JPWO2014162675A1 - 複数の光源を有するモーションセンサ装置 - Google Patents

複数の光源を有するモーションセンサ装置 Download PDF

Info

Publication number
JPWO2014162675A1
JPWO2014162675A1 JP2015509886A JP2015509886A JPWO2014162675A1 JP WO2014162675 A1 JPWO2014162675 A1 JP WO2014162675A1 JP 2015509886 A JP2015509886 A JP 2015509886A JP 2015509886 A JP2015509886 A JP 2015509886A JP WO2014162675 A1 JPWO2014162675 A1 JP WO2014162675A1
Authority
JP
Japan
Prior art keywords
light source
image sensor
distance
imaging
motion sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015509886A
Other languages
English (en)
Other versions
JP6299983B2 (ja
Inventor
渕上 竜司
竜司 渕上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2014162675A1 publication Critical patent/JPWO2014162675A1/ja
Application granted granted Critical
Publication of JP6299983B2 publication Critical patent/JP6299983B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/62Control of parameters via user interfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Human Computer Interaction (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Studio Devices (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

本開示のモーションセンサ装置は、ある実施形態において、イメージセンサ(101)と、LED光源(102)と、LED光源(103)とを備える。LED光源(102)とLED光源(103)を同時に発光させた時にイメージセンサ(101)が取得した画像と、LED光源(103)のみを発光させた時にイメージセンサ(101)が取得した画像とを用い、被写体の輝度比から被写体までの距離を推定する。

