained. However, in the case of Comparative Example 1, minute peeling was observed between the material to be processed 101 and the first layer 102, and a problem occurred in adhesion.

Figure 2014199423
Figure 2014199423

本実施例では鉄鋼部材100をシャフト部材とした実施例について示す。本実施例における鉄鋼部材100の模式図は図4のとおりである。本実施例の鉄鋼部材100には、直径30mm、長さ300mmのクロムモリブデン鋼(JIS規格:SCM415、大同特殊鋼製、0.15wt.%)の被処理材101を用いた。被処理材の先端部に、第一の層102、第二の層103、第三の層104を成膜した。   In this embodiment, an embodiment in which the steel member 100 is a shaft member will be described. The schematic diagram of the steel member 100 in the present embodiment is as shown in FIG. For the steel member 100 of this example, a workpiece 101 made of chromium molybdenum steel (JIS standard: SCM415, manufactured by Daido Steel Co., Ltd., 0.15 wt.%) Having a diameter of 30 mm and a length of 300 mm was used. A first layer 102, a second layer 103, and a third layer 104 were formed on the tip of the material to be processed.

図4に付したA−A’の断面模式図を図5に示す。断面図はC−C’までを示す。被処理材101の先端部に第一の層102、第二の層103、第三の層104が形成されており、先端から100mmの部位は三層全てが、100mmから110mmの部位には第一の層101と第二の層102、110mmから120mmの範囲には第一の層101のみを形成した。なお、図4は各層を区別し易くするための模式であり、実際に成膜した厚さは後に示す表2のとおりである。   FIG. 5 shows a schematic cross-sectional view of A-A ′ attached to FIG. 4. The cross-sectional view shows up to C-C '. The first layer 102, the second layer 103, and the third layer 104 are formed at the tip of the workpiece 101, and all three layers are 100 mm from the tip, and all the three layers are 100 mm to 110 mm. Only the first layer 101 was formed in the first layer 101 and the second layer 102 in the range of 110 mm to 120 mm. FIG. 4 is a schematic diagram for making it easy to distinguish each layer, and the actual film thickness is as shown in Table 2 shown later.

これらの各層は被処理材101と同規格のクロムモリブデン鋼粉(SCM415、エプソンアトミックス)を原料とするクロムモリブデン鋼粉Aと、クロムモリブデン鋼粉Aの炭素濃度のみを2.0wt.%に高めたクロムモリブデン鋼粉Bの2種の粉末を規定の重量比で混合することでそれぞれの原料粉とした。本実施例では第一の層102の原料粉を炭素濃度0.4wt.%(クロムモリブデン鋼粉A:クロムモリブデン鋼粉B=86:14 (重量比))、第二の層103の原料粉を炭素濃度0.6wt.%(クロムモリブデン鋼粉A:クロムモリブデン鋼粉B=76:24 (重量比))、第三の層103の原料粉を炭素濃度0.8wt.%(クロムモリブデン鋼粉A:クロムモリブデン鋼粉B=65:35(重量比))となるように混合し、V型混合機で均一に混合することで各層の原料粉とした。   Each of these layers is composed of chromium molybdenum steel powder A made of chromium molybdenum steel powder (SCM415, Epson Atmix) of the same standard as the material to be treated 101, and only the carbon concentration of chromium molybdenum steel powder A is 2.0 wt. Each raw material powder was obtained by mixing two kinds of powders of chrome molybdenum steel powder B increased to% by a specified weight ratio. In this embodiment, the raw material powder of the first layer 102 has a carbon concentration of 0.4 wt.% (Chromium molybdenum steel powder A: chromium molybdenum steel powder B = 86: 14 (weight ratio)), and the raw material powder of the second layer 103. With a carbon concentration of 0.6 wt.% (Chromium molybdenum steel powder A: chromium molybdenum steel powder B = 76: 24 (weight ratio)), and the raw material powder of the third layer 103 with a carbon concentration of 0.8 wt.% (Chromium molybdenum steel) Powder A: Chromium molybdenum steel powder B = 65: 35 (weight ratio)) and mixed uniformly with a V-type mixer to obtain raw material powder of each layer.

