JP2009114556A - Dyeable crosslinked acrylate fiber, method for producing the same, and dyed crosslinked acrylate fiber obtained by dying the fiber - Google Patents

Dyeable crosslinked acrylate fiber, method for producing the same, and dyed crosslinked acrylate fiber obtained by dying the fiber Download PDF

Info

Publication number
JP2009114556A
JP2009114556A JP2007285630A JP2007285630A JP2009114556A JP 2009114556 A JP2009114556 A JP 2009114556A JP 2007285630 A JP2007285630 A JP 2007285630A JP 2007285630 A JP2007285630 A JP 2007285630A JP 2009114556 A JP2009114556 A JP 2009114556A
Authority
JP
Japan
Prior art keywords
fiber
treatment
dyeing
amino group
dyeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007285630A
Other languages
Japanese (ja)
Other versions
JP5056358B2 (en
Inventor
Takao Yamauchi
孝郎 山内
Koji Tanaka
孝二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Priority to JP2007285630A priority Critical patent/JP5056358B2/en
Priority to ES201090019A priority patent/ES2380028B2/en
Priority to PCT/JP2008/001835 priority patent/WO2009057235A1/en
Priority to CN200880110676.9A priority patent/CN101821446B/en
Priority to KR1020107009527A priority patent/KR101414364B1/en
Priority to TW097141719A priority patent/TWI435969B/en
Publication of JP2009114556A publication Critical patent/JP2009114556A/en
Application granted granted Critical
Publication of JP5056358B2 publication Critical patent/JP5056358B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/58Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
    • D06M11/63Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides with hydroxylamine or hydrazine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/325Amines
    • D06M13/332Di- or polyamines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/70Material containing nitrile groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/26Polymers or copolymers of unsaturated carboxylic acids or derivatives thereof
    • D06M2101/28Acrylonitrile; Methacrylonitrile

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Coloring (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crosslinked acrylate fiber that is excellent in the property of being evenly and densely dyed, can have high color fastness, and even after dyeing, can have the same properties including moisture-absorbing/releasing properties, antibacterial properties, and deodorizing properties as before dyeing. <P>SOLUTION: The dyeable crosslinked acrylate fiber is obtained by subjecting an acrylic fiber to a treatment with a hydrazine compound and a treatment with an aminated organic compound having two or more primary amino groups per molecule and then hydrolyzing the fiber. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、可染性架橋アクリレート系繊維に関する。詳細には、架橋アクリレート系繊維の製造時にアミノ基含有有機化合物による処理を施してアミノ基を導入することにより、吸放湿性、消臭性等の性能を損なうことなく、染色性を向上させた架橋アクリレート系繊維に関する。 The present invention relates to a dyeable cross-linked acrylate fiber. More specifically, by introducing an amino group by treating with an amino group-containing organic compound during the production of the cross-linked acrylate fiber, the dyeability is improved without impairing the performance of moisture absorption and deodorization and deodorization. The present invention relates to a crosslinked acrylate fiber.

架橋アクリレート系繊維は優れた吸放湿性、発熱性、消臭性、抗菌性を有し、近年、注目されている。しかし、該繊維は、色相が淡桃色から褐色であること、あるいは、カルボキシル基を有するため、カチオン染料で色を付けることは可能であるものの、繊維自身の持つ水膨潤性のために染色堅牢度が悪く、実用的なレベルの染色が難しいことなどその色相において課題を有するものである。このため、該繊維を単独で使用したもののみならず、混用した繊維構造体においても、色相が重要視される分野への応用は制限されていた。 Cross-linked acrylate fibers have excellent moisture absorption / release properties, exothermic properties, deodorizing properties, and antibacterial properties, and have been attracting attention in recent years. However, although the fiber has a light pink to brown color or has a carboxyl group, it can be colored with a cationic dye, but due to the water swelling property of the fiber itself, the color fastness to dyeing However, there is a problem in the hue such that it is difficult to dye at a practical level. For this reason, the application to the field where the hue is regarded as important is limited not only in the case of using the fiber alone but also in the mixed fiber structure.

かかる問題点に関して特許文献1においては、黒色化するために原料繊維であるアクリル系繊維にあらかじめ、0.5〜5重量%のカーボンブラックを含有させておき、該原料繊維にヒドラジン系化合物による架橋の導入および加水分解によるカルボキシル基の導入を行っている。しかしながら、この方法は黒色に限定されたものである。仮に種々の色に着色した原料繊維を使用するとしても、多岐にわたる色の種類に対しては工業的には到底対応しうるものではない。 With respect to such a problem, in Patent Document 1, in order to blacken, acrylic fiber that is a raw fiber contains 0.5 to 5% by weight of carbon black in advance, and the raw fiber is crosslinked with a hydrazine compound. And introduction of carboxyl groups by hydrolysis. However, this method is limited to black. Even if raw material fibers colored in various colors are used, industrially it is not possible to deal with a wide variety of colors.

また、特許文献2では、架橋アクリレート系繊維に実用レベルの染色性を付与するため、1分子中に水酸基およびアミノ基を有する可染性化合物を含有させておく方法が記載されている。該方法はアクリル系繊維にヒドラジン系化合物による架橋導入処理、アルカリ性金属塩水溶液による加水分解を施して得た架橋アクリレート系繊維を、1分子中に水酸基およびアミノ基を有する可染化化合物水溶液にて含浸処理するものであり、湿潤摩擦堅牢度3級以上の染色性を示している。 Patent Document 2 describes a method in which a dyeable compound having a hydroxyl group and an amino group is contained in one molecule in order to impart a practical level of dyeability to the crosslinked acrylate fiber. In this method, a crosslinked acrylate fiber obtained by subjecting an acrylic fiber to a crosslinking introduction treatment with a hydrazine compound and hydrolysis with an alkaline metal salt aqueous solution is used in a dyeable compound aqueous solution having a hydroxyl group and an amino group in one molecule. It is impregnated and exhibits a dyeing property of a wet friction fastness of 3 or higher.

しかしながら、この方法では実質的に処理工程が増えることになり、工業的には生産性が下がることは否めない。また、可染化化合物のアミノ基と架橋アクリレート繊維中のカルボキシル基を反応させることにより可染化するため、多量のカルボキシル基を有する架橋アクリレート系繊維を処理する場合には、均一に付与することが難しい。また、カルボキシル基が可染化化合物によって封鎖されることにより、架橋アクリレート系繊維の本来有する吸放湿性能や消臭性能が低下してしまう恐れもある。 However, this method substantially increases the number of processing steps, and industrial productivity cannot be denied. In addition, since it is dyed by reacting the amino group of the dyeable compound with the carboxyl group in the crosslinked acrylate fiber, it should be uniformly applied when treating a crosslinked acrylate fiber having a large amount of carboxyl group. Is difficult. Moreover, when the carboxyl group is blocked by the dyeable compound, the moisture absorption / desorption performance and deodorization performance inherent to the crosslinked acrylate fiber may be lowered.

一方、特許文献3においては、染色方法を改善することで架橋アクリレート系繊維の染色堅牢度の向上を試みている。該方法においては、ヒドラジン系化合物による架橋導入処理の際に、一部架橋せずにアミノ基が形成される部分があることから、該アミノ基を反応染料の染着座席として利用して染色を行い、良好な染色堅牢度を発現させている。しかし、該架橋導入処理に伴い形成されるアミノ基は数が少ないため、均染性や濃染性に課題があり、一方で繊維物性に大きく影響する架橋条件を染色性向上を目的に変更することは難しいという根本的な問題を有している。
特開2003−89971号公報 特開2003−278079号公報 特開2006−70421号公報
On the other hand, Patent Document 3 attempts to improve the dyeing fastness of crosslinked acrylate fibers by improving the dyeing method. In this method, there is a portion where an amino group is formed without partial crosslinking during the crosslinking introduction treatment with a hydrazine-based compound, so that the amino group is used as a dyeing seat for reactive dyes. To develop good color fastness. However, since the number of amino groups formed with the crosslinking introduction treatment is small, there are problems in leveling and darkness, and on the other hand, the crosslinking conditions that greatly affect the fiber properties are changed for the purpose of improving dyeability. It has the fundamental problem that it is difficult.
JP 2003-89971 A JP 2003-278079 A JP 2006-70421 A

かかる現状から、本発明者らは、染色性に優れた架橋アクリレート系繊維を得るべく、鋭意研究を続けてきた結果、反応染料の染着座席となるアミノ基を共有結合によって導入した新規な架橋アクリレート系繊維を開発し、該繊維が、吸放湿性、吸湿発熱性、抗菌性、消臭性などの架橋アクリレート系繊維の特性を損なうことなく、均一、濃色に染色でき、染色堅牢度も優れたものであることを見出し、本発明を完成するに至った。本発明の目的は、均染性、濃染性に優れ、高い染色堅牢度を発現することができ、染色後においても、染色前と同様に吸放湿性、抗菌性、消臭性などの特性を発現できる架橋アクリレート系繊維を提供することにある。 Under such circumstances, the present inventors have conducted intensive research to obtain a crosslinked acrylate fiber having excellent dyeability, and as a result, a novel crosslinked structure in which an amino group serving as a dyeing seat for reactive dyes is introduced by a covalent bond. Acrylate fiber has been developed, and the fiber can be dyed uniformly and in a dark color without impairing the properties of the cross-linked acrylate fiber such as moisture absorption / release properties, moisture absorption exothermic property, antibacterial property, and deodorant property, and fastness to dyeing The present invention was found to be excellent, and the present invention was completed. The object of the present invention is excellent in levelness and darkness, can express high dyeing fastness, and after dyeing, as in the case before dyeing, characteristics such as moisture absorption and desorption, antibacterial properties, and deodorant properties An object of the present invention is to provide a cross-linked acrylate fiber that can exhibit the above-mentioned properties.