Description

本願は、複数の光源を備えたモーションセンサ装置に関する。
特許文献1は、静止または運動中の物体(対象物)に対して複数の光源から時分割で投光し、1つのイメージセンサによって取得した複数の画像に基づいて対象物までの距離を測定する技術を開示している。
特開2001−12909号公報
上記の従来技術には、対象物の位置によっては測定された距離の精度または感度が低下するという問題がある。本開示の実施形態は、この問題を解決し得る新しいモーションセンサ装置を提供する。
本開示のモーションセンサ装置は、ある態様において、イメージセンサと、第1、第2および第3の光源を含む複数の光源であって、前記第1の光源は、前記イメージセンサから第1の方向に第1の距離だけ離れた位置に配置され、前記第2の光源は、前記イメージセンサから第2の方向に第2の距離だけ離れた位置に配置され、前記第3の光源は、前記イメージセンサから第3の方向に第3の距離だけ離れた位置に配置されている、複数の光源と、前記イメージセンサおよび前記複数の光源を制御するように構成された制御部とを備え、前記制御部は、第1の時間で前記第1の光源を発光させながら前記イメージセンサで第1のフレームの撮像を行い、第2の時間で前記第2の光源を発光させながら前記イメージセンサで第2のフレームの撮像を行い、第3の時間で前記第3の光源を発光させながら前記イメージセンサで第3のフレームの撮像を行い、かつ、前記第1から第3のフレームの撮像によって取得した複数の画像に基づいて、対象物までの距離情報を得るように構成され、かつ、前記複数の画像の少なくとも1つから得られる前記対象物の方向を示す情報と、前記複数の画像の各々から得られる前記対象物の輝度とに基づいて、前記対象物までの複数の推定距離情報を取得し、前記複数の推定距離情報から前記距離情報を決定するように構成されている。
本開示のモーションセンサ装置は、ある態様において、イメージセンサと、第1および第2の光源を含む複数の光源であって、前記第1の光源は、前記イメージセンサから第1の方向に第1の距離だけ離れた位置に配置され、前記第2の光源は、前記イメージセンサから第2の方向に第2の距離だけ離れた位置に配置されている、複数の光源と、前記イメージセンサおよび前記複数の光源を制御するように構成された制御部とを備え、前記制御部は、第1の時間で前記第1の光源を発光させながら前記イメージセンサで第1のフレームの撮像を行い、第2の時間で前記第1および第2の光源の両方を発光させながら前記イメージセンサで第2のフレームの撮像を行い、かつ前記第1および第2のフレームの撮像によって取得した複数の画像に基づいて、対象物までの推定距離情報を得るように構成されている。
本開示のモーションセンサ装置は、ある態様において、イメージセンサと、第1および第2の光源を含む複数の光源であって、前記第1の光源は、前記イメージセンサから第1の方向に第1の距離だけ離れた位置に配置され、前記第2の光源は、前記イメージセンサから第2の方向に第2の距離だけ離れた位置に配置されている、複数の光源と、前記イメージセンサおよび前記複数の光源を制御するように構成された制御部とを備え、前記制御部は、第1の時間で前記第1の光源を発光させながら前記イメージセンサで第1のフレームの撮像を行い、第2の時間で前記第2の光源を発光させながら前記イメージセンサで第2のフレームの撮像を行い、かつ前記第1および第2のフレームの撮像によって取得した複数の画像に基づいて前記対象物の方向を示す情報を取得し、かつ、前記複数の画像の各々から得られる前記対象物の輝度とに基づいて前記対象物までの第1の推定距離情報を取得し、更に、他の距離計測によって前記対象物までの第2の推定距離情報を取得し、前記第1および第2の推定距離情報に基づいて、前記対象物までの距離情報を得るように構成されている。
本開示の電子装置は、上記何れかのモーションセンサ装置と、前記モーションセンサ装置によって検出された対象物の運動に応答して表示内容を変化させるディスプレイとを備える。
本開示の集積回路は、上記何れかのモーションセンサ装置に使用される集積回路であって、前記イメージセンサおよび前記光源に接続され、露光及び発光のタイミングを制御するタイミング制御部と、撮像データを処理し、相対的に輝度の高い領域を探索する極値探索部と、前記極値探索部で探索された領域の座標と輝度を格納する座標メモリと、前記座標メモリのデータから、同一領域から異なる条件で撮影したフレームを選び出して、輝度比を用いて推定距離情報を算出する距離算出部とを備える。
本開示の距離推定方法は、上記何れかのモーションセンサ装置による距離計算方法であって、撮像フレームのデータから相対的に光強度の高い領域を選択的に選び出し、その座標と光強度を算出する極値探索ステップと、前記極値探索ステップで選び出された輝度のうち、異なる条件で撮影したフレーム同士から選び出された輝度の比を算出する輝度比算出ステップと、前記輝度比算出ステップで算出された輝度比と、前記極値探索ステップで探索された座標とを用いて、距離に換算する距離換算ステップとを含む。
本開示のコンピュータプログラムは、上記何れかのモーションセンサ装置を動作させるコンピュータプログラムであって、前記モーションセンサ装置に、撮像フレームのデータから相対的に光強度の高い領域を選択的に選び出し、その座標と光強度を算出する極値探索ステップと、前記極値探索ステップで選び出された輝度のうち、異なる条件で撮影したフレーム同士から選び出された輝度の比を算出する輝度比算出ステップと、前記輝度比算出ステップで算出された輝度比と、前記極値探索ステップで探索された座標とを用いて、距離に換算する距離換算ステップとを実行させる。
本開示のモーションセンサ装置の実施形態は、距離測定の誤りの発生を抑制することができる。
2個の光源を備えるモーションセンサ装置の断面を模式的に示す図 図1Aの装置の上面図 LED光源の放射角と相対放射強度との関係を示すグラフ LED光源の放射角を示す図 第1のLED光源102から放射された光で対象物104が照射される様子を示す図 第2のLED光源103から放射された光で対象物104が照射される様子を示す図 撮像データの1ラインの画素位置と輝度との関係を示すグラフ ある放射角における輝度比と距離との関係を示すグラフ 第1のLED光源102から放射された光で僅かに移動した対象物104が照射される様子を示す図 第2のLED光源103から放射された光で僅かに移動した対象物104が照射される様子を示す図 2個の光源を備えるモーションセンサ装置の感度領域を模式的に示す図 本開示の実施形態1における光源装置とイメージセンサの配置図 本開示の実施形態1における光源及びイメージセンサのタイミングチャート 本開示の実施形態1の配置例の上面図 本開示の実施形態1の他の配置例の上面図 本開示の実施形態1におけるモーションセンサ装置の構成図 本開示の実施形態1におけるモーションセンサ装置の構成例を示すブロック図 本開示の実施形態1における距離計算手順のフローチャート 本開示の実施形態2の光源装置とイメージセンサの配置図 本開示の実施形態2の光源及びイメージセンサのタイミングチャート 本開示の実施形態3の光源装置とイメージセンサの配置図 本開示の実施形態3の光源及びイメージセンサのタイミングチャート 本開示の実施形態3におけるモーションセンサ装置の感度領域を模式的に示す図 本開示の実施形態3の製品組み込み例を示す図 本開示の実施形態4の光源及びイメージセンサのタイミングチャート 本開示の実施形態4の光源及びイメージセンサのタイミングチャート
本開示によるモーションセンサ装置によって対象物(被写体)までの距離を測定することができる基本原理を説明する。
まず、図1Aおよび図1Bを参照する。図1Aは、モーションセンサ装置の断面を模式的に示す図であり、図1Bは、図1Aの上面図である。
図1Aおよび図1Bに示されている装置は、中央に位置するイメージセンサ101と、イメージセンサ101の両側に位置する2個のLED光源102、103とを備えている。図示されている例では、イメージセンサ101およびLED光源102、103は1個の基板100に搭載されている。イメージセンサは、多数の微細な光検知セル(フォトダイオード)が行および列状に配列された固体撮像素子であり、典型的にはCCD(Charge Coupled Device)型またはCMOS型である。
図1Aには、第1の光源102から出た光102aと第2の光源103から出た光103aとが模式的に示されている。この装置は、LED光源102、103を交互に点灯させながら、撮像を行うことにより、計測対象物体(対象物)までの距離を測定することができる。なお、「距離の測定」は、イメージセンサから対象物までの距離の推定値、あるいは、空間内の対象物の位置の推定値を求めることを含む。対象物には、例えば、人の手、指、人が持つペンなどが含まれ得る。対象物は移動してもよい。高速で移動しつつある人の指先までの距離、または指先の位置の推定値をリアルタイムで取得することができる3次元モーションセンサ装置は、コンピュータ、タブレット端末、スマートフォン、ゲーム機器、および家電機器を含む多様な電子機器の「入力デバイス」として使用され得る。
図2は、LED光源102、103の各々から出た光の放射パターン(配光特性)を表すグラフである。グラフの横軸は、図3に示されるように、放射の方向が基板100の法線方向Nに対して形成する角度θである。グラフの縦軸は、相対放射強度である。以下、放射の角度θを「放射角」と称する場合がある。なお、相対放射強度の値は、光源から特定角度の方向に離れた位置に置かれた対象物の照度(放射照度)に対応している。
図2からわかるように、LED光源102、103の各々から出た放射は、角度θが0°のとき、最も高い強度を示す。図2の例において、LED光源102、103は、その放射強度がI0×cosθで近似できるような配光特性を示している。LED光源102、103の配光特性は、図2の例に限定されない。また、LED光源102、103から出る放射は、可視光に限定されず、赤外線のように人間の視覚によって感じとれない波長域の電磁波であってもよい。本明細書では、簡単のため、光源から出る放射を単に「光」と称する場合がある。この「光」の用語は、可視光に限定されず、イメージセンサで検出可能な電磁波を広く含むものとする。
