JP6190315B2 - Pilot flow control valve - Google Patents

Pilot flow control valve Download PDF

Info

Publication number
JP6190315B2
JP6190315B2 JP2014092372A JP2014092372A JP6190315B2 JP 6190315 B2 JP6190315 B2 JP 6190315B2 JP 2014092372 A JP2014092372 A JP 2014092372A JP 2014092372 A JP2014092372 A JP 2014092372A JP 6190315 B2 JP6190315 B2 JP 6190315B2
Authority
JP
Japan
Prior art keywords
pilot
flow path
valve body
chamber
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014092372A
Other languages
Japanese (ja)
Other versions
JP2015209932A (en
Inventor
博明 清水
博明 清水
田中 良和
良和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2014092372A priority Critical patent/JP6190315B2/en
Priority to PCT/JP2015/001871 priority patent/WO2015166628A1/en
Publication of JP2015209932A publication Critical patent/JP2015209932A/en
Application granted granted Critical
Publication of JP6190315B2 publication Critical patent/JP6190315B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/42Actuating devices; Operating means; Releasing devices actuated by fluid by means of electrically-actuated members in the supply or discharge conduits of the fluid motor

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Driven Valves (AREA)

Description

本発明は、パイロット式流量制御弁に関する。   The present invention relates to a pilot-type flow control valve.

従来、電磁力などによってパイロット弁体を作動し、主弁体に作用する流体の圧力差で主弁体を開閉するように構成されたパイロット式弁装置が知られている。このようなパイロット式弁装置の一例として、非特許文献1に示されるような、制御信号に比例した流量制御が可能なパイロット式流量制御弁がある。   2. Description of the Related Art Conventionally, there has been known a pilot type valve device configured to operate a pilot valve body by electromagnetic force or the like and open and close the main valve body by a pressure difference between fluids acting on the main valve body. As an example of such a pilot type valve device, there is a pilot type flow rate control valve capable of controlling the flow rate in proportion to a control signal as shown in Non-Patent Document 1.

図5は、非特許文献1に記載された態様のパイロット式流量制御弁102の概略構成を示した図である。パイロット式流量制御弁102は、入口ポート21から出口ポート22へ作動流体が流れるメイン流路25に設けられたバルブシート23に着座可能な主弁体3と、主弁体3をバルブシート23へ近づく向きに付勢するスプリング42とを備えている。メイン流路25は、バルブシート23に着座した主弁体3によって、入口ポート21側の一次側流路11と、出口ポート22側の二次側流路12とに分けられている。また、主弁体3は、主弁体3へパイロット圧を付与するパイロット室43とメイン流路25との間を仕切っている。主弁体3の周囲にはノッチ38が形成され、主弁体3の内部にはノッチ38内とメイン流路25とを接続するパイロット供給流路31が形成されている。パイロット供給流路31とパイロット室43との間には、主弁体3が挿入されたボディ2の内周面と主弁体3とノッチ38との協働により、可変絞り32が設けられている。   FIG. 5 is a diagram showing a schematic configuration of the pilot flow control valve 102 according to the aspect described in Non-Patent Document 1. The pilot-type flow control valve 102 includes a main valve body 3 that can be seated on a valve seat 23 provided in a main flow path 25 through which a working fluid flows from an inlet port 21 to an outlet port 22, and the main valve body 3 to the valve seat 23. And a spring 42 that is biased in the approaching direction. The main channel 25 is divided into a primary channel 11 on the inlet port 21 side and a secondary channel 12 on the outlet port 22 side by the main valve body 3 seated on the valve seat 23. Further, the main valve body 3 partitions the pilot chamber 43 that applies pilot pressure to the main valve body 3 and the main flow path 25. A notch 38 is formed around the main valve body 3, and a pilot supply flow path 31 that connects the inside of the notch 38 and the main flow path 25 is formed inside the main valve body 3. A variable throttle 32 is provided between the pilot supply passage 31 and the pilot chamber 43 by the cooperation of the inner peripheral surface of the body 2 in which the main valve body 3 is inserted, the main valve body 3 and the notch 38. Yes.

パイロット室43と二次側流路12とは、パイロット排出流路60で接続されている。パイロット室43とパイロット排出流路60との間にはパイロットバルブシート57が設けられている。パイロット式流量制御弁102は、このパイロットバルブシート57に着座可能なパイロット弁体5と、パイロット弁体5をパイロットバルブシート57へ近づく向きへ付勢するスプリング41と、パイロット弁体5をパイロットバルブシート57から離れる向きへの通電量に応じた駆動力を付与するソレノイド50とを、更に備えている。   The pilot chamber 43 and the secondary side flow path 12 are connected by a pilot discharge flow path 60. A pilot valve seat 57 is provided between the pilot chamber 43 and the pilot discharge passage 60. The pilot flow control valve 102 includes a pilot valve body 5 that can be seated on the pilot valve seat 57, a spring 41 that biases the pilot valve body 5 toward the pilot valve seat 57, and the pilot valve body 5 as a pilot valve. And a solenoid 50 that applies a driving force in accordance with the amount of energization in the direction away from the seat 57.

上記構成のパイロット式流量制御弁102において、パイロット弁体5がパイロットバルブシート57に着座している状態では、主弁体3がバルブシート23に着座している。このとき、可変絞り32の開口面積は絞られているが僅かな漏れにより、パイロット室43の作動流体の圧力と一次側流路11の作動流体の圧力とが等しい。そして、主弁体3における一次側圧力が作用している面積よりもパイロット圧力が作用している面積が大きいことにより、主弁体3はバルブシート23に着座した状態で留まっている。   In the pilot flow control valve 102 configured as described above, the main valve body 3 is seated on the valve seat 23 when the pilot valve body 5 is seated on the pilot valve seat 57. At this time, the opening area of the variable throttle 32 is narrowed, but the pressure of the working fluid in the pilot chamber 43 and the pressure of the working fluid in the primary channel 11 are equal due to slight leakage. The main valve body 3 remains seated on the valve seat 23 because the area on which the pilot pressure acts is larger than the area on the main valve body 3 on which the primary pressure acts.

そして、ソレノイド50への通電によりパイロット弁体5がパイロットバルブシート57から離れると、パイロット室43からパイロット排出流路60へ作動流体の流れが生じ、パイロット室43の作動流体の圧力が低下する。これにより、主弁体3がバルブシート23から離れる向きに移動し、メイン流路25が開放される。   When the pilot valve body 5 is separated from the pilot valve seat 57 by energization of the solenoid 50, the working fluid flows from the pilot chamber 43 to the pilot discharge passage 60, and the pressure of the working fluid in the pilot chamber 43 decreases. Thereby, the main valve body 3 moves in a direction away from the valve seat 23, and the main flow path 25 is opened.

EATON社カタログ EPV16 Series Valvistor(登録商標) Proportional Flow Controls 4ページ Fig.1 "Basic layout and block diagram of the valve" (1999年10月修正版)EATON catalog EPV16 Series Valvistor (registered trademark) Proportional Flow Controls Page 4 Fig.1 "Basic layout and block diagram of the valve" (October 1999 modified version)

本発明は、パイロット式流量制御弁の性能を向上することを目的とする。   An object of this invention is to improve the performance of a pilot type flow control valve.

第1の側面から見た本発明に係るパイロット式流量制御弁は、
入口ポート、出口ポート、前記入口ポートと前記出口ポートを繋ぐメイン流路、前記メイン流路の一次側流路と二次側流路との間に設けられたバルブシート、パイロット室、及び前記パイロット室と前記出口ポートとを接続するパイロット排出流路を有するボディと、
前記バルブシートに近づく第1閉方向と前記バルブシートから離れる第1開方向とへ移動可能であって、前記メイン流路と前記パイロット室との間を仕切り、前記第1開方向へ移動して前記メイン流路と前記パイロット室の間に形成された第1可変絞りの開口面積を増大させ、前記第1閉方向へ移動して前記第1可変絞りの開口面積を減少させるように前記ボディに挿入された主弁体であって、前記パイロット室と前記入口ポートとを接続するパイロット供給流路を内部に有する主弁体と、
前記主弁体に前記第1閉方向の付勢力を与える第1スプリングと、
前記パイロット室と前記パイロット排出流路との間を仕切り、前記パイロット室と前記パイロット排出流路の間に形成された第2可変絞りの開口面積を増大させる第2開方向と前記第2可変絞りの開口面積を減少させる第2閉方向とへ移動可能に前記ボディに挿入されたパイロット弁体であって、前記パイロット室と前記パイロット排出流路とを接続する内部流路を有するパイロット弁体と、
前記パイロット弁体に前記第2開方向の駆動力を与える駆動力付加手段と、
前記パイロット弁体に前記第2閉方向の付勢力を与える第2スプリングと、
前記パイロット供給流路において前記入口ポートから前記パイロット室へ向かう一方向の流れのみを通過させる逆止弁と、を備えているものである。なお、この明細書及び特許請求の範囲において、「開方向」とあるのは「開く向き」を言い、「閉方向」とは「閉じる向き」を言うこととする。
The pilot flow control valve according to the present invention as seen from the first aspect is:
An inlet port, an outlet port, a main flow path connecting the inlet port and the outlet port, a valve seat provided between a primary flow path and a secondary flow path of the main flow path, a pilot chamber, and the pilot A body having a pilot discharge channel connecting the chamber and the outlet port;
The first closing direction approaching the valve seat and the first opening direction away from the valve seat are movable, partitioning the main flow path and the pilot chamber, and moving in the first opening direction The body is configured to increase an opening area of a first variable throttle formed between the main flow path and the pilot chamber and move in the first closing direction to reduce the opening area of the first variable throttle. An inserted main valve body having a pilot supply flow path connecting the pilot chamber and the inlet port therein;
A first spring that applies an urging force in the first closing direction to the main valve body;
A second opening direction and the second variable throttle for partitioning the pilot chamber and the pilot discharge flow path and increasing an opening area of a second variable throttle formed between the pilot chamber and the pilot discharge flow path. A pilot valve body inserted into the body so as to be movable in a second closing direction for reducing an opening area of the pilot valve body, and having an internal flow path connecting the pilot chamber and the pilot discharge flow path; ,
Driving force adding means for applying a driving force in the second opening direction to the pilot valve body;
A second spring for applying a biasing force in the second closing direction to the pilot valve body;
A check valve that allows passage of only a one-way flow from the inlet port to the pilot chamber in the pilot supply flow path. In this specification and claims, “open direction” refers to “opening direction”, and “closed direction” refers to “closing direction”.

