JPWO2014147739A1 - Flow control valve - Google Patents

Flow control valve Download PDF

Info

Publication number
JPWO2014147739A1
JPWO2014147739A1 JP2015506422A JP2015506422A JPWO2014147739A1 JP WO2014147739 A1 JPWO2014147739 A1 JP WO2014147739A1 JP 2015506422 A JP2015506422 A JP 2015506422A JP 2015506422 A JP2015506422 A JP 2015506422A JP WO2014147739 A1 JPWO2014147739 A1 JP WO2014147739A1
Authority
JP
Japan
Prior art keywords
spool
control
damper
chamber
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015506422A
Other languages
Japanese (ja)
Other versions
JP6143024B2 (en
Inventor
裕己 西口
裕己 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Publication of JPWO2014147739A1 publication Critical patent/JPWO2014147739A1/en
Application granted granted Critical
Publication of JP6143024B2 publication Critical patent/JP6143024B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • F16K11/07Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides
    • F16K11/0716Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides with fluid passages through the valve member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/22Hydraulic devices or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0401Valve members; Fluid interconnections therefor
    • F15B13/0402Valve members; Fluid interconnections therefor for linearly sliding valves, e.g. spool valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0401Valve members; Fluid interconnections therefor
    • F15B13/0407Means for damping the valve member movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40515Flow control characterised by the type of flow control means or valve with variable throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/46Control of flow in the return line, i.e. meter-out control

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Sliding Valves (AREA)
  • Safety Valves (AREA)

Abstract

高圧側の可変絞り12a及び低圧側の制御絞り12bを備えたボディ12と、ボディ12の内部を前記可変絞り12a及び制御絞り12bに連通する制御室12d並びにダンパ室12eに区画しボディ12内部を摺動することにより前記可変絞り12aの全体を連通させる初期状態S及び前記可変絞り12aの一部のみを連通させる制御状態Cとの間を変化可能であるスプール13と、前記ダンパ室12e内部に配され前記スプール13を初期状態側Sに付勢する付勢手段14と、前記スプール13が初期状態Sから制御状態Cに移行する際にはダンパ室12eの内部と外部との間で作動液を流通し前記スプール13が制御状態Cから初期状態Sに移行する際にはダンパ室12eの内部と外部との間を遮断する逆止弁15とを備えている流量制御弁11において、前記スプール13に、前記ダンパ室12eの内部と外部とを連通するダンパ孔13cを備えさせる。A body 12 having a variable throttle 12a on the high pressure side and a control throttle 12b on the low pressure side, and the inside of the body 12 is divided into a control chamber 12d and a damper chamber 12e communicating with the variable throttle 12a and the control throttle 12b. In the damper chamber 12e, the spool 13 can be changed between an initial state S in which the entire variable throttle 12a is communicated by sliding and a control state C in which only a part of the variable throttle 12a is communicated. And an urging means 14 for urging the spool 13 to the initial state side S, and when the spool 13 shifts from the initial state S to the control state C, the hydraulic fluid is provided between the inside and the outside of the damper chamber 12e. When the spool 13 shifts from the control state C to the initial state S, the flow rate is provided with a check valve 15 that shuts off the inside and the outside of the damper chamber 12e. In valve 11, the spool 13, equip a damper hole 13c for communicating the inside and the outside of the damper chamber 12e.

Description

本発明は、フォークリフト等の液圧機器に用いられる流量制御弁に関する。   The present invention relates to a flow control valve used in a hydraulic device such as a forklift.

従来より、フォークリフトに用いられる液圧回路において、リフトの下降時に下降速度を抑制すべく、フォークリフトの液圧シリンダに接続されるシリンダポートと作動液を貯蔵しておくためのタンクとの間に流量制御弁を設ける構成が知られている(例えば、特許文献1を参照)。   Conventionally, in a hydraulic circuit used for a forklift, in order to suppress the descending speed when the lift is lowered, the flow rate between a cylinder port connected to the hydraulic cylinder of the forklift and a tank for storing hydraulic fluid The structure which provides a control valve is known (for example, refer to patent documents 1).

このような流量制御弁として、高圧側に開口する可変絞り及び低圧側に開口する制御絞りを備えたボディと、このボディの内部を前記可変絞り及び制御絞りに連通する制御室並びにダンパ室に区画するとともにこのボディ内部を摺動することにより前記可変絞りの全体を連通させる初期状態及び前記可変絞りの一部のみを連通させる制御状態との間を変化可能であるスプールと、前記ボディのダンパ室内部に配され前記スプールを初期状態側に付勢する付勢手段と、前記スプールが初期状態から制御状態に移行する際には開弁してダンパ室の内部と外部との間の作動液の流通を許可し前記スプールが制御状態から初期状態に移行する際には閉弁してダンパ室の内部と外部との間を遮断する逆止弁とを備えている構成のものが知られている。   As such a flow control valve, a body having a variable throttle opening on the high pressure side and a control throttle opening on the low pressure side, and the inside of the body is divided into a control chamber and a damper chamber communicating with the variable throttle and the control throttle. And a spool capable of changing between an initial state in which the entire variable throttle is communicated and a control state in which only a part of the variable throttle is communicated by sliding inside the body, and a damper chamber of the body An urging means arranged inside for urging the spool toward the initial state, and when the spool shifts from the initial state to the control state, the valve is opened and the hydraulic fluid between the inside and the outside of the damper chamber is opened. A configuration is known that includes a check valve that permits circulation and closes when the spool shifts from the control state to the initial state, and shuts off the inside and outside of the damper chamber. .

すなわち、前記スプールが初期状態から制御状態に移行する際には、前記逆止弁が開弁することによりダンパ室内の作動液は速やかに排出されるので、スプールを速やかに移動させることができ、応答性が高い。   That is, when the spool shifts from the initial state to the control state, the hydraulic fluid in the damper chamber is quickly discharged by opening the check valve, so that the spool can be moved quickly, High responsiveness.