本発明の上記目的は、以下の手段により達成される。すなわち、
[1]アクリル系繊維に、ヒドラジン系化合物による処理、および、1分子中の1級アミノ基数が2以上であるアミノ基含有有機化合物による処理を施した後、加水分解処理を施して得られることを特徴とする可染性架橋アクリレート系繊維。
[2]1分子中の1級アミノ基数が2以上であるアミノ基含有有機化合物が、1分子中の全アミノ基数としては3以上であって、アミノ基間を炭素数が3以上のアルキレン基で結合した構造を有するものであることを特徴とする[1]に記載の可染性架橋アクリレート系繊維。
[3]アクリル系繊維に、ヒドラジン系化合物による処理、および、1分子中の1級アミノ基数が2以上であるアミノ基含有有機化合物による処理を施した後、加水分解処理を施すことを特徴とする可染性架橋アクリレート系繊維の製造方法。
[4][1]または[2]に記載の可染性架橋アクリレート系繊維に酸性条件下で反応染料を吸着させた後、アルカリ性条件下で該染料と繊維中のアミノ基を反応させることにより得られる染色された架橋アクリレート系繊維。
The above object of the present invention is achieved by the following means. That is,
[1] Obtained by subjecting an acrylic fiber to a hydrolysis treatment after a treatment with a hydrazine compound and a treatment with an amino group-containing organic compound having 1 or more primary amino groups in one molecule. A dyeable cross-linked acrylate fiber characterized by
[2] An amino group-containing organic compound having 1 or more primary amino groups in one molecule is an alkylene group having 3 or more total amino groups in one molecule and having 3 or more carbon atoms between the amino groups. The dyeable cross-linked acrylate fiber according to [1], wherein the dyeable cross-linked acrylate fiber has a structure bonded to each other.
[3] The acrylic fiber is subjected to a treatment with a hydrazine compound and a treatment with an amino group-containing organic compound having 1 or more primary amino groups in one molecule, followed by a hydrolysis treatment. A method for producing a dyeable cross-linked acrylate fiber.
[4] After allowing the reactive dye to be adsorbed to the dyeable cross-linked acrylate fiber according to [1] or [2] under acidic conditions, the dye and the amino group in the fiber are reacted under alkaline conditions. The resulting dyed crosslinked acrylate fiber.

本発明の可染性架橋アクリレート系繊維を用いることにより、均一、濃色に染色され、実用に耐えうる染色堅牢度を有する架橋アクリレート系繊維を得ることができる。これにより、高度で多様な機能を有しながら染色特性の低さのために用途展開が制限されていた架橋アクリレート系繊維を、色相を重要視する分野に対しても展開することが可能となる。かかる本発明の可染性架橋アクリレート系繊維は多機能化あるいは高機能化の求め続けられる衣料、リビング、建材など様々な分野において極めて有用である。 By using the dyeable cross-linked acrylate fiber of the present invention, it is possible to obtain a cross-linked acrylate fiber that is dyed uniformly and darkly and has dyeing fastness that can withstand practical use. This makes it possible to develop cross-linked acrylate fibers, which have advanced and diverse functions, but whose application development has been limited due to low dyeing properties, in fields where hue is important. . Such a dyeable cross-linked acrylate fiber of the present invention is extremely useful in various fields such as clothing, living room, and building materials that are required to be multifunctional or highly functional.

以下、本発明を詳述する。本発明に採用するアクリル系繊維としてはアクリロニトリル(以下ANという)系重合体により形成された繊維であればよく、AN系重合体としては、AN単独重合体あるいはANと他の単量体との共重合体のいずれでも採用しうる。 The present invention is described in detail below. The acrylic fiber used in the present invention may be a fiber formed of an acrylonitrile (hereinafter referred to as AN) polymer, and the AN polymer may be an AN homopolymer or AN and other monomers. Any of the copolymers can be employed.

AN系重合体におけるANの共重合量としては、好ましくは40重量%以上、より好ましくは50重量%以上、さらに好ましくは80重量%以上である。本発明においては、アクリル系繊維を形成するAN系重合体のニトリル基とヒドラジン系化合物およびアミノ基含有有機化合物を反応させることで繊維中に架橋構造およびアミノ基を導入する。架橋構造は繊維物性に、アミノ基は染色性に大きく影響するものであり、ANが少なすぎる場合、架橋構造やアミノ基が少なくならざるを得なくなり、繊維物性や染色性が不十分となる可能性があるが、ANの共重合量を上記範囲とすることで良好な結果を得られやすくなる。 The amount of AN copolymerized in the AN polymer is preferably 40% by weight or more, more preferably 50% by weight or more, and still more preferably 80% by weight or more. In the present invention, a crosslinked structure and an amino group are introduced into the fiber by reacting the nitrile group of the AN polymer forming the acrylic fiber with the hydrazine compound and the amino group-containing organic compound. The cross-linked structure greatly affects the fiber properties, and the amino group greatly affects the dyeability. If the AN is too small, the cross-linked structure and amino groups must be reduced, and the fiber properties and dyeability may be insufficient. However, it is easy to obtain good results by setting the copolymerization amount of AN within the above range.

AN系重合体としてANと他の単量体との共重合体を採用する場合、AN以外の共重合成分としてはメタリルスルホン酸、p−スチレンスルホン酸等のスルホン酸基含有単量体及びその塩、(メタ)アクリル酸、イタコン酸等のカルボン酸基含有単量体及びその塩、スチレン、酢酸ビニル、(メタ)アクリル酸エステル、(メタ)アクリルアミド等の単量体など、ANと共重合可能な単量体であれば特に限定されない。 When a copolymer of AN and another monomer is employed as the AN polymer, the copolymer components other than AN include sulfonic acid group-containing monomers such as methallylsulfonic acid and p-styrenesulfonic acid, and the like. Its salts, carboxylic acid group-containing monomers such as (meth) acrylic acid and itaconic acid, and salts thereof, monomers such as styrene, vinyl acetate, (meth) acrylic acid ester, (meth) acrylamide, etc. There is no particular limitation as long as it is a polymerizable monomer.

また、本発明に採用するアクリル系繊維の製造手段は特に制限がなく、基本的には公知の方法をそのまま適用して製造すればよい。形態としては、短繊維、トウ、糸、編織物、不織布等いずれの形態のものでもよく、また、製造工程中途品、廃繊維などでも採用できる。 The means for producing the acrylic fiber employed in the present invention is not particularly limited, and basically may be produced by applying a known method as it is. The form may be any form such as short fiber, tow, yarn, knitted fabric, non-woven fabric, etc., and may be used as an intermediate product in the manufacturing process, waste fiber, or the like.

特に、湿式または乾/湿式紡糸により得られる、乾燥緻密化、湿熱緩和処理等の熱処理の施されていない比較的粗な構造、具体的には、乾燥繊維重量基準で表した含有水分量の百分率である水膨潤度が30〜150%のアクリル系繊維を使用した場合には、反応液中での繊維の分散性や繊維中へのアミノ基含有有機化合物の浸透性などが高くなるので、反応が均一且つ速やかに進むという利点がある。 In particular, a relatively coarse structure obtained by wet or dry / wet spinning and not subjected to heat treatment such as dry densification or moist heat relaxation treatment, specifically, percentage of moisture content expressed on the basis of dry fiber weight When an acrylic fiber having a water swelling degree of 30 to 150% is used, the dispersibility of the fiber in the reaction solution and the permeability of the amino group-containing organic compound into the fiber are increased. Has the advantage that it proceeds uniformly and quickly.

本発明におけるヒドラジン系化合物による処理とは、AN系重合体のニトリル基などとヒドラジン系化合物を反応させることを言う。かかる反応によりAN系重合体間あるいは重合体内に架橋構造が形成されるが、該架橋構造は、後述する加水分解処理において導入されるカルボキシル基によって重合体の親水性が高まり、吸湿時などに繊維物性が低下するのを抑制する効果がある。 The treatment with a hydrazine compound in the present invention refers to reacting a nitrile group of an AN polymer with a hydrazine compound. By this reaction, a crosslinked structure is formed between the AN polymers or in the polymer. The crosslinked structure increases the hydrophilicity of the polymer due to the carboxyl group introduced in the hydrolysis treatment described later, and the fibers are absorbed during moisture absorption. There is an effect of suppressing the deterioration of physical properties.

本発明に採用するヒドラジン系化合物としては、特に限定されるものではなく、水加ヒドラジン、硫酸ヒドラジン、塩酸ヒドラジン、臭素酸ヒドラジン、ヒドラジンカーボネート等の他に、エチレンジアミン、硫酸グアニジン、塩酸グアニジン、リン酸グアニジン、メラミン等のアミノ基を複数含有する化合物が例示される。 The hydrazine-based compound employed in the present invention is not particularly limited, and in addition to hydrazine hydrate, hydrazine sulfate, hydrazine hydrochloride, hydrazine bromate, hydrazine carbonate, etc., ethylenediamine, guanidine sulfate, guanidine hydrochloride, phosphoric acid, etc. Examples thereof include compounds containing a plurality of amino groups such as guanidine and melamine.