本実施例における第一の層、第二の層、第三の層の形成方法は図6のとおりである。各層の形成にはプラズマ溶射法を用いた。第一の層、第二の層、第三の層の順に原料粉を変更して同条件にて成膜した。本構成では各層を部分的に形成するため、400℃に予熱した被処理材101を回転しながら、溶射ノズル106を被処理材101上に走査し、図6のように所望の部位に部分的に各層を形成した。   The method for forming the first layer, the second layer, and the third layer in this example is as shown in FIG. Plasma spraying was used to form each layer. The raw material powder was changed in the order of the first layer, the second layer, and the third layer, and the film was formed under the same conditions. In this configuration, since each layer is partially formed, the spray nozzle 106 is scanned over the material 101 while rotating the material 101 preheated to 400 ° C., and the desired part is partially formed as shown in FIG. Each layer was formed.

実施例2の構成のうち、第三の層の原料粉の炭素濃度を1.0wt.%(クロムモリブデン鋼粉A:クロムモリブデン鋼粉B=54:46 (重量比))としてプラズマ溶射法で形成した。その他の形成条件は実施例2と同一である。   In the configuration of Example 2, the carbon concentration of the raw material powder of the third layer is 1.0 wt. % (Chromium molybdenum steel powder A: chromium molybdenum steel powder B = 54: 46 (weight ratio)). The other formation conditions are the same as those in Example 2.

比較例2Comparative Example 2

実施例2の構成のうち、第一の層の原料粉の炭素濃度を0.8wt.%(クロムモリブデン鋼粉A:クロムモリブデン鋼粉B=65:35 (重量比))としてプラズマ溶射法で形成し、第二の層、第三の層は形成しなかった。その他の形成条件は実施例2と同一である。   In the configuration of Example 2, the carbon concentration of the raw material powder of the first layer is 0.8 wt.% (Chromium molybdenum steel powder A: chromium molybdenum steel powder B = 65: 35 (weight ratio)) by plasma spraying. The second layer and the third layer were not formed. The other formation conditions are the same as those in Example 2.

比較例3Comparative Example 3

実施例2の構成のうち、第三の層の原料粉の炭素濃度を1.1wt.%(クロムモリブデン鋼粉A:クロムモリブデン鋼粉B=49:51 (重量比))としてプラズマ溶射法で形成した。その他の形成条件は実施例2と同一である。   In the configuration of Example 2, the carbon concentration of the raw material powder of the third layer was 1.1 wt. % (Chromium molybdenum steel powder A: chromium molybdenum steel powder B = 49: 51 (weight ratio)). The other formation conditions are the same as those in Example 2.

実施例2、3、および比較例2、3で得られた鉄鋼部材100について、機械研磨、バフ研磨によって表面粗さ(Ra)が1.0μm以下になるよう平滑化した後に、第三の層103の成膜部についてASTM−D−3233に準じるファレックス試験を潤滑油中で実施した。ファレックス試験後の鉄鋼部材100を切断して各層の厚さと電子線マイクロアナライザ(島津製作所)で測定した平均炭素濃度、光学顕微鏡で確認した層間剥離の有無と最表面の層の表面粗さ(Ra)、マイクロビッカース硬度計(島津製作所)にて測定した断面ビッカース硬度を表2に示す。   The steel member 100 obtained in Examples 2 and 3 and Comparative Examples 2 and 3 was smoothed by mechanical polishing and buffing so that the surface roughness (Ra) was 1.0 μm or less, and then the third layer. A Falex test according to ASTM-D-3233 was conducted in lubricating oil on 103 film forming portions. The steel member 100 after the Falex test was cut, the thickness of each layer, the average carbon concentration measured with an electron beam microanalyzer (Shimadzu Corporation), the presence or absence of delamination confirmed with an optical microscope, and the surface roughness of the outermost layer ( Table 2 shows the cross-sectional Vickers hardness measured with a Ra), micro Vickers hardness tester (Shimadzu Corporation).

実施例2、3のものでは、鉄鋼部材100の表面に厚さ約1mm、ビッカース硬度(Hv)930以上でファレックス試験後においても層間剥離の無く密着性に優れた表面処理層が得られた。各試料中の表面処理層は何れも結晶粒界上の網目状セメンタイトの析出は見られず、過浸炭が生じていないことが確認された。   In Examples 2 and 3, a surface treatment layer having a thickness of about 1 mm and a Vickers hardness (Hv) of 930 or more on the surface of the steel member 100 and having excellent adhesion without delamination even after the Falex test was obtained. . In each surface-treated layer in each sample, no precipitation of reticulated cementite on the grain boundaries was observed, confirming that no overcarburization occurred.