次に、上記の装置で対象物までの距離を測定する方法を説明する。
まず、図4Aおよび図4Bを参照する。図4Aには、第1のLED光源102から放射された光で対象物104が照射され、対象物104で反射された光の一部がイメージセンサ101に入射する様子が示されている。一方、図4Bには、第2のLED光源103から放射された光で対象物104が照射され、対象物104で反射された光の一部がイメージセンサ101に入射する様子が示されている。対象物104の位置は、図4Aおよび図4Bで実質的に同じであるとする。
この装置によれば、第1の時刻において、図4Aに示すように、LED光源102を点灯し、LED光源103を消灯させた状態でイメージセンサ101による第1の撮像を行う。次に、第2の時刻において、図4Bに示されるように、LED光源103を点灯し、LED光源102を消灯させた状態でイメージセンサ101による第2の撮像を行う。第1および第2の撮像の各々の期間(露光時間)は、対象物104が実質的に停止していると扱える程度に十分に短いと仮定する。
第1の撮像を行うとき、LED光源102から出た光の一部が対象物104によって反射されてイメージセンサ101に入射するため、イメージセンサ101に入射する光の強度に応じた輝度画像が得られる。同様に、第2の撮像を行うときは、LED光源103から出た光の一部が対象物104によって反射されてイメージセンサ101に入射するため、イメージセンサ101に入射する光の強度に応じた輝度画像が得られる。
第1および第2の撮像によって取得した2フレームの画像の各々に基づいて、対象物104の輝度(輝度分布または輝度像)を求めることができる。なお、本明細書における「輝度」とは、[カンデラ/m2]の単位を有する心理物理量ではなく、イメージセンサの画素ごとに定まる「相対輝度」であり、光量または放射量に相当する。各フレームの画像を構成する各画素は、受光量に応じた「輝度値」を有する。
対象物104には大きさがあるため、各画像における対象物104の像は、通常、複数の画素によって構成される。対象物104の「輝度」は、対象物104の像を構成する複数の画素の輝度値から種々の方法によって決定することができる。対象物104の像のうち、最も明るい「画素」または「画素ブロック」の輝度を対象物104の輝度とすることも可能であるし、対象物104の像を構成する全ての画素の平均輝度を対象物104の輝度とすることもできる。
図5は、上述の方法で取得した2フレームの画像の各々において、対象物104の像を横切る一本の水平ラインの輝度値を示すグラフである。横軸が画像内の特定の水平ライン上における画素位置であり、縦軸は輝度である。グラフ中の曲線301はLED光源102が点灯しているときの輝度である。一方、曲線302は、LED光源103が点灯しているときの輝度である。
図5の例では、曲線301および曲線302は、それぞれ、単峰性のピークを有している。すなわち、曲線301は、ある画素位置で極値303を示し、曲線302は、他の画素位置で極値304を示している。曲線301の極値303と曲線302の極値304との間の水平方向の座標間隔は、幅305によって示されている。輝度の曲線301、302が0よりも高い値を持つ幅306の部分は、対象物104によって反射された光によるものである。
前述したように、2フレームの間に対象物104は実質的に静止している。したがって、曲線301と曲線302との間にある相違は、LED光源102が作る放射のパターンとLED光源103が作る放射のパターンとが異なることに起因している。LED光源102から出た光が対象物104で反射されてイメージセンサ101に入射して取得される像の輝度と、LED光源103から出た光が対象物104で反射されてイメージセンサ101に入射して取得される像の輝度との比率は、LED光源102から対象物104までの距離とLED光源103から対象物104までの距離との関係に依存する。
撮影画像の輝度比から、物体の距離が計測できる。図6は、イメージセンサ101から45度の角度の方向における距離と輝度比との関係を示すグラフである。図6のグラフは、図2の特性を示すLED光源をイメージセンサ101から左右に所定の距離だけ離して配置した場合において、横軸に対象物までの相対的な距離、縦軸に輝度比を示している。横軸の「距離」は、イメージセンサ101とLED光源との距離を基準とてしており、「1」の距離は、イメージセンサ101とLED光源との距離に等しい大きさを意味している。
対象物の輝度(または照度)は、LED光源から対象物までの距離の二乗に反比例して減衰する。このため、距離に応じて輝度の比は変化する。図2に示す放射特性が既知であるため、この放射特性に基づけば、精度の高い距離の検出または推定が可能となる。
図6は、放射角θが45度のときの距離と輝度比との関係の一例であるが、異なる複数の角度について、同様に距離と輝度比との関係を事前に得ることができる。対象物の角度は、イメージセンサで取得される対象物の撮像位置に基づいて求めることができる。
図6からわかるように、対象物体とイメージセンサとの距離が概ね1より離れている場合、極値303と極値304の比から距離を計測できる。
上記の例では、放射角に応じて相対放射強度が変化する光源を用いている。しかし、この測定方法は、このような特性を有しない光源を用いても可能である。平行光線を発する光源以外であれば、光強度は3次元空間内で何らかの配光特性を示すため、そのような光源も距離測定に利用可能である。例えば、配光が等方的な「点光源」でも、対象物上の照度および輝度は、光源からの距離の2乗に反比例して減衰するため、3次元空間的に異なる輻射パターンを持つ光源と言える。
次に、図7Aおよび図7Bを参照する。これらの図は、図4Aおよび図4Bに示される位置から移動した対象物104に対する撮像を行う様子を示している。高速な撮像および距離の推定を行うことができれば、移動する対象物に対しても、前述した方法で距離の測定が可能である。光源102、103による交互の照明とイメージセンサ101による撮像を繰り返すことにより、移動する対象物104の位置を検出することができる。その結果、対象物104の位置の変化、または運動を検知することが可能になる。
本発明者によると、上述した装置では、2個のLED光源102、103の各々から対象物104までの距離が等しくなる領域において、距離の測定精度が低下することがわかった。本明細書では、このような領域を「低感度領域」と称することにする。また、図6のグラフの横軸に示す距離が1以下のとき、距離が短くなるほど輝度比が上昇するため、輝度比だけでは、対象物体までの距離が1以下の「至近距離領域」にあるのか否かを判別できない。
図8は、上記の装置による低感度領域を模式的に示す図である。図8には、距離が短すぎて発生する低感度領域504と、距離に関わらず輝度比が1に近くなることによって発生する低感度領域505とが示されている。
以下に説明する本開示の各実施形態によれば、これらの低感度領域で計測結果が不安定になることを抑制することが可能になる。
(実施形態1)
本開示によるモーションセンサ装置の第1の実施形態を説明する。本実施形態のモーションセンサ装置は、3個の光源を備える。
図9Aは、3個の光源を備えるモーションセンサ装置における光源の配置構成例を模式的に示す図である。図9Bは、このモーションセンサ装置における光源とイメージセンサの制御タイミングを示すタイムチャートである。まず、図9Aおよび図9Bを参照しながら、本実施形態の構成によれば、低感度領域で計測結果が不安定になる問題を解決できる理由を説明する。
図9Bに示される期間802、803、804は、それぞれ、LED光源102、103、104が点灯する期間に相当する。第1の露光期間805、第2の露光期間806、第3の露光期間807は、それぞれ、イメージセンサ101による第1フレーム、第2フレーム、第3フレームの撮像に対応する。図9Bのタイムチャートでは、LED光源102、103、104は、その順序で点灯しているが、点灯の順序は任意である。
通常のイメージセンサは1回の露光により1フレームの撮像を行い、得られた画像データを外部に読み出してから次のフレームの撮像を行う。すなわち、フレームごとに画像データの読み出し動作が実行される。そのようなイメージセンサによると、第nフレーム(nは整数)における露光が終了した後、第n+1のフレームの露光を開始するまでの間に、第nフレームの撮像によって得られた全部の電荷を転送して外部に出力する動作のための時間を要する。
しかし、本実施形態では、図9Bに示されるように、第1の露光期間805のあと、すぐに第2の露光期間806が始まる。第1の露光期間805において第1フレームの撮像が行われて生じた各画素の電荷は、第2の露光期間806が始まる前に記憶部に移され、その記憶部に蓄積される。また、第2の露光期間806のあと、すぐに第3の露光期間807が始まる。第2の露光期間806において第2フレームの撮像が行われて生じた各画素の電荷は、第3の露光期間807が始まる前に別の記憶部に移され、その記憶部に蓄積される。その後、これらの記憶部に蓄積されていた電荷および第3の露光期間807に発生した電荷の信号が期間Ttに読み出され、外部に出力される。
本実施形態では、第1〜第3の露光期間の各長さを「Te」とするとき、「3×Te+Tt」に等しい長さTfの逆数(1/Tf)で決まるレートで、3枚のフレーム画像のデータが読み出される。