本発明におけるアミノ基含有有機化合物による処理とは、AN系重合体のニトリル基などとアミノ基含有有機化合物を反応させることを言う。これにより染着座席となるアミノ基が導入されるが、該アミノ基含有有機化合物としては、1分子中の1級アミノ基数が2以上であるものを採用する。これは、少なくともニトリル基と反応するアミノ基と染着座席となるアミノ基がそれぞれ1個ずつ必要であり、また、ニトリル基あるいは反応染料に対する反応性の観点からアミノ基は1級アミノ基であることが望ましいことによる。なお、かかるアミノ基含有有機化合物による処理においても、上述したヒドラジン系化合物による処理と同様に架橋構造が形成されうるが、反応条件により架橋構造が形成される割合を低くすることができる。 In the present invention, the treatment with an amino group-containing organic compound refers to reacting a nitrile group or the like of an AN polymer with an amino group-containing organic compound. As a result, an amino group serving as a dyeing seat is introduced. As the amino group-containing organic compound, one having two or more primary amino groups in one molecule is employed. This requires at least one amino group that reacts with the nitrile group and one amino group that becomes the dyeing seat, and the amino group is a primary amino group from the viewpoint of reactivity with the nitrile group or the reactive dye. It depends on what is desired. In the treatment with the amino group-containing organic compound, a crosslinked structure can be formed in the same manner as in the treatment with the hydrazine-based compound described above, but the rate at which the crosslinked structure is formed can be reduced depending on the reaction conditions.

かかるアミノ基含有有機化合物の具体例としては、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリビニルアミン、ポリエチレンイミン、3,3’−イミノビス(プロピルアミン)、N−メチル−3,3’−イミノビス(プロピルアミン)、N,N’−ビス(3−アミノプロピル)エチレンジアミン、N,N’−ビス(3−アミノプロピル)−1,3−プロピレンジアミン、N,N’−ビス(3−アミノプロピル)−1,3−ブチレンジアミン、N,N’−ビス(3−アミノプロピル)−1,4−ブチレンジアミンなどが挙げられる。 Specific examples of the amino group-containing organic compound include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, polyvinylamine, polyethyleneimine, 3,3′-iminobis (propylamine), N-methyl-3,3 ′. -Iminobis (propylamine), N, N'-bis (3-aminopropyl) ethylenediamine, N, N'-bis (3-aminopropyl) -1,3-propylenediamine, N, N'-bis (3- Aminopropyl) -1,3-butylenediamine, N, N′-bis (3-aminopropyl) -1,4-butylenediamine, and the like.

かかるアミノ基含有有機化合物の中でも、1分子中の全アミノ基数が3以上であって、アミノ基間を炭素数が3以上のアルキレン基で結合した構造を有するものであることがより好ましい。全アミノ基数が2の場合には、上述したように架橋構造が形成されて染着座席となるべきアミノ基が失われる可能性があるが、全アミノ基数が3以上であれば、2個のアミノ基がニトリル基と反応して架橋構造が形成されても1個のアミノ基が残存し、立体的な制限からこのアミノ基がさらにニトリル基と反応する可能性は低いため、染着座席となりうるアミノ基をより確実に確保できる。 Among such amino group-containing organic compounds, it is more preferable that the number of all amino groups in one molecule is 3 or more, and the amino groups have a structure in which an amino group is bonded with an alkylene group having 3 or more carbon atoms. When the total number of amino groups is 2, as described above, there is a possibility that a cross-linked structure is formed and an amino group to be a dyeing seat may be lost. Even if an amino group reacts with a nitrile group to form a cross-linked structure, one amino group remains, and due to steric restrictions, this amino group is unlikely to react with the nitrile group. A more secure amino group can be secured.

また、かかる構造を有するアミノ基含有有機化合物はニトリル基との反応速度が速く、100℃以下の処理温度でも短時間で反応できるので、圧力容器を必要とせず、コスト的に有利で好ましい。さらに、かかる構造を有するアミノ基含有有機化合物の場合、得られる繊維を着色の少ないものにできるので、染色に有利である。なお、ここで言う炭素数とは、アミノ基を直接結ぶ炭素の数のことであって、分岐鎖や置換基などの炭素の数は含まない。 An amino group-containing organic compound having such a structure has a high reaction rate with a nitrile group and can be reacted in a short time even at a treatment temperature of 100 ° C. or less, so that it does not require a pressure vessel and is advantageous in terms of cost. Furthermore, in the case of an amino group-containing organic compound having such a structure, the resulting fiber can be made less colored, which is advantageous for dyeing. The number of carbons referred to here is the number of carbons directly connecting amino groups, and does not include the number of carbons such as branched chains and substituents.

かかるアミノ基含有有機化合物としては、3,3’−イミノビス(プロピルアミン)、N−メチル−3,3’−イミノビス(プロピルアミン)、N,N’−ビス(3−アミノプロピル)エチレンジアミン、N,N’−ビス(3−アミノプロピル)−1,3−プロピレンジアミン、N,N’−ビス(3−アミノプロピル)−1,3−ブチレンジアミン、N,N’−ビス(3−アミノプロピル)−1,4−ブチレンジアミンなどを例示することができる。 Such amino group-containing organic compounds include 3,3′-iminobis (propylamine), N-methyl-3,3′-iminobis (propylamine), N, N′-bis (3-aminopropyl) ethylenediamine, N , N′-bis (3-aminopropyl) -1,3-propylenediamine, N, N′-bis (3-aminopropyl) -1,3-butylenediamine, N, N′-bis (3-aminopropyl) ) -1,4-butylenediamine and the like.

また、アミノ基含有有機化合物による処理においては、アミノ基含有有機化合物の量や該化合物の有するアミノ基数を選択することにより、染着座席数を容易に調節できる。このため、均染性や濃染性を向上させることが可能である。 Further, in the treatment with an amino group-containing organic compound, the number of dyeing seats can be easily adjusted by selecting the amount of the amino group-containing organic compound and the number of amino groups of the compound. For this reason, it is possible to improve level dyeing and dark dyeing.

本発明においては、アクリル系繊維に上述したヒドラジン系化合物による処理およびアミノ基含有有機化合物による処理を行うが、後述する加水分解処理の前であれば、どちらの処理を先に行ってもよく、同時に処理を行ってもよい。ただし、処理の順序により後述するような特徴があるので、その特徴を認識した上で処理順序を決定することが望ましい。 In the present invention, the acrylic fiber is treated with the above-described hydrazine compound and the amino group-containing organic compound, but either treatment may be performed first as long as it is before the hydrolysis treatment described below. You may process simultaneously. However, since there are features as described later depending on the processing order, it is desirable to determine the processing order after recognizing the features.

まず、同時処理については、工程数が減少するという利点があるが、未反応のヒドラジン系化合物やアミノ基含有有機化合物を回収して再利用することが難しくなり、架橋構造やアミノ基の導入量の制御も複雑となる。一方、各処理を別々に行う場合には、工程数が増えるものの、薬剤の回収再利用や構造制御は容易となる。特に、ヒドラジン系化合物による処理を先に行った場合、アミノ基含有有機化合物による処理の段階ではすでに架橋構造が存在し、立体的な制約が大きくなるので、上述したようなアミノ基含有有機化合物による架橋構造は形成されにくくなり、繊維中に染着座席となるアミノ基を効率よく導入することができ、好ましい。 First, simultaneous processing has the advantage of reducing the number of steps, but it becomes difficult to recover and reuse unreacted hydrazine-based compounds and amino group-containing organic compounds. The control becomes complicated. On the other hand, when each process is performed separately, the number of steps increases, but the recovery and reuse of the drug and the structure control become easy. In particular, when the treatment with the hydrazine-based compound is performed first, a cross-linked structure already exists at the stage of treatment with the amino group-containing organic compound, and the steric restrictions become large. A crosslinked structure is less likely to be formed, and an amino group that becomes a dyeing seat can be efficiently introduced into the fiber, which is preferable.

ヒドラジン系化合物あるいはアミノ基含有有機化合物を反応させる程度としては、目的とする繊維物性や染色性能を基に必要となる架橋構造量やアミノ基量を勘案し適宜設定すればよく、反応条件によって任意に調整することができるが、後述する加水分解処理の対象となるべきニトリル基などの官能基が残存するように反応を行う必要がある。 The degree of reaction of the hydrazine-based compound or amino group-containing organic compound may be set as appropriate in consideration of the amount of cross-linking structure and the amount of amino groups required based on the desired fiber properties and dyeing performance. However, it is necessary to carry out the reaction so that a functional group such as a nitrile group to be subjected to the hydrolysis treatment described later remains.

ヒドラジン系化合物あるいはアミノ基含有有機化合物でアクリル系繊維を処理する方法としては、特に制限されるものではないが、これらの化合物の水溶液を用意し、アクリル系繊維を該水溶液に浸漬、もしくは、アクリル系繊維に該水溶液を噴霧、もしくは塗布し処理する方法が挙げられる。 The method for treating the acrylic fiber with the hydrazine compound or the amino group-containing organic compound is not particularly limited, but an aqueous solution of these compounds is prepared, and the acrylic fiber is immersed in the aqueous solution. A method of spraying or applying the aqueous solution to the system fiber and treating it may be mentioned.

かかるヒドラジン系化合物による処理およびアミノ基含有有機化合物による処理の後には、該処理で残留したこれらの化合物を十分に除去した後、酸処理を施しても良い。酸処理を施すことにより、繊維の白度を向上させることができ、染色に有利となる。かかる酸処理に用いられる酸としては、硝酸、硫酸、塩酸等の鉱酸や蟻酸、酢酸等の有機酸を挙げることができる。 After the treatment with the hydrazine-based compound and the treatment with the amino group-containing organic compound, acid treatment may be performed after sufficiently removing these compounds remaining in the treatment. By performing the acid treatment, the whiteness of the fiber can be improved, which is advantageous for dyeing. Examples of the acid used for the acid treatment include mineral acids such as nitric acid, sulfuric acid and hydrochloric acid, and organic acids such as formic acid and acetic acid.