しかし制御状態から初期状態に移行する際にも、初期状態から制御状態に移行する際と同様にスプールを速やかに移動させると、ハンチングが発生する。   However, even when the control state is shifted to the initial state, hunting occurs when the spool is moved quickly as in the case of shifting from the initial state to the control state.

これを防止するため、前記スプールが制御状態から初期状態に移行する際には、前記逆止弁を閉弁させ、スプールとボディとの間の隙間を介してのみダンパ室内の作動液を排出してスプールの移動速度を低くしているため、応答性が低いという不具合が存在する。   In order to prevent this, when the spool shifts from the control state to the initial state, the check valve is closed, and the hydraulic fluid in the damper chamber is discharged only through the gap between the spool and the body. Since the moving speed of the spool is lowered, there is a problem that the responsiveness is low.

特開2000−255998号公報JP 2000-255998 A

本発明は以上の点に着目したものであり、ボディの内部をスプールが摺動可能な構成を有する流量制御弁において、ハンチングを抑制しつつ、初期状態と制御状態との間で変化する際の応答性を向上させることを所期の目的とする。   The present invention focuses on the above points, and in the flow control valve having a configuration in which the spool can slide inside the body, the hunting is suppressed and the change is made between the initial state and the control state. The intended purpose is to improve responsiveness.

以上の課題を解決すべく、本発明に係る流量制御弁は、以下に述べるような制御を行う。すなわち本発明に係る流量制御弁は、高圧側に開口する可変絞り及び低圧側に開口する制御絞りを備えたボディと、このボディの内部を前記可変絞り及び制御絞りに連通する制御室並びにダンパ室に区画するとともにこのボディ内部を摺動することにより前記可変絞りの全体を連通させる初期状態及び前記可変絞りの一部のみを連通させる制御状態との間を変化可能であるスプールと、前記ボディのダンパ室内部に配され前記スプールを初期状態側に付勢する付勢手段と、前記スプールが初期状態から制御状態に移行する際には開弁してダンパ室の内部と外部との間の作動液の流通を許可し前記スプールが制御状態から初期状態に移行する際には閉弁してダンパ室の内部と外部との間を遮断する逆止弁とを備えている流量制御弁であって、前記スプールが、前記ダンパ室の内部と外部とを連通するダンパ孔を備えている。   In order to solve the above problems, the flow control valve according to the present invention performs the following control. That is, a flow control valve according to the present invention includes a body having a variable throttle that opens to a high pressure side and a control throttle that opens to a low pressure side, and a control chamber and a damper chamber that communicate the interior of the body with the variable throttle and the control throttle. And a spool that can change between an initial state in which the entire variable throttle is communicated and a control state in which only a part of the variable throttle is communicated by sliding inside the body, An urging means arranged in the damper chamber for urging the spool toward the initial state, and when the spool shifts from the initial state to the control state, the valve is opened to operate between the inside and the outside of the damper chamber. A flow rate control valve comprising a check valve that permits flow of liquid and closes when the spool transitions from a controlled state to an initial state and shuts off the interior and exterior of the damper chamber. ,Previous Spool, and a damper hole communicating the inside and the outside of the damper chamber.

このようなものであれば、前記スプールが制御状態から初期状態に移行する際には、前記ダンパ孔を介してダンパ室内の作動液が排出されるので、ハンチングを抑制しつつ、従来の構成と比較してスプールの移動速度を高めて応答性の向上を図ることができる。   If this is the case, when the spool shifts from the control state to the initial state, the hydraulic fluid in the damper chamber is discharged through the damper hole. In comparison, the moving speed of the spool can be increased to improve the responsiveness.

また前記スプール位置によってダンパ作用の大きさを変化させるためには、高圧側に開口する可変絞りの開口量の変化につれて前記ダンパ孔の開口量を変化させることが可能であるものが望ましい。   Further, in order to change the magnitude of the damper action depending on the spool position, it is desirable that the opening amount of the damper hole can be changed as the opening amount of the variable throttle opening to the high pressure side changes.

本発明によれば、ボディの内部をスプールが摺動可能な構成を有する流量制御弁において、ハンチングを抑制しつつ、初期状態と制御状態との間で変化する際の応答性を向上させることができる。   According to the present invention, in a flow control valve having a configuration in which a spool can slide inside a body, responsiveness when changing between an initial state and a control state can be improved while suppressing hunting. it can.

本発明の一実施形態に係る液圧回路を示す概略図。Schematic which shows the hydraulic circuit which concerns on one Embodiment of this invention. 同実施形態に係る流量制御弁を示す概略図。Schematic which shows the flow control valve concerning the embodiment. 同実施形態に係る作用説明図。Action | operation explanatory drawing which concerns on the same embodiment. 同実施形態に係る作用説明図。Action | operation explanatory drawing which concerns on the same embodiment. 本発明の他の実施形態に係る流量制御弁を示す概略図。Schematic which shows the flow control valve which concerns on other embodiment of this invention. 本発明の他の実施形態に係る流量制御弁を示す概略図。Schematic which shows the flow control valve which concerns on other embodiment of this invention.

