JPWO2014188908A1 - Functional fine particles and resin products containing the same - Google Patents

Functional fine particles and resin products containing the same Download PDF

Info

Publication number
JPWO2014188908A1
JPWO2014188908A1 JP2015518192A JP2015518192A JPWO2014188908A1 JP WO2014188908 A1 JPWO2014188908 A1 JP WO2014188908A1 JP 2015518192 A JP2015518192 A JP 2015518192A JP 2015518192 A JP2015518192 A JP 2015518192A JP WO2014188908 A1 JPWO2014188908 A1 JP WO2014188908A1
Authority
JP
Japan
Prior art keywords
fine particles
resin
carboxyl group
salt
functional fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015518192A
Other languages
Japanese (ja)
Other versions
JP6448535B2 (en
Inventor
川中直樹
池田喬是
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Publication of JPWO2014188908A1 publication Critical patent/JPWO2014188908A1/en
Application granted granted Critical
Publication of JP6448535B2 publication Critical patent/JP6448535B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/28Selection of materials for use as drying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • D06N3/0068Polymeric granules, particles or powder, e.g. core-shell particles, microcapsules
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/202Polymeric adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/304Linear dimensions, e.g. particle shape, diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/406Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/90Odorous compounds not provided for in groups B01D2257/00 - B01D2257/708
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4541Gas separation or purification devices adapted for specific applications for portable use, e.g. gas masks
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/16Properties of the materials having other properties
    • D06N2209/165Odour absorbing, deodorizing ability
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/28Artificial leather

Abstract

【課題】従来の消臭剤は、特定の種類の臭気に対しては消臭性が優れているが、他の種類の臭気については十分な消臭性を示さないものが多く、汗臭や加齢臭などの複合臭の消臭に対しては満足できる消臭効果が得られない。また、樹脂等に添加した場合には、樹脂の耐摩耗性などの性能を低下させるなどの問題がある。本発明は、かかる従来技術の問題を解消するために、樹脂に配合した際に、樹脂の耐摩耗性を大きく低減させることなく、塩基性臭気と酸性臭気に対する高い消臭性能と吸湿性能を付与することが可能な吸湿消臭微粒子を提供する。【解決手段】架橋構造および1.8mmol/g以上の塩型カルボキシル基を有する吸放湿性微粒子に、塩基性高分子が0.05重量%以上付着されている機能性微粒子であって、平均粒子径が0.01〜200μmの範囲にある機能性微粒子。【選択図】なし[PROBLEMS] A conventional deodorant is excellent in deodorizing properties for a specific type of odor, but many other types of odors do not exhibit sufficient deodorizing properties, such as sweat odor and A satisfactory deodorizing effect cannot be obtained for the deodorization of complex odors such as aging odors. Moreover, when it adds to resin etc., there exists a problem of reducing performance, such as abrasion resistance of resin. The present invention provides high deodorization performance and moisture absorption performance for basic odors and acidic odors without greatly reducing the wear resistance of the resin when blended in the resin in order to eliminate such problems of the prior art. Provided is a moisture-absorbing deodorant fine particle that can be used. [MEANS FOR SOLVING PROBLEMS] A functional fine particle in which 0.05% by weight or more of a basic polymer is adhered to a hygroscopic fine particle having a crosslinked structure and a salt-type carboxyl group of 1.8 mmol / g or more, and an average particle Functional fine particles having a diameter in the range of 0.01 to 200 μm. [Selection figure] None

Description

本発明は、吸湿性能と消臭性能を併せ持ち、かつ樹脂に混合したときに樹脂に対して高い密着性を示す吸湿消臭性微粒子に関する。 The present invention relates to moisture-absorbing and deodorizing fine particles having both moisture-absorbing performance and deodorizing performance and exhibiting high adhesion to a resin when mixed with the resin.

近年、生活環境の変化に伴い、臭気・蒸れ感に対する意識が高まり、体から発生する体液による臭気や蒸れ感を迅速にしかも持続的に消臭・吸湿することが望まれている。例えば臭気に関しては、加齢臭、汗臭に対する意識が高い。加齢臭は、ノネナールなどのアルデヒド類から構成されており、汗臭は、アンモニア、酢酸、イソ吉草酸、アセトアルデヒド類から構成されている。これらの消臭方法は、物理的消臭、化学的消臭、感覚的消臭(マスキング)等に大別される。物理的消臭剤としては、活性炭が極めて優れている。しかし、活性炭は、微粒化することが困難であったり、繊維上への固定が難しく、繊維の色を悪くしたりする等の問題があった。また、物理的消臭では、洗濯等の作業によって、性能が著しく低下する。また、触媒作用を利用する消臭剤は、即時効果が低い。香料等による消臭では、人の嗜好性によって香料そのもの自体が悪臭になり得ることや、嗅覚疲労を起こすことから、その用途は限られたものになる。その中で、即時効果と持続性能に優れながら、上記問題点を克服できるものとして、化学中和反応を用いた方法がある。 In recent years, along with changes in the living environment, awareness of odors and stuffiness has increased, and it has been desired that odors and stuffiness caused by body fluids generated from the body be quickly and continuously deodorized and moisture absorbed. For example, regarding odor, there is a high awareness of aging odor and sweat odor. The aging odor is composed of aldehydes such as nonenal, and the sweat odor is composed of ammonia, acetic acid, isovaleric acid, and acetaldehyde. These deodorization methods are roughly classified into physical deodorization, chemical deodorization, and sensory deodorization (masking). As a physical deodorant, activated carbon is extremely excellent. However, the activated carbon has problems such as difficulty in atomization, fixation on the fiber, and deterioration of the color of the fiber. In addition, with physical deodorization, the performance is significantly reduced by operations such as washing. Moreover, the deodorant using a catalytic action has a low immediate effect. In deodorization with a fragrance or the like, the fragrance itself can become a bad odor depending on the preference of a person, or it causes olfactory fatigue, so its use is limited. Among them, there is a method using a chemical neutralization reaction that can overcome the above-mentioned problems while being excellent in immediate effect and sustained performance.

かかる目的に利用される機能性微粒子として、例えば、特許文献1には、ヒドラジン架橋を有するアクリロニトリル系重合体微粒子に塩型カルボキシル基を導入して得られる吸放湿性微粒子が開示されている。ヒドラジン架橋由来のアミノ基と塩型カルボキシル基では、酸性臭気・塩基性臭気に対する消臭性能は発現されるが、アルデヒド類に対する消臭性が不足する。また、該微粒子をウレタン樹脂に配合して使用する場合、樹脂が摩耗しやすくなり、実用上の物性を維持することが困難である。 As functional fine particles used for this purpose, for example, Patent Document 1 discloses moisture-absorbing / releasing fine particles obtained by introducing salt-type carboxyl groups into acrylonitrile-based polymer fine particles having a hydrazine bridge. The hydrazine cross-linked amino group and salt-type carboxyl group exhibit deodorizing performance against acidic odor and basic odor, but lack deodorizing performance against aldehydes. Further, when the fine particles are used in a urethane resin, the resin is likely to be worn and it is difficult to maintain practical physical properties.

また、特許文献2には、アミノ基を利用した酸・アルデヒド消臭性を有する重合体が開示されている。アミノ基の導入方法について、ヒドラジンで高ニトリル系重合体を処理し、架橋構造とアミン構造を同時に導入することが好ましいとされている。しかし、かかる方法では、塩基性臭気に対する消臭性が不足するため、汗・加齢臭に対する消臭性能を発現することはできない。 Patent Document 2 discloses a polymer having an acid / aldehyde deodorizing property utilizing an amino group. Regarding the method of introducing an amino group, it is preferable to treat a high nitrile polymer with hydrazine and introduce a crosslinked structure and an amine structure simultaneously. However, in such a method, the deodorizing performance with respect to the basic odor is insufficient, so that the deodorizing performance with respect to sweat / aging odor cannot be exhibited.

特開平8−225610号公報JP-A-8-225610 特開平10−156179号公報JP-A-10-156179

本発明の目的は、上記の従来技術の問題を克服するためになされたものであり、樹脂に配合した際に、樹脂の耐摩耗性を大きく低減させることなく、塩基性物質と酸性物質に対する高い消臭性能と吸湿性能を付与することが可能な吸湿消臭微粒子を提供することにある。 The object of the present invention is to overcome the above-mentioned problems of the prior art, and when blended in a resin, it is highly resistant to basic substances and acidic substances without greatly reducing the abrasion resistance of the resin. An object of the present invention is to provide moisture absorbing and deodorizing fine particles capable of imparting deodorizing performance and moisture absorbing performance.

本発明の上記目的は、下記の[1]〜[11]の手段によって達成される。
[1] 架橋構造および1.8mmol/g以上の塩型カルボキシル基を有する吸放湿性微粒子に、塩基性高分子が0.05重量%以上付着されている機能性微粒子であって、平均粒子径が0.01〜200μmの範囲にあることを特徴とする機能性微粒子。
[2] 20℃×65%RH環境下での飽和吸湿率が15%以上であることを特徴とする[1]に記載の機能性微粒子。
[3] アンモニア臭除去率:70%以上、酢酸臭除去率:80%以上、イソ吉草酸臭除去率:85%以上、ノネナール臭除去率:75%以上の消臭性能を有することを特徴とする[1]または[2]に記載の機能性微粒子。
[4] ウレタン系人工皮革に配合されたときの剥離強度保持率が36%以上であることを特徴とする[1]〜[3]のいずれかに記載の機能性微粒子。
[5] 前記吸放湿性微粒子中の全カルボキシル基量に対する塩型カルボキシル基量の比率が、40〜99%の範囲であることを特徴とする[1]〜[4]のいずれかに記載の機能性微粒子。
[6] [1]〜[5]のいずれかに記載の機能性微粒子を含有することを特徴とする樹脂製品。
[7] 前記樹脂製品が人造皮革であることを特徴とする[6]に記載の樹脂製品。
[8] 前記樹脂製品がフィルムであることを特徴とする[6]に記載の樹脂製品。
[9] 前記樹脂製品が繊維であることを特徴とする[6]に記載の樹脂製品。
[10] 樹脂製品を構成する樹脂が、ウレタン系樹脂を含有することを特徴とする[7]〜[9]のいずれかに記載の樹脂製品。
[11] 樹脂製品を構成する樹脂が、セルロース系重合体および/またはアクリロニトリル系重合体を含有することを特徴とする[9]に記載の樹脂製品。
The object of the present invention is achieved by the following means [1] to [11].
[1] Functional fine particles in which 0.05% by weight or more of a basic polymer is attached to a hygroscopic fine particle having a crosslinked structure and a salt-type carboxyl group of 1.8 mmol / g or more, and having an average particle size Is in the range of 0.01 to 200 μm.
[2] The functional fine particles according to [1], wherein a saturated moisture absorption rate in a 20 ° C. × 65% RH environment is 15% or more.
[3] Ammonia odor removal rate: 70% or more, acetic acid odor removal rate: 80% or more, isovaleric acid odor removal rate: 85% or more, nonenal odor removal rate: 75% or more The functional fine particles according to [1] or [2].
[4] The functional fine particle according to any one of [1] to [3], wherein the peel strength retention when blended with urethane-based artificial leather is 36% or more.
[5] The ratio of the salt-type carboxyl group amount to the total carboxyl group amount in the hygroscopic fine particles is in the range of 40 to 99%, according to any one of [1] to [4] Functional fine particles.
[6] A resin product comprising the functional fine particles according to any one of [1] to [5].
[7] The resin product according to [6], wherein the resin product is artificial leather.
[8] The resin product according to [6], wherein the resin product is a film.
[9] The resin product according to [6], wherein the resin product is a fiber.
[10] The resin product according to any one of [7] to [9], wherein the resin constituting the resin product contains a urethane-based resin.
[11] The resin product according to [9], wherein the resin constituting the resin product contains a cellulose polymer and / or an acrylonitrile polymer.