本発明においては、かかるヒドラジン系化合物による処理およびアミノ基含有有機化合物による処理の後に加水分解処理を施す。該加水分解処理により、ヒドラジン系化合物による処理、アミノ基含有有機化合物による処理あるいはその後の酸処理において、反応せずに残存しているニトリル基やこれらの処理により一部のニトリル基が加水分解されて生成されるアミド基がカルボキシル基に変換される。 In the present invention, the hydrolysis treatment is performed after the treatment with the hydrazine compound and the treatment with the amino group-containing organic compound. By this hydrolysis treatment, in the treatment with a hydrazine-based compound, the treatment with an amino group-containing organic compound, or the subsequent acid treatment, nitrile groups remaining without reacting or some of the nitrile groups are hydrolyzed by these treatments. The amide group produced in this way is converted to a carboxyl group.

ここで、ヒドラジン系化合物やアミノ基含有有機化合物による処理の前に加水分解処理を行った場合、カルボキシル基存在下でヒドラジン系化合物やアミノ基含有有機化合物を反応させることとなるが、これらの化合物はカルボキシル基と容易にイオン結合を形成するため、肝心のニトリル基との反応が進行せず、架橋構造やアミノ基の導入が不十分となる。 Here, when the hydrolysis treatment is performed before the treatment with the hydrazine compound or the amino group-containing organic compound, the hydrazine compound or the amino group-containing organic compound is reacted in the presence of the carboxyl group. Easily forms an ionic bond with the carboxyl group, so that the reaction with the essential nitrile group does not proceed, and the introduction of the crosslinked structure and amino group becomes insufficient.

カルボキシル基の導入量としては、該基が架橋アクリレート系繊維において吸放湿性、吸湿発熱性、消臭性などの機能を発現させるもとになることから、目的とする機能が十分に発現できるように適宜設定すればよく、反応条件によって任意に調整することができる。一般的には1〜12mmol/g、好ましくは3〜10mmol/g、さらに好ましくは3〜8mmol/gのカルボキシル基を導入することが望ましい。 The introduction amount of the carboxyl group is such that the group exhibits functions such as moisture absorption / release, moisture absorption exothermicity, and deodorizing property in the crosslinked acrylate fiber, so that the intended function can be sufficiently developed. And can be arbitrarily adjusted depending on the reaction conditions. Generally, it is desirable to introduce 1 to 12 mmol / g, preferably 3 to 10 mmol / g, more preferably 3 to 8 mmol / g of carboxyl groups.

かかる加水分解処理に採用される化合物としては、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属炭酸塩などのアルカリ性金属化合物や、硝酸、硫酸、塩酸などの酸加水分解可能な化合物などを用いることができる。 Compounds employed for such hydrolysis treatment include alkaline metal compounds such as alkali metal hydroxides, alkaline earth metal hydroxides and alkali metal carbonates, and compounds capable of acid hydrolysis such as nitric acid, sulfuric acid and hydrochloric acid. Etc. can be used.

また、かかる加水分解処理の後に還元処理を行うこともできる。還元処理を行うことで繊維の白度が向上し、染色に有利となる。 Moreover, a reduction process can also be performed after this hydrolysis process. By performing the reduction treatment, the whiteness of the fibers is improved, which is advantageous for dyeing.

以上のようにして得られる本発明の可染性架橋アクリレート系繊維は、染色性が向上していることに加え、従来の架橋アクリレート系繊維と同様に吸放湿性、吸湿発熱性、消臭性などの機能を発現することが可能である。 The dyeable cross-linked acrylate fiber of the present invention obtained as described above has improved dyeability, as well as hygroscopic, hygroscopic exothermic and deodorant properties like conventional cross-linked acrylate fibers. It is possible to express such functions.

次に、先にヒドラジン系化合物による処理、後にアミノ基含有有機化合物による処理を行う場合を例にとって製造方法を詳述する。 Next, the production method will be described in detail by taking as an example the case where the treatment with the hydrazine-based compound is first performed and the treatment with the amino group-containing organic compound is subsequently performed.

まず、上述したアクリル系繊維に対してヒドラジン系化合物による処理を施すが、該処理においては上述したように架橋構造が導入され、これに伴い繊維中の窒素含有量が増加する。このため、窒素含有量の増加は架橋構造導入量の目安となるが、良好な繊維物性を得るためには窒素含有量の増加を0.1〜10重量%に調整することが望ましい。具体的な反応条件としては、ヒドラジン系化合物の濃度5〜60重量%の水溶液中、50〜120℃、5時間以内で処理する条件を挙げることができる。ここで、窒素含有量の増加とは原料となるアクリル系繊維の窒素含有量とヒドラジン系化合物によって処理された繊維の窒素含有量の差をいうものである。 First, the acrylic fiber described above is treated with a hydrazine compound. In this treatment, a crosslinked structure is introduced as described above, and accordingly, the nitrogen content in the fiber increases. For this reason, an increase in nitrogen content is a measure of the amount of cross-linked structure introduced, but in order to obtain good fiber properties, it is desirable to adjust the increase in nitrogen content to 0.1 to 10% by weight. Specific reaction conditions can include conditions for treatment in an aqueous solution having a hydrazine compound concentration of 5 to 60% by weight at 50 to 120 ° C. within 5 hours. Here, the increase in the nitrogen content refers to the difference between the nitrogen content of the acrylic fiber as a raw material and the nitrogen content of the fiber treated with the hydrazine compound.

次に、ヒドラジン系化合物による処理を経た繊維を水洗した後、アミノ基含有有機化合物による処理を施す。該処理においては染着座席となるアミノ基が導入される。具体的な反応条件としては、アミノ基含有有機化合物濃度1重量%以上の水溶液中、50〜150℃、好ましくは80℃〜150℃で30分〜48時間処理する条件を挙げることができる。特に、アミノ基含有有機化合物として、アミノ基間を炭素数が3以上のアルキレン基で結合した構造を有するものを採用する場合には、50〜150℃、30分〜4時間で処理することができる。かかる条件で処理することにより、飽和染着量の高い繊維を得ることができ、優れた均染性や濃染性を発現することが可能となる。 Next, the fiber that has been treated with the hydrazine compound is washed with water, and then treated with an amino group-containing organic compound. In the treatment, an amino group that becomes a dyeing seat is introduced. Specific reaction conditions include conditions of treatment at 50 to 150 ° C., preferably 80 to 150 ° C. for 30 minutes to 48 hours in an aqueous solution having an amino group-containing organic compound concentration of 1% by weight or more. In particular, when an amino group-containing organic compound having a structure in which amino groups are bonded by an alkylene group having 3 or more carbon atoms is used, the treatment may be performed at 50 to 150 ° C. for 30 minutes to 4 hours. it can. By treating under such conditions, fibers with a high saturation dyeing amount can be obtained, and it becomes possible to exhibit excellent leveling and deep dyeing properties.

アミノ基含有有機化合物による処理を経た繊維は、水洗後、酸処理を施しても良い。酸処理に用いる酸としては上述した酸を採用することができる。酸処理の条件としては、特に限定されないが、大概酸濃度5〜20重量%、好ましくは7〜15重量%の水溶液に、50〜120℃で0.5〜10時間被処理繊維を浸漬するといった例が挙げられる。 The fiber that has been treated with the amino group-containing organic compound may be subjected to an acid treatment after being washed with water. The acid mentioned above can be employ | adopted as an acid used for an acid treatment. The conditions for the acid treatment are not particularly limited, but the treated fibers are usually immersed in an aqueous solution having an acid concentration of 5 to 20% by weight, preferably 7 to 15% by weight, at 50 to 120 ° C. for 0.5 to 10 hours. An example is given.

以上のような処理を施された繊維は、水洗後、加水分解処理を施される。この処理により、繊維中にカルボキシル基が形成され、本発明の可染性架橋アクリレート系繊維を得ることができる。なお、上述したアルカリ性金属化合物で加水分解処理を行った場合、形成されるカルボキシル基はこれらの化合物由来の金属イオンと結合するので、大部分が金属塩型カルボキシル基となる。 The fiber subjected to the above treatment is subjected to a hydrolysis treatment after washing with water. By this treatment, a carboxyl group is formed in the fiber, and the dyeable cross-linked acrylate fiber of the present invention can be obtained. In addition, when a hydrolysis process is performed with the alkaline metal compound mentioned above, since the carboxyl group formed couple | bonds with the metal ion derived from these compounds, most become a metal salt type carboxyl group.

カルボキシル基の導入量としては、最終的な繊維に求められる機能を勘案して設定すればよいが、一般的には、上述したとおりである。具体的な反応条件としては、アルカリ性金属化合物を用いる場合、1〜10重量%さらに好ましくは1〜5重量%の水溶液中、50〜120℃で1〜10時間以内で処理する条件を挙げることができる。 The introduction amount of the carboxyl group may be set in consideration of the function required for the final fiber, but is generally as described above. As specific reaction conditions, in the case of using an alkaline metal compound, conditions for treatment in an aqueous solution of 1 to 10% by weight, more preferably 1 to 5% by weight, at 50 to 120 ° C. within 1 to 10 hours may be mentioned. it can.

かかる加水分解処理の後には還元処理を行ってもよい。使用する還元処理剤としてはハイドロサルファイト塩、チオ硫酸塩、亜硫酸塩、亜硝酸塩、二酸化チオ尿素、アスコルビン酸塩、ヒドラジン系化合物からなる群より選ばれた1種類または2種類以上を組み合わせた薬剤などを挙げることをできる。また、処理条件としては、薬剤濃度0.5〜5重量%の水溶液に、温度50℃〜120℃で30分間〜5時間被処理繊維を浸漬するといった例が挙げられる。 A reduction treatment may be performed after the hydrolysis treatment. As the reducing agent to be used, one or a combination of two or more selected from the group consisting of hydrosulfite salt, thiosulfate, sulfite, nitrite, thiourea dioxide, ascorbate, and hydrazine compounds And so on. Examples of the treatment conditions include soaking the treated fiber in an aqueous solution having a drug concentration of 0.5 to 5% by weight at a temperature of 50 ° C. to 120 ° C. for 30 minutes to 5 hours.

本発明の可染性架橋アクリレート系繊維を染色する方法としては、特に限定されず、アミノ基と反応する反応染料を用いる染色方法などを採用することができる。特に、背景技術の項で挙げた特許文献3に記載の染色方法を採用した場合、架橋アクリレート系繊維の吸放湿性、吸湿発熱性、消臭性などの特色ある機能を損なわずに、良好な染色堅牢度を有するだけでなく、該染色方法を従来の架橋アクリレート系繊維に適用しても得られなかったような優れた均一性、濃色性を有する、染色された架橋アクリレート系繊維を得ることができ、好ましい。 The method for dyeing the dyeable cross-linked acrylate fiber of the present invention is not particularly limited, and a dyeing method using a reactive dye that reacts with an amino group can be employed. In particular, when the dyeing method described in Patent Document 3 mentioned in the background section is adopted, the crosslinked acrylate fiber is good without deteriorating the characteristic functions such as hygroscopicity, hygroscopic exothermicity, and deodorizing property. In addition to dyeing fastness, dyed crosslinked acrylate fibers are obtained that have excellent uniformity and darkness that cannot be obtained by applying the dyeing method to conventional crosslinked acrylate fibers. Can be preferred.

ここで、特許文献3に記載の染色方法とは、架橋アクリレート系繊維に酸性条件下で反応染料を吸着させた後、アルカリ性条件下で該染料と繊維中のアミノ基を反応させるという方法である。 Here, the dyeing method described in Patent Document 3 is a method in which a reactive dye is adsorbed to a crosslinked acrylate fiber under acidic conditions, and then the dye and an amino group in the fiber are reacted under alkaline conditions. .

かかる染色方法においてはアミノ基と反応する反応染料を使用する。例えば、モノクロロトリアジン染料、ジクロロトリアジン染料等のクロロトリアジン染料や、クロルピリミジン染料、ビニルスルホン染料等が挙げられる。また、スルファートエチルスルホン基を2個有する染料やモノクロロトリアジン基を2個以上有する染料等の複数の同種官能基を有する染料、さらには、スルファートエチルスルホン/モノクロロトリアジン系染料、スルファートエチルスルホン/ジクロロトリアジン系染料、スルファートエチルスルホン/ジフルオロモノクロロトリアジン系染料等の複数の異種官能基を有する染料等も使用することができる。 In such a dyeing method, a reactive dye that reacts with an amino group is used. Examples thereof include chlorotriazine dyes such as monochlorotriazine dyes and dichlorotriazine dyes, chloropyrimidine dyes, vinylsulfone dyes, and the like. In addition, dyes having a plurality of the same functional groups, such as dyes having two sulfate ethyl sulfone groups and dyes having two or more monochloro triazine groups, as well as sulfate ethyl sulfone / monochloro triazine dyes, sulfate ethyl sulfone It is also possible to use dyes having a plurality of different functional groups such as / dichlorodichloroazine dyes, sulfate ethyl sulfone / difluoromonochlorotriazine dyes, and the like.

染色の手順としては、まず、酸性条件下で反応染料を架橋アクリレート系繊維に吸着させる。反応染料と酸が添加された状態の浴のpHを5以下とし、これに架橋アクリレート系繊維を浸漬させる。pHを調整する酸としては、酢酸、蟻酸、乳酸、酒石酸等の有機酸や硝酸、硫酸、塩酸等の鉱酸の水溶液を用いる。処理温度は通常60℃以上とする。 As a procedure for dyeing, first, a reactive dye is adsorbed on a crosslinked acrylate fiber under acidic conditions. The pH of the bath with the reactive dye and acid added is set to 5 or less, and the crosslinked acrylate fiber is immersed in the bath. As the acid for adjusting the pH, an organic acid such as acetic acid, formic acid, lactic acid or tartaric acid, or an aqueous solution of a mineral acid such as nitric acid, sulfuric acid or hydrochloric acid is used. The treatment temperature is usually 60 ° C. or higher.

次に、アルカリ性条件下で架橋アクリレート系繊維と染料との間に化学的に共有結合を生じさせる。反応染料を吸着させた状態の架橋アクリレート系繊維を水に浸漬し、アルカリ性化合物を添加することにより反応を進行させ、最終的に処理後の浴pHが9以上となるようにする。pHを調整するアルカリ性化合物としては、アルカリ金属などの有機酸塩、炭酸塩、水酸化物やアミン化合物、アンモニア等を用いる。処理温度は通常60℃以上とする。 Next, a covalent bond is chemically generated between the crosslinked acrylate fiber and the dye under alkaline conditions. The crosslinked acrylate fiber in a state where the reactive dye is adsorbed is immersed in water, and the reaction is advanced by adding an alkaline compound so that the bath pH after treatment is finally 9 or more. As the alkaline compound for adjusting the pH, organic acid salts such as alkali metals, carbonates, hydroxides, amine compounds, ammonia and the like are used. The treatment temperature is usually 60 ° C. or higher.

なお、かかる染色方法により染色した後には、繊維中のカルボキシル基のカウンターイオンが上記アルカリ性化合物由来のイオンで置換された状態となるが、さらにイオン交換することにより所望の金属塩型カルボキシル基および/またはH型カルボキシル基に変換することが可能であり、これにより、吸放湿性、吸湿発熱性、消臭性などの機能を調整することができる。 In addition, after dyeing by such a dyeing method, the counter ion of the carboxyl group in the fiber is replaced with an ion derived from the alkaline compound. However, by performing ion exchange, the desired metal salt-type carboxyl group and / or Alternatively, it can be converted into an H-type carboxyl group, whereby functions such as moisture absorption and desorption, moisture absorption exothermicity, and deodorization can be adjusted.

以下実施例により本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例中の部及び百分率は、断りのない限り重量基準で示す。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples. In addition, unless otherwise indicated, the part and percentage in an Example are shown on a weight basis.

(1)カルボキシル基量[mmol/g]
試料約1gに200mlの水を加えた後、1mol/l塩酸水溶液を添加してpH2にし、試料を水洗、脱水、乾燥した。次いで、十分乾燥したのち、約0.2gを精秤し(A[g])、0.1mol/lの水酸化ナトリウム水溶液で常法に従って滴定曲線を求めた。該滴定曲線からカルボキシル基に消費された水酸化ナトリウム水溶液消費量(B[ml])を求め、次式によってカルボキシル基量(mmol/g)を算出した。
カルボキシル基量[mmol/g]=0.1B/A
(1) Amount of carboxyl group [mmol / g]
After adding 200 ml of water to about 1 g of the sample, 1 mol / l hydrochloric acid aqueous solution was added to adjust the pH to 2, and the sample was washed with water, dehydrated and dried. Next, after sufficiently drying, about 0.2 g was precisely weighed (A [g]), and a titration curve was obtained with a 0.1 mol / l aqueous sodium hydroxide solution according to a conventional method. The consumption amount (B [ml]) of sodium hydroxide aqueous solution consumed by carboxyl groups was determined from the titration curve, and the carboxyl group amount (mmol / g) was calculated by the following formula.
Amount of carboxyl group [mmol / g] = 0.1 B / A

(2)飽和吸湿率[%]
試料約5.0gを熱風乾燥機で105℃、16時間乾燥して重量を測定する(C[g])。次に該試料を温度20℃で65%RHの恒温槽に24時間入れておく。このようにして吸湿させた試料の重量を測定する(D[g])。以上の測定結果から、次式によって算出した。
飽和吸湿率[%]={(D−C)/C}×100
(2) Saturated moisture absorption [%]
About 5.0 g of the sample is dried with a hot air dryer at 105 ° C. for 16 hours, and the weight is measured (C [g]). The sample is then placed in a constant temperature bath at 20 ° C. and 65% RH for 24 hours. The weight of the sample thus absorbed is measured (D [g]). From the above measurement results, calculation was performed according to the following equation.
Saturated moisture absorption [%] = {(D−C) / C} × 100

(3)飽和染着量[%owf]
反応染料Sumifix Supra Blue BRF(住友化学製)0.60gおよび蟻酸を水に添加し、pH2.0、120mlの染浴を作製した。該染浴にカルボキシル基をH型にした試料0.60gを浸漬し、60℃で5時間染料吸着処理を行った。処理後の染浴から試料を濾過して得られた染液の吸光スペクトルを、U−1100 Spectrophotometer(日立製作所製)を使用して測定し、ピーク波長610nmの吸光度から吸光光度法により残留染料量を定量した。測定結果から次式によって飽和染着量を算出した。
飽和染着量[%owf]=(投入染料量[g]−残留染料量[g])/試料重量[g]×100
かかる飽和染着量は試料中に含有されるアミノ基量が多いほど大きくなることから、アミノ基含有量の指標となる。
(3) Saturated dyeing amount [% owf]
Reactive dye Sumifix Supra Blue BRF (manufactured by Sumitomo Chemical Co., Ltd.) 0.60 g and formic acid were added to water to prepare a dye bath having a pH of 2.0 and 120 ml. In the dye bath, 0.60 g of a sample in which the carboxyl group was H-shaped was immersed, and dye adsorption treatment was performed at 60 ° C. for 5 hours. The absorption spectrum of the dyeing solution obtained by filtering the sample from the dyed bath after the treatment was measured using U-1100 Spectrophotometer (manufactured by Hitachi, Ltd.), and the amount of residual dye was determined from the absorbance at the peak wavelength of 610 nm by the absorptiometry. Was quantified. The saturated dyeing amount was calculated from the measurement result by the following formula.
Saturated dyeing amount [% owf] = (input dye amount [g] −residual dye amount [g]) / sample weight [g] × 100
Since the amount of saturated dyeing increases as the amount of amino groups contained in the sample increases, it becomes an index of the amino group content.

(4)汗染色堅牢度
反応染料Sumifix Black ENS150(住友化学製)0.49gおよび蟻酸を水に添加し、pH2.0、120mlの染浴を作成した。該染浴にカルボキシル基をH型にした試料7.00gを浸漬し、60℃で5時間染料吸着処理を行った。得られた試料を水洗した後、210mlの水に浸漬し、60℃まで昇温した。次いで、炭酸ナトリウムを添加して、pH11にし、60℃、1時間浸漬した。その後、水洗、ソーピング、水洗、脱水を順次行うことによって、染色された試料を作製した。作製した試料に対して、JIS−L−0848に準拠し、アルカリ性人工汗液を用いて試験を行い、変退色用グレースケールを用いて試験前の試料と比較し、染色堅牢度を判定した。汗染色堅牢度は3級以上であれば実用に耐えうるものである。
(4) Sweat Dye Fastness Reactive Dye Sumifix Black ENS150 (manufactured by Sumitomo Chemical Co., Ltd.) 0.49 g and formic acid were added to water to prepare a dye bath having a pH of 2.0 and 120 ml. In the dye bath, 7.00 g of a sample in which the carboxyl group was H-shaped was immersed, and dye adsorption treatment was performed at 60 ° C. for 5 hours. The obtained sample was washed with water, then immersed in 210 ml of water, and heated to 60 ° C. Next, sodium carbonate was added to adjust the pH to 11, and immersed for 1 hour at 60 ° C. Thereafter, washing with water, soaping, washing with water, and dehydration were sequentially performed to prepare a stained sample. The prepared sample was tested in accordance with JIS-L-0848 using an alkaline artificial sweat, and compared with the sample before the test using a gray scale for color fading, the dyeing fastness was determined. If the sweat dyeing fastness is 3rd grade or higher, it can withstand practical use.

(5)湿潤摩擦染色堅牢度
上述の汗染色堅牢度の判定と同様にして染色した試料に対して、JIS−L−0849に準拠し、摩擦試験機II形によって試験を行い、汚染用グレースケールを用いて摩擦用白綿布の着色の程度を判定した。湿潤摩擦染色堅牢度は3級以上であれば実用に耐えうるものである。
(5) Fastness to wet friction dyeing A sample dyed in the same manner as the above-described determination of fastness to sweat dyeing is tested according to JIS-L-0849 using a friction tester type II, and a gray scale for contamination. Was used to determine the degree of coloring of the white cotton fabric for friction. The wet friction dyeing fastness can withstand practical use as long as it is grade 3 or higher.

(6)濃染性
上述の汗染色堅牢度の判定と同様にして染色した試料の濃染性を、目視により以下の3段階で評価した。◎または○であれば実用に耐えうるものである。
◎:濃色で優れた染色品位である
○:製品として許容される範囲の僅かな欠点が存在する
×:染色が不十分であり、製品として出荷不可能な重大な欠点が存在する
(6) Dark dyeing The dark dyeing property of the sample dyed in the same manner as in the determination of the fastness to sweat dyeing was visually evaluated in the following three stages. If it is ◎ or ○, it can withstand practical use.
A: Dense color and excellent dyeing quality B: Slight defects in the acceptable range for the product exist X: Dyeing is insufficient and there are serious defects that cannot be shipped as a product

(7)均染性
上述の汗染色堅牢度の判定と同様にして染色した試料の染色斑を、目視により以下の3段階で評価した。◎または○であれば実用に耐えうるものである。
◎:均質で優れた染色品位である
○:製品として許容される範囲の僅かな欠点が存在する
×:染色が不均一であり、製品として出荷不可能な重大な欠点が存在する
(7) Leveling property The dyeing spots of the sample dyed in the same manner as in the above-described determination of the fastness to sweat dyeing were visually evaluated in the following three stages. If it is ◎ or ○, it can withstand practical use.
◎: Homogeneous and excellent dyeing quality ○: There are slight defects that are acceptable as a product ×: Dyeing is uneven and there are serious defects that cannot be shipped as a product

(アクリル系繊維Aの作製)
アクリロニトリル90%、アクリル酸メチル10%からなるアクリロニトリル系重合体(30℃ジメチルホルムアミド中での極限粘度[η]:1.2)10部を48%のロダンソーダ水溶液90部に溶解した紡糸原液を定法に従って紡糸、水洗、延伸、乾燥、湿熱処理等を施して、0.9dtexのアクリル系繊維Aを得た。
(Production of acrylic fiber A)
A spinning stock solution in which 10 parts of an acrylonitrile polymer (90% intrinsic viscosity [η]: 1.2 in dimethylformamide at 30 ° C.) consisting of 90% acrylonitrile and 10% methyl acrylate was dissolved in 90 parts of a 48% rhodium soda aqueous solution was prepared by a conventional method. Then, spinning, washing, drawing, drying, wet heat treatment and the like were performed to obtain 0.9 dtex acrylic fiber A.

(アクリル系繊維Bの作製)
アクリロニトリル90%、酢酸ビニル10%からなるアクリロニトリル系重合体(30℃ジメチルホルムアミド中での極限粘度[η]:1.2)10部を48%のロダンソーダ水溶液90部に溶解した紡糸原液を定法に従って紡糸、水洗、延伸、乾燥、湿熱処理等を施して、0.9dtexのアクリル系繊維Bを得た。
(Production of acrylic fiber B)
A spinning stock solution in which 10 parts of an acrylonitrile polymer (intrinsic viscosity [η]: 1.2 in 30 ° C. dimethylformamide) consisting of 90% acrylonitrile and 10% vinyl acetate was dissolved in 90 parts of a 48% aqueous rhodium soda solution according to a conventional method. Spinning, washing with water, stretching, drying, wet heat treatment, and the like were performed to obtain 0.9 dtex acrylic fiber B.

(実施例1)
アクリル系繊維Aを、ヒドラジンヒドラート15%、3,3’−イミノビス(プロピルアミン)3%の混合水溶液で、110℃、3時間処理し、水洗を行った。次いで、8%硝酸で100℃、1時間処理し、水洗した。続いて、5%水酸化ナトリウム水溶液で90℃、2時間処理し、水洗、脱水、乾燥し、実施例1の可染性架橋アクリレート系繊維を得た。該繊維について、カルボキシル基量、飽和吸湿率、飽和染着量、汗染色堅牢度、湿潤摩擦染色堅牢度、濃染性、均染性を評価した。結果を表1に示す。
Example 1
The acrylic fiber A was treated with a mixed aqueous solution of 15% hydrazine hydrate and 3% 3,3′-iminobis (propylamine) at 110 ° C. for 3 hours and washed with water. Then, it was treated with 8% nitric acid at 100 ° C. for 1 hour and washed with water. Subsequently, it was treated with a 5% aqueous sodium hydroxide solution at 90 ° C. for 2 hours, washed with water, dehydrated and dried to obtain the dyeable cross-linked acrylate fiber of Example 1. The fibers were evaluated for carboxyl group amount, saturated moisture absorption, saturated dyeing amount, fastness to sweat dyeing, fastness to wet friction dyeing, deep dyeability, and levelness. The results are shown in Table 1.

(実施例2)
アクリル系繊維Aを、ヒドラジンヒドラート15%水溶液で、110℃、3時間処理し、水洗した後、3,3’−イミノビス(プロピルアミン)3%水溶液で110℃、3時間で処理を行い、水洗を行った。次いで、8%硝酸で100℃、1時間処理し、水洗した。続いて、5%水酸化ナトリウム水溶液で90℃、2時間処理を行い、水洗、脱水、乾燥を行い、実施例2の可染性架橋アクリレート系繊維を得た。評価結果を表1に示す。
(Example 2)
Acrylic fiber A was treated with hydrazine hydrate 15% aqueous solution at 110 ° C. for 3 hours, washed with water, then treated with 3,3′-iminobis (propylamine) 3% aqueous solution at 110 ° C. for 3 hours, Washed with water. Then, it was treated with 8% nitric acid at 100 ° C. for 1 hour and washed with water. Subsequently, a 5% aqueous sodium hydroxide solution was treated at 90 ° C. for 2 hours, washed with water, dehydrated, and dried to obtain a dyeable cross-linked acrylate fiber of Example 2. The evaluation results are shown in Table 1.

(実施例3)
アクリル系繊維Aを、ヒドラジンヒドラート15%水溶液で、110℃、3時間処理し、水洗した後、3,3’−イミノビス(プロピルアミン)6%水溶液で110℃、3時間で処理を行い、水洗を行った。次いで、8%硝酸で100℃、1時間処理し、水洗した。続いて、5%水酸化ナトリウム水溶液で90℃、2時間処理を行い、水洗、脱水、乾燥を行い、実施例3の可染性架橋アクリレート系繊維を得た。評価結果を表1に示す。
(Example 3)
Acrylic fiber A was treated with hydrazine hydrate 15% aqueous solution at 110 ° C. for 3 hours, washed with water, then treated with 3,3′-iminobis (propylamine) 6% aqueous solution at 110 ° C. for 3 hours, Washed with water. Then, it was treated with 8% nitric acid at 100 ° C. for 1 hour and washed with water. Subsequently, a 5% aqueous sodium hydroxide solution was treated at 90 ° C. for 2 hours, washed with water, dehydrated, and dried to obtain a dyeable cross-linked acrylate fiber of Example 3. The evaluation results are shown in Table 1.