時間Ttは、画素数にも依存するが、データ転送レートを考慮して、例えば20ミリ秒程度の大きさに設定され得る。一方、時間Teは、1ミリ秒以下の短い期間、例えば25マイクロ秒に設定され得る。3枚のフレームの撮像を短い期間内に連続して実行すれば、対象物が人の指先のように高速に移動する場合でも、距離計測を行うことが可能になる。例えば3×Teが75マイクロ秒の場合、対象物が1メートル/秒の速度で移動しても、第1〜第3の撮像中に対処物は0.075ミリメートルしか移動しない。一方、通常のフレームレート(例えば60フレーム/秒)で撮像を行えば、対象物は50ミリメートルも移動してしまう。仮に1000フレーム/秒の高速度撮影を行っても、対象物は3ミリメートルも移動する。本実施形態では、第1のフレームの開始時点から第3のフレームの終了時点までの期間を例えば3ミリ秒以下に短縮できるため、モーションセンサ装置として各種の用途に実用的である。
本実施形態では、LED光源104がイメージセンサ101の最も近くに配置されている。LED光源102およびLED光源103は、それぞれ、イメージセンサ101から見て異なる方向(異なる側)に配置されている。イメージセンサ101からLED光源102までの距離、およびLED光源103までの距離は、イメージセンサ101からLED光源104までの距離よりも長い。イメージセンサ101からLED光源102までの距離と、イメージセンサ101からLED光源LED光源103までの距離とは、相互に等しくても良いし、異なっていても良い。
LED光源102、103、104およびイメージセンサ101は、直線上に配置されている必要は無い。図10A、10Bは、LED光源102、103、104およびイメージセンサ101の配置例を示す上面図である。LED光源102、103、104は、図10Aに示されるように一直線に配置されても良いし、図10Bに示されるように非直線上に配置されても良い。
図10Aの例では、イメージセンサ101に対して2個の光源103、104は同一の方向に異なる距離だけ離れて配置されている。2個の光源102、103がイメージセンサ101から見て同一の方向に配置されている場合、イメージセンサ101から各光源102、103までの距離は異なる。一方、図10Bの例では、3個の光源102、103、104は、イメージセンサ101から見て相互に異なる方向に配置されている。このように方向が異なれば、イメージセンサ101からの各光源102、103、104までの距離は異なる必要はなく、相互に等しくてもよい。
なお、光源102、103、104の高さおよび大きさが等しい必要は無く、異なっていても良い。また、光源102、103、104の各々が、1つのLEDチップから構成されている必要はなく、複数のLEDチップを配列したLEDアレイを各光源として利用してもよい。更に、図示されていないが、各光源102、103、104にはレンズおよびフィルタなどの光学部品が配置されていてもよい。これらの事項は、他の実施形態の光源についても同様である。
第1から第3のフレームで取得された3枚の画像のうちの2枚の画像に基づいて対象物までの距離を算出する方法は、前述した通りである。3枚の画像のうちの2枚の組み合わせは3通りある。3通りの各々で低感度領域の位置が異なる。2通りまたは3通りの組み合わせに係る画像のペアを利用することにより、低感度領域の除去が可能となる。
なお、複数の光源の組み合わせに応じて低感度領域は既知である。このため、対象物の方位、推定距離、および/または輝度比に基づいて、対象物が低感度領域に位置することを判別または推定することができる。
イメージセンサ101に近い位置に配置されるLED光源104については、光度(放射強度)または光束(放射束)の値を小さくしたり、放射角度を狭く設定したりしてもよい。従って、LED光源104としては、価格の低い低出力の光源を採用できる。そのような光源を採用すれば、部品コストや消費電力の増加を抑制可能である。すなわち、本実施形態によれば、相対的に価格が低い1個のLED光源を増設するだけで、低感度領域の少ないモーションセンサ装置を実現できる。
本実施形態では、連続して3フレームの撮像が可能な、やや高価なイメージセンサを使用することにより、高速で移動する対象物までの距離、または対象物の3次元的な運動を検出することができる。計測対象である物体の移動速度が十分に低いことが想定される場合は、通常の1フレーム露光のイメージセンサを用いても良い。
次に、図11、図12および図13を参照して、本実施形態に係るモーションセンサ装置の構成および動作をより詳しく説明する。
図11は、本実施形態に係るモーションセンサ装置の構成を模式的に示す図である。この装置は、イメージセンサ101と、イメージセンサ101の撮像面に被写体像を形成するレンズ系110と、複数の光源102、103、104と、イメージセンサ101および光源102、103、104を制御するように構成された制御部1000とを備えている。イメージセンサ101および光源102〜104は、基板100上に搭載されている。制御部1000の一部または全部は、基板100上に実装されていてもよいし、他の基板上に実装されていてもよい。また、制御部1000の機能の一部が、離れた位置に置かれた装置によって実現されていてもよい。
本実施形態では、光源102、104により、イメージセンサ101のすぐ左側から右側全体の領域に位置する対象物までの距離測定が安定的に可能になる。すなわち、光源102、104による輝度比を用いるときの低感度領域は、イメージセンサ101の左側に位置している。一方、光源103、104により、イメージセンサ101のすぐ右側から左側全体の領域に位置する対象物までの距離測定が安定的に可能になる。すなわち、光源103、104による輝度比を用いるときの低感度領域は、イメージセンサ101の右側に位置している。このように、光源102、104による輝度比と、光源103、104による輝度比とを利用することにより、低感度領域を排除し、距離検出の安定度を高めることが可能になる。なお、低感度領域を排除するために有効な輝度比を得るための光源の組み合わせ方は、上記の例に限定されない。
イメージセンサ101は、画素単位で電荷をいったん蓄積しておく記憶部を有している。従って、第nフレームの撮像によって得られた画像データの読み出しを待たずに第n+1フレームの撮像が行える。イメージセンサ101内の記憶部を増やせば、3フレーム以上の連続した露光が可能である。イメージセンサ101としては、偶数/奇数ラインで別々に露光できる特殊センサであってもよい。
第1の光源102は、イメージセンサ101から第1の方向に第1の距離だけ離れた位置に配置されている。第2の光源103は、イメージセンサ101から第2の方向に第2の距離だけ離れた位置に配置されている。第3の光源104は、イメージセンサ101から第3の方向に第3の距離だけ離れた位置に配置されている。本実施形態では、第2の方向と第3の方向とは異なり、かつ、第1の距離と第2の距離とは異なっている。本実施形態における光源102、103、104は、いずれも、LED光源である。
制御部1000は、第1の時間で第1の光源102を発光させながらイメージセンサ101で第1のフレームの撮像を行い、第2の時間で第2の光源103を発光させながらイメージセンサ101で第2のフレームの撮像を行い、第3の時間で第3の光源104を発光させながらイメージセンサ101で第3のフレームの撮像を行うように構成されている。そして、制御部1000は、第1から第3のフレームの撮像によって取得した複数の画像に基づいて、対象物104までの推定距離情報を得るように構成されている。
図12は、本実施形態におけるモーションセンサ装置の構成例を示すブロック図である。
撮像装置1101は、単眼レンズ型の撮像装置であり、図11のイメージセンサ101およびレンズ系110を有する。レンズ系110は、同一光軸上に配列された複数のレンズの組であってもよい。光源装置1102は、図11の光源102、103、104を含む複数の光源を有する。
本実施形態における制御部1000は、CPU1103と半導体集積回路1104とを有している。半導体集積回路1104は、距離計算ブロック1105、画像フィルタブロック1106を有している。距離計算ブロック1105は、極値探索部1107、タイミング制御部1108、座標メモリ1109、および距離算出部1110を有している。
本実施形態における光源102、103、104は、いずれもLED光源であり、それぞれ、図2に示される放射角と相対放射強度との関係を有している。なお、本開示の実施には、各光源102、103、104が放射角に応じて相対放射強度が変化する特性を有している必要は無い。しかし、現実には、多くの光源が放射角に応じて変化する相対放射強度を有するため、本実施形態では、この点を考慮する。
本実施形態において、図12のタイミング制御部1108は、光源装置1102に対しLED光源102の点灯指示信号を出す。また、タイミング制御部1108は、撮像装置1101に対してイメージセンサ101の露光指示信号を出す。こうすることにより、光源102が点灯した状態での画像が第1のフレームで取得され、半導体集積回路1104に送られる。
続けて、タイミング制御部1108は、光源装置1102に対して光源103の点灯指示信号を出力し、撮像装置1101に対してイメージセンサ101の露光指示信号を出力する。こうすることにより、光源103が点灯した場合の画像が第2のフレームで取得され、半導体集積回路1104に送られる。
更に続けて、タイミング制御部1108は、光源装置1102に対して光源104の点灯指示信号を出力し、撮像装置1101に対してイメージセンサ101の露光指示信号を出力する。こうすることにより、光源104が点灯した場合の画像が第3のフレームで取得され、半導体集積回路1104に送られる。
半導体集積回路1104では、撮像装置1101から出力された画像フレームが、画像フィルタブロック1106で処理される。画像フィルタブロック1106は必須ではない。本実施形態では、画像処理にあたってノイズ除去フィルタなどの前処理を画像フィルタブロック1106で行う。