本発明の機能性微粒子は、吸湿性能が高いため、体から発生する体液由来の蒸れ感を低減し、快適な湿度環境を実現することができ、さらに加齢臭、汗臭等の複合臭に対して即効性と持続性のある消臭性能を発現することが可能である。また、本発明の機能性微粒子は、各種樹脂に添加することによって、これらの樹脂に前述の吸湿性能や消臭性能を付与することができる。また、本発明の機能性微粒子は、凝集力の高い結合を有する樹脂に対しては、より高い密着性を発現するため、配合しても樹脂の耐摩耗性を大きく低減させることがない。このため、これらの樹脂からなる繊維、人造皮革、発泡体などに本発明の機能性微粒子を添加すると、耐摩耗性を大きく損なうことなく吸放湿性能や消臭性能を付与することが可能になる。 Since the functional fine particles of the present invention have high moisture absorption performance, it can reduce the feeling of stuffiness derived from bodily fluids generated from the body, can realize a comfortable humidity environment, and further to a complex odor such as aging odor and sweat odor. On the other hand, it is possible to develop a deodorizing performance that is immediate and lasting. Moreover, the functional fine particles of the present invention can be imparted to these resins with the above-described hygroscopic performance and deodorizing performance by being added to various resins. Moreover, since the functional fine particles of the present invention exhibit higher adhesion to a resin having a bond having a high cohesive force, the abrasion resistance of the resin is not greatly reduced even when blended. For this reason, when the functional fine particles of the present invention are added to fibers, artificial leather, foams, etc. made of these resins, it is possible to impart moisture absorption / deodorization performance and deodorization performance without significantly degrading the wear resistance. Become.

本発明の機能性微粒子は、架橋構造および1.8mmol/g以上の塩型カルボキシル基を含有する吸放湿性微粒子表面に塩基性高分子が付着されているものである。 The functional fine particles of the present invention are those in which a basic polymer is attached to the surface of a hygroscopic fine particle containing a crosslinked structure and a salt-type carboxyl group of 1.8 mmol / g or more.

本発明に採用する吸放湿性微粒子の塩型カルボキシル基の量は、塩基性高分子を効率的に付着させる観点、及び最終的に得られる本発明の機能性微粒子において十分な吸放湿性能や消臭性能を発現させる観点から、1.8mmol/g以上であることが必要であり、好ましくは3mmol/g以上であり、さらに好ましくは4mmol/g以上である。1.8mmol/g未満では、得られる微粒子の吸放湿性が低くなり、また、十分な量の塩基性高分子を付着させることも難しいため、消臭性能が不足する。塩型カルボキシル基量の上限は、11mmol/g以下であることが望ましい。11mmol/gを超える場合には、架橋構造の導入がほとんどできないため、微粒子の水に対する膨潤度を抑制することができず、微粒子の水に対する膨潤度が高くなりすぎる。 The amount of the salt-type carboxyl group of the moisture-absorbing / releasing fine particles employed in the present invention is such that the basic polymer is efficiently attached, and sufficient moisture-absorbing / releasing performance is obtained in the functional fine particles of the present invention finally obtained. From the viewpoint of expressing the deodorizing performance, it is necessary to be 1.8 mmol / g or more, preferably 3 mmol / g or more, and more preferably 4 mmol / g or more. If it is less than 1.8 mmol / g, the moisture absorption / release property of the resulting fine particles is low, and it is difficult to attach a sufficient amount of basic polymer, so that the deodorizing performance is insufficient. The upper limit of the salt-type carboxyl group amount is desirably 11 mmol / g or less. When it exceeds 11 mmol / g, since the introduction of a crosslinked structure is hardly possible, the degree of swelling of fine particles in water cannot be suppressed, and the degree of swelling of fine particles in water becomes too high.

また、本発明の機能性微粒子の水に対する膨潤度が5倍よりも高い場合には、水系樹脂などに混合して使用した場合に、液体の水との接触によって微粒子が大きく膨潤し、その後、乾燥した時に収縮することで、微粒子が体積変化を引き起こす。一方、水系樹脂は、液体の水に対して大きな体積変化を起こさないため、粒子と水系樹脂との界面で膨張差が発生して、物理的に界面剥離を引き起こしやすくなる。水に対する膨潤度が5倍以下であれば水系樹脂などと混合しても液体の水との接触による界面剥離を引き起こしにくい。なお、水に対する膨潤度の下限は、本発明の機能性微粒子の20℃×65%RH条件での飽和吸湿率が15%以上であることが好ましいことから、0.15倍以上であることが好ましい。 In addition, when the degree of swelling of the functional fine particles of the present invention with respect to water is higher than 5 times, when mixed with an aqueous resin or the like, the fine particles are greatly swollen by contact with liquid water, and then By contracting when dried, the fine particles cause a volume change. On the other hand, since the water-based resin does not cause a large volume change with respect to liquid water, a difference in expansion occurs at the interface between the particles and the water-based resin, and physical interface peeling tends to occur. If the degree of swelling with respect to water is 5 times or less, even when mixed with an aqueous resin or the like, interfacial peeling due to contact with liquid water is unlikely to occur. In addition, the lower limit of the degree of swelling with respect to water is preferably 0.15 times or more because the saturated moisture absorption rate at 20 ° C. × 65% RH of the functional fine particles of the present invention is preferably 15% or more. preferable.

吸放湿性微粒子中の全カルボキシル基量に対する塩型カルボキシル基量の比率は、好ましくは40〜99%の範囲であり、より好ましくは50〜95%、さらに好ましくは50〜80%の範囲である。塩型カルボキシル基は、酸性物質消臭性能、塩基性高分子とのイオン結合、及び吸湿性能を発現するために必要である。一方、塩型でないカルボキシル基は、カルボン酸型カルボキシル基(以後H型カルボキシル基とも言う)であり、アンモニア消臭性能、吸湿性能を発現させる要因である。吸湿性能は、塩型カルボキシル基の方がカルボン酸型カルボキシル基よりも一般的に高い。アンモニア消臭性能は、吸湿して取り込んだ水分に溶解する形で発現する場合もあるため、実質的には、吸湿性能とカルボン酸型カルボキシル基の複合効果として発現される。全カルボキシル基量に対する塩型カルボキシル基量の比率が40%未満の場合、イオン結合による塩基性高分子の固定化が難しくなり、酸性物質消臭性能も不足する。 The ratio of the salt-type carboxyl group amount to the total carboxyl group amount in the hygroscopic fine particles is preferably in the range of 40 to 99%, more preferably 50 to 95%, and still more preferably 50 to 80%. . The salt-type carboxyl group is necessary for expressing the deodorizing performance of acidic substances, ionic bonds with basic polymers, and hygroscopic performance. On the other hand, the non-salt-type carboxyl group is a carboxylic acid-type carboxyl group (hereinafter also referred to as an H-type carboxyl group), which is a factor for developing ammonia deodorizing performance and moisture absorption performance. The hygroscopic performance is generally higher for salt-type carboxyl groups than for carboxylic acid-type carboxyl groups. Ammonia deodorization performance may be expressed in a form that is absorbed in moisture absorbed by moisture absorption, and thus is substantially expressed as a combined effect of moisture absorption performance and a carboxylic acid type carboxyl group. When the ratio of the salt-type carboxyl group amount to the total carboxyl group amount is less than 40%, it becomes difficult to fix the basic polymer by ionic bond, and the acid substance deodorizing performance is also insufficient.

本発明に採用する吸放湿性微粒子(以下、塩型カルボキシル基含有微粒子とも言う)は、架橋アクリロニトリル系重合体微粒子あるいは架橋(メタ)アクリル酸エステル系重合体微粒子を原料に用いて製造することができる。 The hygroscopic fine particles (hereinafter also referred to as salt-type carboxyl group-containing fine particles) employed in the present invention can be produced using crosslinked acrylonitrile polymer fine particles or crosslinked (meth) acrylate polymer fine particles as raw materials. it can.

架橋アクリロニトリル系重合体微粒子は、アクリロニトリルを40重量%以上、好ましくは50重量%以上含有するアクリロニトリル系重合体によって形成された微粒子である。架橋構造導入方法としては、重合時に架橋性モノマーを共重合する方法、あるいはアクリロニトリル系重合体微粒子を製造した後にヒドラジン架橋構造を導入する方法を採用することができる。ヒドラジン架橋構造を導入する方法としては、窒素含有量の増加が1.0〜15.0重量%となる手段である限り特に限定されないが、ヒドラジン濃度1%〜80%、温度50〜120℃で0.2〜10時間処理する手段が工業的に好ましい。ここで、窒素含有量の増加とは、処理を行う前のアクリロニトリル系重合体微粒子の窒素含有量(重量%対微粒子)と、ヒドラジン架橋構造を導入された後のアクリロニトリル系重合体微粒子の窒素含有量(重量%対微粒子)との差をいう。なお、窒素含有量の増加が上記下限に満たない場合は、次工程のカルボキシル基導入のための加水分解によって微粒子が水に溶解してしまい、本発明が達成されない。また、上限を超える場合には、次工程で1.8mmol/g以上のカルボキシル基を導入することが困難になり、本発明が達成されない。ここで使用するヒドラジンとしては、水加ヒドラジン、硫酸ヒドラジン、塩酸ヒドラジン、硝酸ヒドラジン等が例示される。 The crosslinked acrylonitrile polymer fine particles are fine particles formed of an acrylonitrile polymer containing acrylonitrile in an amount of 40% by weight or more, preferably 50% by weight or more. As a method for introducing a crosslinked structure, a method of copolymerizing a crosslinking monomer at the time of polymerization, or a method of introducing a hydrazine crosslinked structure after producing acrylonitrile-based polymer fine particles can be employed. The method for introducing a hydrazine crosslinked structure is not particularly limited as long as the increase in the nitrogen content is 1.0 to 15.0% by weight, but the hydrazine concentration is 1% to 80% and the temperature is 50 to 120 ° C. Means for treating for 0.2 to 10 hours are industrially preferred. Here, the increase in the nitrogen content refers to the nitrogen content (% by weight) of the acrylonitrile polymer fine particles before the treatment and the nitrogen content of the acrylonitrile polymer fine particles after the introduction of the hydrazine crosslinking structure. This is the difference between the amount (weight% vs. fine particles). In addition, when the increase in nitrogen content is less than the said minimum, microparticles | fine-particles will melt | dissolve in water by the hydrolysis for carboxyl group introduction | transduction of the following process, and this invention is not achieved. Moreover, when exceeding an upper limit, it becomes difficult to introduce | transduce a 1.8 mmol / g or more carboxyl group at the next process, and this invention is not achieved. Examples of the hydrazine used here include hydrazine hydrate, hydrazine sulfate, hydrazine hydrochloride, and hydrazine nitrate.