(実施例4)
アクリル系繊維Aを、3,3’−イミノビス(プロピルアミン)3%水溶液で110℃、3時間で処理し、水洗した後、ヒドラジンヒドラート15%水溶液で、110℃、3時間処理を行い、水洗を行った。次いで、8%硝酸で100℃、1時間処理し、水洗した。続いて、5%水酸化ナトリウム水溶液で90℃、2時間処理を行い、水洗、脱水、乾燥を行い、実施例4の可染性架橋アクリレート系繊維を得た。評価結果を表1に示す。
Example 4
The acrylic fiber A was treated with 3,3′-iminobis (propylamine) 3% aqueous solution at 110 ° C. for 3 hours, washed with water, then treated with hydrazine hydrate 15% aqueous solution at 110 ° C. for 3 hours, Washed with water. Then, it was treated with 8% nitric acid at 100 ° C. for 1 hour and washed with water. Subsequently, a 5% aqueous sodium hydroxide solution was treated at 90 ° C. for 2 hours, washed with water, dehydrated, and dried to obtain a dyeable cross-linked acrylate fiber of Example 4. The evaluation results are shown in Table 1.

(実施例5)
3,3’−イミノビス(プロピルアミン)をN−メチル−3,3’−イミノビス(プロピルアミン)に変更する以外は、実施例2と同じ方法で、実施例5の可染性架橋アクリレート系繊維を得た。評価結果を表1に示す。
(Example 5)
The dyeable cross-linked acrylate fiber of Example 5 in the same manner as in Example 2, except that 3,3'-iminobis (propylamine) is changed to N-methyl-3,3'-iminobis (propylamine). Got. The evaluation results are shown in Table 1.

(実施例6)
3,3’−イミノビス(プロピルアミン)をトリエチレンテトラミンに変更する以外は、実施例2と同じ方法で、実施例6の可染性架橋アクリレート系繊維を得た。評価結果を表1に示す。
(Example 6)
A dyeable cross-linked acrylate fiber of Example 6 was obtained in the same manner as in Example 2, except that 3,3′-iminobis (propylamine) was changed to triethylenetetramine. The evaluation results are shown in Table 1.

(実施例7)
実施例2において、水酸化ナトリウム水溶液での処理を行い、水洗した後、さらに、1%二酸化チオ尿素水溶液で90℃、2時間処理を行い、水洗、脱水、乾燥を行い、実施例7の可染性架橋アクリレート系繊維を得た。評価結果を表1に示す。
(Example 7)
In Example 2, after treatment with an aqueous sodium hydroxide solution and washing with water, further treatment with an aqueous 1% thiourea dioxide solution at 90 ° C. for 2 hours, washing with water, dehydration, and drying were carried out. A dyeable cross-linked acrylate fiber was obtained. The evaluation results are shown in Table 1.

(実施例8)
アクリル系繊維Aをアクリル系繊維Bに変更する以外は、実施例2と同じ方法で、実施例8の可染性架橋アクリレート系繊維を得た。評価結果を表1に示す。
(Example 8)
A dyeable cross-linked acrylate fiber of Example 8 was obtained in the same manner as in Example 2 except that the acrylic fiber A was changed to the acrylic fiber B. The evaluation results are shown in Table 1.

(実施例9)
実施例8において、水酸化ナトリウム水溶液での処理を行い、水洗した後、さらに、1%二酸化チオ尿素水溶液で90℃、2時間処理を行い、水洗、脱水、乾燥を行い、実施例9の可染性架橋アクリレート系繊維を得た。評価結果を表1に示す。
Example 9
In Example 8, after treatment with an aqueous sodium hydroxide solution and washing with water, further treatment with an aqueous 1% thiourea dioxide solution at 90 ° C. for 2 hours, washing with water, dehydration and drying were performed. A dyeable cross-linked acrylate fiber was obtained. The evaluation results are shown in Table 1.

(比較例1)
アクリル系繊維Aを、ヒドラジンヒドラート15%水溶液、110℃、3時間処理し、水洗を行った。次いで、8%硝酸で100℃、1時間処理し、水洗した。続いて、5%水酸化ナトリウム水溶液で90℃、2時間処理を行い、水洗、脱水、乾燥を行い、比較例1の架橋アクリレート系繊維を得た。評価結果を表1に示す。
(Comparative Example 1)
The acrylic fiber A was treated with a 15% aqueous solution of hydrazine hydrate at 110 ° C. for 3 hours and washed with water. Then, it was treated with 8% nitric acid at 100 ° C. for 1 hour and washed with water. Subsequently, a 5% aqueous sodium hydroxide solution was treated at 90 ° C. for 2 hours, washed with water, dehydrated and dried to obtain a crosslinked acrylate fiber of Comparative Example 1. The evaluation results are shown in Table 1.

(比較例2)
3,3’−イミノビス(プロピルアミン)をn−ブチルアミンに変更する以外は、実施例2と同じ方法で、比較例2の架橋アクリレート系繊維を得た。評価結果を表1に示す。
(Comparative Example 2)
A crosslinked acrylate fiber of Comparative Example 2 was obtained in the same manner as in Example 2, except that 3,3′-iminobis (propylamine) was changed to n-butylamine. The evaluation results are shown in Table 1.

(比較例3)
アクリル系繊維Aを、ヒドラジンヒドラート15%水溶液、110℃、3時間処理し、水洗を行った。次いで、8%硝酸で100℃、1時間処理し、水洗した。続いて、5%水酸化ナトリウム水溶液で90℃、2時間処理を行い、水洗を行った。さらに、3,3’−イミノビス(プロピルアミン)3%水溶液で110℃、3時間で処理を行い、水洗、脱水、乾燥を行い、比較例3の架橋アクリレート繊維を得た。評価結果を表1に示す。
(Comparative Example 3)
The acrylic fiber A was treated with a hydrazine hydrate 15% aqueous solution at 110 ° C. for 3 hours and washed with water. Then, it was treated with 8% nitric acid at 100 ° C. for 1 hour and washed with water. Subsequently, it was treated with a 5% aqueous sodium hydroxide solution at 90 ° C. for 2 hours and washed with water. Further, a 3% aqueous solution of 3,3′-iminobis (propylamine) was treated at 110 ° C. for 3 hours, washed with water, dehydrated and dried to obtain a crosslinked acrylate fiber of Comparative Example 3. The evaluation results are shown in Table 1.

Figure 2009114556
Figure 2009114556

実施例1〜9においてはいずれも良好な特性を示す可染性架橋アクリレート系繊維が得られた。実施例1、2、4を比較すると、アミノ基含有有機化合物による処理はヒドラジン系化合物による処理の後に行った場合に、より優れた染色特性を有する繊維が得られることがわかる。また、実施例2、5、6を比較すると、1分子中の全アミノ基数が3以上であって、アミノ基間を炭素数が3以上のアルキレン基で結合した構造を有するアミノ基含有有機化合物を採用した場合に飽和染着量が多くなっており、より効率的にアミノ基が導入されることが理解される。 In each of Examples 1 to 9, dyeable cross-linked acrylate fibers showing good characteristics were obtained. When Examples 1, 2, and 4 are compared, it can be seen that when the treatment with the amino group-containing organic compound is performed after the treatment with the hydrazine-based compound, fibers having more excellent dyeing characteristics can be obtained. Further, when Examples 2, 5, and 6 are compared, the amino group-containing organic compound having a structure in which the total number of amino groups in one molecule is 3 or more and the amino groups are bonded by an alkylene group having 3 or more carbon atoms. It is understood that the amount of saturated dyeing is increased when amino acid is employed, and amino groups are more efficiently introduced.

比較例1および2は、1分子中の1級アミノ基数が2以上のアミノ基含有有機化合物による処理を行っていないため、また、比較例3は、加水分解処理後にアミノ基含有有機化合物による処理を行っているため、飽和染着量が低く、濃染性および均染性に劣るものとなった。 Since Comparative Examples 1 and 2 are not treated with an amino group-containing organic compound having two or more primary amino groups in one molecule, Comparative Example 3 is treated with an amino group-containing organic compound after hydrolysis. Therefore, the saturated dyeing amount was low, and the deep dyeing property and the level dyeing property were inferior.

Claims (4)

アクリル系繊維に、ヒドラジン系化合物による処理、および、1分子中の1級アミノ基数が2以上であるアミノ基含有有機化合物による処理を施した後、加水分解処理を施して得られることを特徴とする可染性架橋アクリレート系繊維。 The acrylic fiber is obtained by subjecting an acrylic fiber to a treatment with a hydrazine compound and a treatment with an amino group-containing organic compound having 1 or more primary amino groups in one molecule, followed by a hydrolysis treatment. Dyeable cross-linked acrylate fiber. 1分子中の1級アミノ基数が2以上であるアミノ基含有有機化合物が、1分子中の全アミノ基数としては3以上であって、アミノ基間を炭素数が3以上のアルキレン基で結合した構造を有するものであることを特徴とする請求項1に記載の可染性架橋アクリレート系繊維。 An amino group-containing organic compound having two or more primary amino groups in one molecule is bonded to each other by an alkylene group having three or more amino groups as the total number of amino groups in one molecule and having three or more carbon atoms. The dyeable cross-linked acrylate fiber according to claim 1, which has a structure. アクリル系繊維に、ヒドラジン系化合物による処理、および、1分子中の1級アミノ基数が2以上であるアミノ基含有有機化合物による処理を施した後、加水分解処理を施すことを特徴とする可染性架橋アクリレート系繊維の製造方法。 Dyeing characterized by subjecting acrylic fiber to treatment with hydrazine compound and treatment with amino group-containing organic compound having 1 or more primary amino groups in one molecule, followed by hydrolysis treatment For producing a water-soluble crosslinked acrylate fiber. 請求項1または2に記載の可染性架橋アクリレート系繊維に酸性条件下で反応染料を吸着させた後、アルカリ性条件下で該染料と繊維中のアミノ基を反応させることにより得られる染色された架橋アクリレート系繊維。 The dyed crosslinked acrylate fiber according to claim 1 or 2 is adsorbed with a reactive dye under acidic conditions, and then dyed by reacting the dye with an amino group in the fiber under alkaline conditions. Cross-linked acrylate fiber.
JP2007285630A 2007-11-02 2007-11-02 Dyeable cross-linked acrylate fiber, method for producing the same, and dyed cross-linked acrylate fiber obtained by dyeing the fiber Active JP5056358B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007285630A JP5056358B2 (en) 2007-11-02 2007-11-02 Dyeable cross-linked acrylate fiber, method for producing the same, and dyed cross-linked acrylate fiber obtained by dyeing the fiber
ES201090019A ES2380028B2 (en) 2007-11-02 2008-07-09 TABLET AND METHOD RETICULAR ACRYLATE FIBER FOR MANUFACTURING; AND FIBER OF RETICULAR ACRYLATE DYEED PREPARED BY DYING OF SUCH FIBER.
PCT/JP2008/001835 WO2009057235A1 (en) 2007-11-02 2008-07-09 Dyeable crosslinked acrylate fiber, process for producing the same, and dyed crosslinked acrylate fiber obtained by dyeing the fiber
CN200880110676.9A CN101821446B (en) 2007-11-02 2008-07-09 Dyeable crosslinked acrylate fiber, method for producing the same, and dyed crosslinked acrylate fiber obtained by dying the fiber
KR1020107009527A KR101414364B1 (en) 2007-11-02 2008-07-09 Dyeable crosslinked acrylate fiber, process for producing the same, and dyed crosslinked acrylate fiber obtained by dyeing the fiber
TW097141719A TWI435969B (en) 2007-11-02 2008-10-30 Dyeable crosslinked acrylate-based fibers, the preparation method thereof, and dyed crosslinked acrylate-based fibers obtained by dyeing said fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007285630A JP5056358B2 (en) 2007-11-02 2007-11-02 Dyeable cross-linked acrylate fiber, method for producing the same, and dyed cross-linked acrylate fiber obtained by dyeing the fiber

Publications (2)

Publication Number Publication Date
JP2009114556A true JP2009114556A (en) 2009-05-28
JP5056358B2 JP5056358B2 (en) 2012-10-24

Family

ID=40590644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007285630A Active JP5056358B2 (en) 2007-11-02 2007-11-02 Dyeable cross-linked acrylate fiber, method for producing the same, and dyed cross-linked acrylate fiber obtained by dyeing the fiber

Country Status (6)

Country Link
JP (1) JP5056358B2 (en)
KR (1) KR101414364B1 (en)
CN (1) CN101821446B (en)
ES (1) ES2380028B2 (en)
TW (1) TWI435969B (en)
WO (1) WO2009057235A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077431A (en) * 2010-09-08 2012-04-19 Japan Exlan Co Ltd Heat insulating fiber
KR101156368B1 (en) * 2010-11-25 2012-06-13 숭실대학교산학협력단 Method for manufacturing conductive acrylic fibers having high heat resistant property
WO2014188908A1 (en) * 2013-05-24 2014-11-27 日本エクスラン工業株式会社 Functional microparticles and resin product containing same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4487083B2 (en) * 2008-09-10 2010-06-23 日本エクスラン工業株式会社 Cross-linked acrylate fiber and method for producing the same
JP5590341B2 (en) * 2009-07-22 2014-09-17 日本エクスラン工業株式会社 Acid dye-dyeable hygroscopic fiber and method for producing the same
CN103266473B (en) * 2013-06-24 2015-08-05 河南省科学院化学研究所有限公司 Quaternary alkylphosphonium salt modified acrylic fibre anti-biotic material and preparation method thereof
TWI645086B (en) * 2013-09-20 2018-12-21 日本Exlan工業股份有限公司 Crosslinking acrylate based fiber and fiber structure comprising the same
JP6228511B2 (en) * 2014-05-29 2017-11-08 日本エクスラン工業株式会社 Cross-linked acrylate fiber with good dispersibility
CN111826764B (en) * 2020-07-28 2021-10-15 吴忠德悦纺织科技有限公司 Preparation method of modified multi-component composite yarn

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375041A (en) * 1986-09-13 1988-04-05 ミハイル ペトロヴイツチ ズベレフ Production of anion exchange fiber
JP2006070421A (en) * 2004-08-03 2006-03-16 Japan Exlan Co Ltd Method for dyeing cross-linked acrylate fiber and textile product comprising cross-linked acrylate fiber dyed with the method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4674429B2 (en) * 2001-09-18 2011-04-20 日本エクスラン工業株式会社 Black high moisture absorbing / releasing fiber
JP3959738B2 (en) * 2002-03-22 2007-08-15 日本エクスラン工業株式会社 Reactive dye-dyeable cross-linked acrylate fiber and fiber structure and process for producing them
FR2866904A1 (en) * 2004-02-26 2005-09-02 Marti Juan Batlle PROCESS FOR PRODUCING RETICULATED POLYACRYLATE FIBERS
CN100494556C (en) * 2004-08-03 2009-06-03 日本爱克兰工业株式会社 Dyeing method for cross linked acrylic fiber and fiber products containing cross linked acrylic fibers dyed by such method
WO2006027910A1 (en) * 2004-09-07 2006-03-16 Japan Exlan Company Limited Slowly moisture-absorbing and -releasing crosslinked acrylic fiber
JP4487083B2 (en) * 2008-09-10 2010-06-23 日本エクスラン工業株式会社 Cross-linked acrylate fiber and method for producing the same
JP5590341B2 (en) * 2009-07-22 2014-09-17 日本エクスラン工業株式会社 Acid dye-dyeable hygroscopic fiber and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375041A (en) * 1986-09-13 1988-04-05 ミハイル ペトロヴイツチ ズベレフ Production of anion exchange fiber
JP2006070421A (en) * 2004-08-03 2006-03-16 Japan Exlan Co Ltd Method for dyeing cross-linked acrylate fiber and textile product comprising cross-linked acrylate fiber dyed with the method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077431A (en) * 2010-09-08 2012-04-19 Japan Exlan Co Ltd Heat insulating fiber
KR101156368B1 (en) * 2010-11-25 2012-06-13 숭실대학교산학협력단 Method for manufacturing conductive acrylic fibers having high heat resistant property
WO2014188908A1 (en) * 2013-05-24 2014-11-27 日本エクスラン工業株式会社 Functional microparticles and resin product containing same
JPWO2014188908A1 (en) * 2013-05-24 2017-02-23 日本エクスラン工業株式会社 Functional fine particles and resin products containing the same

Also Published As

Publication number Publication date
JP5056358B2 (en) 2012-10-24
ES2380028A1 (en) 2012-05-08
CN101821446A (en) 2010-09-01
TWI435969B (en) 2014-05-01
TW200928045A (en) 2009-07-01
ES2380028B2 (en) 2012-12-20
KR101414364B1 (en) 2014-07-01
KR20100083156A (en) 2010-07-21
CN101821446B (en) 2013-09-11
WO2009057235A1 (en) 2009-05-07

Similar Documents

Publication Publication Date Title
JP5056358B2 (en) Dyeable cross-linked acrylate fiber, method for producing the same, and dyed cross-linked acrylate fiber obtained by dyeing the fiber
JP5590341B2 (en) Acid dye-dyeable hygroscopic fiber and method for producing the same
JP4696724B2 (en) Method for dyeing cross-linked acrylate fibers and fiber products containing cross-linked acrylate fibers dyed by the dyeing method
KR101593726B1 (en) Crosslinked acrylate-based fibers and the production thereof
JP5135120B2 (en) Modification process for cellulosic fiber materials
JP5141915B2 (en) High whiteness discoloration resistance cross-linked acrylate fiber
CN1734008A (en) Dyeing method for cross linked acrylic fiber and fiber products containing cross linked acrylic fibers dyed by such method
JP5765570B2 (en) Thermal insulation fiber
CN1239775C (en) High-whiteness hydroscopic fiber and process for its production
JP2010031434A5 (en)
CN114990911A (en) Self-crosslinking color fixing agent and preparation method thereof
JP4338574B2 (en) Colored moisture absorbing / releasing exothermic fiber and method for producing the same
JP5141914B2 (en) High whiteness discoloration-resistant cross-linked acrylate fiber and process for producing the same
JP7276703B2 (en) Dyeing method for fiber structure containing acrylonitrile/crosslinked acrylate system
JP2019085688A (en) Hygroscopic acrylonitrile-based fiber, method for producing the same and fiber structure containing the same
WO2010101182A1 (en) Moisture absorbing fiber dyeable with cationic dye, and method for producing same
JP2005336631A (en) Method for producing colored mixed yarn
JP2006342457A (en) Method for treatment of dyed polyamide and dyed product dyed thereby
JP2019060066A (en) Moisture-absorptive acrylonitrile-based fiber, production method of the fiber, and fiber structure containing the fiber
JPH0280666A (en) Production of acrylic fiber stable to fluorescence

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5056358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250