以下、本発明の一実施形態を、図1〜図4を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

本実施形態の液圧回路を構成する流体制御弁は、図1に示すように、図示しないポンプ等の液圧供給源から供給される作動液を吸入する吸入ポート3、及び図示しないタンクに作動液を排出する排出ポート4が接続されるスリーブ5、このスリーブ5に連通し本発明の流量制御弁11を配した中間室6、この中間室6に連通しリフトシリンダCへ作動液を送出するシリンダポート7、これら中間室6とシリンダポート7との間に設けられこれらの間の流路を開閉するとともに内部に背圧室8aを有するリフトロックポペット8、このリフトロックポペット8の背圧室8aと前記中間室6とを接続するパイロット通路9、及びこのパイロット通路9中に設けられ該パイロット通路9中の作動液の流れを許可又は遮断する電磁ソレノイド弁10を内部に備えた弁本体1と、前記スリーブ5に進退可能に組み込まれシリンダポート7と吸入ポート3とを連通させて作動液の流路を形成する上昇位置、シリンダポート7と排出ポート4とを連通させて作動液の流路を形成する下降位置、及びこれらポート間の流路を遮断する中立位置を選択的にとることが可能なスプール2とを具備する。   As shown in FIG. 1, the fluid control valve constituting the hydraulic circuit of the present embodiment operates on a suction port 3 for sucking hydraulic fluid supplied from a hydraulic pressure supply source such as a pump (not shown) and a tank (not shown). A sleeve 5 to which a discharge port 4 for discharging liquid is connected, an intermediate chamber 6 that communicates with the sleeve 5 and a flow control valve 11 of the present invention is disposed, communicates with the intermediate chamber 6 and sends hydraulic fluid to the lift cylinder C. Cylinder port 7, a lift lock poppet 8 provided between these intermediate chamber 6 and cylinder port 7, which opens and closes a flow path between them and has a back pressure chamber 8 a inside, and a back pressure chamber of this lift lock poppet 8 A pilot passage 9 connecting 8a and the intermediate chamber 6, and an electromagnetic solenoid valve 10 provided in the pilot passage 9 for permitting or blocking the flow of hydraulic fluid in the pilot passage 9. The valve body 1 provided in the section, the ascending position which is incorporated in the sleeve 5 so as to be able to advance and retract, and which connects the cylinder port 7 and the suction port 3 to form the flow path of the hydraulic fluid, the cylinder port 7 and the discharge port 4 A spool 2 is provided which can selectively take a lowered position where a fluid flow path is formed in communication and a neutral position where the flow path between these ports is blocked.

ここで、前記スプール2が、中立位置から図1の矢印X方向に移動して下降位置に達すると、前記リフトロックポペット8の背圧室8a内から作動液が前記中間室6及び排出ポート4を経てタンクに導かれるので、リフトシリンダCからシリンダポート7に導かれる作動液圧が前記背圧室8a内の作動液圧より高くなり、この差圧により前記リフトロックポペット8が開弁する。そして、作動液は、シリンダポート7前記中間室6に配した流量制御弁11を通過して、排出ポート4を経てタンクに導かれる。   Here, when the spool 2 moves from the neutral position in the direction of the arrow X in FIG. 1 and reaches the lowered position, hydraulic fluid flows from the back pressure chamber 8 a of the lift lock poppet 8 into the intermediate chamber 6 and the discharge port 4. Thus, the hydraulic fluid pressure guided from the lift cylinder C to the cylinder port 7 becomes higher than the hydraulic fluid pressure in the back pressure chamber 8a, and the lift lock poppet 8 is opened by this differential pressure. Then, the hydraulic fluid passes through the flow rate control valve 11 disposed in the intermediate port 6 of the cylinder port 7 and is guided to the tank through the discharge port 4.

ここで、前記中間室は、前記シリンダポート7に連通する高圧室6aと、前記排出ポート4に連通する低圧室6bとを有する。前記流量制御弁11は、これら高圧室6aと低圧室6bとに跨るように配され、前記高圧室6aから低圧室6bへの作動液の流量を制御する。   Here, the intermediate chamber has a high pressure chamber 6 a communicating with the cylinder port 7 and a low pressure chamber 6 b communicating with the discharge port 4. The flow control valve 11 is disposed so as to straddle the high pressure chamber 6a and the low pressure chamber 6b, and controls the flow rate of the working fluid from the high pressure chamber 6a to the low pressure chamber 6b.

より具体的には、前記流量制御弁11は、図2〜図4に示すように、高圧室6aに開口する可変絞り12a及び低圧室6bに開口する制御絞り12bを備えたボディ12と、このボディ12の内部を前記可変絞り12a及び制御絞り12bに連通する制御室12d並びにダンパ室12eに区画するとともにこのボディ12内部を摺動することにより前記可変絞り12aの全体を連通させる図2に示す初期状態S及び前記可変絞り12aの一部のみを連通させる図3及び図4に示す制御状態Cとの間を変化可能であるスプール13と、前記ボディ12のダンパ室12e内部に配され前記スプール13を初期状態S側に付勢する付勢手段14と、前記スプール13が初期状態Sから制御状態Cに移行する際には開弁してダンパ室12eの内部と外部との間の作動液の流通を許可し前記スプール13が制御状態Cから初期状態Sに移行する際には閉弁してダンパ室12eの内部と外部との間を遮断する逆止弁15とを備えている。   More specifically, as shown in FIGS. 2 to 4, the flow control valve 11 includes a body 12 having a variable throttle 12a that opens to the high pressure chamber 6a and a control throttle 12b that opens to the low pressure chamber 6b. The inside of the body 12 is divided into a control chamber 12d and a damper chamber 12e communicating with the variable throttle 12a and the control throttle 12b, and the entire variable throttle 12a is communicated by sliding inside the body 12 as shown in FIG. A spool 13 that can change between an initial state S and a control state C shown in FIGS. 3 and 4 in which only a part of the variable throttle 12a is communicated, and the spool disposed inside the damper chamber 12e of the body 12. Urging means 14 for urging 13 toward the initial state S, and when the spool 13 shifts from the initial state S to the control state C, the valve 13 is opened to open the inside and outside of the damper chamber 12e. A check valve 15 that closes when the spool 13 shifts from the control state C to the initial state S and shuts off between the inside and the outside of the damper chamber 12e. It has.

さらに詳述すると、前記ボディ12は、図2〜図4に示すように、流体制御弁の弁本体1に固定され、前記可変絞り12a、前記制御絞り12b及び排出ポート4に連通するドレン孔12cを開口させてなる。また、このボディ12により、前記高圧室6aと前記低圧室6bとが区画されている。   More specifically, as shown in FIGS. 2 to 4, the body 12 is fixed to the valve body 1 of the fluid control valve and is connected to the variable throttle 12 a, the control throttle 12 b, and the discharge port 4. Open. The high pressure chamber 6a and the low pressure chamber 6b are partitioned by the body 12.

前記スプール13は、図2〜図4に示すように、前記可変絞り12aと前記制御絞り12bとを連通させるための制御室12dを形成するための溝を備えたスプール本体13aと、このスプール本体13aから延伸し初期状態Sにおいて前記ドレン孔12cを閉塞するドレン孔閉塞部13bとを備えている。また、前記スプール本体13aは、可変絞り12aから流入する作動液の液量が多くなると、制御室12dの作動液圧が、低圧室6bに連通するダンパ室12eより高くなるため、ボディ12内を摺動して図3及び図4に示す制御状態Cに移行する。制御状態Cにある前記スプール本体13aは、前記可変絞り12aの一部を閉塞する。すなわち、このスプール本体13aと前記可変絞り12aとが協働して高圧室6aから低圧室6bへの作動液の流量を制御するための制御絞りとして機能する。そして、ボディ12内空間のスプール本体13aより低圧側は、ダンパ室12eとして区画される。前記ドレン孔閉塞部13bは、前記ダンパ室12eの内部と外部とを連通するダンパ孔13cを備えている。このダンパ孔13cは前記ドレン孔12cと重なり合っており、このダンパ孔13c及び前記ドレン孔12cを経たダンパ室12eと低圧室6bとの間の作動液の流出入が可能である。   As shown in FIGS. 2 to 4, the spool 13 includes a spool body 13a having a groove for forming a control chamber 12d for communicating the variable throttle 12a and the control throttle 12b, and the spool body. A drain hole closing portion 13b that extends from 13a and closes the drain hole 12c in the initial state S. In addition, when the amount of hydraulic fluid flowing from the variable throttle 12a increases, the hydraulic pressure in the control chamber 12d becomes higher in the spool body 13a than in the damper chamber 12e communicating with the low pressure chamber 6b. It slides and it transfers to the control state C shown in FIG.3 and FIG.4. The spool body 13a in the control state C closes a part of the variable throttle 12a. That is, the spool body 13a and the variable throttle 12a cooperate to function as a control throttle for controlling the flow rate of the hydraulic fluid from the high pressure chamber 6a to the low pressure chamber 6b. The lower pressure side of the inner space of the body 12 than the spool body 13a is partitioned as a damper chamber 12e. The drain hole closing portion 13b includes a damper hole 13c that communicates the inside and the outside of the damper chamber 12e. The damper hole 13c overlaps the drain hole 12c, and hydraulic fluid can flow in and out between the damper chamber 12e and the low pressure chamber 6b through the damper hole 13c and the drain hole 12c.

前記付勢手段14は、図2〜図4に示すように、前述したようにボディ12のダンパ室12e内部に配され、逆止弁体15bを介しスプール13を押し付けているコイルばねである。   As shown in FIGS. 2 to 4, the urging means 14 is a coil spring that is disposed inside the damper chamber 12 e of the body 12 and presses the spool 13 via the check valve body 15 b as described above.

前記逆止弁15は、図2〜図4に示すように、前記スプール13のスプール本体13aより低圧側に固定されスプール本体13aとの間で弁体可動空間を形成している逆止弁座15aと、この弁体可動空間内に配され、前記弁座に着座可能な逆止弁体15bとを有する。前記逆止弁体15bは、前記スプール13が初期状態Sから制御状態Cに移行する際には逆止弁座15aから離間した開弁位置Qをとってこの逆止弁15を開弁し、ダンパ室12eの内部と外部との間の作動液の流通を許可するとともに、前記スプール13が制御状態Cから初期状態Sに移行する際には逆止弁座15aに着座した閉弁位置Pをとってこの逆止弁15を閉弁し、ダンパ室12eの内部と外部との間を遮断する。   As shown in FIGS. 2 to 4, the check valve 15 is fixed on the low pressure side of the spool body 13a of the spool 13 and forms a valve body movable space with the spool body 13a. 15a and a check valve body 15b disposed in the valve body movable space and seatable on the valve seat. When the spool 13 shifts from the initial state S to the control state C, the check valve body 15b takes the valve opening position Q separated from the check valve seat 15a and opens the check valve 15. The flow of the hydraulic fluid between the inside and the outside of the damper chamber 12e is permitted, and when the spool 13 shifts from the control state C to the initial state S, the valve closing position P seated on the check valve seat 15a is set. As a result, the check valve 15 is closed to shut off the inside and outside of the damper chamber 12e.

ここで、前記流体制御弁のスプール2が下降位置をとる場合の、前記流量制御弁11の各部の作用を述べる。   Here, the operation of each part of the flow control valve 11 when the spool 2 of the fluid control valve takes the lowered position will be described.

リフトに荷物が積載されていない場合シリンダポート7にかかる圧力が低く、制御絞り12bを通過する液量も少ない。そのため制御室12d及びダンパ室12eの作動液圧差も少なく、スプール13は図2に示す初期状態Sに保たれる。すなわち、可変絞り12aはその全体が制御室12dに連通し、作動液は同図の矢印Yのように高圧室6aから可変絞り12a、制御室12d及び制御絞り12bを経て低圧室6bに導かれる。   When no load is loaded on the lift, the pressure applied to the cylinder port 7 is low, and the amount of liquid passing through the control throttle 12b is small. Therefore, the hydraulic fluid pressure difference between the control chamber 12d and the damper chamber 12e is small, and the spool 13 is maintained in the initial state S shown in FIG. That is, the entire variable throttle 12a communicates with the control chamber 12d, and the working fluid is guided from the high pressure chamber 6a to the low pressure chamber 6b through the variable throttle 12a, the control chamber 12d, and the control throttle 12b as shown by the arrow Y in FIG. .

その後、リフトに荷物が積載された状態、すなわち負荷状態でリフトを再度下降させると、シリンダポート7にかかる作動液圧が上昇しているため、制御絞り12bを通過する液量も増加しようとする。しかしその流量によって制御室12d及びダンパ室12eの圧力差も増加するため、図3に示すように、スプール13が付勢手段14による付勢力に打ち勝って制御状態Cとなるよう移動する。このとき、可変絞り12aの一部がスプール13により閉塞され、制御室12dに導入される液量の増加が抑制される。また、逆止弁15の逆止弁座15aはスプール13と一体的に移動する一方、逆止弁15の逆止弁体15bはスプール本体13aに衝き当たるまで移動せず、開弁位置Qをとる。すなわち、ダンパ室12e内の作動液は、同図の矢印Aに示すように、逆止弁15の逆止弁座15a内を通過してドレン孔12cに導かれる。   After that, when the load is loaded on the lift, that is, when the lift is lowered again in the loaded state, the hydraulic fluid pressure applied to the cylinder port 7 is increased, so that the amount of fluid passing through the control throttle 12b is also increased. . However, since the pressure difference between the control chamber 12d and the damper chamber 12e also increases due to the flow rate, the spool 13 moves so as to overcome the urging force by the urging means 14 and enter the control state C as shown in FIG. At this time, a part of the variable throttle 12a is closed by the spool 13, and an increase in the amount of liquid introduced into the control chamber 12d is suppressed. Further, the check valve seat 15a of the check valve 15 moves integrally with the spool 13, while the check valve body 15b of the check valve 15 does not move until it hits the spool body 13a, and the valve opening position Q is changed. Take. That is, the hydraulic fluid in the damper chamber 12e passes through the check valve seat 15a of the check valve 15 and is guided to the drain hole 12c, as indicated by an arrow A in FIG.

さらに、リフトの荷物が取り除かれた状態でリフトを再度下降させると、シリンダポート7に導入される作動液圧が下降し、制御絞り12bを通過する液量も少ない。そのため制御室12d及びダンパ室12eの作動液圧差も少なくなるため、スプール13が付勢手段14による付勢力により初期状態Sとなるよう移動する。このとき、図4に示すように、逆止弁15の逆止弁体15bは逆止弁座15aに着座する閉弁位置Pをとる。その一方で、スプール13のダンパ孔13cと前記ドレン孔12cとは重なりあっているので、同図の矢印Bに示すように、このダンパ孔13cを経てダンパ室12eに作動液が導入される。ここで、ダンパ室12eに導入される作動液の流量は、スプール13のドレン孔閉塞部13bとボディ12との隙間のみを経てダンパ室12eに作動液が導入される従来の態様のものよりも大きい。   Further, when the lift is lowered again with the lift luggage removed, the hydraulic fluid pressure introduced into the cylinder port 7 falls, and the amount of fluid passing through the control throttle 12b is small. Therefore, the hydraulic fluid pressure difference between the control chamber 12d and the damper chamber 12e is also reduced, and the spool 13 is moved to the initial state S by the urging force of the urging means 14. At this time, as shown in FIG. 4, the check valve body 15b of the check valve 15 takes the valve closing position P where the check valve seat 15a is seated. On the other hand, since the damper hole 13c of the spool 13 and the drain hole 12c are overlapped with each other, the working fluid is introduced into the damper chamber 12e through the damper hole 13c as shown by an arrow B in FIG. Here, the flow rate of the hydraulic fluid introduced into the damper chamber 12e is higher than that of the conventional mode in which the hydraulic fluid is introduced into the damper chamber 12e only through the gap between the drain hole blocking portion 13b of the spool 13 and the body 12. large.

すなわち、本実施形態の構成によれば、前記スプール13が制御状態Cから初期状態Sに移行する際には、前記ダンパ孔13cを介してダンパ室12e内の作動液が排出されるので、ハンチングを抑制しつつ、従来の構成と比較してスプール13の移動速度を高めて応答性の向上を図ることができる。   That is, according to the configuration of the present embodiment, when the spool 13 shifts from the control state C to the initial state S, the hydraulic fluid in the damper chamber 12e is discharged through the damper hole 13c. As a result, it is possible to increase the moving speed of the spool 13 and improve the response as compared with the conventional configuration.

なお、本発明は上述した実施形態に限らず、種々に変形してよい。   The present invention is not limited to the above-described embodiment, and various modifications may be made.

例えば、ダンパ孔は複数設けるようにしても良い。具体的には、図5に示すように、第1〜第3のダンパ孔A13c〜A13eを3個並列させて設ける態様の流量制御弁A11を備えさせることが考えられる。この態様では、以下に述べる点以外上述した実施態様と同様の構成を有するので、上述した実施形態におけるものと同一の名称及び先頭にAを付した符号を付し、詳細な説明は省略する。この態様では、制御室A12d寄りから順に第1のダンパ孔A13c、第2のダンパ孔A13d及び第3のダンパ孔A13eをそれぞれ設けていて、スプール本体A13aが初期状態にある状態ではこれら第1〜第3のダンパ孔A13c〜A13eが全てドレン孔A12cに連通している。スプール本体A13aが初期状態から制御状態に移行する際には、まず第3のダンパ孔A13eとドレン孔A12cとが重なり合った状態が解消されて第1及び第2のダンパ孔A13c、A13dのみがドレン孔A12cに連通した状態に移行し、さらに第2のダンパ孔A13dとドレン孔A12cとが重なり合った状態も解消されて第1のダンパ孔A13cのみがドレン孔A12cに連通した状態に移行する。すなわち、スプール本体A13aが制御状態から初期状態に移行する際には、当初は図5の(a)に示すように第1のダンパ孔A13cのみがドレン孔A12cに連通しているのでダンパ作用が強く働くが、スプール本体A13aが初期状態側に移動するにつれて同図の(b)に示すように第1、第2のダンパ孔A13c、A13dがドレン孔A12cに連通した状態を経て同図の(c)に示すように第1〜第3のダンパ孔A13c〜A13eが順次ドレン孔A12cに連通した状態となり、ダンパ作用が弱くなる。従って、スプールA13が初期状態側に速く移動できるようになる。   For example, a plurality of damper holes may be provided. Specifically, as shown in FIG. 5, it is conceivable to include a flow rate control valve A11 having a configuration in which three first to third damper holes A13c to A13e are provided in parallel. Since this aspect has the same configuration as that of the above-described embodiment except for the points described below, the same name as in the above-described embodiment and the reference symbol with A added thereto are attached, and detailed description is omitted. In this aspect, the first damper hole A13c, the second damper hole A13d, and the third damper hole A13e are provided in order from the control chamber A12d side, and in the state where the spool main body A13a is in the initial state, The third damper holes A13c to A13e are all in communication with the drain hole A12c. When the spool body A13a shifts from the initial state to the control state, the state in which the third damper hole A13e and the drain hole A12c overlap each other is eliminated, and only the first and second damper holes A13c and A13d are drained. The state where the second damper hole A13d and the drain hole A12c are overlapped is eliminated, and only the first damper hole A13c is shifted to the state where the second damper hole A13c is communicated with the drain hole A12c. That is, when the spool body A13a shifts from the control state to the initial state, initially, only the first damper hole A13c communicates with the drain hole A12c as shown in FIG. Although it works strongly, the first and second damper holes A13c and A13d are in communication with the drain hole A12c as shown in FIG. As shown in c), the first to third damper holes A13c to A13e are sequentially communicated with the drain hole A12c, and the damper action is weakened. Therefore, the spool A13 can move quickly toward the initial state.

また、図6に示すように、径が異なる第1及び第2のダンパ孔B13c、B13dを複数並列させて設ける態様の流量制御弁B11を備えさせることも考えられる。この態様では、以下に述べる点以外上述した実施態様と同様の構成を有するので、上述した実施形態におけるものと同一の名称及び先頭にBを付した符号を付し、詳細な説明は省略する。この態様では、制御室B12d寄りから順に、径が小さな第1のダンパ孔B13cと、径が大きな第2のダンパ孔B13dとを設けていて、スプール本体B13aが初期状態にある状態ではこれら第1及び第2のダンパ孔B13c、B13dが全てドレン孔B12cに連通している。スプール本体B13aが初期状態から制御状態に移行すると、第2のダンパ孔B13dとドレン孔B12cとが重なり合った状態が解消されて第1のダンパ孔B13cのみがドレン孔B12cに連通した状態に移行する。すなわち、スプール本体B13aが制御状態から初期状態に移行する際には、当初は図6の(a)に示すように第1のダンパ孔B13cのみがドレン孔B12cに連通しているのでダンパ作用が強く働くが、スプール本体B13aが初期状態側に移動するにつれて径が大きな第2のダンパ孔B13dがドレン孔B12cに連通し、ダンパ作用が弱くなってスプールB13が初期状態に速く移動できるようになる。   Moreover, as shown in FIG. 6, it is also conceivable to include a flow control valve B11 having a mode in which a plurality of first and second damper holes B13c and B13d having different diameters are provided in parallel. Since this aspect has the same configuration as that of the above-described embodiment except for the points described below, the same name as in the above-described embodiment and the reference numeral with a leading B are attached, and detailed description is omitted. In this aspect, a first damper hole B13c having a small diameter and a second damper hole B13d having a large diameter are provided in order from the control chamber B12d, and these first ones are in a state where the spool body B13a is in an initial state. The second damper holes B13c and B13d are all in communication with the drain hole B12c. When the spool main body B13a shifts from the initial state to the control state, the state in which the second damper hole B13d and the drain hole B12c are overlapped is eliminated, and only the first damper hole B13c shifts to the state in which the drain hole B12c communicates. . That is, when the spool body B13a shifts from the control state to the initial state, initially, only the first damper hole B13c communicates with the drain hole B12c as shown in FIG. Although it works strongly, the second damper hole B13d having a larger diameter communicates with the drain hole B12c as the spool body B13a moves to the initial state side, and the damper action is weakened so that the spool B13 can quickly move to the initial state. .

すなわち応答性を任意に設定可能で、ハンチングも防止できる流量制御弁とすることができる。   That is, it is possible to set the flow rate control valve that can arbitrarily set responsiveness and prevent hunting.

その他、本発明の趣旨を損ねない範囲で種々に変形してよい。   In addition, various modifications may be made without departing from the spirit of the present invention.

本発明の構成を採用すれば、ボディの内部をスプールが摺動可能な構成を有する流量制御弁において、ハンチングを抑制しつつ、初期状態と制御状態との間で変化する際の応答性を向上させることができる構成を実現できる。   Adopting the configuration of the present invention improves the responsiveness when changing between the initial state and the control state while suppressing hunting in the flow control valve having a configuration in which the spool can slide inside the body. The structure which can be made is realizable.

11、A11、B11…流量制御弁
12、A12、B12…ボディ
12a、A12a、B12a…可変絞り
12b、A12b、B12b…制御絞り
12d、A12d、B12d…制御室
12e、A12e、B12e…ダンパ室
13、A13、B13…スプール
13c、A13c〜A13e、B13c〜B13d…ダンパ孔
14、A14、B14…付勢手段
15、A15、B15…逆止弁
11, A11, B11 ... Flow control valve 12, A12, B12 ... Body 12a, A12a, B12a ... Variable throttle 12b, A12b, B12b ... Control throttle 12d, A12d, B12d ... Control chamber 12e, A12e, B12e ... Damper chamber 13, A13, B13 ... Spool 13c, A13c-A13e, B13c-B13d ... Damper hole 14, A14, B14 ... Energizing means 15, A15, B15 ... Check valve

以上の課題を解決すべく、本発明に係る流量制御弁は、以下に述べるような制御を行う。すなわち本発明に係る流量制御弁は、高圧側に開口する可変絞り及び低圧側に開口する制御絞りを備えたボディと、このボディの内部を前記可変絞り及び制御絞りに連通する制御室並びにダンパ室に区画するとともにこのボディ内部を摺動することにより前記可変絞りの全体を連通させる初期状態及び前記可変絞りの一部のみを連通させる制御状態との間を変化可能であるスプールと、前記ボディのダンパ室内部に配され前記スプールを初期状態側に付勢する付勢手段と、前記スプールが初期状態から制御状態に移行する際には開弁してダンパ室の内部と外部との間の作動液の流通を許可し前記スプールが制御状態から初期状態に移行する際には閉弁してダンパ室の内部と外部との間を遮断する逆止弁とを備えている流量制御弁であって、前記スプールが制御状態から初期状態に移行する際に前記ダンパ室内に作動液が導入されるように、前記スプールが、前記ダンパ室の内部と外部とを連通するダンパ孔を備えたものであるIn order to solve the above problems, the flow control valve according to the present invention performs the following control. That is, a flow control valve according to the present invention includes a body having a variable throttle that opens to a high pressure side and a control throttle that opens to a low pressure side, and a control chamber and a damper chamber that communicate the interior of the body with the variable throttle and the control throttle. And a spool that can change between an initial state in which the entire variable throttle is communicated and a control state in which only a part of the variable throttle is communicated by sliding inside the body, An urging means arranged in the damper chamber for urging the spool toward the initial state, and when the spool shifts from the initial state to the control state, the valve is opened to operate between the inside and the outside of the damper chamber. A flow rate control valve comprising a check valve that permits flow of liquid and closes when the spool transitions from a controlled state to an initial state and shuts off the interior and exterior of the damper chamber. , before As hydraulic fluid in the damper chamber is introduced when the spool moves to the initial state from the control state, the spool, in which with a damper hole communicating the inside and the outside of the damper chamber.

このようなものであれば、前記スプールが制御状態から初期状態に移行する際には、前記ダンパ孔を介してダンパ室内作動液が導入されるので、ハンチングを抑制しつつ、従来の構成と比較してスプールの移動速度を高めて応答性の向上を図ることができる。 If this is the case, when the spool shifts from the control state to the initial state , the hydraulic fluid is introduced into the damper chamber through the damper hole, so that the hunting is suppressed and the conventional configuration is reduced. In comparison, the moving speed of the spool can be increased to improve the responsiveness.

また、高圧側に開口する可変絞り及び低圧側に開口する制御絞りを備えたボディと、このボディの内部を前記可変絞り及び制御絞りに連通する制御室並びにダンパ室に区画するとともにこのボディ内部を摺動することにより前記可変絞りの全体を連通させる初期状態及び前記可変絞りの一部のみを連通させる制御状態との間を変化可能であるスプールと、前記ボディのダンパ室内部に配され前記スプールを初期状態側に付勢する付勢手段と、前記スプールが初期状態から制御状態に移行する際には開弁してダンパ室の内部と外部との間の作動液の流通を許可し前記スプールが制御状態から初期状態に移行する際には閉弁してダンパ室の内部と外部との間を遮断する逆止弁とを備え、前記スプールが、前記ダンパ室の内部と外部とを連通するダンパ孔を備えている流量制御弁であって、高圧側に開口する可変絞りの開口量の変化につれて前記ダンパ孔の開口量を変化させることが可能であるものならば、前段で述べた効果に加えて、前記スプール位置によってダンパ作用の大きさを変化させることもできるという効果も得られるIn addition , the body is provided with a variable throttle that opens to the high-pressure side and a control throttle that opens to the low-pressure side, and the inside of the body is divided into a control chamber and a damper chamber that communicate with the variable throttle and the control throttle. A spool capable of changing between an initial state in which the whole of the variable throttle is communicated by sliding and a control state in which only a part of the variable throttle is in communication; and the spool disposed in a damper chamber of the body An urging means for urging the spool to the initial state side, and when the spool shifts from the initial state to the control state, the valve is opened to permit the flow of hydraulic fluid between the inside and the outside of the damper chamber. And a check valve that shuts off between the inside and the outside of the damper chamber when the state shifts from the control state to the initial state, and the spool communicates between the inside and the outside of the damper chamber. Da A flow control valve comprises a path aperture, if what is possible to change the opening amount of the damper hole as the opening amount of change of the variable throttle opening to the high pressure side, the effect described in the preceding stage In addition, it is possible to obtain an effect that the magnitude of the damper action can be changed depending on the spool position .

すなわち、本実施形態の構成によれば、前記スプール13が制御状態Cから初期状態Sに移行する際には、前記ダンパ孔13cを介してダンパ室12e内作動液が導入されるので、ハンチングを抑制しつつ、従来の構成と比較してスプール13の移動速度を高めて応答性の向上を図ることができる。 That is, according to the configuration of the present embodiment, when the spool 13 shifts from the control state C to the initial state S , the working fluid is introduced into the damper chamber 12e through the damper hole 13c. As a result, it is possible to increase the moving speed of the spool 13 and improve the response as compared with the conventional configuration.

Claims (2)

高圧側に開口する可変絞り及び低圧側に開口する制御絞りを備えたボディと、このボディの内部を前記可変絞り及び制御絞りに連通する制御室並びにダンパ室に区画するとともにこのボディ内部を摺動することにより前記可変絞りの全体を連通させる初期状態及び前記可変絞りの一部のみを連通させる制御状態との間を変化可能であるスプールと、前記ボディのダンパ室内部に配され前記スプールを初期状態側に付勢する付勢手段と、前記スプールが初期状態から制御状態に移行する際には開弁してダンパ室の内部と外部との間の作動液の流通を許可し前記スプールが制御状態から初期状態に移行する際には閉弁してダンパ室の内部と外部との間を遮断する逆止弁とを備えている流量制御弁であって、前記スプールが、前記ダンパ室の内部と外部とを連通するダンパ孔を備えていることを特徴とする流量制御弁。 A body having a variable throttle that opens to the high-pressure side and a control throttle that opens to the low-pressure side, and the inside of the body is divided into a control chamber and a damper chamber that communicate with the variable throttle and the control throttle, and slides inside the body By doing so, it is possible to change between an initial state in which the entire variable throttle is communicated and a control state in which only a part of the variable throttle is communicated, and the spool disposed in the damper chamber of the body is initialized. An urging means for urging to the state side, and when the spool shifts from the initial state to the control state, the valve is opened to permit the flow of hydraulic fluid between the inside and the outside of the damper chamber to control the spool. A flow control valve having a check valve that closes and shuts off between the inside and the outside of the damper chamber when the state is shifted from the initial state to the initial state, wherein the spool is disposed inside the damper chamber. When Flow control valve, characterized in that it comprises a damper hole communicating with parts. 前記可変絞りの開口量の変化につれて前記ダンパ孔の開口量を変化させることが可能である請求項1記載の流量制御弁。 The flow rate control valve according to claim 1, wherein the opening amount of the damper hole can be changed as the opening amount of the variable throttle changes.
JP2015506422A 2013-03-19 2013-03-19 Flow control valve Active JP6143024B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/057786 WO2014147739A1 (en) 2013-03-19 2013-03-19 Flow rate control valve

Publications (2)

Publication Number Publication Date
JPWO2014147739A1 true JPWO2014147739A1 (en) 2017-02-16
JP6143024B2 JP6143024B2 (en) 2017-06-07

Family

ID=51579474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015506422A Active JP6143024B2 (en) 2013-03-19 2013-03-19 Flow control valve

Country Status (3)

Country Link
JP (1) JP6143024B2 (en)
TW (1) TW201437523A (en)
WO (1) WO2014147739A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3212154B1 (en) 2014-10-27 2020-06-03 Unilever PLC, a company registered in England and Wales under company no. 41424 of Anhydrous antiperspirant compositions
BR112017008859B1 (en) * 2014-11-20 2020-12-08 Unilever Nv antiperspirant composition, antiperspirant product and process for the manufacture of antiperspirant composition
JP6217868B2 (en) * 2014-12-16 2017-10-25 株式会社島津製作所 Control valve
US10632052B2 (en) 2015-11-06 2020-04-28 Conopco, Inc. Antiperspirant compositions
BR112018005766B1 (en) 2015-11-06 2021-07-13 Unilever Ip Holdings B.V. ANTI-TRANSPIRING PRODUCTS IN AEROSOL
US10682293B2 (en) 2015-11-06 2020-06-16 Conopco, Inc. Aerosol antiperspirant product
EP3635282B1 (en) * 2017-06-09 2021-12-15 Buffo, Salvatore Safety valve for hydraulic systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522801U (en) * 1978-01-19 1980-02-14
JP2004183818A (en) * 2002-12-04 2004-07-02 Shimadzu Corp Flow control valve
JP2009036336A (en) * 2007-08-03 2009-02-19 Shimadzu Corp Flow rate control valve

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018370U (en) * 1983-07-15 1985-02-07 三菱重工業株式会社 Lift cylinder flow control valve
JPH0419038Y2 (en) * 1985-12-27 1992-04-28
JPH0640380Y2 (en) * 1988-02-01 1994-10-19 株式会社ユニシアジェックス Pressure control valve
JPH07139512A (en) * 1993-11-12 1995-05-30 Kayaba Ind Co Ltd Flow control valve
JP2010261515A (en) * 2009-05-08 2010-11-18 Shimadzu Corp Hydraulic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522801U (en) * 1978-01-19 1980-02-14
JP2004183818A (en) * 2002-12-04 2004-07-02 Shimadzu Corp Flow control valve
JP2009036336A (en) * 2007-08-03 2009-02-19 Shimadzu Corp Flow rate control valve

Also Published As

Publication number Publication date
WO2014147739A1 (en) 2014-09-25
TW201437523A (en) 2014-10-01
JP6143024B2 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
JP6143024B2 (en) Flow control valve
JP5369400B2 (en) Flow control valve
JP4782711B2 (en) Direction control valve device and direction control valve device block having a plurality of the direction control valve devices
JP6067953B1 (en) Flow control valve
JP4776366B2 (en) Actuator control device
JP6190315B2 (en) Pilot flow control valve
WO2016056564A1 (en) Fluid pressure control device
JPWO2018180367A1 (en) Solenoid proportional valve
US10408358B2 (en) Load sensing valve device
KR20080077007A (en) Actuator control device
JP6384370B2 (en) Control valve
JP6119875B2 (en) Flow control valve
JP2019056464A (en) Flow control valve
JP2013117293A (en) Flow control valve
JP6892012B2 (en) Priority flow control valve
JP2016217438A (en) Fluid control valve
JP2016089992A (en) Control valve device
JP2015098936A (en) Oil pressure regulating valve
JP4841369B2 (en) Actuator control device
KR200496618Y1 (en) Structure of securing load area of counter balance valve and increasing flow rate discharge
JP2013057363A (en) Fluid control valve
JP2013257023A (en) Poppet valve
JP2015206426A (en) slow return check valve
JP7305099B2 (en) Spool type on-off valve
JP6213358B2 (en) Hydraulic control device for vehicle

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170314

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170425

R151 Written notification of patent or utility model registration

Ref document number: 6143024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151