架橋(メタ)アクリル酸エステル系重合体微粒子は、(メタ)アクリル酸エステルモノマーを40重量%以上、好ましくは50重量%以上含有する(メタ)アクリル酸エステル系重合体によって形成された微粒子である。架橋構造の導入方法としては、重合時に架橋性モノマーを共重合する方法を採用することができる。 The crosslinked (meth) acrylate polymer fine particles are fine particles formed of a (meth) acrylate polymer containing 40% by weight or more, preferably 50% by weight or more of (meth) acrylate monomer. . As a method for introducing a crosslinked structure, a method of copolymerizing a crosslinking monomer at the time of polymerization can be employed.

架橋アクリロニトリル系重合体微粒子あるいは架橋(メタ)アクリル酸エステル系重合体微粒子を得る方法としては、特に限定はなく、利用される用途に応じて、必要とされる粒子径に基づき、適宜選択することができる。例えば、ミクロンオーダー以下の粒子径の極小微粒子を得ようとする場合には、乳化重合、分散重合、マイクロエマルジョン重合などを用いることができる。また、数μm以上の粒子径の粒子を得ようとする場合には、懸濁重合、懸濁沈殿重合などによって該微粒子を得ることができる。なお、最終的に得られる本発明の機能性微粒子において、吸放湿速度、消臭速度を高くし、また樹脂製品などへの添加剤として使用した時に、樹脂製品の外観・物性に影響を与えないという点から、架橋アクリロニトリル系重合体微粒子あるいは架橋(メタ)アクリル酸エステル系重合体微粒子としては、平均粒子径が0.01〜200μm以下であることが好ましく、薄層の樹脂製品に添加する場合を考えると、平均粒子径は0.01〜50μmであることがより好ましく、さらに、繊維などの微細な樹脂製品に添加する場合には、平均粒子径は0.01〜10μmであることが好ましい。また、該微粒子の形態としては、水などの媒体に分散した形態であっても構わない。 The method for obtaining the crosslinked acrylonitrile-based polymer fine particles or the crosslinked (meth) acrylic ester-based polymer fine particles is not particularly limited, and may be appropriately selected based on the required particle diameter depending on the intended use. Can do. For example, in order to obtain ultrafine particles having a particle size of the order of microns or less, emulsion polymerization, dispersion polymerization, microemulsion polymerization and the like can be used. When trying to obtain particles having a particle size of several μm or more, the fine particles can be obtained by suspension polymerization, suspension precipitation polymerization or the like. In the final functional fine particles of the present invention, the moisture absorption / desorption rate and deodorization rate are increased, and when used as an additive to resin products, the appearance and physical properties of resin products are affected. In view of the absence, the crosslinked acrylonitrile polymer fine particles or the crosslinked (meth) acrylic ester polymer fine particles preferably have an average particle diameter of 0.01 to 200 μm or less, and are added to a thin resin product. In consideration of the case, the average particle size is more preferably 0.01 to 50 μm, and when added to fine resin products such as fibers, the average particle size is preferably 0.01 to 10 μm. preferable. The fine particles may be dispersed in a medium such as water.

次に、架橋アクリロニトリル系重合体微粒子の場合はニトリル基を加水分解することによって、架橋(メタ)アクリル酸エステル系重合体微粒子の場合はエステル結合を加水分解することによって1.8mmol/g以上の塩型カルボキシル基を導入する。加水分解する方法としては、アルカリ金属水酸化物、アンモニア等の塩基性水溶液、あるいは硝酸、硫酸、塩酸等の鉱酸または、蟻酸、酢酸等の有機酸を添加し、加熱処理する手段が挙げられる。導入する塩型カルボキシル基量の調整は、加水分解条件と、生成する塩型カルボキシル量を実験により調査することによって行うことができる。なお、前記ヒドラジン架橋の導入と同時に加水分解反応を行うこともできる。 Next, in the case of crosslinked acrylonitrile-based polymer fine particles, the nitrile group is hydrolyzed, and in the case of crosslinked (meth) acrylic ester-based polymer fine particles, the ester bond is hydrolyzed to 1.8 mmol / g or more. A salt-type carboxyl group is introduced. Examples of the hydrolysis method include means for heat treatment by adding a basic aqueous solution such as alkali metal hydroxide or ammonia, or a mineral acid such as nitric acid, sulfuric acid or hydrochloric acid, or an organic acid such as formic acid or acetic acid. . The amount of the salt-type carboxyl group to be introduced can be adjusted by examining the hydrolysis conditions and the amount of the salt-type carboxyl group to be generated by experiments. The hydrolysis reaction can also be performed simultaneously with the introduction of the hydrazine bridge.

酸で加水分解した場合には、H型カルボキシル基が生成するため、このH型カルボキシル基を塩型カルボキシル基に変化させる必要がある。そのための方法としては、加水分解後の粒子を、下記に例示する各種の塩型の水酸化物または塩で処理する方法が好適である。カルボキシル基の塩型としては、Li、Na、K等のアルカリ金属、Be、Mg、Ca、Ba等のアルカリ土類金属、Cu、Zn、Al、Mn、Ag、Fe、Co、Ni等の他の金属イオンを挙げることができる。なお、塩型カルボキシル基の含有量が上記下限に満たない場合には、高吸放湿性、高消臭性が得られない。塩型は、2種以上を混合してもよい。また、必要に応じて、塩型カルボキシル基を酢酸、硝酸、硫酸、炭酸等の有機酸で処理することによってH型カルボキシル基に変換することも可能である。 When hydrolyzed with an acid, an H-type carboxyl group is generated, and therefore it is necessary to change the H-type carboxyl group to a salt-type carboxyl group. As a method for this, a method of treating the hydrolyzed particles with various salt-type hydroxides or salts exemplified below is preferable. The carboxyl group salt type includes alkali metals such as Li, Na and K, alkaline earth metals such as Be, Mg, Ca and Ba, Cu, Zn, Al, Mn, Ag, Fe, Co and Ni. The metal ion can be mentioned. In addition, when content of a salt type carboxyl group is less than the said minimum, high moisture absorption / release property and high deodorizing property are not acquired. Two or more salt forms may be mixed. If necessary, the salt-type carboxyl group can be converted to an H-type carboxyl group by treating with an organic acid such as acetic acid, nitric acid, sulfuric acid, or carbonic acid.

本発明では、酸性物質消臭性能、アルデヒド類消臭性能および樹脂密着性を向上させる目的で、塩型カルボキシル基含有微粒子の表面に塩基性高分子をイオン結合によって固定化している。イオン結合によって固定化する方法として、水中で塩型カルボキシル基含有微粒子と塩基性高分子を混合し、イオン結合させる方法が好適である。このため、塩基性高分子は水溶性であることが望ましい。塩基性高分子としては、水溶性を有する塩基性高分子であれば特に制限はないが、酸性物質、アルデヒド類消臭性能あるいは樹脂に対する密着性をより向上させる観点から、1級または2級アミノ基を含有する水溶性高分子であることが好ましい。かかる塩基性高分子としては、ポリエチレンイミンやポリビニルピロリドン等を挙げることができる。特にポリエチレンイミンは、分子中のアミノ基密度が高く、酸性物質消臭性能、ノネナール消臭性能、樹脂密着性を向上させる効果が高いため、好適である。処理条件としては、塩基性高分子の濃度1〜10重量%、好ましくは1〜5重量%の水溶液に塩型カルボキシル基含有微粒子を浸漬し、50〜120℃で1〜10時間処理する条件を挙げることができる。塩基性高分子の付着量としては、塩型カルボキシル基含有粒子に対して塩基性高分子が0.05重量%以上付着するようにする必要があり、0.2重量%以上付着するようにすることが望ましい。0.05重量%未満では、目的とする酸性物質消臭性能、アルデヒド類消臭性能および樹脂密着性能が発現できない。一方、塩基性高分子は、塩型カルボキシル基含有微粒子の表面の塩型カルボキシル基とイオン結合で固定化するため、付着量の上限は、粒子表面積と表面に存在する塩型カルボキシル基量にある程度依存し、実際には20重量%が上限となる。かかる範囲で塩基性高分子を取り扱うことで、本来粘着性を有する塩基性高分子がイオン結合により粒子表面に固定化され、粘着性が大幅に低下するので、粒子の流動性を損なうことがない。また、本発明の機能性微粒子を樹脂への添加剤として使用する場合には、樹脂成型時などの高温加熱による臭気発生の可能性を考慮して、付着量を1.5重量%以下とすることが好ましく、1.0重量%以下とすることがより好ましい。 In the present invention, a basic polymer is immobilized on the surface of the salt-type carboxyl group-containing fine particles by ionic bonds for the purpose of improving the deodorizing performance of acidic substances, the deodorizing performance of aldehydes and the resin adhesion. As a method for immobilization by ionic bonding, a method of mixing salt-type carboxyl group-containing fine particles and basic polymer in water and ionic bonding is suitable. For this reason, it is desirable that the basic polymer is water-soluble. The basic polymer is not particularly limited as long as it is a water-soluble basic polymer, but it is a primary or secondary amino from the viewpoint of further improving the deodorizing performance of acidic substances, aldehydes or resin. A water-soluble polymer containing a group is preferred. Examples of such basic polymer include polyethyleneimine and polyvinylpyrrolidone. In particular, polyethyleneimine is preferable because it has a high amino group density in the molecule, and has a high effect of improving acidic substance deodorization performance, nonenal deodorization performance, and resin adhesion. The treatment conditions are such that the salt-type carboxyl group-containing fine particles are immersed in an aqueous solution having a basic polymer concentration of 1 to 10% by weight, preferably 1 to 5% by weight, and treated at 50 to 120 ° C. for 1 to 10 hours. Can be mentioned. The basic polymer should be attached in an amount of 0.05% by weight or more with respect to the salt-type carboxyl group-containing particles, and 0.2% by weight or more should be attached. It is desirable. If it is less than 0.05% by weight, the intended acidic substance deodorizing performance, aldehyde deodorizing performance and resin adhesion performance cannot be exhibited. On the other hand, since the basic polymer is immobilized by ionic bonds with the salt-type carboxyl groups on the surface of the salt-type carboxyl group-containing fine particles, the upper limit of the adhesion amount is somewhat to the particle surface area and the amount of salt-type carboxyl groups present on the surface. In practice, the upper limit is 20% by weight. By handling the basic polymer in such a range, the basic polymer that is inherently sticky is immobilized on the particle surface by ionic bonding, and the stickiness is greatly reduced, so the fluidity of the particle is not impaired. . In addition, when the functional fine particles of the present invention are used as an additive to a resin, the amount of adhesion is 1.5% by weight or less in consideration of the possibility of odor generation due to high-temperature heating such as during resin molding. It is preferable that the content be 1.0% by weight or less.

上述のように、本発明においては酸性物質、アルデヒド類に対する吸着消臭性能と樹脂に対する密着性を向上させるために、塩型カルボキシル基含有微粒子に塩基性高分子を付着させている。低分子の塩基性化合物を用いた場合、塩型カルボキシル基と低分子の塩基性化合物がイオン交換反応して塩を形成し、酸性物質、及びアルデヒド類に対する吸着消臭性能が向上できないのみならず、塩型カルボキシル基含有微粒子が有していた塩基性物質に対する吸着消臭性能をも低下させてしまう。また、上述した架橋アクリロニトリル系重合体微粒子や架橋アクリル酸エステル重合体微の粒子内部に予めアミノ基を導入した後に、加水分解反応を実施して微粒子内部にカルボキシル基を生成する方法でも、微粒子内部においてアミノ基とカルボキシル基が混在するため、これらの官能基同士で中和反応を引き起こし、粒子内塩を形成して、十分な消臭性能発現に至らない場合が多い。上述した架橋アクリロニトリル系重合体粒子の有するヒドラジン架橋構造も本来、酸性物質、及びアルデヒド類に対して高い吸着消臭性能を有しているが、加水分解反応で生成されるカルボキシル基と中和反応してしまい、十分な性能発現には至らない。 As described above, in the present invention, a basic polymer is attached to the salt-type carboxyl group-containing fine particles in order to improve the adsorption and deodorization performance for acidic substances and aldehydes and the adhesion to the resin. When a low molecular weight basic compound is used, the salt-type carboxyl group and the low molecular weight basic compound undergo an ion exchange reaction to form a salt, which not only improves the adsorption and deodorization performance for acidic substances and aldehydes. Moreover, the adsorption | suction deodorizing performance with respect to the basic substance which the salt type carboxyl group containing fine particle had also will fall. In addition, it is also possible to introduce a carboxyl group in the fine particles by introducing an amino group into the fine particles of the above-mentioned crosslinked acrylonitrile polymer fine particles or fine particles of the crosslinked acrylate polymer in advance and then performing a hydrolysis reaction. In this case, since an amino group and a carboxyl group are mixed in each other, a neutralization reaction is caused between these functional groups to form a salt inside the particle, so that sufficient deodorizing performance cannot be exhibited in many cases. The hydrazine cross-linked structure of the above-mentioned cross-linked acrylonitrile polymer particles also has a high adsorption / deodorization performance for acidic substances and aldehydes, but the neutralization reaction with the carboxyl group produced by the hydrolysis reaction As a result, sufficient performance cannot be achieved.

本発明では、これらの現象を防ぐ目的で、塩型カルボキシル基含有微粒子内部に浸透できない分子サイズを有する塩基性高分子を選定し、粒子表面に存在する塩型カルボキシル基に対して塩基性高分子をイオン吸着させている。すなわち、本発明の機能性微粒子は、粒子表面において多数のアミノ基を有し、粒子内部においてアミノ基に中和されていない塩型カルボキシル基とH型カルボキシル基が存在する状態となっており、粒子表面に酸性物質、及びアルデヒドに対する吸着消臭部位、粒子内部に酸性物質、及び塩基性物質に対する吸着消臭部位がそれぞれ独立して存在している。また、塩基性高分子は、ポリイオン結合により付着されているため、脱落しにくく、洗濯耐久性が高い。従って、ここで選定する塩基性高分子としては、高分子量のものが望ましく、分子量300以上のものが好適である。一方、水溶性を有するという観点からは、分子量70000以下のものが好ましい。 In the present invention, for the purpose of preventing these phenomena, a basic polymer having a molecular size that cannot penetrate into the salt-type carboxyl group-containing fine particles is selected, and the basic polymer is selected with respect to the salt-type carboxyl group present on the particle surface. Are ion-adsorbed. That is, the functional fine particle of the present invention has a large number of amino groups on the particle surface, and is in a state in which salt-type carboxyl groups and H-type carboxyl groups that are not neutralized by amino groups are present inside the particles, Adsorption and deodorization sites for acidic substances and aldehydes are present on the particle surface, and adsorption and deodorization sites for acidic substances and basic substances are present independently inside the particles. Further, since the basic polymer is attached by polyion bonds, it is difficult to drop off and has high washing durability. Accordingly, the basic polymer selected here is preferably one having a high molecular weight, and one having a molecular weight of 300 or more is preferred. On the other hand, from the viewpoint of water solubility, those having a molecular weight of 70000 or less are preferred.

上述のような構造を有することによって、本発明の機能性微粒子は、体から発生する体液由来の蒸れ感を低減して快適な湿度環境を実現するだけでなく、加齢臭、汗臭等の複合臭に対して即効性と持続性のある消臭性能を発現することが可能である。具体的には、消臭性能として、繊維評価技術協議会の消臭基準であるアンモニア臭除去率:70%以上、酢酸臭除去率:80%以上、イソ吉草酸臭除去率:85%以上かつノネナール臭除去率:75%以上を発現させることも可能である。 By having the structure as described above, the functional fine particles of the present invention not only realize a comfortable humidity environment by reducing the stuffy feeling derived from the body fluid generated from the body, but also aging odor, sweat odor, etc. It is possible to develop a deodorizing performance that is immediate and lasting for complex odors. Specifically, as the deodorization performance, the ammonia odor removal rate which is the deodorization standard of the Fiber Evaluation Technical Council: 70% or more, the acetic acid odor removal rate: 80% or more, the isovaleric acid odor removal rate: 85% or more and Nonenal odor removal rate: 75% or more can be expressed.

また、塩型カルボキシル基含有微粒子に塩基性高分子を作用させる利点として、樹脂に対する密着性の改良が挙げられる。密着性の改良の対象となる樹脂としては、凝集力の高い結合を有する樹脂、例えばウレア樹脂、ウレタン樹脂、ナイロン樹脂、エステル樹脂を挙げることができる。特にウレタン樹脂の有するウレタン結合は、8.74kcal/molと非常に高い凝集力を示す。このような凝集力の高い樹脂に対する粒子の密着性を高めるためには、活性水素を有する官能基を粒子表面に多数存在させ、水素結合によって粒子を密着させることが有効である。塩型カルボキシル基含有微粒子は、カルボキシル基の多くが塩型となっているため、活性水素が少ない状態である。そこで、本発明においては、粒子表面に活性水素を有する塩基性高分子を固定化させている。このような目的に適する活性水素を有する官能基としては、1級または2級アミノ基が最も有効であり、塩基性高分子としては、1級または2級アミノ基を含有する塩基性高分子であれば特に限定はないが、水溶性の塩基性高分子で最もアミン価の高いポリエチレンイミンが好適に利用できる。 Moreover, the improvement of the adhesiveness with respect to resin is mentioned as an advantage of making a basic polymer act on salt-type carboxyl group-containing fine particles. Examples of the resin whose adhesion is improved include resins having bonds with high cohesion, such as urea resins, urethane resins, nylon resins, and ester resins. In particular, the urethane bond of the urethane resin exhibits a very high cohesive force of 8.74 kcal / mol. In order to improve the adhesion of the particles to such a resin having a high cohesive force, it is effective to make a large number of functional groups having active hydrogen present on the particle surface and to adhere the particles by hydrogen bonding. The salt-type carboxyl group-containing fine particles are in a state where there are few active hydrogens because most of the carboxyl groups are salt-type. Therefore, in the present invention, a basic polymer having active hydrogen is immobilized on the particle surface. A primary or secondary amino group is most effective as a functional group having an active hydrogen suitable for such purposes, and a basic polymer containing a primary or secondary amino group is a basic polymer. Although there is no particular limitation as long as it is a water-soluble basic polymer, polyethyleneimine having the highest amine value can be suitably used.

樹脂に対する微粒子の密着性は、後述する剥離強度試験によって評価することができる。かかる剥離強度試験において、ウレタン樹脂単独での剥離強度に対して、微粒子を添加したウレタン樹脂の剥離強度が36%以上保持されていれば、実用上問題とならない耐摩耗性が発現できる。本発明の機能性微粒子においては、36%以上の剥離強度保持率を得ることができ、さらに50%以上の剥離強度保持率を達成することも可能である。 The adhesion of the fine particles to the resin can be evaluated by a peel strength test described later. In such a peel strength test, if the peel strength of the urethane resin to which fine particles are added is maintained at 36% or more with respect to the peel strength of the urethane resin alone, wear resistance that does not cause a problem in practice can be exhibited. In the functional fine particles of the present invention, a peel strength retention of 36% or more can be obtained, and a peel strength retention of 50% or more can also be achieved.

本発明の機能性微粒子の大きさは、他の樹脂材料に混合して使用する場合を考えると、平均粒子径として0.01〜200μmであることが好ましく、より好ましくは0.01〜50μmである。平均粒子径が0.01μm未満であると、製造が困難であり、平均粒子径が200μmよりも大きくなると、樹脂成形品の厚み、繊維直径等の制約が大きくなるため、好ましくない。また、平均粒子径が数μmよりも小さい場合は、一般的に、水などの媒体に分散させた方が取り扱いやすい。 The size of the functional fine particles of the present invention is preferably 0.01 to 200 μm, more preferably 0.01 to 50 μm, as an average particle size, considering the case of mixing with other resin materials. is there. If the average particle diameter is less than 0.01 μm, it is difficult to produce, and if the average particle diameter is larger than 200 μm, restrictions such as the thickness of the resin molded product and the fiber diameter are not preferable. Further, when the average particle diameter is smaller than several μm, it is generally easier to handle it when dispersed in a medium such as water.

本発明の機能性微粒子の20℃×65%RH条件下での飽和吸湿率は、吸放湿性能に起因する快適環境の提供の観点から、好ましくは15%以上、より好ましくは20%以上、さらに好ましくは30%以上である。本発明の機能性微粒子において導入される塩型カルボキシル基量の上限値である11mmol/gでの飽和吸湿率は、85%である。 The saturated moisture absorption rate at 20 ° C. × 65% RH of the functional fine particles of the present invention is preferably 15% or more, more preferably 20% or more, from the viewpoint of providing a comfortable environment due to moisture absorption / release performance. More preferably, it is 30% or more. The saturated moisture absorption at 11 mmol / g, which is the upper limit of the amount of salt-type carboxyl groups introduced in the functional fine particles of the present invention, is 85%.

本発明の樹脂製品を構成する樹脂としては、特に限定されないが、ウレア樹脂、ウレタン樹脂、ナイロン樹脂、エステル樹脂、シリコーン樹脂、アクリル樹脂、アクリロニトリル系樹脂、セルロース系樹脂などを挙げることができる。 The resin constituting the resin product of the present invention is not particularly limited, and examples thereof include urea resins, urethane resins, nylon resins, ester resins, silicone resins, acrylic resins, acrylonitrile resins, and cellulose resins.

樹脂製品の種類としては、合成皮革、人工皮革などの人造皮革、フィルム、繊維などを挙げることができる。例えば、人工皮革の場合、ジメチルホルムアミドにウレタン樹脂を溶解させた液体に本発明の機能性微粒子を混合した後に、ポリエステル繊維で構成された不織布にコーティングを行い、その後、水溶液中で脱溶媒、乾燥することによって、吸放湿性と消臭性能を有する人工皮革を製造することができる。 Examples of the resin product include artificial leather such as synthetic leather and artificial leather, film, and fiber. For example, in the case of artificial leather, after mixing the functional fine particles of the present invention with a liquid in which a urethane resin is dissolved in dimethylformamide, the nonwoven fabric composed of polyester fibers is coated, and then desolvated and dried in an aqueous solution. By doing so, an artificial leather having moisture absorption / release properties and deodorizing performance can be produced.

また、繊維の場合であれば、ジメチルアセトアミドにウレタン樹脂を溶解させた液体に本発明の機能性微粒子を混合した後に、乾式紡糸法により繊維形態に加工することによって、吸放湿性と消臭性能を有するウレタン繊維を製造することができる。ウレタン樹脂以外を用いた繊維にも適用することができ、例えば、アクリロニトリル系繊維の場合には、チオシアン酸ナトリウム、硝酸、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、塩化亜鉛などにアクリロニトリル系重合体を溶解させた紡糸原液を、定法に従って紡糸することによって、製造することができる。また、セルロース系繊維の場合には、セルロース系重合体を含むビスコース原液に本発明の機能性微粒子を添加して調製した紡糸用ビスコース液を、定法に従って紡糸することによって、製造することができる。 In the case of fibers, moisture absorption and deodorization performance is achieved by mixing the functional fine particles of the present invention in a liquid in which a urethane resin is dissolved in dimethylacetamide and then processing into a fiber form by a dry spinning method. The urethane fiber which has can be manufactured. It can also be applied to fibers using materials other than urethane resin. The spinning solution thus prepared can be produced by spinning according to a conventional method. In the case of cellulosic fibers, a viscose solution for spinning prepared by adding the functional fine particles of the present invention to a viscose stock solution containing a cellulosic polymer can be produced by spinning according to a conventional method. it can.

これらの樹脂製品における本発明の機能性微粒子の添加量は、目的とする消臭性能や樹脂製品の強度などの特性を勘案して適宜設定することができるが、通常の場合、成形加工後の製品全体の重量に対して0.1〜60重量%とすることが好ましい。0.1重量%未満であると、本発明の機能性微粒子の特性を活かすことができない場合があり、60重量%を超える場合には、製品の強度等の物性の低下や摩擦による機能性微粒子の脱落などの問題が発生する場合がある。 The addition amount of the functional fine particles of the present invention in these resin products can be appropriately set in consideration of characteristics such as the intended deodorizing performance and the strength of the resin product. It is preferable to set it as 0.1 to 60 weight% with respect to the weight of the whole product. If it is less than 0.1% by weight, the characteristics of the functional fine particles of the present invention may not be utilized. If it exceeds 60% by weight, the functional fine particles are deteriorated due to a decrease in physical properties such as product strength or friction. Problems such as dropping off may occur.

以下、実施例により本発明を具体的に説明する。実施例中の部及び百分率は、断りのない限り、重量基準で示す。なお、塩型カルボキシル基量、塩型カルボキシル基の比率、塩基性高分子付着量、平均粒子径、膨潤度、吸湿率、吸湿量、臭気除去率、剥離強度、学振摩耗試験は、以下の方法による。 Hereinafter, the present invention will be described specifically by way of examples. Parts and percentages in the examples are on a weight basis unless otherwise indicated. The salt-type carboxyl group amount, salt-type carboxyl group ratio, basic polymer adhesion amount, average particle diameter, swelling degree, moisture absorption rate, moisture absorption rate, odor removal rate, peel strength, and Gakushin abrasion test are as follows. Depending on the method.

(1)塩型カルボキシル基量(mmol/g)
十分に乾燥した供試微粒子約1gを精秤し(X[g])、これに200gの水を加えた後、50℃に加温しながら1mol/l塩酸水溶液を添加してpH2に調整し、次に、0.1mol/l水酸化ナトリウム水溶液で常法に従って滴定曲線を求める。該滴定曲線から、カルボキシル基によって消費された水酸化ナトリウム水溶液の量(Y[ml])を求め、次式に従って全カルボキシル基量を算出する。
全カルボキシル基量[mmol/g]=0.1×Y/X
別途、上述の全カルボキシル基量の測定操作中の1mol/l塩酸水溶液の添加によるpH2への調整を行わなかった以外は同様にして滴定曲線を求め、H型カルボキシル基量を算出する。これらの結果から、次式に従って塩型カルボキシル基量を算出する。
(塩型カルボキシル基量)=(全カルボキシル基量)−(H型カルボキシル基量)
(1) Salt-type carboxyl group content (mmol / g)
About 1 g of sufficiently dried test fine particles are precisely weighed (X [g]), 200 g of water is added thereto, and then 1 mol / l hydrochloric acid aqueous solution is added to the solution while being heated to 50 ° C. to adjust to pH 2. Then, a titration curve is obtained according to a conventional method using a 0.1 mol / l sodium hydroxide aqueous solution. From the titration curve, the amount of sodium hydroxide aqueous solution consumed by the carboxyl groups (Y [ml]) is determined, and the total amount of carboxyl groups is calculated according to the following formula.
Total carboxyl group amount [mmol / g] = 0.1 × Y / X
Separately, a titration curve is obtained in the same manner as described above except that the pH is not adjusted to 2 by addition of a 1 mol / l hydrochloric acid aqueous solution during the measurement operation of the total carboxyl group amount, and the H-type carboxyl group amount is calculated. From these results, the salt-type carboxyl group amount is calculated according to the following formula.
(Salt-type carboxyl group amount) = (Total carboxyl group amount)-(H-type carboxyl group amount)

(2)塩型カルボキシル基の比率(%)
塩型カルボキシル基の比率は、(1)で算出した塩型カルボキシル基量及び全カルボキシル基量から、次式に従って算出する。
(塩型カルボキシル基量の比率)=(塩型カルボキシル基量)/(全カルボキシル基量)×100
(2) Ratio of salt-type carboxyl groups (%)
The ratio of the salt-type carboxyl group is calculated according to the following formula from the salt-type carboxyl group amount and the total carboxyl group amount calculated in (1).
(Salt-type carboxyl group amount ratio) = (Salt-type carboxyl group amount) / (Total carboxyl group amount) × 100

(3)塩基性高分子付着量(重量%)
塩基性高分子処理前の塩型カルボキシル基含有粒子の重量を測定し(B[g])、塩基性高分子処理後の粒子重量を測定する(C[g])。以上の測定結果から、次式に従って塩基性高分子付着量を算出する。
塩基性高分子付着量(重量%)=(C−B)/B×100
(3) Amount of basic polymer attached (% by weight)
The weight of the salt-type carboxyl group-containing particles before the basic polymer treatment is measured (B [g]), and the particle weight after the basic polymer treatment is measured (C [g]). From the above measurement results, the basic polymer adhesion amount is calculated according to the following formula.
Basic polymer adhesion amount (% by weight) = (C−B) / B × 100

(4)平均粒子径(μm)
島津製作所製レーザー回折式粒度分布測定装置「SALD−200V」を使用して、水を分散媒として測定し、体積基準で表した粒子径分布から、平均粒子径(μm)を求める。
(4) Average particle diameter (μm)
Using a laser diffraction particle size distribution analyzer “SALD-200V” manufactured by Shimadzu Corporation, water is measured as a dispersion medium, and an average particle size (μm) is obtained from the particle size distribution expressed on a volume basis.

(5)膨潤度(倍)
試料約1gを熱風乾燥器で105℃、16時間乾燥して重量を測定する(D[g])。次に該試料を500gの純水中に1時間分散させて膨潤させる。その後、メンブランフィルター(MIXED CELLULOSE ESTER 0.65μm)をセットした吸引濾過器で固液分離を行い、固体の重量を測定する(E[g])。以上の結果から、次式に従って膨潤度を算出する。
膨潤度[倍]=(E−D)/D
(5) Swelling degree (times)
About 1 g of the sample is dried with a hot air dryer at 105 ° C. for 16 hours, and the weight is measured (D [g]). Next, the sample is dispersed in 500 g of pure water for 1 hour to swell. Thereafter, solid-liquid separation is performed with a suction filter in which a membrane filter (MIXED CELLULOSE ESTER 0.65 μm) is set, and the weight of the solid is measured (E [g]). From the above results, the degree of swelling is calculated according to the following equation.
Swelling degree [times] = (ED) / D

(6)微粒子の20℃×65%RH吸湿率(飽和吸湿率)(%)
試料約5.0gを、熱風乾燥器で105℃、16時間乾燥して重量を測定する(W2[g])。次に、該試料を、温度20℃、65%RHに調節した恒温恒湿器に24時間入れる。その後、試料の重量を測定する(W3[g])。以上の測定結果から、次式に従って飽和吸湿率を算出する。
飽和吸湿率[%]=(W3−W2)/W2×100
(6) 20 ° C. × 65% RH moisture absorption rate (saturated moisture absorption rate) of fine particles (%)
About 5.0 g of the sample is dried with a hot air drier at 105 ° C. for 16 hours and weighed (W2 [g]). Next, the sample is placed in a thermo-hygrostat adjusted to a temperature of 20 ° C. and 65% RH for 24 hours. Thereafter, the weight of the sample is measured (W3 [g]). From the above measurement results, the saturated moisture absorption rate is calculated according to the following equation.
Saturated moisture absorption [%] = (W3-W2) / W2 × 100

(7)人工皮革の20℃×65%RH吸湿量(飽和吸湿量)(g/m
試料を10cm×10cmのサイズにカットした後、熱風乾燥器で105℃、16時間乾燥して重量を測定する(W4[g])。次に、該試料を温度20℃、65%RHに調節した恒温恒湿器に24時間入れる。その後、試料の重量を測定する(W5[g])。以上の測定結果から、次式に従って飽和吸湿量を算出する。
飽和吸湿量[g/m]=(W5−W4)×100
(7) 20 ° C. × 65% RH moisture absorption (saturated moisture absorption) of artificial leather (g / m 2 )
After the sample is cut into a size of 10 cm × 10 cm, it is dried with a hot air dryer at 105 ° C. for 16 hours and the weight is measured (W4 [g]). Next, the sample is placed in a thermo-hygrostat adjusted to a temperature of 20 ° C. and 65% RH for 24 hours. Thereafter, the weight of the sample is measured (W5 [g]). From the above measurement results, the saturated moisture absorption amount is calculated according to the following equation.
Saturated moisture absorption [g / m 2 ] = (W5−W4) × 100

(8)臭気除去率(%)
試料0.5gをテドラーバッグに入れて密封し、空気1.5lを注入する。次に、規定濃度の臭気(アンモニアの場合は100ppm、酢酸の場合は50ppm、イソ吉草酸の場合は40ppm、アセトアルデヒドの場合は14ppm、ノネナールの場合は14ppm)をテドラーバッグ内に注入し、室温で120分放置した後に、テドラーバッグ内の臭気濃度(W4)を北川式検知管を用いて測定する。また、試料を入れないブランクも同濃度で作成し、120分後に臭気濃度(W5)を測定し、空試験とする。以上の結果から、次式に従って臭気除去率を算出する。
臭気除去率[%]=(W5−W4)/ W5×100
(8) Odor removal rate (%)
Place 0.5 g of sample in a Tedlar bag, seal and inject 1.5 l of air. Next, a prescribed concentration of odor (100 ppm for ammonia, 50 ppm for acetic acid, 40 ppm for isovaleric acid, 14 ppm for acetaldehyde, 14 ppm for nonenal) is injected into a Tedlar bag and 120 ° C. at room temperature. After leaving it alone, the odor concentration (W4) in the Tedlar bag is measured using a Kitagawa type detector tube. In addition, a blank without a sample is also prepared at the same concentration, and after 120 minutes, the odor concentration (W5) is measured to make a blank test. From the above results, the odor removal rate is calculated according to the following equation.
Odor removal rate [%] = (W5-W4) / W5 × 100

(9)剥離強度保持率(%)
試料を幅2cm、長さ13cmにカットした後、ポリコテープ(ポリウレタンホットメルトテープ)を試料表面に熱圧着し、定速伸長型引張試験機によって剥離強度試験を行う。引張速度:100mm/min条件で試験を行い、剥離開始時の荷重(以下、剥離強度という)を計測する。粒子を含有していない試料と粒子を含有する試料について、それぞれ剥離強度を測定し、次式に従って剥離強度保持率を算出する。
剥離強度保持率(%)=(粒子含有試料の剥離強度)/(粒子非含有試料の剥離強度)×100
(9) Peel strength retention (%)
After the sample is cut into a width of 2 cm and a length of 13 cm, a polycotape (polyurethane hot melt tape) is thermocompression bonded to the surface of the sample, and a peel strength test is performed using a constant speed extension type tensile tester. Tensile speed: A test is performed under the condition of 100 mm / min, and a load at the start of peeling (hereinafter referred to as peeling strength) is measured. For each of the sample containing no particles and the sample containing particles, the peel strength is measured, and the peel strength retention is calculated according to the following equation.
Peel strength retention ratio (%) = (Peel strength of sample containing particles) / (Peel strength of sample containing no particles) × 100

(10)学振摩耗試験
JIS L 0849に準拠する学振型摩擦試験機II型を使用した試験で、試験条件として、荷重:500g、摩擦用白布:11号帆布を湿潤状態にして湿潤試験を実施する。摩擦試験を所定回数行った後の試験片の表面の状態を観察することで評価する。
(10) Gakushin Abrasion Test A test using a Gakushin friction tester type II conforming to JIS L 0849. As test conditions, load: 500 g, white cloth for friction: No. 11 canvas in a wet state and a wet test. carry out. Evaluation is made by observing the state of the surface of the test piece after a predetermined number of friction tests.

[実施例1]
2L容積の反応槽に水700重量部を仕込み、アクリロニトリル210重量部及びジビニルベンゼン90重量部を混合したものを追加で仕込んだ。反応槽を撹拌しながら、過硫酸アンモニウム(重合開始剤)を3重量部添加して溶解させた。その後、反応槽を70℃に加温して3時間反応させた。反応終了後、撹拌を継続しながら約20℃まで冷却し、平均粒子径40μmの架橋アクリロニトリル系重合体粒子を得た。次に、2L容積の反応槽に水800gとNaOH100gと該架橋アクリロニトリル系重合体粒子100gを仕込み、90℃で60時間加水分解反応を実施して、塩型カルボキシル基含有粒子を得た。この時の塩型カルボキシル基量は6.2mmol/gであった。さらに、2L容積の反応槽に水900gと該塩型カルボキシル基含有粒子100gを仕込み、撹拌しながらポリエチレンイミン(平均分子量70000)を0.5g添加して50℃で30分間反応させ、その後、洗浄・乾燥処理を行い、機能性微粒子を得た。ポリエチレンイミン処理による塩基性高分子の付着量は0.5重量%であることを確認した。該粒子を評価した結果を表1に示す。
[Example 1]
A 2 L reaction vessel was charged with 700 parts by weight of water and an additional mixture of 210 parts by weight of acrylonitrile and 90 parts by weight of divinylbenzene. While stirring the reaction vessel, 3 parts by weight of ammonium persulfate (polymerization initiator) was added and dissolved. Thereafter, the reaction vessel was heated to 70 ° C. and reacted for 3 hours. After completion of the reaction, the mixture was cooled to about 20 ° C. while continuing stirring, to obtain crosslinked acrylonitrile polymer particles having an average particle size of 40 μm. Next, 800 g of water, 100 g of NaOH, and 100 g of the crosslinked acrylonitrile polymer particles were charged into a 2 L reaction tank, and a hydrolysis reaction was performed at 90 ° C. for 60 hours to obtain salt-type carboxyl group-containing particles. The amount of the salt-type carboxyl group at this time was 6.2 mmol / g. Furthermore, 900 g of water and 100 g of the salt-type carboxyl group-containing particles were charged into a 2 L reaction tank, and 0.5 g of polyethyleneimine (average molecular weight 70000) was added while stirring and reacted at 50 ° C. for 30 minutes, and then washed. -Drying treatment was performed to obtain functional fine particles. It was confirmed that the amount of basic polymer deposited by the polyethyleneimine treatment was 0.5% by weight. The results of evaluating the particles are shown in Table 1.

[実施例2]
実施例1において、ポリエチレンイミンの添加量を1.8gに変更した以外は、実施例1と同じ処理を行い、機能性微粒子を得た。該粒子を評価した結果を表1に示す。
[Example 2]
In Example 1, except that the addition amount of polyethyleneimine was changed to 1.8 g, the same treatment as in Example 1 was performed to obtain functional fine particles. The results of evaluating the particles are shown in Table 1.

[実施例3]
実施例1において、ポリエチレンイミンの添加量を4.4gに変更した以外は、実施例1と同じ処理を行い、機能性微粒子を得た。該粒子を評価した結果を表1に示す。
[Example 3]
In Example 1, except that the amount of polyethyleneimine added was changed to 4.4 g, the same treatment as in Example 1 was performed to obtain functional fine particles. The results of evaluating the particles are shown in Table 1.

[実施例4]
2L容積の反応槽に水700重量部とポリビニルアルコール(PVA217クラレ(株)製)30重量部を仕込み、アクリロニトリル210重量部及びジビニルベンゼン90重量部とアゾビスイソバレロニトリル3重量部(重合開始剤)を混合したものを追加で仕込み、ホモミキサーで撹拌してモノマーを微粒化させた。その後、反応槽を70℃に加温して3時間反応させた。反応終了後、撹拌を継続しながら約20℃まで冷却し、平均粒子径5μmの架橋アクリロニトリル系重合体粒子を得た。次に、2L容積の反応槽に水800gとNaOH100gと該架橋アクリロニトリル系重合体粒子100gを仕込み、90℃で60時間加水分解反応を実施して、塩型カルボキシル基含有粒子を得た。この時の塩型カルボキシル基量は6.2mmol/gであった。さらに、2L容積の反応槽に水900gと該塩型カルボキシル基含有粒子100gを仕込み、撹拌しながらポリエチレンイミン(平均分子量70000)を1.8g添加して50℃で30分間反応させ、その後、洗浄・乾燥処理を行い、機能性微粒子を得た。ポリエチレンイミン処理による塩基性高分子付着量は1.8重量%であることを確認した。該粒子を評価した結果を表1に示す。
[Example 4]
A 2 L reaction tank is charged with 700 parts by weight of water and 30 parts by weight of polyvinyl alcohol (PVA217 Kuraray Co., Ltd.), 210 parts by weight of acrylonitrile, 90 parts by weight of divinylbenzene, and 3 parts by weight of azobisisovaleronitrile (polymerization initiator). ) Was additionally charged and stirred with a homomixer to atomize the monomer. Thereafter, the reaction vessel was heated to 70 ° C. and reacted for 3 hours. After the completion of the reaction, the mixture was cooled to about 20 ° C. while continuing stirring to obtain crosslinked acrylonitrile polymer particles having an average particle diameter of 5 μm. Next, 800 g of water, 100 g of NaOH, and 100 g of the crosslinked acrylonitrile polymer particles were charged into a 2 L reaction tank, and a hydrolysis reaction was performed at 90 ° C. for 60 hours to obtain salt-type carboxyl group-containing particles. The amount of the salt-type carboxyl group at this time was 6.2 mmol / g. Furthermore, 900 g of water and 100 g of the salt-type carboxyl group-containing particles were charged into a 2 L reaction tank, and 1.8 g of polyethyleneimine (average molecular weight 70000) was added while stirring and reacted at 50 ° C. for 30 minutes, and then washed. -Drying treatment was performed to obtain functional fine particles. It was confirmed that the amount of basic polymer adhered by the polyethyleneimine treatment was 1.8% by weight. The results of evaluating the particles are shown in Table 1.

[実施例5]
実施例4において、ポリビニルアルコールの仕込み量を0.4重量部に変更した以外は、実施例4と同じ処理を行い、機能性微粒子を得た。該粒子を評価した結果を表1に示す。
[Example 5]
In Example 4, the same process as Example 4 was performed except having changed the preparation amount of polyvinyl alcohol into 0.4 weight part, and functional fine particles were obtained. The results of evaluating the particles are shown in Table 1.

[実施例6]
実施例2において、アクリロニトリルの仕込み量を75重量部に変更し、ジビニルベンゼンの仕込み量を225重量部に変更した以外は、実施例2と同じ処理を行い、機能性微粒子を得た。該粒子を評価した結果を表1に示す。
[Example 6]
In Example 2, the same treatment as in Example 2 was performed except that the amount of acrylonitrile charged was changed to 75 parts by weight and the amount of divinylbenzene charged was changed to 225 parts by weight to obtain functional fine particles. The results of evaluating the particles are shown in Table 1.

[実施例7]
実施例1において、ポリエチレンイミンの添加量を0.1gに変更した以外は、実施例1と同じ処理を行い、機能性微粒子を得た。該粒子を評価した結果を表1に示す。
[Example 7]
In Example 1, except that the amount of polyethyleneimine added was changed to 0.1 g, the same treatment as in Example 1 was performed to obtain functional fine particles. The results of evaluating the particles are shown in Table 1.

[実施例8]
実施例1において、塩型カルボキシル基含有粒子を得た後に、該粒子を水に再分散させ、pHが5になるように1mol/L濃度の塩酸を滴下して、全カルボキシル基量に対する塩型カルボキシル基量の比率が45%になるように調整し、続いて、実施例1と同じポリエチレンイミン処理を行い、機能性微粒子を得た。該粒子を評価した結果を表1に示す。
[Example 8]
In Example 1, after obtaining salt-type carboxyl group-containing particles, the particles were re-dispersed in water, and 1 mol / L hydrochloric acid was added dropwise so that the pH was 5. The ratio of carboxyl group amount was adjusted to 45%, and then the same polyethyleneimine treatment as in Example 1 was performed to obtain functional fine particles. The results of evaluating the particles are shown in Table 1.

[実施例9]
実施例2で作成した機能性微粒子100重量部をDMF溶剤200重量部に分散させた後、ウレタン樹脂塗料(DIC(株)製:クリスボン 不揮発分30%):411重量部に配合して塗工液を作成した。また、ポリエステル繊維(繊度:5.5dtex、繊維長:51mm)/ナイロン繊維(繊度3.3dtex、繊維長:45mm)=66/33からなる目付100g/mの不織布をニードルパンチ製法で作成した。該不織布に前記塗工液を186g/mとなるように塗布し、水浴中に浸漬することで脱溶媒を行った後、乾燥して人工皮革を得た。該人工皮革の評価結果を表2に示す。
[Example 9]
After dispersing 100 parts by weight of the functional fine particles prepared in Example 2 in 200 parts by weight of a DMF solvent, urethane resin paint (manufactured by DIC Corporation: Crisbon non-volatile content 30%): blended in 411 parts by weight for coating A liquid was created. Further, a nonwoven fabric having a basis weight of 100 g / m 2 made of polyester fiber (fineness: 5.5 dtex, fiber length: 51 mm) / nylon fiber (fineness 3.3 dtex, fiber length: 45 mm) = 66/33 was prepared by a needle punch manufacturing method. . The said coating liquid was apply | coated to this nonwoven fabric so that it might become 186 g / m < 2 >, and after removing the solvent by being immersed in a water bath, it dried and obtained artificial leather. The evaluation results of the artificial leather are shown in Table 2.

[比較例1]
実施例1において、ポリエチレンイミンの付着処理を行わなかった以外は、実施例1と同じ処理を行い、微粒子を得た。該粒子を評価した結果を表1に示す。
[Comparative Example 1]
In Example 1, the same treatment as in Example 1 was carried out except that the polyethyleneimine adhesion treatment was not carried out to obtain fine particles. The results of evaluating the particles are shown in Table 1.

[比較例2]
実施例2において、アクリロニトリルの仕込み量を55重量部に変更し、ジビニルベンゼンの仕込み量を245重量部に変更した以外は、実施例1と同じ処理を行い、微粒子を得た。該粒子を評価した結果を表1に示す。
[Comparative Example 2]
In Example 2, the same treatment as in Example 1 was performed except that the amount of acrylonitrile charged was changed to 55 parts by weight and the amount of divinylbenzene charged was changed to 245 parts by weight, to obtain fine particles. The results of evaluating the particles are shown in Table 1.

[比較例3]
実施例1において、ポリエチレンイミン添加量を0.04gに変更した以外は、実施例1と同じ処理を行い、微粒子を得た。該粒子を評価した結果を表1に示す。
[Comparative Example 3]
In Example 1, the same process as Example 1 was performed except having changed the polyethyleneimine addition amount into 0.04g, and the microparticles were obtained. The results of evaluating the particles are shown in Table 1.

[比較例4]
実施例1において、塩型カルボキシル基含有粒子を得た後に、該粒子を水に再分散させ、pHが3.5になるように1mol/L濃度の塩酸を滴下して、全カルボキシル基量に対する塩型カルボキシル基量の比率が27%になるように調整し、続いて、実施例1と同じポリエチレンイミン処理を行い、微粒子を得た。該粒子を評価した結果を表1に示す。
[Comparative Example 4]
In Example 1, after obtaining salt-type carboxyl group-containing particles, the particles were re-dispersed in water, and 1 mol / L hydrochloric acid was added dropwise so that the pH was 3.5. The ratio of the salt-type carboxyl group amount was adjusted to 27%, and then the same polyethyleneimine treatment as in Example 1 was performed to obtain fine particles. The results of evaluating the particles are shown in Table 1.

[比較例5]
実施例9において、実施例2で作成した機能性微粒子を添加しなかった以外は、実施例9と同じ処理を行い、人工皮革を得た。該人工皮革を評価した結果を表2に示す。
[Comparative Example 5]
In Example 9, except that the functional fine particles prepared in Example 2 were not added, the same treatment as in Example 9 was performed to obtain an artificial leather. The results of evaluating the artificial leather are shown in Table 2.

[比較例6]
実施例9において、実施例2で作成した機能性微粒子の代わりに、比較例1で作成した粒子を用いた以外は実施例9と同じ処理を行い、人工皮革を得た。該人工皮革を評価した結果を表2に示す。
[Comparative Example 6]
In Example 9, the same treatment as in Example 9 was performed except that the particles prepared in Comparative Example 1 were used in place of the functional fine particles prepared in Example 2, and an artificial leather was obtained. The results of evaluating the artificial leather are shown in Table 2.



Figure 2014188908
Figure 2014188908

Figure 2014188908
Figure 2014188908

表1の実施例1〜3及び7と比較例1の対比から、塩基性高分子を粒子表面に付着させることによって酸性物質、アルデヒド消臭性能が飛躍的に向上していることがわかる。また、それに伴い、塩基性物質消臭性能、吸湿性能が大幅に阻害されることもないことがわかる。実施例9と比較例6の比較から、塩基性高分子の存在によってウレタン樹脂密着性が向上していることがわかる。なお、表中の「―」は、測定していないことを示す。 From the comparison of Examples 1 to 3 and 7 of Table 1 and Comparative Example 1, it can be seen that the acidic substance and the aldehyde deodorizing performance are dramatically improved by attaching the basic polymer to the particle surface. Further, it can be seen that the basic substance deodorization performance and moisture absorption performance are not significantly hindered. From the comparison between Example 9 and Comparative Example 6, it can be seen that the urethane resin adhesion is improved by the presence of the basic polymer. Note that “-” in the table indicates that measurement was not performed.

[実施例10]
反応槽にイオン交換水210部およびエレミノールMON−2(三洋化成工業(株)製)2部を仕込んだ。次に、この反応槽を温度60℃まで昇温し、60℃に保って攪拌しながら、反応槽内にアクリル酸エチル78部、メタクリル酸メチル5部、ジビニルベンゼン17部からなるモノマー混合液、過硫酸アンモニウム0.6部を水30部に溶解した水溶液、および、ピロ亜硫酸ナトリウム0.5部を水30部に溶解した水溶液を3時間かけて滴下し、滴下終了後、2時間同一条件に保つことで重合を行った。得られたエマルジョンは、固形分21%であった。該エマルジョン480部に、10%水酸化ナトリウム水溶液400部を添加し、95℃で48時間加水分解反応を行った。次いで、加水分解後のエマルジョンをセルロース半透膜に入れ、イオン交換水中に浸して脱塩を行った後、イオン交換水を加え、固形分5%のエマルジョン状の粒子を得た。該粒子の全カルボキシル基量は6.0mmol/gであり、塩型カルボキシル基量は5.6mmol/gであり、吸湿率は53%であった。
[Example 10]
The reaction tank was charged with 210 parts of ion-exchanged water and 2 parts of Eleminol MON-2 (manufactured by Sanyo Chemical Industries). Next, the temperature of the reaction vessel was increased to 60 ° C., and the mixture was maintained at 60 ° C. while stirring, and a monomer mixture solution consisting of 78 parts of ethyl acrylate, 5 parts of methyl methacrylate, and 17 parts of divinylbenzene, An aqueous solution in which 0.6 part of ammonium persulfate is dissolved in 30 parts of water and an aqueous solution in which 0.5 part of sodium pyrosulfite is dissolved in 30 parts of water are dropped over 3 hours. After completion of the dropwise addition, the same conditions are maintained for 2 hours. Polymerization was performed. The resulting emulsion was 21% solids. 400 parts of a 10% aqueous sodium hydroxide solution was added to 480 parts of the emulsion, and a hydrolysis reaction was carried out at 95 ° C. for 48 hours. Next, the hydrolyzed emulsion was placed in a cellulose semipermeable membrane and immersed in ion-exchanged water for desalting, and then ion-exchanged water was added to obtain emulsion-like particles having a solid content of 5%. The total amount of carboxyl groups in the particles was 6.0 mmol / g, the amount of salt-type carboxyl groups was 5.6 mmol / g, and the moisture absorption rate was 53%.

このエマルジョン状の粒子に対して、撹拌しながらポリエチレンイミン(平均分子量70000)を添加して50℃で30分間反応させ、その後、洗浄・乾燥処理を行い、水分散体状の本発明の機能性微粒子を得た。該機能性微粒子の平均粒子径は0.4μmであり、塩基性高分子付着量は0.4重量%であった。 Polyethyleneimine (average molecular weight 70000) is added to the emulsion-like particles while stirring and reacted at 50 ° C. for 30 minutes, and then washed and dried to obtain the functionality of the present invention in the form of an aqueous dispersion. Fine particles were obtained. The average particle size of the functional fine particles was 0.4 μm, and the basic polymer adhesion amount was 0.4% by weight.

次に、アクリロニトリル90重量%、アクリル酸メチル9重量%、メタアリルスルホン酸ナトリウム1重量%を水系懸濁重合することによってアクリロニトリル系重合体を作成した。該アクリロニトリル系重合体を、濃度45重量%のチオシアン酸ナトリウム水溶液に、重合体濃度が12重量%となるように溶解した後、上述の水分散体状の本発明の機能性微粒子を添加混合し、アクリロニトリル系重合体に対して該機能性微粒子を4重量%含有する紡糸原液を作成した。該原液を−2.0℃の15重量%チオシアン酸ナトリウム水溶液中に押出し、次いで水洗し、12倍に延伸した後、110℃×10分間湿熱処理し、120℃の熱風乾燥機で乾燥緻密化することによって、本発明の機能性微粒子を含有するアクリロニトリル系繊維を作成した。該繊維の臭気除去率は、アンモニア98%、酢酸90%、イソ吉草酸84%、ノネナール89%であった。 Next, 90% by weight of acrylonitrile, 9% by weight of methyl acrylate, and 1% by weight of sodium methallylsulfonate were subjected to aqueous suspension polymerization to prepare an acrylonitrile-based polymer. The acrylonitrile-based polymer is dissolved in an aqueous sodium thiocyanate solution having a concentration of 45% by weight so that the polymer concentration becomes 12% by weight. A spinning dope containing 4% by weight of the functional fine particles with respect to the acrylonitrile polymer was prepared. The stock solution was extruded into a 15 wt% sodium thiocyanate aqueous solution at -2.0 ° C, then washed with water, stretched 12 times, wet-heat treated at 110 ° C for 10 minutes, and dried and densified with a hot air dryer at 120 ° C. As a result, an acrylonitrile fiber containing the functional fine particles of the present invention was prepared. The odor removal rate of the fiber was 98% ammonia, 90% acetic acid, 84% isovaleric acid, and 89% nonenal.

Claims (11)

架橋構造および1.8mmol/g以上の塩型カルボキシル基を有する吸放湿性微粒子に、塩基性高分子が0.05重量%以上付着されている機能性微粒子であって、平均粒子径が0.01〜200μmの範囲にあることを特徴とする機能性微粒子。 Functional fine particles in which 0.05% by weight or more of a basic polymer is adhered to a moisture absorbing / releasing fine particle having a crosslinked structure and a salt-type carboxyl group of 1.8 mmol / g or more, and an average particle size of 0.1%. Functional fine particles characterized by being in the range of 01 to 200 μm. 20℃×65%RH環境下での飽和吸湿率が15%以上であることを特徴とする請求項1に記載の機能性微粒子。 2. The functional fine particle according to claim 1, which has a saturated moisture absorption rate of 15% or more in an environment of 20 ° C. × 65% RH. アンモニア臭除去率:70%以上、酢酸臭除去率:80%以上、イソ吉草酸臭除去率:85%以上、ノネナール臭除去率:75%以上の消臭性能を有することを特徴とする請求項1または2に記載の機能性微粒子。 An ammonia odor removal rate: 70% or more, an acetic acid odor removal rate: 80% or more, an isovaleric acid odor removal rate: 85% or more, and a nonenal odor removal rate: 75% or more. 3. Functional fine particles according to 1 or 2. ウレタン系人工皮革に配合されたときの剥離強度保持率が36%以上であることを特徴とする請求項1〜3のいずれかに記載の機能性微粒子。 The functional fine particles according to any one of claims 1 to 3, wherein a peel strength retention when blended with urethane-based artificial leather is 36% or more. 前記吸放湿性微粒子中の全カルボキシル基量に対する塩型カルボキシル基量の比率が、40〜99%の範囲であることを特徴とする請求項1〜4のいずれかに記載の機能性微粒子。 The functional fine particles according to any one of claims 1 to 4, wherein a ratio of a salt-type carboxyl group amount to a total carboxyl group amount in the hygroscopic fine particles is in a range of 40 to 99%. 請求項1〜5のいずれかに記載の機能性微粒子を含有することを特徴とする樹脂製品。 A resin product comprising the functional fine particles according to claim 1. 前記樹脂製品が人造皮革であることを特徴とする請求項6に記載の樹脂製品。 The resin product according to claim 6, wherein the resin product is artificial leather. 前記樹脂製品がフィルムであることを特徴とする請求項6に記載の樹脂製品。 The resin product according to claim 6, wherein the resin product is a film. 前記樹脂製品が繊維であることを特徴とする請求項6に記載の樹脂製品。 The resin product according to claim 6, wherein the resin product is a fiber. 樹脂製品を構成する樹脂が、ウレタン系樹脂を含有することを特徴とする請求項7〜9のいずれかに記載の樹脂製品。 The resin which comprises a resin product contains urethane type resin, The resin product in any one of Claims 7-9 characterized by the above-mentioned. 樹脂製品を構成する樹脂が、セルロース系重合体および/またはアクリロニトリル系重合体を含有することを特徴とする請求項9に記載の樹脂製品。 The resin product according to claim 9, wherein the resin constituting the resin product contains a cellulose polymer and / or an acrylonitrile polymer.
JP2015518192A 2013-05-24 2014-05-13 Hygroscopic deodorant fine particles and use of the fine particles as additives in resin products Active JP6448535B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013109569 2013-05-24
JP2013109569 2013-05-24
PCT/JP2014/062682 WO2014188908A1 (en) 2013-05-24 2014-05-13 Functional microparticles and resin product containing same

Publications (2)

Publication Number Publication Date
JPWO2014188908A1 true JPWO2014188908A1 (en) 2017-02-23
JP6448535B2 JP6448535B2 (en) 2019-01-09

Family

ID=51933469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015518192A Active JP6448535B2 (en) 2013-05-24 2014-05-13 Hygroscopic deodorant fine particles and use of the fine particles as additives in resin products

Country Status (5)

Country Link
JP (1) JP6448535B2 (en)
KR (1) KR102191810B1 (en)
CN (1) CN105246513B (en)
TW (1) TWI617349B (en)
WO (1) WO2014188908A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017185214A (en) * 2016-03-30 2017-10-12 株式会社日本触媒 Deodorant
WO2017199421A1 (en) * 2016-05-20 2017-11-23 Kbツヅキ株式会社 Functional fiber and manufacturing method thereof
CN110740808B (en) * 2017-06-16 2023-04-07 3M创新有限公司 Polymeric adsorbents for aldehydes

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860556A (en) * 1994-08-25 1996-03-05 Achilles Corp Artificial leather and its production
JPH08225610A (en) * 1994-12-13 1996-09-03 Japan Exlan Co Ltd Highly moisture-absorbing and releasing microparticle and its production
JPH10156179A (en) * 1996-11-29 1998-06-16 Japan Exlan Co Ltd Acid and aldehyde absorbing polymer, its production and sheetlike body containing the same
JP2002339215A (en) * 2001-05-10 2002-11-27 Toyobo Co Ltd Moisture-absorbing/releasing leather like nonwoven fabric and method for producing the same
JP2009114556A (en) * 2007-11-02 2009-05-28 Japan Exlan Co Ltd Dyeable crosslinked acrylate fiber, method for producing the same, and dyed crosslinked acrylate fiber obtained by dying the fiber
JP2010132715A (en) * 2008-12-02 2010-06-17 Japan Exlan Co Ltd Amino group-containing particles, method for producing the same and functional product containing the particles
JP2010216051A (en) * 2009-03-19 2010-09-30 Japan Exlan Co Ltd High-brightness crosslinked acrylate-based fiber having color fastness and method for producing the same
WO2013069659A1 (en) * 2011-11-10 2013-05-16 日本エクスラン工業株式会社 Moisture-absorbing deodorizing fibers, method for producing fibers, and fiber structure comprising fibers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101175632B (en) * 2005-05-13 2010-04-14 旭化成化学株式会社 Exchange complexand method for producing same
CN102698719B (en) * 2006-03-27 2016-04-27 株式会社日本触媒 Water absorbing agent, use the water absorbent core of described water absorbing agent and prepare the method for water absorbing agent
JP5870767B2 (en) * 2011-09-08 2016-03-01 トヨタ自動車株式会社 Battery maintenance and regeneration method for non-aqueous electrolyte secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860556A (en) * 1994-08-25 1996-03-05 Achilles Corp Artificial leather and its production
JPH08225610A (en) * 1994-12-13 1996-09-03 Japan Exlan Co Ltd Highly moisture-absorbing and releasing microparticle and its production
JPH10156179A (en) * 1996-11-29 1998-06-16 Japan Exlan Co Ltd Acid and aldehyde absorbing polymer, its production and sheetlike body containing the same
JP2002339215A (en) * 2001-05-10 2002-11-27 Toyobo Co Ltd Moisture-absorbing/releasing leather like nonwoven fabric and method for producing the same
JP2009114556A (en) * 2007-11-02 2009-05-28 Japan Exlan Co Ltd Dyeable crosslinked acrylate fiber, method for producing the same, and dyed crosslinked acrylate fiber obtained by dying the fiber
JP2010132715A (en) * 2008-12-02 2010-06-17 Japan Exlan Co Ltd Amino group-containing particles, method for producing the same and functional product containing the particles
JP2010216051A (en) * 2009-03-19 2010-09-30 Japan Exlan Co Ltd High-brightness crosslinked acrylate-based fiber having color fastness and method for producing the same
WO2013069659A1 (en) * 2011-11-10 2013-05-16 日本エクスラン工業株式会社 Moisture-absorbing deodorizing fibers, method for producing fibers, and fiber structure comprising fibers

Also Published As

Publication number Publication date
TWI617349B (en) 2018-03-11
TW201501790A (en) 2015-01-16
JP6448535B2 (en) 2019-01-09
CN105246513A (en) 2016-01-13
KR20160013051A (en) 2016-02-03
KR102191810B1 (en) 2020-12-16
CN105246513B (en) 2017-07-04
WO2014188908A1 (en) 2014-11-27

Similar Documents

Publication Publication Date Title
JP5078131B2 (en) Absorbent composite with ultrafast absorption capability
TWI544123B (en) Hygroscopic deodorant fiber, method for processing the fiber and fibrous structure containing the fiber
JP2013537465A (en) Ultra-thin fluid absorbent core
JP6448535B2 (en) Hygroscopic deodorant fine particles and use of the fine particles as additives in resin products
TW200640954A (en)
JP2022519823A (en) Charged cyclodextrin polymer material and its manufacturing method and usage
JP6339861B2 (en) Filling, and futon and garment containing the filling
JP5979215B2 (en) Hygroscopic polymer and material obtained by containing the polymer
JP4863830B2 (en) Fabric-like high-speed absorbent composite and its production method
JP6520722B2 (en) Vinyl polymer particles and composition containing the particles
JP5694000B2 (en) Deodorant composition and deodorant fabric to which the deodorant composition is attached
JP6656071B2 (en) Fiber aggregate and method for producing the same
JP2000080569A (en) Deodorizing fiber
JP2019025470A (en) Absorbent complex
JPH1025663A (en) Deodorant fiber product
JP2021127364A (en) Material which improves absorbency of blood-containing liquid, sanitary products containing the material and method for absorbing blood-containing liquid
JPH10150970A (en) Filter for cigarette
JP2000143739A (en) Moisture-absorbing and heat-generating sheet like material
JPH10110384A (en) Deodorizing nonwoven fabric and its production
JPH08299421A (en) Deodorizing gel and its processed article
JP2003088261A (en) Material for easy adhesion of marine life
JP2010131470A (en) Hydrogen sulfide-removable composite and molded product containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180220

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180227

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181204

R150 Certificate of patent or registration of utility model

Ref document number: 6448535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250