一方、比較例2のものでは被処理材101と第一の層102の間に微小な剥離が見られ、密着性に問題が生じた。また、比較例3の条件では、ファレックス試験後の表面粗さが他よりも大きく、摩耗による損傷が生じていることが確認された。組織観察の結果、結晶粒界上に鉄鋼材料の過共析鋼に特有の網目状セメンタイトの析出が見られ、過浸炭の発生部における損傷が確認された。   On the other hand, in the case of Comparative Example 2, minute separation was observed between the material to be processed 101 and the first layer 102, and a problem occurred in adhesion. Moreover, under the conditions of Comparative Example 3, it was confirmed that the surface roughness after the Falex test was larger than the others, and damage due to wear occurred. As a result of structural observation, precipitation of network cementite peculiar to the hypereutectoid steel of the steel material was observed on the grain boundary, and damage in the overcarburized part was confirmed.

以上の各評価により、本発明に開示する構成の鉄鋼部材は表面硬度、被処理材との密着性に優れた表面処理層を有することが確認された。本項では機械部品としてシャフトについての実施例を示したが、他に駆動部品、歯車、軸受など様々な機械部品への適用が可能であることは明らかである。   From the above evaluations, it was confirmed that the steel member having the configuration disclosed in the present invention has a surface treatment layer having excellent surface hardness and adhesion to the material to be treated. In this section, an example of a shaft as a machine part is shown. However, it is obvious that the present invention can be applied to various machine parts such as a drive part, a gear, and a bearing.

Figure 2014199423
Figure 2014199423

100 鉄鋼部材
101 被処理材
102 第一の層
103 第二の層
104 第三の層
105 スプレーノズル
106 溶射ノズル
100 Steel member 101 Material 102 First layer 103 Second layer 104 Third layer 105 Spray nozzle 106 Thermal spray nozzle

Claims (7)

鉄鋼製の被処理材の少なくとも一部に、炭素濃度が前記被処理材よりも高く1.0wt.%以下である複数の層が積層され、前記複数の層のうち最表面層の炭素濃度が最も高いことを特徴とする鉄鋼部材。   At least part of the steel material to be treated has a carbon concentration higher than that of the material to be treated and 1.0 wt. % Or less, and the carbon concentration of the outermost surface layer is the highest among the plurality of layers. 請求項1において、前記複数の層は三層以上であることを特徴とする鉄鋼部材。   The steel member according to claim 1, wherein the plurality of layers are three or more layers. 請求項1において、前記被処理材は前記複数の層が積層されている部位と積層されていない部位とを備えることを特徴とする鉄鋼部材。   The steel member according to claim 1, wherein the material to be processed includes a portion where the plurality of layers are laminated and a portion where the plurality of layers are not laminated. 請求項1において、前記複数の層は前記被処理材側から第一の層、第二の層が順次積層され、前記第一の層は前記第二の層が積層されている部位と積層されていない部位とを備えることを特徴とする鉄鋼部材。   2. The plurality of layers according to claim 1, wherein a first layer and a second layer are sequentially stacked from the material to be processed side, and the first layer is stacked with a portion where the second layer is stacked. A steel member characterized by comprising a portion not provided. 鉄鋼製の被処理材の少なくとも一部に、炭素を含む粉体を噴霧して炭素濃度が前記被処理材よりも高い第一の層を形成する工程と、
前記第一の層の少なくとも一部に、炭素を含む粉体を噴霧して炭素濃度が前記第一の層よりも高い第二の層を形成する工程とを少なくとも備え、
前記第一の層と前記第二の層とを含む複数の層の炭素濃度が1.0wt.%以下であることを特徴とする鉄鋼部材の製造方法。
Forming a first layer having a carbon concentration higher than that of the material to be treated by spraying a powder containing carbon on at least a part of the material to be treated made of steel; and
Spraying a powder containing carbon on at least a part of the first layer to form a second layer having a carbon concentration higher than that of the first layer, and
The carbon concentration of the plurality of layers including the first layer and the second layer is 1.0 wt. % Or less, The manufacturing method of the steel member characterized by the above-mentioned.
請求項5において、前記第二の層の少なくとも一部に、炭素を含む粉体を噴霧して炭素濃度が前記第二の層よりも高い第三の層を形成する工程を備えることを特徴とする鉄鋼部材の製造方法。   6. The method according to claim 5, further comprising the step of spraying a powder containing carbon on at least a part of the second layer to form a third layer having a carbon concentration higher than that of the second layer. A method for manufacturing a steel member. 請求項5において、前記複数の層は前記被処理材を加熱しながら形成されることを特徴とする鉄鋼部材の製造方法。   6. The method for manufacturing a steel member according to claim 5, wherein the plurality of layers are formed while heating the material to be processed.
JP2015522272A 2013-06-10 2013-06-10 Steel member and method for manufacturing steel member Expired - Fee Related JP6062048B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/065916 WO2014199423A1 (en) 2013-06-10 2013-06-10 Steel member and production method for steel member