上記本発明に係るパイロット式流量制御弁では、パイロット弁体が閉位置にあっても、出口ポートの作動流体の圧力が高圧となった場合には、主弁体とボディの隙間から作動流体が出口ポートからパイロット室へ漏れ出る。さらに、パイロット室の作動流体は主弁体とボディの隙間からパイロット供給流路へ漏れ出るが、パイロット供給流路に設けられた逆止弁により、パイロット供給流路から入口ポートへ作動流体が流れることができない。このようにして、パイロット式流量制御弁が閉弁時の場合に、メイン流路の二次側流路から一次側流路への(入口ポートから出口ポートへの)パイロット室を介した作動流体の漏出を抑制することができる。よって、パイロット式流量制御弁の性能を向上させることができる。   In the pilot flow control valve according to the present invention, when the pressure of the working fluid at the outlet port becomes high even when the pilot valve is in the closed position, the working fluid flows from the gap between the main valve body and the body. Leak into the pilot room from the exit port. Furthermore, the working fluid in the pilot chamber leaks from the gap between the main valve body and the body to the pilot supply passage, but the working fluid flows from the pilot supply passage to the inlet port by the check valve provided in the pilot supply passage. I can't. Thus, when the pilot type flow control valve is closed, the working fluid passes through the pilot chamber (from the inlet port to the outlet port) from the secondary side channel of the main channel to the primary channel. Leakage can be suppressed. Therefore, the performance of the pilot flow control valve can be improved.

上記パイロット式流量制御弁が、前記パイロット室と前記出口ポートとを接続するように前記主弁体内に形成された副パイロット供給流路と、前記副パイロット供給流路において、前記出口ポートから前記パイロット室へ向かう流れのみを通過させる逆止弁とを、更に備えていてもよい。   The pilot-type flow control valve has a secondary pilot supply passage formed in the main valve body so as to connect the pilot chamber and the outlet port, and the pilot pilot flow passage from the outlet port to the pilot in the secondary pilot supply passage. A check valve that allows only the flow toward the chamber to pass therethrough may be further provided.

また、上記パイロット式流量制御弁において、前記ボディが、前記パイロット弁体に前記第2開方向の圧力を作用させるバランス室を更に有し、前記パイロット弁体の前記内部流路が、前記バランス室と接続された分岐路を有し、前記内部流路において前記分岐路の分岐箇所よりも前記パイロット室側に絞りが設けられていてもよい。   In the pilot flow control valve, the body further includes a balance chamber that applies a pressure in the second opening direction to the pilot valve body, and the internal flow path of the pilot valve body includes the balance chamber. The internal channel may be provided with a throttle on the pilot chamber side of the branch path of the branch path.

第2の側面から見た本発明に係るパイロット式流量制御弁は、
入口ポート、出口ポート、前記入口ポートと前記出口ポートを繋ぐメイン流路、前記メイン流路の一次側流路と二次側流路との間に設けられたバルブシート、パイロット室、及び前記パイロット室と前記出口ポートとを接続するパイロット排出流路を有するボディと、
前記バルブシートに近づく第1閉方向と前記バルブシートから離れる第1開方向とへ移動可能であって、前記メイン流路と前記パイロット室との間を仕切り、前記第1開方向へ移動して前記メイン流路と前記パイロット室の間に形成された第1可変絞りの開口面積を増大させ、前記第1閉方向へ移動して前記第1可変絞りの開口面積を減少させるように前記ボディに挿入された主弁体であって、前記パイロット室と前記入口ポートとを接続するパイロット供給流路と前記パイロット室と前記出口ポートとを接続する副パイロット供給流路とを内部に有する主弁体と、
前記主弁体に前記第1閉方向の付勢力を与える第1スプリングと、
前記パイロット室と前記パイロット排出流路との間を仕切り、前記パイロット室と前記パイロット排出流路の間に形成された第2可変絞りの開口面積を増大させる第2開方向と前記第2可変絞りの開口面積を減少させる第2閉方向とへ移動可能に前記ボディに挿入されたパイロット弁体であって、前記パイロット室と前記パイロット排出流路とを接続する内部流路を有するパイロット弁体と、
前記パイロット弁体に可変な前記第2開方向の駆動力を与える駆動力付加手段と、
前記パイロット弁体に前記第2閉方向の付勢力を与える第2スプリングと、
前記副パイロット供給流路において前記出口ポートから前記パイロット室へ向かう一方向の流れのみを通過させる逆止弁とを備えているものである。
The pilot flow control valve according to the present invention as seen from the second aspect is:
An inlet port, an outlet port, a main flow path connecting the inlet port and the outlet port, a valve seat provided between a primary flow path and a secondary flow path of the main flow path, a pilot chamber, and the pilot A body having a pilot discharge channel connecting the chamber and the outlet port;
The first closing direction approaching the valve seat and the first opening direction away from the valve seat are movable, partitioning the main flow path and the pilot chamber, and moving in the first opening direction The body is configured to increase an opening area of a first variable throttle formed between the main flow path and the pilot chamber and move in the first closing direction to reduce the opening area of the first variable throttle. An inserted main valve body having a pilot supply channel connecting the pilot chamber and the inlet port and a sub pilot supply channel connecting the pilot chamber and the outlet port therein When,
A first spring that applies an urging force in the first closing direction to the main valve body;
A second opening direction and the second variable throttle for partitioning the pilot chamber and the pilot discharge flow path and increasing an opening area of a second variable throttle formed between the pilot chamber and the pilot discharge flow path. A pilot valve body inserted into the body so as to be movable in a second closing direction for reducing an opening area of the pilot valve body, and having an internal flow path connecting the pilot chamber and the pilot discharge flow path; ,
Driving force adding means for applying a variable driving force in the second opening direction to the pilot valve body;
A second spring for applying a biasing force in the second closing direction to the pilot valve body;
And a check valve that allows passage of only one-way flow from the outlet port toward the pilot chamber in the sub-pilot supply flow path.

上記本発明に係るパイロット式流量制御弁によれば、メイン流路が開放されている状態で一次側流路の圧力が二次側流路の圧力より小さくなったときに、副パイロット供給流路を通じて二次側流路の作動流体がパイロット室へ流入する。これにより、パイロット排出流路と第2可変絞りとを通じて二次側流路の作動流体をパイロット室へ流入させる場合と比較して速やかに、パイロット室の圧力を高めて、主弁体を第1閉方向へ移動させて、メイン流路を閉止することができる。よって、パイロット式流量制御弁の性能を向上させることができる。   According to the pilot flow control valve according to the present invention, when the pressure of the primary flow path becomes smaller than the pressure of the secondary flow path with the main flow path open, the secondary pilot supply flow path The working fluid in the secondary channel flows through the pilot chamber. As a result, the pressure in the pilot chamber is increased more quickly than in the case where the working fluid in the secondary side channel flows into the pilot chamber through the pilot discharge channel and the second variable throttle, and the main valve body is The main flow path can be closed by moving in the closing direction. Therefore, the performance of the pilot flow control valve can be improved.

第3の側面から見た本発明に係るパイロット式流量制御弁は、
入口ポート、出口ポート、前記入口ポートと前記出口ポートを繋ぐメイン流路、前記メイン流路の一次側流路と二次側流路との間に設けられたバルブシート、パイロット室、前記パイロット室と前記出口ポートとを接続するパイロット排出流路、及びバランス室を有するボディと、
前記バルブシートに近づく第1閉方向と前記バルブシートから離れる第1開方向とへ移動可能であって、前記メイン流路と前記パイロット室との間を仕切り、前記第1開方向へ移動して前記メイン流路と前記パイロット室の間に形成された第1可変絞りの開口面積を増大させ、前記第1閉方向へ移動して前記第1可変絞りの開口面積を減少させるように前記ボディに挿入された主弁体であって、前記パイロット室と前記入口ポートとを接続するパイロット供給流路を内部に有する主弁体と、
前記主弁体に前記第1閉方向の付勢力を与える第1スプリングと、
前記パイロット室と前記パイロット排出流路との間及び前記パイロット室と前記バランス室との間をそれぞれ仕切り、前記パイロット室と前記パイロット排出流路の間に形成された第2可変絞りの開口面積を増大させる第2開方向と前記第2可変絞りの開口面積を減少させる第2閉方向とへ移動可能に前記ボディに挿入されたパイロット弁体であって、前記パイロット室と前記パイロット排出流路とを接続する内部流路を有するスプール形のパイロット弁体と、
前記パイロット弁体に可変な前記第2開方向の駆動力を与える駆動力付加手段と、
前記パイロット弁体に前記第2閉方向の付勢力を与える第2スプリングと、を備え、
前記パイロット弁体の前記内部流路が、前記バランス室と接続された分岐路を有し、前記内部流路において前記分岐路の分岐箇所よりも前記パイロット室側に絞りが設けられているものである。
The pilot flow control valve according to the present invention as seen from the third aspect is
An inlet port, an outlet port, a main channel connecting the inlet port and the outlet port, a valve seat provided between a primary channel and a secondary channel of the main channel, a pilot chamber, and the pilot chamber And a pilot discharge passage connecting the outlet port and a body having a balance chamber;
The first closing direction approaching the valve seat and the first opening direction away from the valve seat are movable, partitioning the main flow path and the pilot chamber, and moving in the first opening direction The body is configured to increase an opening area of a first variable throttle formed between the main flow path and the pilot chamber and move in the first closing direction to reduce the opening area of the first variable throttle. An inserted main valve body having a pilot supply flow path connecting the pilot chamber and the inlet port therein;
A first spring that applies an urging force in the first closing direction to the main valve body;
An opening area of a second variable throttle formed between the pilot chamber and the pilot discharge channel is divided between the pilot chamber and the pilot discharge channel and between the pilot chamber and the balance chamber, respectively. A pilot valve element inserted into the body so as to be movable in a second opening direction to be increased and a second closing direction in which an opening area of the second variable throttle is decreased, the pilot chamber, the pilot discharge flow path, A spool-shaped pilot valve body having an internal flow path for connecting
Driving force adding means for applying a variable driving force in the second opening direction to the pilot valve body;
A second spring that applies an urging force in the second closing direction to the pilot valve body,
The internal flow path of the pilot valve body has a branch path connected to the balance chamber, and a throttle is provided on the pilot chamber side of the branch path of the branch path in the internal flow path. is there.

上記本発明に係るパイロット式流量制御弁によれば、メイン流路が開放されている状態で、第2可変絞り前後の圧力差が一定となるようにパイロット弁体が移動し、バランスを保つ。このパイロット弁体の圧力補償機能によって、第2可変絞り前後の圧力差に依存せず、パイロット排出流路の流量を一定に制御することができる。この結果、メイン流路の流量はパイロット排出流路の流量に依存するため、メイン流路の一次側流路の圧力が変動しても、パイロット排出流路の流量を一定に保つことで、メイン流路を通過する作動流体の流量を一定に保持することができる。よって、パイロット式流量制御弁の性能を向上させることができる。   According to the pilot flow control valve according to the present invention, the pilot valve body moves so that the pressure difference before and after the second variable throttle is constant and the balance is maintained in a state where the main flow path is opened. By this pressure compensation function of the pilot valve body, the flow rate of the pilot discharge passage can be controlled to be constant without depending on the pressure difference before and after the second variable throttle. As a result, the flow rate of the main flow channel depends on the flow rate of the pilot discharge flow channel. Therefore, even if the pressure of the primary flow channel of the main flow channel fluctuates, The flow rate of the working fluid passing through the flow path can be kept constant. Therefore, the performance of the pilot flow control valve can be improved.

本発明によれば、パイロット式流量制御弁の性能を向上させることができる。   According to the present invention, the performance of the pilot flow control valve can be improved.

本発明の一実施形態に係るパイロット式流量制御弁の概略構成を示す図である。It is a figure showing a schematic structure of a pilot type flow control valve concerning one embodiment of the present invention. 図1に示すパイロット式流量制御弁の油圧回路図である。FIG. 2 is a hydraulic circuit diagram of the pilot flow control valve shown in FIG. 1. 本発明の参考例に係るパイロット式流量制御弁の概略構成を示した図である。It is the figure which showed schematic structure of the pilot type flow control valve which concerns on the reference example of this invention. 図3に示す参考例に係るパイロット式流量制御弁の油圧回路図である。FIG. 4 is a hydraulic circuit diagram of a pilot flow control valve according to the reference example shown in FIG. 3. 非特許文献1に記載された態様のパイロット式流量制御弁の概略構成を示した図である。It is the figure which showed schematic structure of the pilot type flow control valve of the aspect described in the nonpatent literature 1.

非特許文献1に記載のパイロット式流量制御弁102では、パイロット弁体5はポペット弁である。前述の従来のパイロット式流量制御弁102において、ポペット形のパイロット弁体5に代えてスプール形のパイロット弁体5を採用すると、例えば、図3及び図4に示すパイロット式流量制御弁101のようになる。図3は本発明の参考例に係るパイロット式流量制御弁の概略構成を示した図であり、図4は図3に示す参考例に係るパイロット式流量制御弁の油圧回路図である。   In the pilot flow control valve 102 described in Non-Patent Document 1, the pilot valve body 5 is a poppet valve. In the above-described conventional pilot type flow control valve 102, when the spool type pilot valve body 5 is employed instead of the poppet type pilot valve body 5, for example, a pilot type flow control valve 101 shown in FIGS. become. FIG. 3 is a diagram showing a schematic configuration of a pilot flow control valve according to a reference example of the present invention, and FIG. 4 is a hydraulic circuit diagram of the pilot flow control valve according to the reference example shown in FIG.

参考例に係るパイロット式流量制御弁101は、ボディ2と、ボディ2に挿入された主弁体3と、ボディ2に挿入されたパイロット弁体5と、パイロット弁体5を移動させるソレノイド50とを備えている。   A pilot flow control valve 101 according to the reference example includes a body 2, a main valve body 3 inserted into the body 2, a pilot valve body 5 inserted into the body 2, and a solenoid 50 that moves the pilot valve body 5. It has.

ボディ2には、入口ポート21、出口ポート22、入口ポート21から出口ポート22へ作動流体が流れるメイン流路25、メイン流路25に形成されたバルブシート23、パイロット室43、パイロット排出流路60などが設けられている。   The body 2 includes an inlet port 21, an outlet port 22, a main passage 25 through which a working fluid flows from the inlet port 21 to the outlet port 22, a valve seat 23 formed in the main passage 25, a pilot chamber 43, a pilot discharge passage 60 etc. are provided.

主弁体3は、メイン流路25とパイロット室43とを仕切るようにボディ2に挿入されており、バルブシート23に近づく第1閉方向と、バルブシート23から離れる第1開方向とへ移動することができる。主弁体3はスプリング42によって第1閉方向に付勢されている。主弁体3がバルブシート23に着座することによってメイン流路25が閉止され、主弁体3とバルブシート23との離間距離に応じてメイン流路25の開度が変化する。なお、図1では、主弁体3は、ボディ2との摺動部における外径とバルブシート23との着座部における外径とが異なる、段差面のある段付きの円柱形状となっているが、段差面のない同一外径の円柱形状であっても良い。   The main valve body 3 is inserted into the body 2 so as to partition the main flow path 25 and the pilot chamber 43, and moves in a first closing direction approaching the valve seat 23 and a first opening direction separating from the valve seat 23. can do. The main valve body 3 is urged in the first closing direction by a spring 42. When the main valve body 3 is seated on the valve seat 23, the main flow path 25 is closed, and the opening degree of the main flow path 25 changes according to the distance between the main valve body 3 and the valve seat 23. In FIG. 1, the main valve body 3 has a stepped cylindrical shape with a stepped surface in which the outer diameter at the sliding portion with the body 2 and the outer diameter at the seating portion with the valve seat 23 are different. However, it may be a cylindrical shape having the same outer diameter without a stepped surface.

主弁体3の外周面にはノッチ38が設けられており、このノッチ38内とメイン流路25の一次側流路11とがパイロット供給流路31で接続されている。このパイロット供給流路31とパイロット室43との間には、主弁体3の外周面とノッチ38とボディ2の内周面との協働により可変絞り32が形成されている。可変絞り32の開口面積は、主弁体3の第1開方向への移動に伴い増大し、主弁体3の第1閉方向への移動に伴い減少する。   A notch 38 is provided on the outer peripheral surface of the main valve body 3, and the inside of the notch 38 and the primary flow path 11 of the main flow path 25 are connected by a pilot supply flow path 31. A variable throttle 32 is formed between the pilot supply channel 31 and the pilot chamber 43 by the cooperation of the outer peripheral surface of the main valve body 3, the notch 38 and the inner peripheral surface of the body 2. The opening area of the variable throttle 32 increases as the main valve element 3 moves in the first opening direction, and decreases as the main valve element 3 moves in the first closing direction.

パイロット弁体5は、パイロット室43とパイロット排出流路60とを仕切るようにボディ2に挿入されている。パイロット弁体5は、ソレノイド50から与えられる駆動力Fの向きである第2開方向と、この第2開方向と反対向きの第2閉方向とへ移動することができる。パイロット弁体5の第2開方向の面はパイロット室43に露出している。パイロット弁体5の外周面にはノッチ68が形成されている。そして、このノッチ68内とパイロット室43内とに開口する内部通路64が、パイロット弁体5内に形成されている。内部通路64とパイロット排出流路60の間において、パイロット弁体5の外周面とノッチ68とボディ2の内周面との協働により可変絞り63が形成されている。可変絞り63の開口面積は、パイロット弁体5の第2開方向への移動に伴い増大し、パイロット弁体5の第2閉方向への移動に伴い減少する。   The pilot valve body 5 is inserted into the body 2 so as to partition the pilot chamber 43 and the pilot discharge channel 60. The pilot valve body 5 can move in a second opening direction that is the direction of the driving force F applied from the solenoid 50 and in a second closing direction that is opposite to the second opening direction. The surface of the pilot valve body 5 in the second opening direction is exposed to the pilot chamber 43. A notch 68 is formed on the outer peripheral surface of the pilot valve body 5. An internal passage 64 that opens into the notch 68 and the pilot chamber 43 is formed in the pilot valve body 5. A variable throttle 63 is formed between the internal passage 64 and the pilot discharge passage 60 by cooperation of the outer peripheral surface of the pilot valve body 5, the notch 68 and the inner peripheral surface of the body 2. The opening area of the variable throttle 63 increases as the pilot valve body 5 moves in the second opening direction, and decreases as the pilot valve body 5 moves in the second closing direction.

上記構成のパイロット式流量制御弁101において、ソレノイド50の非通電時には、可変絞り63は開口面積が絞られており、主弁体3がバルブシート23に着座している。そして、ソレノイド50への通電によりパイロット弁体5が第2開方向に移動し、可変絞り63の開口面積が増大すると、パイロット室43からパイロット排出流路60へ作動流体の流れが生じ、パイロット室43の作動流体の圧力が低下する。これにより、主弁体3が第1開方向に移動し、メイン流路25が開放される。   In the pilot flow control valve 101 configured as described above, when the solenoid 50 is not energized, the variable throttle 63 has a reduced opening area, and the main valve body 3 is seated on the valve seat 23. When the pilot valve body 5 is moved in the second opening direction by energization of the solenoid 50 and the opening area of the variable throttle 63 is increased, the working fluid flows from the pilot chamber 43 to the pilot discharge passage 60, and the pilot chamber The pressure of the working fluid 43 decreases. Thereby, the main valve body 3 moves in the first opening direction, and the main flow path 25 is opened.

(第1の課題)
上記参考例に係るパイロット式流量制御弁101において、パイロット弁体5がポペット形やスプール形の形式に限らず、主弁体3がバルブシート23に着座し且つパイロット弁体5が閉位置にあっても、出口ポート22の作動流体の圧力が高圧となった場合には、主弁体3とボディ2の隙間から作動流体が出口ポート22からパイロット室43へ漏れ出る。さらに、ボディ2と主弁体3の隙間を通じてパイロット室43から一次側流路11へパイロット供給流路31を介して作動流体が流出する。そのため、流体圧アクチュエータ100が停止しているときに、上記のような作動流体漏れが生じると、その停止状態を維持することができない。
(First issue)
In the pilot flow control valve 101 according to the above reference example, the pilot valve body 5 is not limited to the poppet type or the spool type, but the main valve body 3 is seated on the valve seat 23 and the pilot valve body 5 is in the closed position. However, when the pressure of the working fluid at the outlet port 22 becomes high, the working fluid leaks from the outlet port 22 to the pilot chamber 43 through the gap between the main valve body 3 and the body 2. Further, the working fluid flows out from the pilot chamber 43 to the primary side flow path 11 through the pilot supply flow path 31 through the gap between the body 2 and the main valve body 3. Therefore, when the fluid pressure actuator 100 is stopped and the above-described working fluid leaks, the stopped state cannot be maintained.

(第2の課題)
また、上記参考例に係るパイロット式流量制御弁101において、メイン流路25が開放されて主弁体3の第1開方向への移動が停止した後で、流体圧アクチュエータ100への作動流体の供給を停止するために、ソレノイド50をオフにする。ソレノイド50がオフとなると、パイロット弁体5に作用している駆動力Fが解放され、可変絞り63が閉じられる。このように、メイン流路25が開放され且つパイロット排出流路60が閉止されている状態において、二次側流路12から一次側流路11へ作動流体の逆流を防止するために、早急にメイン流路25が閉じられねばならない。
(Second problem)
Further, in the pilot flow control valve 101 according to the above reference example, after the main flow path 25 is opened and the movement of the main valve body 3 in the first opening direction is stopped, the working fluid is supplied to the fluid pressure actuator 100. To stop the supply, the solenoid 50 is turned off. When the solenoid 50 is turned off, the driving force F acting on the pilot valve body 5 is released, and the variable throttle 63 is closed. As described above, in order to prevent the backflow of the working fluid from the secondary side flow path 12 to the primary side flow path 11 in a state where the main flow path 25 is opened and the pilot discharge flow path 60 is closed, immediately. The main flow path 25 must be closed.

ところが、図3,4に示される参考例に係るパイロット式流量制御弁101では、パイロット弁体5がポペット形やスプール形の形式に限らず、メイン流路25が開放された状態でパイロット排出流路60が閉止されると、主弁体3に作用する一次側流路11の圧力P1とパイロット室43の圧力P3とスプリング42のばね力との関係により主弁体3が第1閉方向へ移動する。ここで、パイロット室43へ高圧の作動流体が供給される経路はパイロット供給流路31であるが、その間に可変絞り32が設けられているため、パイロット室43に高圧の作動流体が供給され、パイロット室43の圧力が上昇するには時間を要する。その結果、主弁体3がメイン流路25を閉止することに時間を要する。そのため、出口ポート22に接続された流体圧アクチュエータ100が作業機械のアームを動作させるシリンダである場合には、アームを停止させるためにソレノイド50をオフにしたときに、アームを所望の位置で停止できないような不都合が懸念される。 However, in the pilot flow control valve 101 according to the reference example shown in FIGS. 3 and 4, the pilot valve body 5 is not limited to the poppet type or the spool type, and the pilot discharge flow is in a state where the main flow path 25 is opened. When the passage 60 is closed, the main valve body 3 is closed first due to the relationship between the pressure P 1 of the primary flow path 11 acting on the main valve body 3, the pressure P 3 of the pilot chamber 43, and the spring force of the spring 42. Move in the direction. Here, the path through which the high-pressure working fluid is supplied to the pilot chamber 43 is the pilot supply flow path 31, but since the variable throttle 32 is provided therebetween, the high-pressure working fluid is supplied to the pilot chamber 43, It takes time for the pressure in the pilot chamber 43 to rise. As a result, it takes time for the main valve body 3 to close the main flow path 25. Therefore, when the fluid pressure actuator 100 connected to the outlet port 22 is a cylinder for operating the arm of the work machine, the arm is stopped at a desired position when the solenoid 50 is turned off to stop the arm. There are concerns about inconveniences that cannot be made.

(第3の課題)
また、上記参考例に係るパイロット式流量制御弁101において、メイン流路25及びパイロット排出流路60が開放された状態で、可変絞り63を通過する作動流体が一定流量である場合、パイロット室43と二次側流路12とを繋ぐ流路に存在する可変絞り63によって、パイロット圧力P3は二次側圧力P2よりも高く、パイロット弁体5は一定の位置に留まっている。ここで、一次側圧力P1が増大すると、パイロット圧力P3と二次側圧力P2との圧力差が大きくなって、パイロット排出流路60を通過するパイロット流量が増大することになる。このとき、メイン流路25のメイン流量はパイロット排出流路60のパイロット流量に依存するため、メイン流量も増大してしまう。このように、一次側圧力P1の変動により、メイン流量が変動してしまうという不都合がある。
(Third issue)
Further, in the pilot flow control valve 101 according to the above reference example, when the working fluid passing through the variable throttle 63 is a constant flow rate with the main flow path 25 and the pilot discharge flow path 60 being opened, the pilot chamber 43 The pilot pressure P 3 is higher than the secondary pressure P 2 , and the pilot valve body 5 remains at a fixed position by the variable throttle 63 existing in the flow path connecting the secondary side flow path 12 and the secondary side flow path 12. Here, when the primary pressure P 1 increases, the pressure difference between the pilot pressure P 3 and the secondary pressure P 2 increases, and the pilot flow rate passing through the pilot discharge flow path 60 increases. At this time, since the main flow rate of the main flow path 25 depends on the pilot flow rate of the pilot discharge flow path 60, the main flow rate also increases. Thus, there is a disadvantage that the main flow rate fluctuates due to fluctuations in the primary pressure P 1 .

〔本発明の実施形態〕
以下、上記第1〜3の課題を解決し得る本発明の実施形態について、図面を参照して説明する。図1は本発明の一実施形態に係るパイロット式流量制御弁1の概略構成を示す図、図2は図1に示すパイロット式流量制御弁1の油圧回路図である。本実施形態では、パイロット式流量制御弁1を、作業機械において油圧ポンプからの油を作業機用、旋回用、走行用に流量制御するメインコントロールバルブに用いている。但し、パイロット式流量制御弁1の使用形態は上記に限定されない。なお、この明細書では、油圧ショベル、クレーン、ホイールローダ、ブルドーザ等の動力機械類(重機)を総称して「作業機械」という。
Embodiment of the present invention
Hereinafter, embodiments of the present invention capable of solving the first to third problems will be described with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of a pilot flow control valve 1 according to an embodiment of the present invention, and FIG. 2 is a hydraulic circuit diagram of the pilot flow control valve 1 shown in FIG. In the present embodiment, the pilot flow control valve 1 is used as a main control valve for controlling the flow rate of oil from a hydraulic pump for a work machine, for turning, and for traveling in a work machine. However, the usage pattern of the pilot type flow control valve 1 is not limited to the above. In this specification, power machines (heavy machinery) such as a hydraulic excavator, a crane, a wheel loader, and a bulldozer are collectively referred to as a “work machine”.

先ず、図1及び図2を参照しながら、本実施形態に係るパイロット式流量制御弁1の概略構成について説明する。本実施形態に係るパイロット式流量制御弁1は、ボディ2と、ボディ2に挿入されたポペット形の主弁体3と、主弁体3と同軸となるようにボディ2に挿入されたスプール形のパイロット弁体5と、パイロット弁体5を動作させるための駆動力を与える駆動力付加手段であるソレノイド50とを備えている。なお、ボディ2を複数個に分割された別体として形成し、それぞれのボディ2が主弁体3とパイロット弁体5とを別々に収納するようにしても良い。   First, a schematic configuration of the pilot flow control valve 1 according to the present embodiment will be described with reference to FIGS. 1 and 2. A pilot flow control valve 1 according to this embodiment includes a body 2, a poppet-shaped main valve body 3 inserted into the body 2, and a spool type inserted into the body 2 so as to be coaxial with the main valve body 3. The pilot valve body 5 and a solenoid 50 which is a driving force adding means for providing a driving force for operating the pilot valve body 5 are provided. The body 2 may be formed as a separate body divided into a plurality of parts, and each body 2 may store the main valve body 3 and the pilot valve body 5 separately.

ボディ2には、入口ポート21、出口ポート22、入口ポート21から出口ポート22へ作動流体が流れるメイン流路25が設けられている。このメイン流路25には、バルブシート23が形成されている。入口ポート21は油圧ポンプなどの油圧源と接続されており、出口ポート22は流体圧アクチュエータ100と接続されている。さらに、ボディ2には、パイロット室43と、バランス室45と、パイロット排出流路60が設けられている。   The body 2 is provided with an inlet port 21, an outlet port 22, and a main flow path 25 through which a working fluid flows from the inlet port 21 to the outlet port 22. A valve seat 23 is formed in the main flow path 25. The inlet port 21 is connected to a hydraulic pressure source such as a hydraulic pump, and the outlet port 22 is connected to the fluid pressure actuator 100. Further, the body 2 is provided with a pilot chamber 43, a balance chamber 45, and a pilot discharge channel 60.

主弁体3は、ボディ2に形成された円筒形滑り面に内接している円柱形状体である。主弁体3は、メイン流路25とパイロット室43とを仕切るように、ボディ2に挿入されている。   The main valve body 3 is a columnar body inscribed in a cylindrical sliding surface formed in the body 2. The main valve body 3 is inserted into the body 2 so as to partition the main flow path 25 and the pilot chamber 43.

主弁体3はバルブシート23に着座可能であって、バルブシート23へ近づく第1閉方向と、バルブシート23から離れる第1開方向とに移動可能である。主弁体3が第1閉方向に移動してバルブシート23に着座するとメイン流路25が閉止され、主弁体3が第1開方向に移動してバルブシート23から離れるとメイン流路25が開放される。主弁体3は、スプリング42により第1閉方向に付勢されている。バルブシート23に着座した主弁体3によって、メイン流路25は一次側流路11と二次側流路12とに分けられている。   The main valve body 3 can be seated on the valve seat 23 and can move in a first closing direction approaching the valve seat 23 and a first opening direction moving away from the valve seat 23. When the main valve body 3 moves in the first closing direction and sits on the valve seat 23, the main flow path 25 is closed, and when the main valve body 3 moves in the first opening direction and moves away from the valve seat 23, the main flow path 25 is closed. Is released. The main valve body 3 is biased by the spring 42 in the first closing direction. The main flow path 25 is divided into the primary side flow path 11 and the secondary side flow path 12 by the main valve body 3 seated on the valve seat 23.

主弁体3の外周面には、ノッチ38が形成されている。このノッチ38と、主弁体3の第1閉方向側の面(以下、「前面」ともいう)とを接続するパイロット供給流路31が、主弁体3内に形成されている。パイロット供給流路31は、一次側流路11とパイロット室43とを接続し、一次側流路11からパイロット室43へ作動流体を供給する流路である。パイロット供給流路31には、メイン流路25の一次側流路11からパイロット室43へ向かう一方向の流れは通過するが、その逆流は通過させない、逆止弁33が設けられている。   A notch 38 is formed on the outer peripheral surface of the main valve body 3. A pilot supply flow path 31 that connects the notch 38 and a surface in the first closing direction of the main valve body 3 (hereinafter also referred to as “front surface”) is formed in the main valve body 3. The pilot supply flow path 31 is a flow path that connects the primary flow path 11 and the pilot chamber 43 and supplies the working fluid from the primary flow path 11 to the pilot chamber 43. The pilot supply flow path 31 is provided with a check valve 33 that allows a unidirectional flow from the primary flow path 11 to the pilot chamber 43 to pass through the main flow path 25 but does not allow the reverse flow to pass therethrough.

パイロット供給流路31とパイロット室43との間には、可変絞り32が設けられている。可変絞り32は、主弁体3の外周面及びノッチ38とボディ2の内周面との協働により形成されている。可変絞り32の開口面積は、主弁体3がバルブシート23に着座している状態で絞られている(閉じられている)。そして、可変絞り32の開口面積は、主弁体3の第1開方向の移動に伴って増大し、主弁体3の第1閉方向の移動に伴って減少する。   A variable throttle 32 is provided between the pilot supply flow path 31 and the pilot chamber 43. The variable throttle 32 is formed by the cooperation of the outer peripheral surface of the main valve body 3 and the notch 38 and the inner peripheral surface of the body 2. The opening area of the variable throttle 32 is throttled (closed) while the main valve body 3 is seated on the valve seat 23. The opening area of the variable throttle 32 increases as the main valve element 3 moves in the first opening direction, and decreases as the main valve element 3 moves in the first closing direction.

さらに、主弁体3には、パイロット供給流路31とは別に、二次側流路12とパイロット室43とを接続する副パイロット供給流路35が形成されている。副パイロット供給流路35は、主弁体3の第1開方向側の面(以下、「背面」ともいう)と、主弁体3の外周面のメイン流路25に露出している部分とを接続している。この副パイロット供給流路35には、二次側流路12からパイロット室43への一方向の流れは通過させるが、その逆流は通過させない逆止弁36が設けられている。   Further, in addition to the pilot supply flow path 31, a sub pilot supply flow path 35 that connects the secondary side flow path 12 and the pilot chamber 43 is formed in the main valve body 3. The sub-pilot supply channel 35 includes a surface exposed to the first opening direction side of the main valve body 3 (hereinafter also referred to as “rear surface”) and a portion exposed to the main channel 25 on the outer peripheral surface of the main valve body 3. Is connected. The sub pilot supply flow path 35 is provided with a check valve 36 that allows a one-way flow from the secondary side flow path 12 to the pilot chamber 43 to pass therethrough but does not allow the reverse flow to pass therethrough.

パイロット弁体5は、ボディ2に形成された円筒形滑り面に内接している一端開放の円筒形状体である。パイロット弁体5は、パイロット室43とパイロット排出流路60との間、及び、パイロット排出流路60とバランス室45との間を仕切るように、ボディ2に挿入されている。   The pilot valve body 5 is a cylindrical body having an open end that is inscribed in a cylindrical sliding surface formed on the body 2. The pilot valve body 5 is inserted into the body 2 so as to partition between the pilot chamber 43 and the pilot discharge channel 60 and between the pilot discharge channel 60 and the balance chamber 45.

パイロット弁体5には、外周面に設けられたノッチ68と、内部通路64とが形成されている。内部通路64は、ノッチ68とパイロット室43とを接続することにより、パイロット室43とパイロット排出流路60とを接続している。内部通路64とパイロット排出流路60との間には、パイロット弁体5の外周面とノッチ68とボディ2の内周面との協働により、可変絞り63が形成されている。パイロット弁体5は、可変絞り63の開口面積を増大せる向き(以下、「第2開方向」という)と、可変絞り63の開口面積を減少させる向き(以下、「第2閉方向」という)とへ移動可能である。   The pilot valve body 5 is formed with a notch 68 provided on the outer peripheral surface and an internal passage 64. The internal passage 64 connects the pilot chamber 43 and the pilot discharge channel 60 by connecting the notch 68 and the pilot chamber 43. A variable throttle 63 is formed between the internal passage 64 and the pilot discharge passage 60 by the cooperation of the outer peripheral surface of the pilot valve body 5, the notch 68 and the inner peripheral surface of the body 2. The pilot valve body 5 has a direction to increase the opening area of the variable throttle 63 (hereinafter referred to as “second opening direction”) and a direction to decrease the opening area of the variable throttle 63 (hereinafter referred to as “second closing direction”). It is possible to move to.

内部通路64は、バランス室45と接続された分岐路64aを有している。分岐路64aは、可変絞り63よりもパイロット室43側、即ち、ノッチ68よりもパイロット室43側で内部通路64から分岐しているそして、内部通路64において分岐路64aよりもパイロット室43側に固定絞り66が形成されている。つまり、パイロット室43とパイロット排出流路60とを接続する内部通路64上に固定絞り66が形成されている。したがって、内部通路64(分岐路64aを含む、以下同じ。)を介してバランス室45とパイロット室43とが連通されており、これらの間に固定絞り66が存在している。また、内部通路64を介してバランス室45とパイロット排出流路60とが接続されており、これらの間に可変絞り63が存在している。   The internal passage 64 has a branch passage 64 a connected to the balance chamber 45. The branch path 64a is branched from the internal passage 64 on the pilot chamber 43 side with respect to the variable throttle 63, that is, on the pilot chamber 43 side with respect to the notch 68, and in the internal passage 64, on the pilot chamber 43 side with respect to the branch path 64a. A fixed diaphragm 66 is formed. That is, the fixed throttle 66 is formed on the internal passage 64 that connects the pilot chamber 43 and the pilot discharge channel 60. Therefore, the balance chamber 45 and the pilot chamber 43 are communicated with each other via the internal passage 64 (including the branch path 64a, the same applies hereinafter), and a fixed throttle 66 exists between them. In addition, the balance chamber 45 and the pilot discharge channel 60 are connected via an internal passage 64, and a variable throttle 63 exists between them.

パイロット弁体5には、ソレノイド50により第2開方向の駆動力Fが与えられる。駆動力Fは、ソレノイド50に付与される制御信号に応じて可変である。一方、パイロット弁体5は、スプリング41により、第2開方向と反対の第2閉方向への付勢力が与えられている。可変絞り63の開口面積は、ソレノイド50がオフの時に絞られている(閉じられている)。そして、可変絞り63の開口面積は、ソレノイド50に与えられた制御信号に比例して、パイロット弁体5の第2開方向への移動に伴い増大し、パイロット弁体5の第2閉方向の移動に伴い減少する。   The pilot valve body 5 is given a driving force F in the second opening direction by a solenoid 50. The driving force F is variable according to a control signal applied to the solenoid 50. On the other hand, the pilot valve body 5 is given a biasing force in the second closing direction opposite to the second opening direction by the spring 41. The opening area of the variable aperture 63 is reduced (closed) when the solenoid 50 is off. The opening area of the variable throttle 63 increases in proportion to the movement of the pilot valve body 5 in the second opening direction in proportion to the control signal given to the solenoid 50, and the pilot valve body 5 in the second closing direction. Decreases with movement.

ソレノイド50は、パイロット弁体5と接続されたプランジャ51(可動鉄心)と、プランジャ51の周囲に設けられたコイル52とを備えている。プランジャ51やスプリング41は、バランス室45に配置されている。なお、本実施形態ではパイロット弁体5に駆動力を与える駆動力付加手段としてソレノイド50を採用しているが、駆動力付加手段はこれに限定されず、油圧パイロット式(油圧駆動式)であっても良い。   The solenoid 50 includes a plunger 51 (movable iron core) connected to the pilot valve body 5 and a coil 52 provided around the plunger 51. The plunger 51 and the spring 41 are disposed in the balance chamber 45. In this embodiment, the solenoid 50 is employed as the driving force adding means for applying the driving force to the pilot valve body 5, but the driving force adding means is not limited to this, and is a hydraulic pilot type (hydraulic driving type). May be.

次に、上記構成のパイロット式流量制御弁1の動作を説明する。ソレノイド50がオフのとき、パイロット弁体5は可変絞り63の開口面積が絞られた状態にあり、パイロット排出流路60が閉止されている。このとき、主弁体3はバルブシート23に着座しており、メイン流路25が閉止されている。さらに、可変絞り32の開口面積が絞られた状態にあり、パイロット供給流路31が閉止されている。ここで、メイン流路25の一次側流路11の作動流体の圧力を一次側圧力P1、二次側流路12の作動流体の圧力を二次側圧力P2、パイロット室43の作動流体の圧力をパイロット圧力P3、バランス室45の作動流体の圧力をバランス圧力P4とする。可変絞り32の開口面積は絞られているが僅かな漏れがあり、一次側圧力P1とパイロット圧力P3とが等しい。そして、主弁体3の前面より背面の面積が大きいことにより、主弁体3はバルブシート23に着座した状態で留まっている。また、パイロット弁体5の内部通路64に流れがないので、パイロット圧力P3とバランス圧力P4とが等しい。したがって、「一次側圧力P1=パイロット圧力P3=バランス圧力P4>二次側圧力P2」の関係が成立している。 Next, the operation of the pilot flow control valve 1 configured as described above will be described. When the solenoid 50 is off, the pilot valve body 5 is in a state where the opening area of the variable restrictor 63 is restricted, and the pilot discharge passage 60 is closed. At this time, the main valve body 3 is seated on the valve seat 23 and the main flow path 25 is closed. Furthermore, the opening area of the variable throttle 32 is reduced, and the pilot supply flow path 31 is closed. Here, the pressure of the working fluid in the primary channel 11 of the main channel 25 is the primary pressure P 1 , the pressure of the working fluid in the secondary channel 12 is the secondary pressure P 2 , and the working fluid of the pilot chamber 43. Is the pilot pressure P 3 , and the pressure of the working fluid in the balance chamber 45 is the balance pressure P 4 . Although the opening area of the variable throttle 32 is throttled, there is a slight leak, and the primary pressure P 1 and the pilot pressure P 3 are equal. The main valve body 3 remains seated on the valve seat 23 because the area of the back surface is larger than the front surface of the main valve body 3. Further, since there is no flow in the internal passage 64 of the pilot valve body 5, it is equal to the pilot pressure P 3 and the balance pressure P 4. Therefore, the relationship of “primary pressure P 1 = pilot pressure P 3 = balance pressure P 4 > secondary pressure P 2 ” is established.

一方、ソレノイド50がオフで、且つ、メイン流路25及びパイロット排出流路60が閉止されている状態において、流体圧アクチュエータ100に外部から負荷が掛かり、二次側流路12の圧力が上昇した場合を以下に検討する。このとき、可変絞り63の開口面積は絞られているが、パイロット弁体5の形式に限らず、ボディ2と主弁体3との隙間を通じて二次側流路12の作動流体がパイロット室43へ漏れ出る。さらに、主弁体3とボディ2との隙間(可変絞り32の隙間)を通じて、パイロット室43の作動流体がパイロット供給流路31へ漏れ出る。しかし、パイロット供給流路31に逆止弁33が設けられていることから、作動流体がパイロット供給流路31からメイン流路25の一次側流路11へ流れることはできない。このようにして、メイン流路25が閉止されているときの、二次側流路12から一次側流路11へのパイロット室43を介した作動流体漏れが抑制され、パイロット式流量制御弁1の動作が補償されている。例えば、メイン流路25が閉止されることにより流体圧アクチュエータ100が停止状態で保持されている場合に、二次側流路12から一次側流路11への作動流体漏れが抑制されることにより、流体圧アクチュエータ100の停止状態が良好に維持される。以上の通り、本実施形態に係るパイロット式流量制御弁1によれば、前述の第1の課題を解決することができる。   On the other hand, when the solenoid 50 is off and the main flow path 25 and the pilot discharge flow path 60 are closed, a load is applied to the fluid pressure actuator 100 from the outside, and the pressure of the secondary side flow path 12 increases. The case is considered below. At this time, the opening area of the variable throttle 63 is reduced, but not limited to the type of the pilot valve body 5, the working fluid in the secondary side flow path 12 flows through the gap between the body 2 and the main valve body 3. Leak into. Further, the working fluid in the pilot chamber 43 leaks into the pilot supply flow path 31 through the gap between the main valve body 3 and the body 2 (the gap between the variable throttles 32). However, since the check valve 33 is provided in the pilot supply flow path 31, the working fluid cannot flow from the pilot supply flow path 31 to the primary flow path 11 of the main flow path 25. Thus, the working fluid leakage from the secondary side flow path 12 to the primary side flow path 11 through the pilot chamber 43 when the main flow path 25 is closed is suppressed, and the pilot flow control valve 1 Has been compensated for. For example, when the fluid pressure actuator 100 is held in a stopped state by closing the main flow path 25, the working fluid leakage from the secondary side flow path 12 to the primary side flow path 11 is suppressed. The stop state of the fluid pressure actuator 100 is maintained well. As described above, according to the pilot flow control valve 1 according to the present embodiment, the first problem described above can be solved.

ソレノイド50が通電されると、パイロット弁体5に駆動力Fが付与され、パイロット弁体5が第2開方向に移動する。すると、可変絞り63の開口面積が増加し、パイロット排出流路60を通じてパイロット室43から二次側流路12へ作動流体が流れ出し、パイロット圧力P3が低下する。これにより、主弁体3が第1開方向に移動してバルブシート23から離れ、メイン流路25が開放される。メイン流路25の開放に伴い、可変絞り32が開かれてパイロット供給流路31も開放される。 When the solenoid 50 is energized, a driving force F is applied to the pilot valve body 5 and the pilot valve body 5 moves in the second opening direction. Then, the variable throttle opening area 63 is increased, the pilot chamber working fluid flows 43 from the secondary flow path 12 through the pilot discharge flow path 60, decreases the pilot pressure P 3. As a result, the main valve body 3 moves in the first opening direction to leave the valve seat 23, and the main flow path 25 is opened. As the main channel 25 is opened, the variable throttle 32 is opened and the pilot supply channel 31 is also opened.

主弁体3の第1開方向の移動に伴って可変絞り32の開口面積が増大し、可変絞り32を流れる作動流体の流量が増大する。可変絞り32を通過する作動流体の流量と可変絞り63を通過する作動流体の流量は常に等しいため、主弁体3の移動量はパイロット弁体5の移動量に依存する。   As the main valve body 3 moves in the first opening direction, the opening area of the variable throttle 32 increases, and the flow rate of the working fluid flowing through the variable throttle 32 increases. Since the flow rate of the working fluid passing through the variable throttle 32 and the flow rate of the working fluid passing through the variable throttle 63 are always equal, the movement amount of the main valve body 3 depends on the movement amount of the pilot valve body 5.

上記のようにメイン流路25及びパイロット排出流路60が開放された状態において、可変絞り63を通過する作動流体が一定流量である場合を以下に検討する。メイン流路25の一次側流路11とパイロット室43との間には可変絞り32が存在し、パイロット室43とパイロット排出流路60との間には可変絞り63及び固定絞り66が存在するため、「一次側圧力P1>パイロット圧力P3>バランス圧力P4>二次側圧力P2」の順に低くなり、主弁体3とパイロット弁体5は一定の位置に留まっている。 The case where the working fluid passing through the variable throttle 63 is a constant flow rate in the state where the main flow path 25 and the pilot discharge flow path 60 are opened as described above will be considered below. A variable throttle 32 exists between the primary flow path 11 of the main flow path 25 and the pilot chamber 43, and a variable throttle 63 and a fixed throttle 66 exist between the pilot chamber 43 and the pilot discharge flow path 60. Therefore, the pressure decreases in the order of “primary side pressure P 1 > pilot pressure P 3 > balance pressure P 4 > secondary side pressure P 2 ”, and the main valve body 3 and the pilot valve body 5 remain in a fixed position.

ここで、パイロット弁体5の内部通路64上に固定絞り66が形成されているため、パイロット室43に面したパイロット弁体5のパイロット弁体前面にはパイロット圧力P3が作用し、バランス室45に面したパイロット弁体5のパイロット弁体背面にはバランス圧力P4が作用する。また、パイロット弁体背面には、スプリング41によるバネ力、及び、ソレノイド50による駆動力Fも作用する。これにより、パイロット弁体5は、パイロット弁体前面に作用する力(パイロット圧力P3)とパイロット弁体背面に作用する力(バランス圧力P4、バネ力、駆動力F)とが釣り合う位置に移動することになる。つまり、固定絞り66の前後に生じる圧力差(パイロット圧力P3とバランス圧力P4との圧力差)は、スプリング41によるバネ力及びソレノイド50による駆動力Fに基づいて定まる所定値となる。そのため、固定絞り66を通過する作動流体の流量は、一次側圧力P1等の圧力変動の影響を受けることなく、所定値となる。また、固定絞り66を通過する流量と可変絞り63を通過する流量とは等しいので、可変絞り63の後流のパイロット排出流路60を通過するパイロット流量も所定値となる。更に言えば、固定絞り66を通過する流量と可変絞り63を通過する流量と可変絞り32を通過する流量は等しく、以下では、これらの流量をパイロット流量と呼ぶ。なお、メイン流路25の流量はパイロット排出流路60のパイロット流量に依存するため、メイン流路25の一次側流路11の圧力が変動しても、パイロット排出流路60の流量を一定値に保つことで、メイン流路25を通過する作動流体の流量を一定値に保持することができる。よって、パイロット式流量制御弁の性能を向上させることができる。 Here, since the fixed throttle 66 is formed on the internal passage 64 of the pilot valve body 5, the pilot pressure P 3 acts on the pilot valve body front surface of the pilot valve body 5 facing the pilot chamber 43, and the balance chamber. The balance pressure P 4 acts on the back surface of the pilot valve body 5 facing the 45. Further, the spring force by the spring 41 and the driving force F by the solenoid 50 also act on the back surface of the pilot valve body. As a result, the pilot valve body 5 is in a position where the force acting on the front surface of the pilot valve body (pilot pressure P 3 ) and the force acting on the rear surface of the pilot valve body (balance pressure P 4 , spring force, driving force F) are balanced. Will move. That is, the pressure difference generated before and after the fixed throttle 66 (pressure difference between the pilot pressure P 3 and the balance pressure P 4 ) is a predetermined value determined based on the spring force by the spring 41 and the driving force F by the solenoid 50. For this reason, the flow rate of the working fluid passing through the fixed throttle 66 becomes a predetermined value without being affected by pressure fluctuations such as the primary pressure P 1 . Further, since the flow rate passing through the fixed restrictor 66 and the flow rate passing through the variable restrictor 63 are equal, the pilot flow rate passing through the pilot discharge passage 60 downstream of the variable restrictor 63 also becomes a predetermined value. Further, the flow rate passing through the fixed restrictor 66, the flow rate passing through the variable restrictor 63, and the flow rate passing through the variable restrictor 32 are equal, and these flow rates are hereinafter referred to as pilot flow rates. Since the flow rate of the main flow path 25 depends on the pilot flow rate of the pilot discharge flow path 60, the flow rate of the pilot discharge flow path 60 is kept constant even if the pressure of the primary flow path 11 of the main flow path 25 fluctuates. By maintaining the flow rate at a constant value, the flow rate of the working fluid passing through the main flow path 25 can be maintained at a constant value. Therefore, the performance of the pilot flow control valve can be improved.

上記の通り、パイロット弁体5の内部通路64に固定絞り66が設けられることによって、固定絞り66の前後に生じる圧力差が一定となるようにパイロット弁体5が移動する。このように、圧力補償スプールとして動作するパイロット弁体5によって、パイロット式流量制御弁1に圧力補償機能を備えることができる。固定絞り66を通過するパイロット流量は、一次側圧力P1又は二次側圧力P2の変化に関わらず、スプリング41によりパイロット弁体5へ与えられるバネ力及びソレノイド50によりパイロット弁体5へ与えられる駆動力Fに応じたものとなる。即ち、固定絞りやその下流のパイロット排出流路60を通過するパイロット流量はソレノイド50によるパイロット弁体5の操作量に応じたものとなり、メイン流路25の流量はパイロット流量に依存するため、メイン流路25の流量をパイロット流量に対応した値に保持することができる。以上の通り、本実施形態に係るパイロット式流量制御弁1によれば、前述の第3の課題を解決することができる。 As described above, by providing the fixed throttle 66 in the internal passage 64 of the pilot valve body 5, the pilot valve body 5 moves so that the pressure difference generated before and after the fixed throttle 66 is constant. Thus, the pilot valve body 5 that operates as a pressure compensation spool can provide the pilot flow control valve 1 with a pressure compensation function. The pilot flow rate that passes through the fixed throttle 66 is applied to the pilot valve body 5 by the spring force applied to the pilot valve body 5 by the spring 41 and the solenoid 50 regardless of changes in the primary side pressure P 1 or the secondary side pressure P 2. This corresponds to the driving force F to be applied. That is, the pilot flow rate that passes through the fixed throttle and the pilot discharge flow path 60 downstream thereof is in accordance with the operation amount of the pilot valve body 5 by the solenoid 50, and the flow rate of the main flow path 25 depends on the pilot flow rate. The flow rate of the flow path 25 can be maintained at a value corresponding to the pilot flow rate. As described above, according to the pilot flow control valve 1 according to the present embodiment, the third problem described above can be solved.

また、メイン流路25が開放されている状態において、二次側圧力P2より一次側圧力P1が低くなることがある。このとき、二次側圧力P2よりもパイロット圧力P3が低いために、副パイロット供給流路35を通じて二次側流路12からパイロット室43へ作動流体が流れ込む。これにより、パイロット排出流路60及び可変絞り63を通ってパイロット室43へ作動流体を流入させる場合と比較して速やかに、パイロット圧力P3を増大させて、主弁体3を第1閉方向へ移動させて、メイン流路25を閉止することができる。なお、メイン流路25を閉止するために、二次側流路12からパイロット室43へ高圧が導入される際に、パイロット排出流路60と副パイロット供給流路35の両方を通じて作動流体がパイロット室43へ供給されてもよいし、副パイロット供給流路35のみから作動流体がパイロット室43へ供給されてもよい。上記の通り、二次側圧力P2より一次側圧力P1が低くなったときにメイン流路25が速やかに閉止されるので、例えば、二次側流路12に接続された流体圧アクチュエータ100が作業機械のアームを動作させるシリンダである場合には、アーム上昇動作時に作動流体の圧力が低下することによってアームが一瞬降下するような事態を防ぐことができる。以上の通り、本実施形態に係るパイロット式流量制御弁1によれば、前述の第2の課題を解決することができる。 Moreover, in the state where the main flow path 25 is opened, the primary side pressure P 1 may be lower than the secondary side pressure P 2 . At this time, since the pilot pressure P 3 is lower than the secondary side pressure P 2 , the working fluid flows from the secondary side passage 12 into the pilot chamber 43 through the sub pilot supply passage 35. As a result, the pilot pressure P 3 is quickly increased and the main valve body 3 is moved in the first closing direction as compared with the case where the working fluid flows into the pilot chamber 43 through the pilot discharge flow path 60 and the variable throttle 63. The main flow path 25 can be closed. In order to close the main flow path 25, when high pressure is introduced from the secondary side flow path 12 to the pilot chamber 43, the working fluid is piloted through both the pilot discharge flow path 60 and the sub pilot supply flow path 35. The working fluid may be supplied to the chamber 43, or the working fluid may be supplied to the pilot chamber 43 only from the auxiliary pilot supply channel 35. As described above, when the primary pressure P 1 becomes lower than the secondary pressure P 2 , the main flow path 25 is quickly closed. For example, the fluid pressure actuator 100 connected to the secondary flow path 12 Is a cylinder that operates the arm of the work machine, it is possible to prevent a situation in which the arm drops momentarily due to a decrease in the pressure of the working fluid during the arm raising operation. As described above, according to the pilot flow control valve 1 according to the present embodiment, the second problem described above can be solved.

以上に本発明の好適な実施の形態を説明したが、上記パイロット式流量制御弁1の構成は例えば以下のように変更することができる。   Although a preferred embodiment of the present invention has been described above, the configuration of the pilot flow control valve 1 can be changed as follows, for example.

例えば、第1の課題を解決する観点では、パイロット式流量制御弁1は、主弁体3に設けられた副パイロット供給流路35及び逆止弁36を備えていなくてもよい。同様に、パイロット式流量制御弁1は、パイロット弁体5の内部通路64に設けられた固定絞り66を備えていなくてもよい。更に、パイロット式流量制御弁1は、パイロット弁体5がポペット式であっても良い。   For example, from the viewpoint of solving the first problem, the pilot flow control valve 1 may not include the auxiliary pilot supply flow path 35 and the check valve 36 provided in the main valve body 3. Similarly, the pilot flow control valve 1 may not include the fixed throttle 66 provided in the internal passage 64 of the pilot valve body 5. Further, in the pilot type flow control valve 1, the pilot valve body 5 may be a poppet type.

また、例えば、第2の課題を解決する観点では、パイロット式流量制御弁1は、主弁体3に設けられたパイロット供給流路31に逆止弁33を備えていなくてもよい。同様に、パイロット式流量制御弁1は、パイロット弁体5の内部通路64に設けられた固定絞り66を備えていなくてもよい。更に、パイロット式流量制御弁1は、パイロット弁体5がポペット式であっても良い。   For example, from the viewpoint of solving the second problem, the pilot flow control valve 1 may not include the check valve 33 in the pilot supply flow path 31 provided in the main valve body 3. Similarly, the pilot flow control valve 1 may not include the fixed throttle 66 provided in the internal passage 64 of the pilot valve body 5. Further, in the pilot type flow control valve 1, the pilot valve body 5 may be a poppet type.

また、例えば、第3の課題を解決する観点では、パイロット式流量制御弁1は、主弁体3に設けられたパイロット供給流路31に逆止弁33を備えていなくてもよい。同様に、パイロット式流量制御弁1は、主弁体3に設けられた副パイロット供給流路35及び逆止弁36を備えていなくてもよい。   For example, from the viewpoint of solving the third problem, the pilot flow control valve 1 may not include the check valve 33 in the pilot supply flow path 31 provided in the main valve body 3. Similarly, the pilot flow control valve 1 may not include the auxiliary pilot supply flow path 35 and the check valve 36 provided in the main valve body 3.

1 パイロット式流量制御弁
2 ボディ
21 入口ポート
22 出口ポート
23 バルブシート
25 メイン流路
11 一次側流路
12 二次側流路
3 主弁体
31 パイロット流路
32 可変絞り(第1可変絞り)
33,36 逆止弁
35 副パイロット供給流路
38 ノッチ
5 パイロット弁体
41 スプリング(第2スプリング)
42 スプリング(第1スプリング)
43 パイロット室
45 バランス室
50 ソレノイド
51 プランジャ
52 コイル
60 パイロット排出流路
63 可変絞り(第2可変絞り)
64 内部通路
64a 分岐路
66 固定絞り
68 ノッチ
100 流体圧アクチュエータ
DESCRIPTION OF SYMBOLS 1 Pilot type flow control valve 2 Body 21 Inlet port 22 Outlet port 23 Valve seat 25 Main flow path 11 Primary side flow path 12 Secondary side flow path 3 Main valve body 31 Pilot flow path 32 Variable restrictor (first variable restrictor)
33, 36 Check valve 35 Sub pilot supply flow path 38 Notch 5 Pilot valve body 41 Spring (second spring)
42 Spring (first spring)
43 Pilot chamber 45 Balance chamber 50 Solenoid 51 Plunger 52 Coil 60 Pilot discharge flow path 63 Variable throttle (second variable throttle)
64 Internal passage 64a Branching passage 66 Fixed restriction 68 Notch 100 Fluid pressure actuator

Claims (5)

入口ポート、出口ポート、前記入口ポートと前記出口ポートを繋ぐメイン流路、前記メイン流路の一次側流路と二次側流路との間に設けられたバルブシート、パイロット室、及び前記パイロット室と前記出口ポートとを接続するパイロット排出流路を有するボディと、
前記バルブシートに近づく第1閉方向と前記バルブシートから離れる第1開方向とへ移動可能であって、前記メイン流路と前記パイロット室との間を仕切り、前記第1開方向へ移動して前記メイン流路と前記パイロット室の間に形成された第1可変絞りの開口面積を増大させ、前記第1閉方向へ移動して前記第1可変絞りの開口面積を減少させるように前記ボディに挿入された主弁体であって、前記パイロット室と前記入口ポートとを接続するパイロット供給流路を内部に有する主弁体と、
前記主弁体に前記第1閉方向の付勢力を与える第1スプリングと、
前記パイロット室と前記パイロット排出流路との間を仕切り、前記パイロット室と前記パイロット排出流路の間に形成された第2可変絞りの開口面積を増大させる第2開方向と前記第2可変絞りの開口面積を減少させる第2閉方向とへ移動可能に前記ボディに挿入されたパイロット弁体であって、前記パイロット室と前記パイロット排出流路とを接続する内部流路を有するパイロット弁体と、
前記パイロット弁体に前記第2開方向の駆動力を与える駆動力付加手段と、
前記パイロット弁体に前記第2閉方向の付勢力を与える第2スプリングと、
前記パイロット供給流路において前記入口ポートから前記パイロット室へ向かう一方向の流れのみを通過させる逆止弁と、を備えているパイロット式流量制御弁。
An inlet port, an outlet port, a main flow path connecting the inlet port and the outlet port, a valve seat provided between a primary flow path and a secondary flow path of the main flow path, a pilot chamber, and the pilot A body having a pilot discharge channel connecting the chamber and the outlet port;
The first closing direction approaching the valve seat and the first opening direction away from the valve seat are movable, partitioning the main flow path and the pilot chamber, and moving in the first opening direction The body is configured to increase an opening area of a first variable throttle formed between the main flow path and the pilot chamber and move in the first closing direction to reduce the opening area of the first variable throttle. An inserted main valve body having a pilot supply flow path connecting the pilot chamber and the inlet port therein;
A first spring that applies an urging force in the first closing direction to the main valve body;
A second opening direction and the second variable throttle for partitioning the pilot chamber and the pilot discharge flow path and increasing an opening area of a second variable throttle formed between the pilot chamber and the pilot discharge flow path. A pilot valve body inserted into the body so as to be movable in a second closing direction for reducing an opening area of the pilot valve body, and having an internal flow path connecting the pilot chamber and the pilot discharge flow path; ,
Driving force adding means for applying a driving force in the second opening direction to the pilot valve body;
A second spring for applying a biasing force in the second closing direction to the pilot valve body;
A pilot-type flow control valve comprising: a check valve that allows only a one-way flow from the inlet port toward the pilot chamber to pass through the pilot supply flow path.
前記パイロット室と前記出口ポートとを接続するように前記主弁体内に形成された副パイロット供給流路と、
前記副パイロット供給流路において、前記出口ポートから前記パイロット室へ向かう流れのみを通過させる逆止弁とを、更に備えている請求項1に記載のパイロット式流量制御弁。
A secondary pilot supply channel formed in the main valve body to connect the pilot chamber and the outlet port;
The pilot-type flow control valve according to claim 1, further comprising a check valve that allows only a flow from the outlet port toward the pilot chamber to pass through the sub pilot supply flow path.
前記ボディが、前記パイロット弁体に前記第2開方向の圧力を作用させるバランス室を更に有し、
前記パイロット弁体の前記内部流路が、前記バランス室と接続された分岐路を有し、
前記内部流路において前記分岐路の分岐箇所よりも前記パイロット室側に絞りが設けられている、
請求項1又は2に記載のパイロット式流量制御弁。
The body further includes a balance chamber for applying a pressure in the second opening direction to the pilot valve body;
The internal flow path of the pilot valve body has a branch path connected to the balance chamber;
In the internal flow path, a throttle is provided on the pilot chamber side than the branch point of the branch path,
The pilot type flow control valve according to claim 1 or 2.
入口ポート、出口ポート、前記入口ポートと前記出口ポートを繋ぐメイン流路、前記メイン流路の一次側流路と二次側流路との間に設けられたバルブシート、パイロット室、及び前記パイロット室と前記出口ポートとを接続するパイロット排出流路を有するボディと、
前記バルブシートに近づく第1閉方向と前記バルブシートから離れる第1開方向とへ移動可能であって、前記メイン流路と前記パイロット室との間を仕切り、前記第1開方向へ移動して前記メイン流路と前記パイロット室の間に形成された第1可変絞りの開口面積を増大させ、前記第1閉方向へ移動して前記第1可変絞りの開口面積を減少させるように前記ボディに挿入された主弁体であって、前記パイロット室と前記入口ポートとを接続するパイロット供給流路と前記パイロット室と前記出口ポートとを接続する副パイロット供給流路とを内部に有する主弁体と、
前記主弁体に前記第1閉方向の付勢力を与える第1スプリングと、
前記パイロット室と前記パイロット排出流路との間を仕切り、前記パイロット室と前記パイロット排出流路の間に形成された第2可変絞りの開口面積を増大させる第2開方向と前記第2可変絞りの開口面積を減少させる第2閉方向とへ移動可能に前記ボディに挿入されたパイロット弁体であって、前記パイロット室と前記パイロット排出流路とを接続する内部流路を有するパイロット弁体と、
前記パイロット弁体に可変な前記第2開方向の駆動力を与える駆動力付加手段と、
前記パイロット弁体に前記第2閉方向の付勢力を与える第2スプリングと、
前記副パイロット供給流路において前記出口ポートから前記パイロット室へ向かう一方向の流れのみを通過させる逆止弁と、を備えているパイロット式流量制御弁。
An inlet port, an outlet port, a main flow path connecting the inlet port and the outlet port, a valve seat provided between a primary flow path and a secondary flow path of the main flow path, a pilot chamber, and the pilot A body having a pilot discharge channel connecting the chamber and the outlet port;
The first closing direction approaching the valve seat and the first opening direction away from the valve seat are movable, partitioning the main flow path and the pilot chamber, and moving in the first opening direction The body is configured to increase an opening area of a first variable throttle formed between the main flow path and the pilot chamber and move in the first closing direction to reduce the opening area of the first variable throttle. An inserted main valve body having a pilot supply channel connecting the pilot chamber and the inlet port and a sub pilot supply channel connecting the pilot chamber and the outlet port therein When,
A first spring that applies an urging force in the first closing direction to the main valve body;
A second opening direction and the second variable throttle for partitioning the pilot chamber and the pilot discharge flow path and increasing an opening area of a second variable throttle formed between the pilot chamber and the pilot discharge flow path. A pilot valve body inserted into the body so as to be movable in a second closing direction for reducing an opening area of the pilot valve body, and having an internal flow path connecting the pilot chamber and the pilot discharge flow path; ,
Driving force adding means for applying a variable driving force in the second opening direction to the pilot valve body;
A second spring for applying a biasing force in the second closing direction to the pilot valve body;
A pilot flow control valve comprising: a check valve that allows passage of only a one-way flow from the outlet port toward the pilot chamber in the sub-pilot supply flow path.
入口ポート、出口ポート、前記入口ポートと前記出口ポートを繋ぐメイン流路、前記メイン流路の一次側流路と二次側流路との間に設けられたバルブシート、パイロット室、前記パイロット室と前記出口ポートとを接続するパイロット排出流路、及びバランス室を有するボディと、
前記バルブシートに近づく第1閉方向と前記バルブシートから離れる第1開方向とへ移動可能であって、前記メイン流路と前記パイロット室との間を仕切り、前記第1開方向へ移動して前記メイン流路と前記パイロット室の間に形成された第1可変絞りの開口面積を増大させ、前記第1閉方向へ移動して前記第1可変絞りの開口面積を減少させるように前記ボディに挿入された主弁体であって、前記パイロット室と前記入口ポートとを接続するパイロット供給流路を内部に有する主弁体と、
前記主弁体に前記第1閉方向の付勢力を与える第1スプリングと、
前記パイロット室と前記パイロット排出流路との間及び前記パイロット室と前記バランス室との間をそれぞれ仕切り、前記パイロット室と前記パイロット排出流路の間に形成された第2可変絞りの開口面積を増大させる第2開方向と前記第2可変絞りの開口面積を減少させる第2閉方向とへ移動可能に前記ボディに挿入されたパイロット弁体であって、前記パイロット室と前記パイロット排出流路とを接続する内部流路を有するスプール形のパイロット弁体と、
前記パイロット弁体に可変な前記第2開方向の駆動力を与える駆動力付加手段と、
前記パイロット弁体に前記第2閉方向の付勢力を与える第2スプリングと、を備え、
前記パイロット弁体の前記内部流路が、前記バランス室と接続された分岐路を有し、前記内部流路において前記分岐路の分岐箇所よりも前記パイロット室側に絞りが設けられている、
パイロット式流量制御弁。
An inlet port, an outlet port, a main channel connecting the inlet port and the outlet port, a valve seat provided between a primary channel and a secondary channel of the main channel, a pilot chamber, and the pilot chamber And a pilot discharge passage connecting the outlet port and a body having a balance chamber;
The first closing direction approaching the valve seat and the first opening direction away from the valve seat are movable, partitioning the main flow path and the pilot chamber, and moving in the first opening direction The body is configured to increase an opening area of a first variable throttle formed between the main flow path and the pilot chamber and move in the first closing direction to reduce the opening area of the first variable throttle. An inserted main valve body having a pilot supply flow path connecting the pilot chamber and the inlet port therein;
A first spring that applies an urging force in the first closing direction to the main valve body;
An opening area of a second variable throttle formed between the pilot chamber and the pilot discharge channel is divided between the pilot chamber and the pilot discharge channel and between the pilot chamber and the balance chamber, respectively. A pilot valve element inserted into the body so as to be movable in a second opening direction to be increased and a second closing direction in which an opening area of the second variable throttle is decreased, the pilot chamber, the pilot discharge flow path, A spool-shaped pilot valve body having an internal flow path for connecting
Driving force adding means for applying a variable driving force in the second opening direction to the pilot valve body;
A second spring that applies an urging force in the second closing direction to the pilot valve body,
The internal flow path of the pilot valve body has a branch path connected to the balance chamber, and the internal flow path is provided with a throttle on the pilot chamber side of the branch path of the branch path;
Pilot type flow control valve.
JP2014092372A 2014-04-28 2014-04-28 Pilot flow control valve Active JP6190315B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014092372A JP6190315B2 (en) 2014-04-28 2014-04-28 Pilot flow control valve
PCT/JP2015/001871 WO2015166628A1 (en) 2014-04-28 2015-03-31 Pilot-type flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014092372A JP6190315B2 (en) 2014-04-28 2014-04-28 Pilot flow control valve

Publications (2)

Publication Number Publication Date
JP2015209932A JP2015209932A (en) 2015-11-24
JP6190315B2 true JP6190315B2 (en) 2017-08-30

Family

ID=54358374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014092372A Active JP6190315B2 (en) 2014-04-28 2014-04-28 Pilot flow control valve

Country Status (2)

Country Link
JP (1) JP6190315B2 (en)
WO (1) WO2015166628A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6088608B1 (en) * 2015-09-07 2017-03-01 Kyb株式会社 One-way flow control valve
CN112112977B (en) * 2020-10-13 2024-07-12 北京航空工程技术研究中心 Pilot-operated type in-pipe flow control valve
CN113819269B (en) * 2021-09-30 2023-05-23 太原理工大学 Proportional reversing valve for eliminating hysteresis of main valve
DE102022201602B3 (en) 2022-02-16 2023-06-29 Vitesco Technologies GmbH Valve device for a heat pump system, heat pump system with such a valve device and building with such a valve device or such a heat pump system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232018U (en) * 1975-08-29 1977-03-07
JPS61166284U (en) * 1985-04-05 1986-10-15
US6328275B1 (en) * 2000-02-04 2001-12-11 Husco International, Inc. Bidirectional pilot operated control valve
US7621211B2 (en) * 2007-05-31 2009-11-24 Caterpillar Inc. Force feedback poppet valve having an integrated pressure compensator
US8256739B2 (en) * 2008-12-22 2012-09-04 Husco International, Inc. Poppet valve operated by an electrohydraulic poppet pilot valve
JP2012202491A (en) * 2011-03-25 2012-10-22 Kyb Co Ltd Solenoid valve

Also Published As

Publication number Publication date
WO2015166628A1 (en) 2015-11-05
JP2015209932A (en) 2015-11-24

Similar Documents

Publication Publication Date Title
JP5592641B2 (en) Poppet valve operated by electro-hydraulic poppet pilot valve
US7984890B2 (en) Pilot operated valve with fast closing poppet
JP5061107B2 (en) Electrohydraulic throttle valve with integrated flow control
JP5452993B2 (en) Electromagnetic proportional directional flow control valve with pressure compensation
JP6190315B2 (en) Pilot flow control valve
US20140026985A1 (en) Electro-proportional pilot operated poppet valve with pressure compensation
KR20150122695A (en) Merging circuit of hydraulic apparatus
WO2014147739A1 (en) Flow rate control valve
JP4981169B2 (en) Valve device with individual pressure balance and descent brake valve
JP6286307B2 (en) Directional control valve
US20070157980A1 (en) Pilot operated control valve having a two stage poppet
JP4824777B2 (en) Hydraulic control device with a descent brake valve
JP2013245823A (en) Hydrostatic type valve device and hydrostatic type control device including the valve device
US20130153043A1 (en) Flow force-compensating valve element with load check
WO2018180367A1 (en) Electromagnetic proportional valve
WO2019216193A1 (en) Electromagnetic flow control valve
JP6119875B2 (en) Flow control valve
CN108884947B (en) Proportional sequence valve with pressure amplification device
JP6068203B2 (en) Pressure control valve
US9528620B2 (en) Pressure reducing valve
JP2013257023A (en) Poppet valve
KR101505016B1 (en) Automatic pressure regulating control device for reciprocatable double acting booster
JP5470180B2 (en) Control valve
JP5998109B2 (en) Capacity controller for hydraulic rotating machine
JP2017053377A (en) Composite valve and solenoid valve using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170804

R150 Certificate of patent or registration of utility model

Ref document number: 6190315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250