画像フィルタブロック1106で処理された画像は、距離計算ブロック1105に送られる。距離計算ブロック1105内では、極値探索部1107で画像が処理される。極値探索部1107で処理されるデータの1例は、前述の図5に示される通りである。図5では、撮像画像の所定ライン上の輝度が示されている。なお、図5では、2つのフレーム画像について、同一ライン上の輝度分布が示されているが、本実施形態では、3つのフレーム画像について、同一ライン上の輝度分布が得られる。言い換えると、3つのフレーム画像から、2対のフレーム画像を選択すれば、各々が図5に示されるような2つのグラフが得られる。例えば、第1フレームの画像および第2フレームの画像から、図5に示されるようなグラフを作ることができる。同様に、第2フレームの画像および第3フレームの画像からも、図5に示されるようなグラフを作ることができる。
極値探索部1107では、まず検出する物体の存在する領域を探索する。探索方法は多数存在する。例えば図5の輝度301と輝度302から輝度の極値303や304を探索するのは容易である。さらに動きに対して安定した極値がほしい場合は、一定の値以上の領域を得て、その中央値を極値とする方法もある。
次に、極値303と304を同一物体からのものとして極値同士をペアリングする。これは単に座標の近いもの同士をペアリングする簡単な方法でも良いし、予め輝度301と輝度302とを加算した値から一定輝度以上の領域として領域306などを求めておき、その範囲内で極値を探しても良い。
図5の輝度301と輝度302の差分に着目すると、差分が無いにもかかわらず輝度レベルの存在する領域があれば、それは本装置の外部に存在するシステム外の光源によるものと考えられるので、外乱要素として除外することが考えられる。コストが許せば、本システムの光源をすべて消灯した状態での撮像を行ってこれを減じても同様の効果が得られる。
極値探索部1107は検出した物体の座標と極値を出力する。座標は領域306の中心や重心とすることや、極値303と、極値304の中央を取るなどの方法が考えられる。また、輝度は極値303、304をそのまま使う方法もあるし、領域の積分値を求める方法もある。
ここでは、簡単のため、特定ラインの1次元上のデータについて説明を行なった。しかし、1次元の直線は撮像の水平ライン以外の軸であってもよいし、2次元的に相対輝度レベルの高い領域の座標と輝度を探すことも可能である。
極値探索部1107で出力された物体の座標と極値は、座標メモリ1109に格納された後、距離算出部1110に送られる。
距離算出部1110は、第1のフレーム画像から得た輝度と第2のフレーム画像から得た輝度との比に基づいて、距離を算出する。まず、物体の座標から、物体がイメージセンサ101からみてどの方位になるかを決定する。この方位は、レンズなどの光学系の特性を加味して一意に決定可能である。
次に、その方位のどの距離に物体があるかがわかれば物体の3次元位置を推定することが可能である。
前述した図6に示されるようなLED光源の配置と放射特性が各方位について得られている。図6のデータは、LED光源と物体との距離の2乗に反比例して光強度が弱まることに基づいている。また、精度を高めるために、各距離でLED光源との間に発生する角度を図2の放射特性に応じて補正している。図6に示されるデータがあれば、輝度比によって物体の距離が算出可能である。
図6のデータは、距離算出部1110で三角関数計算を用いて算出しても良い。また、予め計算や計測を行ったグラフをテーブルとして備えておき、必要に応じて補完等しながら参照する方法で計算しても良い。
距離計算ブロック1105の結果は、CPU1103に送られて3Dモーション情報として利用される。
以上の構成では、画像データに対してライン単位で処理が進行できる。このため、1パスで物体の検出が完了し、レイテンシの少ないモーションセンサ装置が実現可能である。
極値303と極値304の座標が必ずしも一致しなくとも、対象物の材質が対象領域内で概ね均一であれば、距離計算の輝度比としてこれらの極値303、304を用いることが可能である。この特性に着目し、計測単位をある程度幅を持った物体の単位でのみ行なう。本実施形態では、極値探索を先に行ない、得られた極値に対して、距離計算を行なう。こうすることにより、計算処理量の削減および高速化を実現できる。
人間の5体の状況を計測する場合、ある1ライン撮像されたデータのうち、腕や足や首という単位でその各撮像された領域の極値を求めることになる。このため、各ピクセルでなんらかの距離演算を行なう方式に比べて計算回数が飛躍的に減少する。
ここまでの処理はすべてCPUとソフトウェアプログラムのみで処理することも可能である。その場合のソフトウェアプログラムの処理フロー図を図13に示す。この処理は、極値探索ステップ1201、閾値判定ステップ1202、輝度比算出ステップ1203、距離換算ステップ1204を含む。
極値探索ステップ1201では、画像データの中から輝度値の相対的に高い領域、すなわち極値を含む領域を探索する。続けて、閾値判定ステップ1202にて極値探索ステップ1201が追跡対象とすべき物体か判定する。輝度や領域サイズが一定値以下であればノイズとみなして「物体無し」であると判定して破棄する。閾値判定ステップ1202は必須ではないが一般にロバスト性をあげるためには重要なステップである。続けて、閾値判定ステップ1202で物体ありと判定された場合、対応する極値同士をペアリングして対応付けて輝度比を算出する。続けて距離換算ステップ1204で輝度比と撮像画像位置とを用いて距離に換算する。
以上の手順を規定するプログラムを磁気記録媒体や半導体記録媒体などに格納し、CPUでプログラムを実行することでも本機能は実現できる。
極値探索ステップ1201で1度だけ画像を走査し、計算対象となる輝度値と座標をピックアップできるため、この手順を用いることで高速に計算を完了することが可能となる。
本実施形態のモーションセンサ装置は、各種の用途に応用できる。ビデオカメラに応用することにより、動画像におけるオートフォーカスを高速に制御することが可能となる。また、近距離において人間の指を個別に認識したり、遠距離において身体や人間の5体を認識したりして、ジェスチャー認識用のモーションセンサ装置としても応用可能である。
本実施形態における光源はLED光源であるが、本開示はこの例に限定されない。光強度が3次元空間的に異なる輻射パターンを持つ光源であれば、あらゆる光源が利用可能である。光源の波長は、可視光帯域に限定されず、赤外線などの帯域にあってもよい。
イメージセンサは、例えばCMOSイメージセンサおよびCCDイメージセンサであるが、これらに限定されない。また、光源の個数は4個以上であってもよいし、連続して行う撮像の回数も3回に限定されず、4回以上であってもよい。
(実施形態2)
本開示によるモーションセンサ装置の第2の実施形態を説明する。本実施形態のモーションセンサ装置は、4個の光源を備える。本実施形態の装置も、図11を参照しながら説明した前述の実施形態におけるレンズ系110および制御部1000と同様の構成を備えている。このため、これらの説明はここでは重複して行わない。
図14Aは、本実施形態に係るモーションセンサ装置における光源の配置構成の例を示す図である。図14Bは、このモーションセンサ装置における光源とイメージセンサの制御タイミングを示すタイムチャートである。
図14Bに示されるように、期間812、813、814、815は、それぞれ、LED光源102、103、104、105が点灯する期間に相当する。第1の露光期間816、第2の露光期間817、第3の露光期間818は、第4の露光期間819は、それぞれ、イメージセンサ101による第1フレーム、第2フレーム、第3フレーム、第4フレームの撮像に対応する。
図14Bのタイムチャートでは、LED光源102、103、104、105は、その順序で点灯しているが、点灯の順序は任意である。
本実施形態では、LED光源103、104がイメージセンサ101の相対的に近くに配置される。LED光源102およびLED光源103は、それぞれ、イメージセンサ101から見て異なる方向に配置されている。LED光源104およびLED光源105は、それぞれ、イメージセンサ101から見て異なる方向に配置されている。イメージセンサ101からLED光源102までの距離とLED光源103までの距離とは、相互に異なる。同様に、イメージセンサ101からLED光源104までの距離とLED光源105までの距離とは、相互に異なる。
本実施形態では、4個のLED光源を用いる。イメージセンサ101は、連続して2フレーム露光可能な性能を有する。本実施形態は、実施形態1の装置に比べて、より安価なイメージセンサで実現できる。
本実施形態では、イメージセンサ101は連続して2フレーム露光可能な性能を有するが、計測する移動物体の速度が十分遅い場合などに限定すれば、連続1フレーム露光のイメージセンサでもシステムは成立する。
本実施形態によれば、第1および第2フレームの撮像によって得た画像に基づいて輝度比を求め、前述した方法により、対象物までの距離(第1の推定距離)を求める。また、第3および第4フレームの撮像によって得た画像に基づいて輝度比を求め、前述した方法により、対象物までの距離(第2の推定距離)を求める。本実施形態では、第2フレームの撮像と第3フレームの撮像との間に電荷を転送し外部に出力する動作が行われる。このため、第1の推定距離の取得と第2の推定距離の取得との間に対象物が移動することにより、距離が比較的大きくなることがあり得る。しかし、対象物の移動速度が小さければ、第1の推定距離と第2の推定距離とは本来的に同程度になると期待される。第1の推定距離を得るときの2個の光源の配置と、第2の推定距離を得るときの2個の光源の配置とが異なるため、各光源配置による低感度領域は重複しない。従って、本実施形態によれば、複数の推定距離に基づいて、対象物までの距離の推定精度を高めることができる。
(実施形態3)
本開示によるモーションセンサ装置の第3の実施形態を説明する。本実施形態のモーションセンサ装置は、イメージセンサに対して非対称に配置された2個の光源を備える。本実施形態の装置も、図11を参照しながら説明した前述の実施形態におけるレンズ系110および制御部1000と同様の構成を備えている。これらの説明はここでは重複して行わない。
図15Aは、本実施形態に係るモーションセンサ装置における光源の配置構成の例を示す図である。図15Bは、このモーションセンサ装置における光源とイメージセンサの制御タイミングを示すタイムチャートである。
図15Aに示される例では、イメージセンサ101に対して2個の光源102、103は異なる方向に異なる距離だけ離れて配置されている。しかし、2個の光源102、103はイメージセンサ101から見て同一の方向に配置されていてもよい。2個の光源102、103がイメージセンサ101から見て同一の方向に配置されている場合、イメージセンサ101から各光源102、103までの距離は異なる。
図15Bに示されるように、期間822は、LED光源102、103の両方が点灯する期間に相当し、期間823は、LED光源103のみが点灯する期間に相当する。第1の露光期間824および第2の露光期間825は、それぞれ、イメージセンサ101による第1フレームおよび第2フレームの撮像に対応する。
本実施形態の特徴は、LED光源103が第1の露光期間824と第2の露光期間825の両者のタイミングで発光していることである。
図16は、本実施形態で発生する感度領域を示す図である。図16には、高感度領域1404および低感度領域1405が示されている。
高感度領域1404は、イメージセンサ101から遠ざかる方向に輝度比の変化が大きくなる領域である。低感度領域1405では、高感度領域1404と輝度比の変化が逆転するため、正確な距離の測定ができない領域である。
LED光源103を2つの露光期間で共に発光させることにより、図16に示される通り、低感度領域をLED光源102とLED光源103との間ではなく、LED光源103側にシフトさせることが可能となる。イメージセンサ101の撮像解像度が高い中央領域に高感度領域1404を配置させることが可能となる。
本実施形態では、2個のLED光源のみを用いる。イメージセンサ101は連続して2フレーム露光可能な性能を有する。
本実施形態では、LED光源103を2つの露光期間の両方で発光させたが、さらにLED光源を増設してこの役目を異なるLED光源で分担しても良い。分担を行うことでLED光源の放熱性という観点でメリットが出る場合もある。
本実施形態の重要な特徴は、時分割で露光を行う際の1つの露光時間において、位置の異なる光源を複数同時点灯することにある。これにより、低感度領域を移動させることができる。複数の光源の同時発光を行うことができれば、光源の個数は3個以上でもよい。
図17は、本実施形態に係るモーションセンサ装置を搭載したディスプレイ1001を示している。図17の例では、モーションセンサ装置の高感度領域が、LED光源103の右側において、イメージセンサ101を中心として形成される。このため、ディスプレイ1001の中心に向かってジェスチャー入力が行える。図17には、参考のため、ジェスチャー入力を行う手が模式的に示されている。図示されている手は、矢印の方向に移動しつつある。図16に示されているように、低感度領域1405は光源103の左側に位置する。図17に示されるディスプレイでは、画面の左端付近に光源103が配置されているため、低感度領域1405は、通常のジェスチャー入力が行われる領域の外側に位置している。
本実施形態に係るモーションセンサ装置をディスプレイなどに利用すれば、ジェスチャー入力によるチャンネルの切り替えなどのユーザーインターフェースに用いることもできる。ディスプレイは、対象物の運動に応答して表示内容を変化させる。また、人間の各部の動きを認識したダンスゲームなどへの応用も可能である。
本実施形態では、少ないLED光源数と2フレーム露光可能な性能を有するだけでよい。
図17のディスプレイには、他の実施形態に係るモーションセンサ装置を組み込んでも良い。
(実施形態4)
本開示によるモーションセンサ装置の第4の実施形態を説明する。本実施形態のモーションセンサ装置も、2個の光源を備える。本実施形態の装置も、図11を参照しながら説明した前述の実施形態におけるレンズ系110および制御部1000と同様の構成を備えている。このため、これらの説明はここでは重複して行わない。
本実施形態では、測定対象物体が低感度領域にあるか否かを判定する。
再び図8を参照する。図8に示される低感度領域505は、イメージセンサ101が取得する画像中の座標(撮像座標)から決定することが可能である。図8の例では、画像の中央に近いほど、輝度比が低下するため、信頼度が下がる。
以下、イメージセンサ101からの距離が短い低感度領域504を判定する方法の例を説明する。
前述したように、図12の極値探索部1107による探索では、極値303と極値304を求めることができる。極値303、304の各々の座標には差が存在する。これは位置の異なる光源から物体を照らした際、照らされた角度差が高輝度領域の座標差分として発生するためである。この座標差分は、そのままでも、ある程度利用可能である。この座標差分は、対象物までの距離だけでなく対象物のサイズにも依存する。そこで、領域306のサイズを用いて、座標差分を補正すると、精度の高い距離推定が可能である。具体的には、対象物の輝度を領域306のサイズで除算することにより、距離と関連の強い相関を持つ値を得ることができる。この方法によれば、イメージセンサ101に近い領域にある対象物の推定距離を得ることができる。
対象物の輝度比そのものは対象物が遠ざかるほど減衰する。このため、輝度比そのものを距離の推定に利用することも可能である。移動する物体の場合、輝度比において信頼度の高い領域に存在するときに輝度やサイズを関連付けて記録しておけば、低感度領域に移動した後でもそれらの情報で追跡が可能である。
これらの距離推定方法によって対象物が低感度領域504内にあるか否かを判定することができる。
上記の方法により、対象物が低感度領域内にあると判断されたとき、輝度比を用いた距離に「信頼度が無い」と判定することができる。
以下、信頼度の使い方を説明する。
まず、信頼度の低い距離推定データを廃棄し、低感度領域での物体追跡を停止することができる。誤った距離データが得られるより、検知除外するほうがユーザーにとって利便性が高い。
信頼度の低い距離推定データと、他の方法で取得した距離情報と重み付けを加えた上で混合したり、置換したりしてもよい。
以下、光源とイメージセンサを用いて距離情報を取得する他の方法の一例を説明する。ここでは、TOF(Time of Flight)法を用いる例を説明する。TOF法の構成方法や発光方法は多数存在する。ここでは、図18および図19を参照しながら、パルス光源を使うTOF法の1例を説明する。
図18は、LED光源の発光期間1301、物体にあたって反射してきた光のセンサ到達期間1302、イメージセンサの第1の露光時間1303、イメージセンサの第2の露光時間1304を示している。
イメージセンサから例えば1.5m離れた位置にある対象物の表面で反射されたLED光源の光が、イメージセンサのある画素に入射したとする。この場合、イメージセンサの画素に光が到達する反射光到達期間1302は、LED光源の発光期間1301から10ns遅れる。これは、光の速度が有限であるからである。
露光期間1303で露光した画素の輝度を第1の輝度、露光期間1304で露光した画素の輝度を第2の輝度とする。この場合、第2の輝度を第1の輝度で割ることにより、反射光の時間遅れを計測できる。その結果、距離の算出も可能である。
図19に示す例では、センサ露光の間隔をある程度あける。LED光源発光期間1311、1321から、それぞれ、物体にあたって反射してきた光のセンサ到達期間1312、1322はわずかに遅れる。この遅れは、対象物までの距離による。イメージセンサの第1の露光時間1313に第1の輝度が得られ、イメージセンサの第2の露光時間1323に第2の輝度が得られる。TOF法では、計測範囲の物体にとって距離が実質的に等しければ、発光期間1311で発光するLED光源と、発光期間1321で発光するLED光源とが異なるものであって構わない。したがって、このような手順で計測する限りにおいてはTOF法と、本開示の輝度比を用いた計測は同一の光源と同一のイメージセンサを用いて同じ撮像フレームで同時に行うことが可能である。
TOF距離計測は実際には、一回限りの露光では光量が不足するので、同じ操作を繰り返し、繰り返し露光量を積算させるが、そのような操作を行っても、本開示の輝度比率には影響を与えない。またTOF距離計測は近距離で精度が出ないため、本願の実施形態との組み合わせは効果的である。
本開示によるモーションセンサ装置の各実施形態によれば、距離計測の誤検出を減らし、高速動作が可能になる。本開示によれば、リアルタイムな検出が求められる3Dモーションセンサ装置を提供できる。
本開示によるモーションセンサ装置の一部の機能が有線または無線のネットワークを介して接続された他の装置によって実現されていてもよい。
本開示によるモーションセンサ装置の実施形態は、リアルタイムに物体の3次元位置を計測できる機能を有するため、表示装置などの各種電気製品の非接触ジェスチャーユーザーインターフェースの用途に有用である。車載機器として搭乗者の状態、社外の人物や障害物の検知へも応用できる。ビデオカメラのオートフォーカス等の用途にも応用できる。
101、 イメージセンサ
102、103、 LED光源
301、302 輝度
303、304 極値
305 輝度極値同士の座標差
306 領域
504、505、1405 低感度領域
802、803、804、812、813、814、815、822、823 発光期間
805、806、807、816、817、818、819、824、825 露光期間
1001 表示装置
1101 撮像装置
1102 光源装置
1103 CPU
1104 半導体集積回路
1105 距離計算ブロック
1106 画像フィルタブロック
1107 極値探索部
1109 座標メモリ
1110 距離算出部
1301、1311、1321 発光期間
1302、1312、1322 反射光到達期間
1303、1304、1313、1323 露光期間
1404 高感度領域

Claims (17)

  1. イメージセンサと、
    第1、第2および第3の光源を含む複数の光源であって、前記第1の光源は、前記イメージセンサから第1の方向に第1の距離だけ離れた位置に配置され、前記第2の光源は、前記イメージセンサから第2の方向に第2の距離だけ離れた位置に配置され、前記第3の光源は、前記イメージセンサから第3の方向に第3の距離だけ離れた位置に配置されている、複数の光源と、
    前記イメージセンサおよび前記複数の光源を制御するように構成された制御部と、
    を備え、
    前記制御部は、
    第1の時間で前記第1の光源を発光させながら前記イメージセンサで第1のフレームの撮像を行い、
    第2の時間で前記第2の光源を発光させながら前記イメージセンサで第2のフレームの撮像を行い、
    第3の時間で前記第3の光源を発光させながら前記イメージセンサで第3のフレームの撮像を行い、かつ、
    前記第1から第3のフレームの撮像によって取得した複数の画像に基づいて、対象物までの距離情報を得るように構成され、かつ、
    前記複数の画像の少なくとも1つから得られる前記対象物の方向を示す情報と、前記複数の画像の各々から得られる前記対象物の輝度とに基づいて、前記対象物までの複数の推定距離情報を取得し、
    前記複数の推定距離情報から前記距離情報を決定するように構成されている、モーションセンサ装置。
  2. 前記第2の方向と前記第3の方向とは異なり、かつ、
    前記第1の距離と前記第2の距離とは異なる、請求項1に記載のモーションセンサ装置。
  3. 前記制御部は、
    前記第1のフレームの撮像によって取得した第1の画像における前記対象物の第1の輝度、前記第2のフレームの撮像によって取得した第2の画像における前記対象物の第2の輝度、および前記第3のフレームの撮像によって取得した第3の画像における前記対象物の第3の輝度から、少なくとも2個の輝度比を求め、
    前記対象物の方向を示す前記情報と前記少なくとも2個の輝度比とに基づいて、前記複数の推定距離情報を取得するように構成されている、請求項1または2に記載のモーションセンサ装置。
  4. 前記イメージセンサは、前記第1から第3のフレームの撮像を、この順序で、連続して実行し、かつ、前記第1のフレームの開始時点から前記第3のフレームの終了時点までの期間が3ミリ秒以下になるように前記撮像を実行する、請求項1から3のいずれかに記載のモーションセンサ装置。
  5. イメージセンサと、
    第1および第2の光源を含む複数の光源であって、前記第1の光源は、前記イメージセンサから第1の方向に第1の距離だけ離れた位置に配置され、前記第2の光源は、前記イメージセンサから第2の方向に第2の距離だけ離れた位置に配置されている、複数の光源と、
    前記イメージセンサおよび前記複数の光源を制御するように構成された制御部と、
    を備え、
    前記制御部は、
    第1の時間で前記第1の光源を発光させながら前記イメージセンサで第1のフレームの撮像を行い、
    第2の時間で前記第1および第2の光源の両方を発光させながら前記イメージセンサで第2のフレームの撮像を行い、かつ
    前記第1および第2のフレームの撮像によって取得した複数の画像に基づいて、対象物までの推定距離情報を得るように構成されている、モーションセンサ装置。
  6. 前記第1および第2の方向、ならびに前記第1および第2の距離の少なくとも一方が一致しない、請求項5に記載のモーションセンサ装置。
  7. イメージセンサと、
    第1および第2の光源を含む複数の光源であって、前記第1の光源は、前記イメージセンサから第1の方向に第1の距離だけ離れた位置に配置され、前記第2の光源は、前記イメージセンサから第2の方向に第2の距離だけ離れた位置に配置されている、複数の光源と、
    前記イメージセンサおよび前記複数の光源を制御するように構成された制御部と、
    を備え、
    前記制御部は、
    第1の時間で前記第1の光源を発光させながら前記イメージセンサで第1のフレームの撮像を行い、
    第2の時間で前記第2の光源を発光させながら前記イメージセンサで第2のフレームの撮像を行い、かつ
    前記第1および第2のフレームの撮像によって取得した複数の画像に基づいて前記対象物の方向を示す情報を取得し、かつ、前記複数の画像の各々から得られる前記対象物の輝度とに基づいて前記対象物までの第1の推定距離情報を取得し、更に、他の距離計測によって前記対象物までの第2の推定距離情報を取得し、前記第1および第2の推定距離情報に基づいて、前記対象物までの距離情報を得るように構成されている、モーションセンサ装置。
  8. 前記第1および第2の方向、ならびに前記第1および第2の距離の少なくとも一方が一致しない、請求項7に記載のモーションセンサ装置。
  9. 前記制御部は、前記対象物の方向を示す前記情報を用いて、前記第1の推定距離情報の信頼度を求め、前記信頼度に応じて前記第1の推定距離情報を誤情報として廃棄するか、前記第2の推定距離情報による補正を行うように構成されている、請求項7または8に記載のモーションセンサ装置。
  10. 前記制御部は、相対的に輝度の高い領域の前記複数の画像の間における座標差を用いて前記信頼度を補正する、請求項9に記載のモーションセンサ装置。
  11. 前記制御部は、相対的に輝度の高い領域の前記複数の画像の間における座標差、前記相対的に輝度の高い領域の幅、および前記輝度の少なくとも1つに基づいて、前記第2の推定距離情報を算出する、請求項9に記載のモーションセンサ装置。
  12. 前記制御部は、前記対象物からの光の反射遅延時間に基づいて前記第2の推定距離情報を算出する、請求項9に記載のモーションセンサ装置。
  13. 前記制御部は、前記光源およびイメージセンサを用いて前記反射遅延時間を計測する、請求項12に記載のモーションセンサ装置。
  14. 請求項1から13に記載のモーションセンサ装置と、
    前記モーションセンサ装置によって検出された対象物の運動に応答して表示内容を変化させるディスプレイと、
    を備える電子装置。
  15. 請求項1から13に記載のモーションセンサ装置に使用される集積回路であって、
    前記イメージセンサおよび前記光源に接続され、露光及び発光のタイミングを制御するタイミング制御部と、
    撮像データを処理し、相対的に輝度の高い領域を探索する極値探索部と、
    前記極値探索部で探索された領域の座標と輝度を格納する座標メモリと、
    前記座標メモリのデータから、同一領域から異なる条件で撮影したフレームを選び出して、輝度比を用いて推定距離情報を算出する距離算出部と、
    を備える、集積回路。
  16. 請求項1から13に記載のモーションセンサ装置による距離計算方法であって、
    撮像フレームのデータから相対的に光強度の高い領域を選択的に選び出し、その座標と光強度を算出する極値探索ステップと、
    前記極値探索ステップで選び出された輝度のうち、異なる条件で撮影したフレーム同士から選び出された輝度の比を算出する輝度比算出ステップと、
    前記輝度比算出ステップで算出された輝度比と、前記極値探索ステップで探索された座標とを用いて、距離に換算する距離換算ステップと、
    を含む距離推定方法。
  17. 請求項1から13に記載のモーションセンサ装置を動作させるコンピュータプログラムであって、前記モーションセンサ装置に、
    撮像フレームのデータから相対的に光強度の高い領域を選択的に選び出し、その座標と光強度を算出する極値探索ステップと、
    前記極値探索ステップで選び出された輝度のうち、異なる条件で撮影したフレーム同士から選び出された輝度の比を算出する輝度比算出ステップと、
    前記輝度比算出ステップで算出された輝度比と、前記極値探索ステップで探索された座標とを用いて、距離に換算する距離換算ステップと、
    を実行させる、コンピュータプログラム。
JP2015509886A 2013-04-01 2014-03-19 複数の光源を有するモーションセンサ装置 Active JP6299983B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013075622 2013-04-01
JP2013075622 2013-04-01
PCT/JP2014/001580 WO2014162675A1 (ja) 2013-04-01 2014-03-19 複数の光源を有するモーションセンサ装置

Publications (2)

Publication Number Publication Date
JPWO2014162675A1 true JPWO2014162675A1 (ja) 2017-02-16
JP6299983B2 JP6299983B2 (ja) 2018-03-28

Family

ID=51657990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015509886A Active JP6299983B2 (ja) 2013-04-01 2014-03-19 複数の光源を有するモーションセンサ装置

Country Status (4)

Country Link
US (1) US10473461B2 (ja)
JP (1) JP6299983B2 (ja)
CN (1) CN104755874B (ja)
WO (1) WO2014162675A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9192029B2 (en) * 2013-03-14 2015-11-17 Abl Ip Holding Llc Adaptive optical distribution system
US10514256B1 (en) * 2013-05-06 2019-12-24 Amazon Technologies, Inc. Single source multi camera vision system
KR20150039019A (ko) * 2013-10-01 2015-04-09 엘지전자 주식회사 이동 단말기 및 그 제어방법
US9581696B2 (en) * 2014-12-22 2017-02-28 Google Inc. Image sensor and light source driver integrated in a same semiconductor package
US10679081B2 (en) * 2015-07-29 2020-06-09 Industrial Technology Research Institute Biometric device and wearable carrier
CN111242092A (zh) * 2015-07-29 2020-06-05 财团法人工业技术研究院 生物辨识装置与穿戴式载体
WO2017022152A1 (ja) * 2015-07-31 2017-02-09 パナソニックIpマネジメント株式会社 測距撮像装置、及び、固体撮像装置
KR102452062B1 (ko) * 2016-01-20 2022-10-11 루미리즈 홀딩 비.브이. 적응형 광원용 드라이버
EP3471399A4 (en) * 2016-06-13 2020-02-19 LG Electronics Inc. -1- NIGHT VISION DISPLAY DEVICE
CN106210556A (zh) * 2016-08-05 2016-12-07 深圳市金立通信设备有限公司 一种拍照方法及终端
EP3343246A1 (en) * 2016-12-30 2018-07-04 Xenomatix NV System for characterizing surroundings of a vehicle
US10726574B2 (en) * 2017-04-11 2020-07-28 Dolby Laboratories Licensing Corporation Passive multi-wearable-devices tracking
KR102145590B1 (ko) * 2017-07-28 2020-08-28 하태호 스마트 거리 센서 바
US11274856B2 (en) 2017-11-16 2022-03-15 Ari Peter Berman Method of deploying a heat exchanger pipe
JP7204326B2 (ja) * 2018-01-15 2023-01-16 キヤノン株式会社 情報処理装置及びその制御方法及びプログラム、並びに、車両の運転支援システム
TWI697138B (zh) * 2018-08-24 2020-06-21 三得電子股份有限公司 Led投射裝置及其控制偏斜光場角度之方法
US10507010B1 (en) * 2018-09-18 2019-12-17 Hong Min Kim Stool monitoring and health guidance apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001012909A (ja) * 1998-05-25 2001-01-19 Matsushita Electric Ind Co Ltd レンジファインダ装置及びカメラ
JP2008128815A (ja) * 2006-11-21 2008-06-05 Stanley Electric Co Ltd 遠近判定方法およびその装置
US20080231835A1 (en) * 2007-03-23 2008-09-25 Keigo Iizuka Divergence ratio distance mapping camera
WO2012063387A1 (ja) * 2010-11-10 2012-05-18 パナソニック株式会社 非接触ポジションセンシング装置及び非接触ポジションセンシング方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5764874A (en) * 1994-10-31 1998-06-09 Northeast Robotics, Inc. Imaging system utilizing both diffuse and specular reflection characteristics
JP3265449B2 (ja) 1996-01-25 2002-03-11 シャープ株式会社 測距センサ
EP1006386B1 (en) 1998-05-25 2011-05-04 Panasonic Corporation Range finder and camera
EP1037069A3 (en) * 1999-03-17 2004-01-14 Matsushita Electric Industrial Co., Ltd. Rangefinder
US6549647B1 (en) * 2000-01-07 2003-04-15 Cyberoptics Corporation Inspection system with vibration resistant video capture
JP2001318303A (ja) * 2000-05-08 2001-11-16 Olympus Optical Co Ltd カメラの測距装置
US6730913B2 (en) * 2002-02-21 2004-05-04 Ford Global Technologies, Llc Active night vision system for vehicles employing short-pulse laser illumination and a gated camera for image capture
US7148458B2 (en) * 2004-03-29 2006-12-12 Evolution Robotics, Inc. Circuit for estimating position and orientation of a mobile object
US7720554B2 (en) * 2004-03-29 2010-05-18 Evolution Robotics, Inc. Methods and apparatus for position estimation using reflected light sources
JP5190663B2 (ja) * 2007-03-27 2013-04-24 スタンレー電気株式会社 距離画像生成装置
DK1985969T3 (en) * 2007-04-26 2017-12-04 Sick Ivp Ab Method and apparatus for determining the amount of scattered light in a machine vision system
US8203709B2 (en) * 2008-09-17 2012-06-19 Fujifilm Corporation Image obtaining method and image obtaining apparatus
DE102009000810A1 (de) * 2009-02-12 2010-08-19 Robert Bosch Gmbh Vorrichtung zur Segmentierung eines Objektes in einem Bild, Videoüberwachungssystem, Verfahren und Computerprogramm
KR101668869B1 (ko) * 2009-05-29 2016-10-28 삼성전자주식회사 거리 센서, 3차원 이미지 센서 및 그 거리 산출 방법
PT2450865E (pt) * 2010-11-04 2013-04-18 Kapsch Trafficcom Ag Dispositivos e métodos de controlo móveis para veículos
JP5625866B2 (ja) 2010-12-16 2014-11-19 セイコーエプソン株式会社 光学式位置検出装置および位置検出機能付き機器
US8866064B2 (en) 2011-07-26 2014-10-21 Avago Technologies General Ip (Singapore) Pte. Ltd. Multi-directional proximity sensor
US8804122B2 (en) * 2011-09-22 2014-08-12 Brightex Bio-Photonics Llc Systems and methods for determining a surface profile using a plurality of light sources
TWI445399B (zh) * 2011-09-28 2014-07-11 Vivotek Inc 夜視攝影的曝光調整方法
JP5703255B2 (ja) * 2012-04-27 2015-04-15 株式会社東芝 画像処理装置、画像処理方法およびプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001012909A (ja) * 1998-05-25 2001-01-19 Matsushita Electric Ind Co Ltd レンジファインダ装置及びカメラ
JP2008128815A (ja) * 2006-11-21 2008-06-05 Stanley Electric Co Ltd 遠近判定方法およびその装置
US20080231835A1 (en) * 2007-03-23 2008-09-25 Keigo Iizuka Divergence ratio distance mapping camera
WO2012063387A1 (ja) * 2010-11-10 2012-05-18 パナソニック株式会社 非接触ポジションセンシング装置及び非接触ポジションセンシング方法

Also Published As

Publication number Publication date
US10473461B2 (en) 2019-11-12
US20150292884A1 (en) 2015-10-15
CN104755874A (zh) 2015-07-01
CN104755874B (zh) 2018-08-28
WO2014162675A1 (ja) 2014-10-09
JP6299983B2 (ja) 2018-03-28

Similar Documents

Publication Publication Date Title
JP6299983B2 (ja) 複数の光源を有するモーションセンサ装置
JP6302414B2 (ja) 複数の光源を有するモーションセンサ装置
JP6270808B2 (ja) 複数の光源を有するモーションセンサ装置
JP6270813B2 (ja) 複数の光源を有するモーションセンサ装置
TWI585436B (zh) 深度資訊量測方法及裝置
KR102471148B1 (ko) 주변광을 차단하는 3차원 이미징 및 깊이 측정을 위한 씨모스 이미지 센서
JP4846811B2 (ja) 光スポット位置検出装置およびそれを含む光デバイス、並びに、その光デバイスを含む電子機器
KR102481774B1 (ko) 이미지 장치 및 그것의 동작 방법
CN108351489B (zh) 具有自动对焦控制的成像设备
CN112235522B (zh) 成像方法和成像系统
US10325377B2 (en) Image depth sensing method and image depth sensing apparatus
US20210270969A1 (en) Enhanced depth mapping using visual inertial odometry
US20130088576A1 (en) Optical touch system
TWI725279B (zh) 利用雙魚眼影像計算所攝物體座標的方法及影像擷取裝置
JP2014174101A (ja) 物体検出装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161028

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180213

R151 Written notification of patent or utility model registration

Ref document number: 6299983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151