Publications (2)

Publication Number Publication Date
JP6062048B2 JP6062048B2 (en) 2017-01-18
JPWO2014199423A1 true JPWO2014199423A1 (en) 2017-02-23

Family

ID=52021759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015522272A Expired - Fee Related JP6062048B2 (en) 2013-06-10 2013-06-10 Steel member and method for manufacturing steel member

Country Status (5)

Country Link
US (1) US20160138151A1 (en)
JP (1) JP6062048B2 (en)
CN (1) CN105308213A (en)
AU (1) AU2013392321B2 (en)
WO (1) WO2014199423A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018203637A1 (en) 2018-03-09 2019-09-12 Volkswagen Aktiengesellschaft Design of the transition from laser deposition material to substrate to reduce the notch effect
KR102616426B1 (en) * 2019-12-20 2023-12-27 닛폰세이테츠 가부시키가이샤 Ni-plated steel sheet and manufacturing method of Ni-plated steel sheet
EP3933067A1 (en) * 2020-07-03 2022-01-05 Flender GmbH Coating, a component with a coating and method for producing a coating
CN113957434B (en) * 2021-10-22 2022-11-04 燕山大学 Method for preparing high-hardness and high-wear-resistance cladding layer on surface of low-carbon steel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3315556C1 (en) * 1983-04-29 1984-11-29 Goetze Ag, 5093 Burscheid Wear-resistant coating
US6048586A (en) * 1996-06-05 2000-04-11 Caterpillar Inc. Process for applying a functional gradient material coating to a component for improved performance
DE102006023690A1 (en) * 2006-05-19 2007-11-22 Schaeffler Kg Method for producing a rolling bearing component and rolling bearing component
JP5605901B2 (en) * 2010-09-30 2014-10-15 国立大学法人東北大学 Method for repairing metal material by cold spray method, method for producing powder material for cold spray, and cold spray film

Also Published As

Publication number Publication date
AU2013392321B2 (en) 2016-09-29
US20160138151A1 (en) 2016-05-19
AU2013392321A1 (en) 2016-01-07
WO2014199423A1 (en) 2014-12-18
JP6062048B2 (en) 2017-01-18
CN105308213A (en) 2016-02-03

Similar Documents

Publication Publication Date Title
JP7121001B2 (en) 3D printable hard ferrous metal alloys for powder bed fusion bonding
US20170122392A1 (en) Brake Disc for a Motor Vehicle
JP6062048B2 (en) Steel member and method for manufacturing steel member
EP2679701B1 (en) Manufacturing method of a nitrided steel member
WO2011013559A1 (en) Method of combined heat treatment and quench-hardened steel member
JP2009542902A (en) Abrasion resistant coating and manufacturing method therefor
CN103215539A (en) Process for diffusing titanium and nitride into a material having a coating thereon
JPH10237628A (en) Coated tool and its production
WO2019189087A1 (en) Bearing part
US20120028031A1 (en) Iron-based sintered material
JP3861097B2 (en) Rotating machine
US8852751B2 (en) Wear resistant device and process therefor
JP2014087858A (en) Cutting tool
US20220213929A1 (en) Ball bearing and method for manufacturing same
JPWO2011151929A1 (en) Roll for hot rolling equipment and manufacturing method thereof
JP2018039045A (en) Covering cold metal mold
JP2016524042A (en) Coated components
RU2434973C2 (en) Procedure for production of built-up coating on blade body of turbo-machine
WO2019172321A1 (en) Composite coating and method for forming composite coating
JP2007046103A (en) Hard film
JP2011147946A (en) Warm/hot forging die and method of manufacturing the same
US20220032357A1 (en) Coated die for use in hot stamping
JP2018158355A (en) Mold for press of titanium plate and method for press-molding titanium plate
US9556531B2 (en) Method for ultra-fast boriding
JP2007321806A (en) Rolling slide part and rolling device equipped with rolling slide part

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161213

R151 Written notification of patent or utility model registration

Ref document number: 6062048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees