JPWO2014115763A1 - Film-forming method, porous film, photoelectrode, and dye-sensitized solar cell - Google Patents

Film-forming method, porous film, photoelectrode, and dye-sensitized solar cell Download PDF

Info

Publication number
JPWO2014115763A1
JPWO2014115763A1 JP2014558592A JP2014558592A JPWO2014115763A1 JP WO2014115763 A1 JPWO2014115763 A1 JP WO2014115763A1 JP 2014558592 A JP2014558592 A JP 2014558592A JP 2014558592 A JP2014558592 A JP 2014558592A JP WO2014115763 A1 JPWO2014115763 A1 JP WO2014115763A1
Authority
JP
Japan
Prior art keywords
particles
porous
film
fine particles
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014558592A
Other languages
Japanese (ja)
Inventor
俊介 功刀
俊介 功刀
尚洋 藤沼
尚洋 藤沼
友章 片桐
友章 片桐
中嶋 節男
節男 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of JPWO2014115763A1 publication Critical patent/JPWO2014115763A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

この製膜方法は、原料化合物を含有する溶媒中において、前記原料化合物を原料とする無機物質の微粒子を合成するとともに前記微粒子を凝集させてなる凝集粒子を用いて、前記凝集粒子に含まれる前記微粒子同士の結合を強化する工程を経て多孔質粒子を作製し、前記多孔質粒子を基材に吹き付けて、前記基材と前記多孔質粒子とを接合させると共に、前記多孔質粒子同士を接合させることによって、前記基材上に前記無機物質によって構成された多孔質膜を製膜することを含む。In this film forming method, in the solvent containing the raw material compound, the fine particles of the inorganic substance using the raw material compound as a raw material are synthesized and the aggregated particles obtained by agglomerating the fine particles are used. A porous particle is produced through a step of strengthening the bonding between the fine particles, the porous particle is sprayed onto the base material, the base material and the porous particle are joined, and the porous particles are joined together. Thus, the method includes forming a porous film made of the inorganic substance on the base material.

Description

本発明は、粒子を基材に吹き付けることにより前記粒子からなる多孔質膜を前記基材上に形成する製膜方法、前記製膜方法により形成された前記多孔質膜、前記多孔質膜を備えた光電極、及び前記光電極を備えた色素増感太陽電池に関する。
本願は、2013年1月22日に、日本に出願された特願2013−009210号に基づき優先権を主張し、その内容をここに援用する。
The present invention includes a film forming method for forming a porous film made of the particles on the substrate by spraying the particles onto the substrate, the porous film formed by the film forming method, and the porous film. And a dye-sensitized solar cell including the photoelectrode.
This application claims priority on January 22, 2013 based on Japanese Patent Application No. 2013-009210 for which it applied to Japan, and uses the content here.

色素増感太陽電池の光電極を構成する多孔質膜の形成方法として、酸化チタン粒子を高分子ポリマー等のバインダーと混合したペーストを基板上に塗布し、これを焼成して多孔質膜を形成する方法が知られている。この方法は、簡易に多孔質膜を得られる利点があるが、基板材料に耐熱性が求められるため、実質的には使用される基板がガラス基板に限定される問題がある。
そこで、ペーストを焼成する方法に代えて、酸化チタン粒子を基板に吹き付けて酸化チタンからなる製膜体を得る方法も検討されている。このような方法としては、スプレー法、コールドスプレー法、静電スプレー法、溶射法、エアロゾルデポジション法(AD法)などが挙げられる。
As a method of forming a porous film that constitutes the photoelectrode of a dye-sensitized solar cell, a paste in which titanium oxide particles are mixed with a binder such as a polymer is applied on a substrate, and this is fired to form a porous film. How to do is known. This method has an advantage that a porous film can be easily obtained. However, since the substrate material is required to have heat resistance, there is a problem that the substrate to be used is substantially limited to the glass substrate.
Then, it replaces with the method of baking a paste, and the method of spraying a titanium oxide particle on a board | substrate and obtaining the film forming body which consists of titanium oxide is also examined. Examples of such a method include a spray method, a cold spray method, an electrostatic spray method, a thermal spray method, and an aerosol deposition method (AD method).

従来のAD法として特許文献1〜3が挙げられる。特許文献1においては、吹き付ける酸化チタン粒子(超微粒子脆性材料)として、数十nm程度の粒径の1次粒子を焼成することにより50nm〜1μm程度に凝集させた2次粒子を使用している。2次粒子は、基板に吹き付けられた衝撃で界面から割れ、粉砕され易い特徴を有する。このため、特許文献1のAD法によれば理論密度が95%以上の緻密質の製膜体(緻密膜)が得られる。   Patent documents 1-3 are mentioned as conventional AD method. In Patent Document 1, as the titanium oxide particles to be sprayed (ultrafine particle brittle material), secondary particles aggregated to about 50 nm to 1 μm by firing primary particles having a particle size of about several tens of nm are used. . The secondary particles have a characteristic that they are easily broken and crushed from the interface by an impact sprayed on the substrate. For this reason, according to the AD method of Patent Document 1, a dense film-formed body (dense film) having a theoretical density of 95% or more is obtained.

特許文献2〜3においては、特許文献1のAD法で使用される2次粒子の作製方法を変更することにより、緻密膜ではなく、多孔質膜を得るためのAD法が提案されている。具体的には、まず、高分子ポリマー等のバインダーを有する溶液に1次粒子を分散させ、これを乾燥固化させた凝集体を得て、この凝集体を更に焼成することにより、1次粒子同士が強固に焼結されて大きな塊になった多孔質の焼結体を得る。次に、この焼結体を乳鉢で解砕して、更に25μmメッシュを通すことにより、吹き付け可能な20μm程度の大きさに調整された2次粒子を得ている。この2次粒子を基板に対して60°の角度で衝突するように吹き付けることにより多孔質膜が得られる、と報告している。   In Patent Documents 2 to 3, an AD method for obtaining a porous film, not a dense film, is proposed by changing the method for producing secondary particles used in the AD method of Patent Document 1. Specifically, first, primary particles are dispersed in a solution having a binder such as a high molecular polymer, and an aggregate obtained by drying and solidifying the primary particles is obtained. Is sintered strongly to obtain a porous sintered body in a large lump. Next, this sintered body is crushed with a mortar and further passed through a 25 μm mesh to obtain secondary particles adjusted to a size of about 20 μm that can be sprayed. It is reported that a porous film can be obtained by spraying the secondary particles so as to collide with the substrate at an angle of 60 °.

特許第3265481号公報Japanese Patent No. 3265481 特許第4103470号公報Japanese Patent No. 4103470 特許第4626829号公報Japanese Patent No. 4626829

しかしながら、特許文献2〜3の2次粒子(吹き付け用粒子)の調製方法では、メッシュを通過させることにより粒径を25μm以下に揃えて平均粒径20μmに調製したとしても、粒径のバラツキが大きいため、形成した多孔質膜における2次粒子同士の接合強度や多孔度にバラツキが生じる。また、平均粒径が20μm程度の2次粒子であると、膜を形成する製膜効果だけでなく、形成された膜を削り取るブラスト効果も生じるため、製膜効率が低く(製膜速度が遅く)なり、膜厚を厚くすることが比較的困難である。厚い多孔質膜を得るために長時間の吹き付けを行うと、メッシュを辛うじて通過した大径の粒子が吹き付けられる確率も高まり、形成しつつある多孔質膜にひび割れが生じる恐れも高まる。吹き付け粒子から大径の粒子を除くために前記メッシュの開口を狭めることは、メッシュに詰まりが生じ、吹き付け用の粒子を大量調製することが困難になるため、現実的な解決方法にはならない。   However, in the method for preparing secondary particles (spraying particles) described in Patent Documents 2 to 3, even if the particle diameter is adjusted to 25 μm or less and adjusted to an average particle diameter of 20 μm by passing through a mesh, there is a variation in particle diameter. Since it is large, the bonding strength and porosity of the secondary particles in the formed porous film vary. In addition, when the secondary particles have an average particle size of about 20 μm, not only a film forming effect for forming a film but also a blasting effect for scraping the formed film occurs, so that the film forming efficiency is low (the film forming speed is low). Therefore, it is relatively difficult to increase the film thickness. When spraying for a long time in order to obtain a thick porous film, the probability that the large-diameter particles that have barely passed through the mesh will be sprayed increases, and the risk of cracking in the porous film being formed increases. Narrowing the opening of the mesh to remove large-diameter particles from the spray particles is not a practical solution because the mesh becomes clogged and it becomes difficult to prepare a large amount of spray particles.

本発明は、上記事情に鑑みてなされたものであり、従来よりも容易に厚い多孔質膜を形成することが可能な製膜方法、その製膜方法により製造した多孔質膜、その多孔質膜を備えた光電極、及びその光電極を備えた色素増感太陽電池の提供を課題とする。   The present invention has been made in view of the above circumstances, and a film forming method capable of forming a thick porous film more easily than the conventional one, a porous film manufactured by the film forming method, and the porous film And a dye-sensitized solar cell provided with the photoelectrode.

[1] 原料化合物を含有する溶媒中において、前記原料化合物を原料とする無機物質の微粒子を合成するとともに前記微粒子を凝集させてなる凝集粒子を用いて、前記凝集粒子に含まれる前記微粒子同士の結合を強化する工程を経て多孔質粒子を作製し、前記多孔質粒子を基材に吹き付けて、前記基材と前記多孔質粒子とを接合させると共に、前記多孔質粒子同士を接合させることによって、前記基材上に前記無機物質によって構成された多孔質膜を製膜することを含む特徴とする製膜方法。
すなわち、原料化合物を含有する溶媒中において、前記原料化合物を原料とする無機物質の微粒子を合成するとともに前記微粒子を凝集させてなる凝集粒子を用いて、前記凝集粒子内の前記微粒子同士の結合を強化する工程を経て作製された多孔質粒子を基材に吹き付けて、前記基材と前記多孔質粒子とを接合させると共に、前記多孔質粒子同士を接合させることによって、前記基材上に前記無機物質によって構成された多孔質膜を製膜することを特徴とする製膜方法。
[2] 前記微粒子同士の結合を強化する工程において、前記凝集粒子を密に充填しないことにより、前記凝集粒子内の前記微粒子同士を接合させることを特徴とする前記[1]に記載の製膜方法。
前記微粒子同士の結合を強化する工程において、前記凝集粒子を密に充填しないことにより、前記凝集粒子同士を接合させずに、前記凝集粒子内の前記微粒子同士のみを接合させることを特徴とする前記[1]に記載の製膜方法。
[3] 前記微粒子同士の結合を強化する工程において、固相反応によって前記微粒子同士が接触している箇所を接合可能な温度以上、前記無機物質の融点以下、の温度域で焼成することにより前記微粒子同士を接合することを特徴とする前記[1]又は[2]に記載の製膜方法。
[4] 前記微粒子同士の結合を強化する工程において、前記微粒子を構成する金属又は半導体が含まれる反応性化合物と前記凝集粒子とを混合し、前記反応性化合物を介して前記微粒子同士を化学的に接合することを特徴とする[1]〜[3]の何れか一項に記載の製膜方法。
[5] 前記凝集粒子及び前記多孔質粒子の平均粒径が200nm〜2μmであることを特徴とする前記[1]〜[4]の何れか一項に記載の製膜方法。
[6] 前記微粒子の平均粒径が10nm〜100nmであることを特徴とする前記[1]〜[5]の何れか一項に記載の製膜方法。
[7] 前記基材に吹き付けられる前記多孔質粒子の中に、粒径が5μm以上の多孔質粒子を含まないことを特徴とする前記[1]〜[6]の何れか一項に記載の製膜方法。
すなわち、前記吹き付ける多孔質粒子の中に、粒径が5μm以上の多孔質粒子を含まないことを特徴とする前記[1]〜[6]の何れか一項に記載の製膜方法。[8] 前記多孔質膜が色素増感太陽電池の光電極用の多孔質膜であることを特徴とする前記[1]〜[7]の何れか一項に記載の製膜方法。
[9] 前記[1]〜[8]の何れか一項に記載の製膜方法によって製膜された多孔質膜。
[10] 前記[9]に記載の多孔質膜を備えたことを特徴とする光電極。
[11] 前記[10]に記載の光電極を備えたことを特徴とする色素増感太陽電池。
[1] In a solvent containing a raw material compound, the fine particles of the inorganic substance using the raw material compound as a raw material are synthesized and aggregated particles obtained by aggregating the fine particles are used. By producing porous particles through a step of strengthening bonding, spraying the porous particles on a base material, joining the base material and the porous particles, and joining the porous particles to each other, A film forming method comprising forming a porous film made of the inorganic substance on the substrate.
That is, in the solvent containing the raw material compound, the fine particles of the inorganic material using the raw material compound as a raw material are synthesized and the aggregated particles obtained by aggregating the fine particles are used to bond the fine particles in the aggregated particles. The inorganic particles are formed on the base material by spraying the porous particles produced through the strengthening process onto the base material, thereby joining the base material and the porous particle and joining the porous particles to each other. A film forming method comprising forming a porous film made of a substance.
[2] In the step of strengthening the bonding between the fine particles, the fine particles in the aggregated particles are bonded to each other by not packing the aggregated particles closely, and the film formation according to the above [1] Method.
In the step of strengthening the bonding between the fine particles, the fine particles in the aggregated particles are bonded together without bonding the aggregated particles by not packing the aggregated particles closely. The film forming method according to [1].
[3] In the step of strengthening the bonding between the fine particles, by firing at a temperature range of a temperature at which the fine particles are in contact with each other by a solid-phase reaction and a temperature range that can be bonded to the melting point of the inorganic substance. The film forming method according to [1] or [2], wherein the fine particles are bonded to each other.
[4] In the step of strengthening the bonding between the fine particles, a reactive compound containing a metal or a semiconductor constituting the fine particles and the aggregated particles are mixed, and the fine particles are chemically bonded via the reactive compound. The film forming method according to any one of [1] to [3], wherein the film forming method is bonded to the film.
[5] The film forming method according to any one of [1] to [4], wherein an average particle diameter of the aggregated particles and the porous particles is 200 nm to 2 μm.
[6] The film forming method according to any one of [1] to [5], wherein an average particle diameter of the fine particles is 10 nm to 100 nm.
[7] The porous particles to be sprayed onto the base material do not include porous particles having a particle size of 5 μm or more, according to any one of [1] to [6], Film forming method.
That is, the film forming method according to any one of [1] to [6], wherein the porous particles to be sprayed do not include porous particles having a particle diameter of 5 μm or more. [8] The film forming method according to any one of [1] to [7], wherein the porous film is a porous film for a photoelectrode of a dye-sensitized solar cell.
[9] A porous film formed by the film forming method according to any one of [1] to [8].
[10] A photoelectrode comprising the porous film according to [9].
[11] A dye-sensitized solar cell comprising the photoelectrode according to [10].

本発明の製膜方法によれば、液相合成法によって1次粒子(微粒子)を成長させ、更に1次粒子を凝集させた2次粒子(凝集粒子)を用いるので、従来のように1次粒子を焼結させた大きな塊を乳鉢で解砕する必要はなく、更にメッシュを通過させる必要も無い。液相合成の反応溶液中において攪拌しながら、微粒子を成長させ、更にその微粒子同士を凝集させることにより、均一な粒径を有する凝集粒子を得ることができる。凝集粒子は微粒子同士が部分的に結合した多孔質状態である。この微粒子同士の結合を強化する接合工程を経て得た多孔質粒子は、基板に衝突してもその多孔質を維持することができる。この結果、多孔度の高い多孔質膜を得ることができる。また、多孔質粒子は凝集粒子と同様に粒径が揃っているので、吹き付け粒子中に大径の粒子が混在せず、ブラスト効果も殆ど生じないため、厚い多孔質膜を効率よく製膜することができる。また、厚い多孔質膜を形成した場合にも、基板に近い領域と基板から離れた領域の多孔度を同程度にして、膜全体の多孔度を均一にすることができる。   According to the film forming method of the present invention, primary particles (fine particles) are grown by a liquid phase synthesis method, and secondary particles (aggregated particles) obtained by aggregating the primary particles are used. There is no need to crush a large lump of sintered particles in a mortar and no need to pass through a mesh. Aggregated particles having a uniform particle diameter can be obtained by growing the fine particles while stirring in the reaction solution for liquid phase synthesis and further aggregating the fine particles. Aggregated particles are in a porous state in which fine particles are partially bonded. Even if the porous particles obtained through the bonding step for strengthening the bonding between the fine particles collide with the substrate, the porous particles can be maintained. As a result, a porous film having a high porosity can be obtained. In addition, since the porous particles have the same particle size as the aggregated particles, large particles are not mixed in the sprayed particles, and the blasting effect hardly occurs, so that a thick porous film is efficiently formed. be able to. Further, even when a thick porous film is formed, the porosity of the region close to the substrate and the region away from the substrate can be made the same, and the porosity of the entire film can be made uniform.

本発明の多孔質膜は、膜全体が均一な粒径の多孔質粒子によって形成されているため、構造的強度が高い。更に、膜全体に亘って高い多孔度を有する。このため、色素吸着量を従来よりも増加させた光電極が得られる。この結果、本発明の多孔質膜を備えた光電極及び色素増感太陽電池は、優れた光電変換効率を有する。   The porous membrane of the present invention has high structural strength because the entire membrane is formed of porous particles having a uniform particle size. Furthermore, it has a high porosity throughout the membrane. For this reason, the photoelectrode which increased dye adsorption amount than before is obtained. As a result, the photoelectrode and dye-sensitized solar cell provided with the porous film of the present invention have excellent photoelectric conversion efficiency.

本発明の第一実施形態の製膜方法に適用可能な製膜装置の概略構成図である。It is a schematic block diagram of the film forming apparatus applicable to the film forming method of 1st embodiment of this invention. 多孔質膜の膜厚の変化に対する色素吸着量の変化を示すプロット図である。It is a plot figure which shows the change of the pigment | dye adsorption amount with respect to the change of the film thickness of a porous film.

以下、好適な実施の形態に基づき、図面を参照して本発明を説明するが、本発明はかかる実施形態に限定されない。
なお本明細書において、微粒子とは無機物質からなる粒子(一次粒子)のことをいう。凝集粒子とは、前記微粒子が凝集して形成された粒子のことをいう。多孔質粒子とは、前記凝集粒子を焼成して得られる粒子のことをいう。
《製膜方法》
本発明の第一実施形態の製膜方法は、原料化合物を含有する溶媒中(液相原料中)において、前記原料化合物を原料とする、無機物質からなる微粒子(1次粒子)を合成するとともに前記微粒子を凝集させてなる凝集粒子を用いる。
Hereinafter, the present invention will be described with reference to the drawings based on preferred embodiments, but the present invention is not limited to such embodiments.
In the present specification, the fine particles mean particles (primary particles) made of an inorganic substance. Aggregated particles refer to particles formed by agglomerating the fine particles. The porous particles are particles obtained by firing the aggregated particles.
<Film forming method>
The film forming method according to the first embodiment of the present invention synthesizes fine particles (primary particles) made of an inorganic substance using a raw material compound as a raw material in a solvent containing the raw material compound (in a liquid phase raw material). Aggregated particles obtained by aggregating the fine particles are used.

前記凝集粒子は、従来公知の水熱合成法により合成してもよいし、市販品を用いてもよい。前記凝集粒子の市販品は、例えばテイカ株式会社から購入することができる。また、従来公知の水熱合成法として、固体反応物質と、溶媒若しくは反応物質として働く水溶液とをオートクレーブに入れ、高温高圧条件下で処理する方法が適用できる。この処理により、固体反応物質が溶解し互いに反応したり水溶液の成分と反応することにより、目的の微粒子を析出させることができる。このとき、温度、水溶液の種類や濃度、pHや攪拌などを変化させることにより、得られる粒子形状や凝集状態を制御することができる。このような従来公知の水熱合成法として、例えば下記参考文献に記載の方法が挙げられる。   The aggregated particles may be synthesized by a conventionally known hydrothermal synthesis method, or commercially available products may be used. A commercial product of the aggregated particles can be purchased from, for example, Teika Corporation. As a conventionally known hydrothermal synthesis method, a method in which a solid reactant and a solvent or an aqueous solution acting as a reactant are placed in an autoclave and treated under high temperature and high pressure conditions can be applied. By this treatment, the solid reactants dissolve and react with each other or react with the components of the aqueous solution, whereby the target fine particles can be precipitated. At this time, by changing the temperature, the type and concentration of the aqueous solution, the pH, the stirring, and the like, it is possible to control the obtained particle shape and aggregation state. Examples of such conventionally known hydrothermal synthesis methods include the methods described in the following references.

<参考文献>・水熱法によるセラミックス粉末の合成、柳澤和道著、ニチアス技術時報 2008年2号No.353、pp1−7.・アナターゼ型チタニア固溶体ナノ粒子の性質に及ぼす調整条件の影響、平野正典著、愛知工業大学総合技術研究所研究報告、第12号、2010年 <References> ・ Synthesis of ceramic powder by hydrothermal method, Kazumichi Yanagisawa, Nichias Technical Time Report 2008 No.2 No. 353, pp1-7.・ Effects of conditioning conditions on the properties of anatase-type titania solid solution nanoparticles, Masanori Hirano, Aichi Institute of Technology Research Report, No. 12, 2010

前記液相原料は、溶媒と、溶媒に溶解又は分散させる原料化合物とを含む。前記原料化合物は前記微粒子を構成する無機物質を含む化合物である。例えば前記溶媒として水を用い、前記原料化合物としてTiClを用いた水熱合成法により、酸化チタンからなる微粒子及びその微粒子が凝集した凝集粒子を得ることができる。
前記無機物質は特に制限されないが、例えば、従来公知の色素増感太陽電池の光電極を構成する多孔質膜の材料が挙げられる。具体的には、チタン、亜鉛等の金属若しくは半導体、その金属若しくは半導体の塩、又はその金属若しくは半導体のハロゲン化物等が例示できる。
The liquid phase raw material includes a solvent and a raw material compound to be dissolved or dispersed in the solvent. The raw material compound is a compound containing an inorganic substance constituting the fine particles. For example, fine particles comprising titanium oxide and aggregated particles in which the fine particles are aggregated can be obtained by a hydrothermal synthesis method using water as the solvent and TiCl 4 as the raw material compound.
Although the said inorganic substance is not restrict | limited in particular, For example, the material of the porous film which comprises the photoelectrode of a conventionally well-known dye-sensitized solar cell is mentioned. Specific examples include metals or semiconductors such as titanium and zinc, salts of the metals or semiconductors, and halides of the metals or semiconductors.

前記凝集粒子を構成する微粒子(1次粒子)の平均粒径(長径の平均)は、特に制限されないが、1nm〜100nmが好ましく、5nm〜70nmがより好ましく、10nm〜40nmが更に好ましい。前記微粒子の平均粒径が1nm以上であると、多孔質の凝集粒子を容易に得るとともに、増感色素を吸着するために充分な比表面積を有する多孔質膜を形成することができる。前記微粒子の平均粒径が100nm以下であると、凝集粒子を構成する微粒子間の結合力を高めて、物理的強度が高い凝集粒子を得ることができる。   The average particle diameter (average of major axis) of the fine particles (primary particles) constituting the aggregated particles is not particularly limited, but is preferably 1 nm to 100 nm, more preferably 5 nm to 70 nm, and still more preferably 10 nm to 40 nm. When the average particle diameter of the fine particles is 1 nm or more, porous aggregated particles can be easily obtained, and a porous film having a specific surface area sufficient for adsorbing the sensitizing dye can be formed. When the average particle size of the fine particles is 100 nm or less, the bonding force between the fine particles constituting the aggregated particles can be increased, and aggregated particles having high physical strength can be obtained.

前記微粒子の平均粒径を求める方法としては、SEM観察によって複数の微粒子の長径を測定して平均する方法が挙げられる。平均を算出する際の測定数は多いほど好ましいが、例えば30〜100個の凝集粒子について、各々10個程度の前記微粒子の長径を測定して平均値を算出する方法が挙げられる。   Examples of the method for obtaining the average particle size of the fine particles include a method of measuring and averaging the long diameters of a plurality of fine particles by SEM observation. The larger the number of measurements when calculating the average, the better. However, for example, with respect to 30 to 100 aggregated particles, a method of calculating the average value by measuring the major axis of about 10 fine particles each.

前記凝集粒子は、前記液相合成法により得られた微粒子が更に凝集した2次粒子である。前記凝集粒子の平均粒径(長径の平均)は特に制限されないが、0.1μm〜5μmが好ましく、0.2μm〜2μmがより好ましく、0.5μm〜1.5μmが更に好ましい。前記凝集粒子の平均粒径が0.1μm以上であると、圧粉体とは異なる構造的に強度な多孔質膜を容易に得ることができる。つまり充分な製膜効果を容易に得ることができる。前記凝集粒子の平均粒径が5μm以下であると、先行して吹き付けた凝集粒子によって形成された多孔質膜を後から吹き付ける凝集粒子によって削り取るブラスト効果を充分に抑制することができる。   The aggregated particles are secondary particles obtained by further aggregating fine particles obtained by the liquid phase synthesis method. The average particle diameter (average of the major axis) of the aggregated particles is not particularly limited, but is preferably 0.1 μm to 5 μm, more preferably 0.2 μm to 2 μm, and still more preferably 0.5 μm to 1.5 μm. When the average particle diameter of the aggregated particles is 0.1 μm or more, a structurally strong porous film different from the green compact can be easily obtained. That is, a sufficient film forming effect can be easily obtained. When the average particle size of the aggregated particles is 5 μm or less, it is possible to sufficiently suppress the blasting effect of scraping the porous film formed by the previously sprayed aggregated particles with the aggregated particles sprayed later.

前記凝集粒子の平均粒径を求める方法としては、例えばレーザー回折式粒度分布測定装置の測定により得られた体積平均径の分布のピーク値として決定する方法やSEM観察によって複数の凝集粒子の長径を測定して平均する方法が挙げられる。平均を算出する際の測定数は多いほど好ましいが、例えば30〜100個の凝集粒子の長径を測定して平均値を算出する方法が挙げられる。前記凝集粒子の粒径は、前記SEM観察によって測定することが好ましい。   As a method for obtaining the average particle size of the aggregated particles, for example, a method of determining the peak value of the volume average particle size distribution obtained by measurement with a laser diffraction particle size distribution measuring device or the major axis of a plurality of aggregated particles by SEM observation. The method of measuring and averaging is mentioned. The larger the number of measurements when calculating the average, the better. However, for example, there is a method of calculating the average value by measuring the major axis of 30 to 100 aggregated particles. The particle size of the aggregated particles is preferably measured by the SEM observation.

本実施形態においては、前記凝集粒子の構造的強度を高めるために、前記凝集粒子を構成する前記微粒子同士の結合を強化する接合処理を行う。この接合処理としては、特許文献2〜3のように高分子ポリマーを含むバインダーを使用せずに、前記凝集粒子を焼成することが好ましく、前記凝集粒子のみを焼成すること(前記凝集粒子だけを単独で焼成すること)がより好ましい。ここで、前記高分子ポリマーとは、分子量(Mw)が1000以上のポリマーをいう。
本実施形態における焼成は、既に凝集している微粒子同士の結合を強化する目的で行うため、前記凝集粒子同士を密に充填させた状態で焼成する必要はない。むしろ、凝集粒子同士の不要な結合を防止するためには、前記凝集粒子同士を密に充填させない状態で焼成することが好ましい。具体的には、凝集粒子の密度が3.7〜4.1g/cmの状態で焼成することが好ましい。このことは特に重要なので、以下に更に詳細に説明する。
In the present embodiment, in order to increase the structural strength of the aggregated particles, a bonding process for strengthening the bonding between the fine particles constituting the aggregated particles is performed. As this joining treatment, it is preferable to fire the aggregated particles without using a binder containing a polymer as in Patent Documents 2 to 3, and only the aggregated particles are fired (only the aggregated particles are It is more preferable to fire alone. Here, the high molecular polymer means a polymer having a molecular weight (Mw) of 1000 or more.
Since the firing in the present embodiment is performed for the purpose of strengthening the bonding between the already aggregated fine particles, it is not necessary to perform the firing in a state where the aggregated particles are closely packed. Rather, in order to prevent unnecessary bonding between the agglomerated particles, it is preferable to fire in a state where the agglomerated particles are not closely packed. Specifically, it is preferable to perform firing in a state where the density of the aggregated particles is 3.7 to 4.1 g / cm 3 . This is particularly important and will be explained in more detail below.

従来の焼成で用いられる前記バインダーは、未だ結合していない粒子同士を凝集させる目的で使用される。更に、粒子同士の凝集状態を確実にするために、焼成前にはバインダーが付着した粒子同士を密に充填させる必要がある。当該バインダーは、焼成後には焼失し、粒子同士の強固な焼結を補助する機能を有する。ただし、焼成後に得られる焼結体(大きな塊)の大きさを制御することは極めて困難である。このため、焼結体を解砕して、更にフィルター等を用いて所望のサイズに揃える(分級する)工程が欠かせない。
一方、本実施形態における前記凝集粒子は、1次粒子である微粒子同士が焼成前に既に結合しているため、前記バインダーは必要ない。前記バインダーを使用せずに前記凝集粒子を焼成することにより、前記凝集粒子同士を結着させずに、前記凝集粒子を構成する微粒子同士をより強固に接合し、前記凝集粒子の構造的強度を高めた多孔質粒子を得ることができる。この際、前記バインダーを使用していないので、前記凝集粒子(2次粒子)同士が強固に結合して形成される大きな塊(焼結体)は形成されない。従来の焼結体は、後で解砕する必要があるが、本実施形態ではこの手間が生じない。本実施形態では、前記バインダーを使用しないことにより、焼成後においても前記凝集粒子と同様に粒径が揃った多孔質粒子を得ることができる。
The binder used in conventional baking is used for the purpose of aggregating particles that are not yet bonded. Furthermore, in order to ensure the aggregation state of the particles, it is necessary to densely pack the particles to which the binder is attached before firing. The binder burns out after firing and has a function of assisting strong sintering of the particles. However, it is extremely difficult to control the size of the sintered body (large lump) obtained after firing. For this reason, the process which crushes a sintered compact and arranges (classifies) further to a desired size using a filter etc. is indispensable.
On the other hand, the agglomerated particles in the present embodiment do not require the binder because the fine particles, which are primary particles, are already bonded before firing. By firing the agglomerated particles without using the binder, the agglomerated particles are bonded together more firmly without binding the agglomerated particles, and the structural strength of the agglomerated particles is increased. Enhanced porous particles can be obtained. At this time, since the binder is not used, a large lump (sintered body) formed by firmly bonding the aggregated particles (secondary particles) to each other is not formed. The conventional sintered body needs to be crushed later, but this trouble does not occur in this embodiment. In the present embodiment, by not using the binder, it is possible to obtain porous particles having a uniform particle size even after firing, similarly to the aggregated particles.

前記焼成の温度域は、前記微粒子同士の結合を強めることが可能な温度であれば特に制限されないが、固相反応によって前記微粒子同士が接触している箇所を接合可能な温度以上、且つ前記無機物質の融点以下の温度域であることが好ましい。ここで、「固相反応」とは、前記微粒子の融点温度以下の温度域において、前記微粒子同士が接触している箇所で原子の拡散および再結合が生じ、前記微粒子同士が接触している箇所が結着する反応をいう。
前記凝集粒子が酸化チタンからなる場合、前記焼成温度は400〜1000℃が好ましく、500〜800℃がより好ましく、500〜600℃が更に好ましい。この焼成温度において、焼成時間は、1時間〜24時間が好ましく、3時間〜12時間がより好ましく、5時間〜12時間が更に好ましい。
The temperature range of the baking is not particularly limited as long as it is a temperature capable of strengthening the bonding between the fine particles, but the temperature is higher than the temperature at which the portion where the fine particles are in contact with each other by a solid-phase reaction, and the inorganic A temperature range below the melting point of the substance is preferred. Here, the term “solid phase reaction” refers to a location where the fine particles are in contact with each other in a temperature range below the melting point temperature of the fine particles, where atom diffusion and recombination occur at the locations where the fine particles are in contact with each other. Refers to the reaction of binding.
When the aggregated particles are made of titanium oxide, the firing temperature is preferably 400 to 1000 ° C, more preferably 500 to 800 ° C, and still more preferably 500 to 600 ° C. At this firing temperature, the firing time is preferably 1 hour to 24 hours, more preferably 3 hours to 12 hours, and even more preferably 5 hours to 12 hours.

前記多孔質粒子の平均粒径は、前記凝集粒子とほぼ同じであることが好ましい。前述したように前記凝集粒子を焼成したとしても、バインダーを使用せず、上記の焼成温度及び上記焼成時間であれば、凝集粒子同士が結着することは殆どない。また、仮に前記焼成によって前記凝集粒子同士が付いたとしても、その付着は強固ではないため、軽く解すことにより元の凝集粒子の大きさに簡単に戻すことができる。   The average particle diameter of the porous particles is preferably substantially the same as that of the aggregated particles. As described above, even if the aggregated particles are fired, the aggregated particles are hardly bound to each other as long as the binder is not used and the firing temperature and the firing time are as described above. Further, even if the aggregated particles are attached to each other by the firing, the adhesion is not strong, and therefore it can be easily returned to the original size of the aggregated particles by lightly understanding.

前記多孔質粒子の密度は特に制限されないが、3.3〜4.2g/cmが好ましく、3.5〜4.2g/cmがより好ましく、3.7〜4.1g/cmが更に好ましい。
上記範囲の密度であると、多孔度の高い多孔質膜を容易に得ることができる。
Wherein at density of the porous particles is not particularly limited but is preferably 3.3~4.2g / cm 3, more preferably 3.5~4.2g / cm 3, is 3.7~4.1g / cm 3 Further preferred.
When the density is in the above range, a porous film having a high porosity can be easily obtained.

前記多孔質粒子が酸化チタンによって構成されている場合、当該多孔質粒子のモース硬度は5.5〜6.0の範囲にあることが好ましい。
上記範囲のモース硬度であると、吹き付けによって多孔質粒子が粉砕されることを抑制し、多孔質粒子の多孔度を維持した多孔質膜を容易に形成することができる。
When the porous particles are made of titanium oxide, the Mohs hardness of the porous particles is preferably in the range of 5.5 to 6.0.
When the Mohs hardness is in the above range, the porous particles can be suppressed from being pulverized by spraying, and a porous film maintaining the porosity of the porous particles can be easily formed.

前記凝集粒子の構造的強度を高めるために、前記凝集粒子を構成する前記微粒子同士の結合を強化する処理として、前記焼成に代えて、化学的処理による接合を行うこともできる。
具体的には、例えば、前記微粒子を構成する金属又は半導体を含む反応性化合物を用い、前記反応性化合物を前記凝集粒子と混合し、前記反応性化合物を介して前記微粒子同士を化学的に接合することができる。前記反応性化合物として、光又は熱によって反応が促進される化合物を用いることができる。
In order to increase the structural strength of the agglomerated particles, bonding by chemical treatment can be performed instead of the firing as a treatment for strengthening the bonding between the fine particles constituting the agglomerated particles.
Specifically, for example, a reactive compound containing a metal or a semiconductor constituting the fine particles is used, the reactive compound is mixed with the aggregated particles, and the fine particles are chemically bonded via the reactive compound. can do. As the reactive compound, a compound whose reaction is accelerated by light or heat can be used.

前記微粒子が酸化チタンからなる微粒子である場合、前記反応性化合物として例えばTiClが挙げられる。当該凝集粒子を濃度が0.05〜0.1mol/LのTiClの水溶液に30分浸漬し、60〜100℃で30分〜2時間加熱する(もしくは加熱とともにUV光を照射する)ことにより、凝集粒子内の微粒子同士の結合を強化することができる。この場合、凝集粒子同士が結合して大きな塊を形成しないように、前記水溶液を攪拌しながら加熱することにより、凝集粒子同士が接合することを抑制することができる。When the fine particles are fine particles made of titanium oxide, examples of the reactive compound include TiCl 4 . By dipping the agglomerated particles in an aqueous solution of TiCl 4 having a concentration of 0.05 to 0.1 mol / L for 30 minutes and heating at 60 to 100 ° C. for 30 minutes to 2 hours (or irradiating UV light with heating) The bond between the fine particles in the aggregated particles can be strengthened. In this case, it is possible to prevent the agglomerated particles from being joined by heating the aqueous solution while stirring so that the agglomerated particles are not bonded to form a large lump.

<AD法による製膜>
以下、本発明の第一実施形態である多孔質膜の製膜方法を、図1を参照して説明する。
尚、以下の説明で用いる図面は模式的なものであり、長さ、幅、及び厚みの比率等は実際のものと同一とは限らず、適宜変更できる。
<Film formation by AD method>
Hereinafter, a method for forming a porous membrane according to a first embodiment of the present invention will be described with reference to FIG.
The drawings used in the following description are schematic, and the length, width, thickness ratio, and the like are not necessarily the same as the actual ones, and can be changed as appropriate.

図1は、本実施形態に適用可能な製膜装置60の構成図である。但し、本実施形態の製膜方法に用いる製膜装置は、基材に多孔質膜の原料である前記多孔質粒子を吹き付けることができる装置であればよく、図1に示す構成に限定されない。   FIG. 1 is a configuration diagram of a film forming apparatus 60 applicable to the present embodiment. However, the film forming apparatus used in the film forming method of the present embodiment is not limited to the configuration shown in FIG. 1 as long as it is an apparatus capable of spraying the porous particles, which are the raw material of the porous film, onto the base material.

<製膜装置>
製膜装置60は、ガスボンベ55と、搬送管56と、ノズル52と、基台63と、製膜室51と、を備えている。
ガスボンベ55には、多孔質粒子54を加速させて基材53に吹き付けるためのガス(以下、搬送ガスという)が充填されている。
ガスボンベ55には、搬送管56の一端が接続されている。ガスボンベ55から供給される搬送ガスは、搬送管56に供給される。
<Film forming device>
The film forming apparatus 60 includes a gas cylinder 55, a transfer pipe 56, a nozzle 52, a base 63, and a film forming chamber 51.
The gas cylinder 55 is filled with a gas for accelerating the porous particles 54 and spraying it on the base material 53 (hereinafter referred to as a carrier gas).
One end of a transfer pipe 56 is connected to the gas cylinder 55. The carrier gas supplied from the gas cylinder 55 is supplied to the carrier pipe 56.

搬送管56には、前段側から順に、マスフロー制御器57と、エアロゾル発生器58と、搬送ガス中の多孔質粒子54の分散具合を適度に調整できる解砕器59及び分級器61とが設けられている。解砕器59により、多孔質粒子54同士が湿気等で付着した状態を解くことができる。また、仮に、付着した状態で解砕器59を通過した多孔質粒子があったとしても、その粒子は分級器61で除くことができる。   The transport pipe 56 is provided with a mass flow controller 57, an aerosol generator 58, a disintegrator 59 and a classifier 61 that can appropriately adjust the dispersion degree of the porous particles 54 in the transport gas, in order from the front side. It has been. By the crusher 59, the state in which the porous particles 54 adhere to each other due to moisture or the like can be solved. Further, even if there are porous particles that have passed through the crusher 59 in an attached state, the particles can be removed by the classifier 61.

マスフロー制御器57により、ガスボンベ55から搬送管56に供給される搬送ガスの流量を調整することができる。エアロゾル発生器58には、多孔質粒子54が装填されている。色素増感太陽電池用の多孔質膜を製造する場合においては、吹き付け前の多孔質粒子54に予め増感色素を吸着させておいてもよい。多孔質粒子54はマスフロー制御器57から供給された搬送ガス中に分散されて、解砕器59及び分級器61へ搬送される。   The mass flow controller 57 can adjust the flow rate of the carrier gas supplied from the gas cylinder 55 to the carrier pipe 56. The aerosol generator 58 is loaded with porous particles 54. In the case of producing a porous film for a dye-sensitized solar cell, a sensitizing dye may be adsorbed in advance on the porous particles 54 before spraying. The porous particles 54 are dispersed in the carrier gas supplied from the mass flow controller 57 and conveyed to the crusher 59 and the classifier 61.

ノズル52は、図示略の開口部が基台63上の基材53に対向するように配置されている。ノズル52には、搬送管56の他端が接続されている。多孔質粒子54を含む搬送ガスは、ノズル52の開口部から基材53に噴射される。   The nozzle 52 is disposed such that an opening (not shown) faces the base material 53 on the base 63. The other end of the transport pipe 56 is connected to the nozzle 52. The carrier gas containing the porous particles 54 is injected from the opening of the nozzle 52 onto the base material 53.

基台63の上面73には、基材53の一方の面72が当接するように、基材53が載置されている。また、基材53の他方の面71(製膜面)はノズル52の開口部に対向している。ノズル52から搬送ガスと共に噴射される多孔質粒子54は、製膜面に衝突し、多孔質粒子54からなる多孔質膜が製膜される。   The base material 53 is placed on the upper surface 73 of the base 63 so that one surface 72 of the base material 53 comes into contact therewith. Further, the other surface 71 (film forming surface) of the substrate 53 faces the opening of the nozzle 52. The porous particles 54 injected together with the carrier gas from the nozzle 52 collide with the film forming surface, and a porous film made of the porous particles 54 is formed.

製膜装置60の基台63を構成する部材は、多孔質粒子54の平均粒径、硬度、吹き付け速度に応じて、製膜面71上において多孔質粒子54同士の衝突エネルギーが適度に制御される材質からなることが好ましい。このような部材であると、多孔質粒子54の製膜面71への密着性を高め、且つ、堆積する多孔質粒子54同士が容易に接合されるため、多孔度の高い多孔質膜を容易に製膜することができる。   In the member constituting the base 63 of the film forming apparatus 60, the collision energy between the porous particles 54 is appropriately controlled on the film forming surface 71 according to the average particle diameter, hardness, and spraying speed of the porous particles 54. Preferably, it is made of a material. With such a member, the adhesion of the porous particles 54 to the film-forming surface 71 is improved, and the porous particles 54 to be deposited are easily joined together, so that a porous film having a high porosity can be easily formed. It can be formed into a film.

基材53は、吹き付けられた多孔質粒子54が製膜面71に食い込み、貫通せずに多孔質粒子54と密着可能な材質からなることが好ましい。このような基材53として、例えば樹脂製フィルム(樹脂製シート)が挙げられる。AD法によれば常温で製膜可能であるため、基材53に高度な耐熱性は要求されない。より具体的な基材53の選択は、多孔質粒子54の材料、吹き付け速度等の製膜条件、多孔質膜の用途に応じて適宜行えばよい。   The base material 53 is preferably made of a material that allows the sprayed porous particles 54 to bite into the film-forming surface 71 and to adhere to the porous particles 54 without penetrating. Examples of such a substrate 53 include a resin film (resin sheet). Since the film can be formed at room temperature according to the AD method, the substrate 53 is not required to have high heat resistance. More specific selection of the base material 53 may be appropriately performed according to the material of the porous particles 54, the film forming conditions such as the spraying speed, and the use of the porous film.

製膜室51は減圧雰囲気で製膜を行うために設けられている。製膜室51には真空ポンプ62が接続されており、必要に応じて製膜室51内が減圧される。
また、製膜室51には図示略の基台交換手段が備えられている。
The film forming chamber 51 is provided for film formation in a reduced pressure atmosphere. A vacuum pump 62 is connected to the film forming chamber 51, and the inside of the film forming chamber 51 is depressurized as necessary.
The film forming chamber 51 is provided with a base exchange means (not shown).

<吹き付け方法>
以下、多孔質粒子54の吹き付け方法の一例を説明する。
まず、真空ポンプ62を稼動させて製膜室51内を減圧する。製膜室51内の圧力は特に制限されないが、5〜1000Paに設定することが好ましい。この程度に減圧することにより、製膜室51内の対流を抑制し、多孔質粒子54を製膜面71の所定の箇所に吹き付けることが容易になる。
<Blowing method>
Hereinafter, an example of a method for spraying the porous particles 54 will be described.
First, the vacuum pump 62 is operated to depressurize the film forming chamber 51. The pressure in the film forming chamber 51 is not particularly limited, but is preferably set to 5 to 1000 Pa. By reducing the pressure to this extent, convection in the film forming chamber 51 is suppressed, and it becomes easy to spray the porous particles 54 onto predetermined positions on the film forming surface 71.

次に、ガスボンベ55から搬送ガスを搬送管56へ供給し、搬送ガスの流速及び流量をマスフロー制御器57により調整する。搬送ガスとしては、例えば、O、N、Ar、He又は空気などの一般的なガスを用いることができる。
搬送ガスの流速及び流量は、ノズル52から吹き付ける多孔質粒子54の材料、平均粒径、流速及び流量に応じて適宜設定すればよい。
Next, the carrier gas is supplied from the gas cylinder 55 to the carrier pipe 56, and the flow rate and flow rate of the carrier gas are adjusted by the mass flow controller 57. As the carrier gas, for example, a general gas such as O 2 , N 2 , Ar, He, or air can be used.
What is necessary is just to set suitably the flow velocity and flow volume of carrier gas according to the material of the porous particle 54 sprayed from the nozzle 52, average particle diameter, flow velocity, and flow volume.

多孔質粒子54をエアロゾル発生器58に装填し、搬送管56内を流れる搬送ガス中に多孔質粒子54を分散させて、加速する。ノズル52の開口部から、亜音速から超音速の速度で多孔質粒子54を噴射させて、基材53の製膜面71に積層させる。この際、多孔質粒子54の製膜面71への吹き付け速度は、例えば、10〜1000m/sに設定できる。しかし、この速度には特に限定されず、基材53の材質に応じて適宜設定すればよい。   The porous particles 54 are loaded into the aerosol generator 58, and the porous particles 54 are dispersed in the carrier gas flowing in the carrier pipe 56 and accelerated. The porous particles 54 are ejected from the opening of the nozzle 52 at a subsonic to supersonic speed, and are laminated on the film forming surface 71 of the substrate 53. At this time, the spraying speed of the porous particles 54 onto the film forming surface 71 can be set to 10 to 1000 m / s, for example. However, the speed is not particularly limited, and may be set as appropriate according to the material of the base material 53.

多孔質粒子54からなる多孔質膜が所定の膜厚になるまで吹き付けを継続することにより、基材53の製膜面71に食い込んだ多孔質粒子54に対して、次々に多孔質粒子54が衝突し、多孔質粒子54同士の衝突によって互いの多孔質粒子54の表面に新生面が形成され、この新生面において多孔質粒子54同士が接合される。多孔質粒子54同士の衝突時には多孔質粒子54全体が溶融するような温度上昇は生じないため、新生面においてガラス質からなる粒界層は殆ど形成されない。   By continuing the spraying until the porous film made of the porous particles 54 reaches a predetermined film thickness, the porous particles 54 are successively applied to the porous particles 54 that have digged into the film forming surface 71 of the substrate 53. Colliding with each other, a new surface is formed on the surfaces of the porous particles 54 by the collision of the porous particles 54, and the porous particles 54 are joined to each other on the new surface. When the porous particles 54 collide with each other, a temperature rise that causes the entire porous particles 54 to melt does not occur. Therefore, a glassy grain boundary layer is hardly formed on the new surface.

多孔質粒子54の多孔質膜が所定の膜厚(例えば1μm〜100μm)になった時点で、ノズル52からの多孔質粒子54の吹き付けを停止する。
以上の工程により、基材53の製膜面71の上に多孔質粒子54からなる所定の膜厚の多孔質膜が製膜される。
When the porous film of the porous particles 54 reaches a predetermined film thickness (for example, 1 μm to 100 μm), the spraying of the porous particles 54 from the nozzle 52 is stopped.
Through the above steps, a porous film having a predetermined film thickness made of porous particles 54 is formed on the film forming surface 71 of the substrate 53.

以上ではAD法による製膜方法を例示したが、本発明の製膜方法はAD法に限定されない。従来公知の粉体吹き付け法である、スプレー法、コールドスプレー法、静電スプレー法、溶射法等を用いて、前記多孔質粒子を基材に吹き付けることにより、多孔質膜を製膜してもよい。   Although the film formation method by AD method was illustrated above, the film formation method of this invention is not limited to AD method. Even if a porous film is formed by spraying the porous particles onto a substrate using a conventionally known powder spraying method, such as a spray method, a cold spray method, an electrostatic spray method, or a spraying method. Good.

《多孔質膜》
本発明の第二実施形態の多孔質膜は、第一実施形態の製膜方法により基材上に形成された多孔質膜である。この多孔質膜は、膜全体が均一な粒径の多孔質粒子によって形成されているため、構造的強度が高い。更に、膜全体に亘って高い多孔度を有する。このため、色素吸着量を従来よりも増加させた光電極が得られる。この結果、本発明の多孔質膜を備えた光電極及び色素増感太陽電池は、優れた光電変換効率を有する。
本実施形態の多孔質膜の用途は、光電極に限られず、多孔質構造を利用した物質吸着や物質担持の用途に広く適用できる。
<Porous membrane>
The porous film of the second embodiment of the present invention is a porous film formed on a substrate by the film forming method of the first embodiment. This porous film has high structural strength because the entire film is formed of porous particles having a uniform particle diameter. Furthermore, it has a high porosity throughout the membrane. For this reason, the photoelectrode which increased dye adsorption amount than before is obtained. As a result, the photoelectrode and dye-sensitized solar cell provided with the porous film of the present invention have excellent photoelectric conversion efficiency.
The use of the porous film of the present embodiment is not limited to the photoelectrode, but can be widely applied to the use of substance adsorption and substance support using a porous structure.

《光電極》
本発明の第三実施形態の光電極は、第二実施形態の多孔質膜に増感色素を吸着させた光電極である。増感色素の種類は特に制限されず、従来公知の色素が適用できる。第三実施形態において、多孔質膜は透明導電基板上に形成されていることが好ましい。
<< Photoelectrode >>
The photoelectrode of the third embodiment of the present invention is a photoelectrode in which a sensitizing dye is adsorbed on the porous film of the second embodiment. The kind of sensitizing dye is not particularly limited, and conventionally known dyes can be applied. In the third embodiment, the porous film is preferably formed on a transparent conductive substrate.

第三実施形態の光電極は、第二実施形態の多孔質膜を用いること以外は、常法により製造することができる。   The photoelectrode of the third embodiment can be produced by a conventional method except that the porous film of the second embodiment is used.

《色素増感太陽電池》
本発明の第四実施形態の色素増感太陽電池は、第三実施形態の光電極と、対向電極と、電解液若しくは電解質層とを備えている。電解液は、光電極と対向電極の間において封止材によって封止されていることが好ましい。
《Dye-sensitized solar cell》
The dye-sensitized solar cell according to the fourth embodiment of the present invention includes the photoelectrode according to the third embodiment, a counter electrode, and an electrolytic solution or an electrolyte layer. The electrolytic solution is preferably sealed with a sealing material between the photoelectrode and the counter electrode.

光電極を構成する多孔質膜が形成された基材として、透明導電膜が表面に形成された樹脂フィルム若しくは樹脂シートを用いることができる。前記樹脂(プラスチック)としては、可視光の透過性を有するものが好ましく、例えばポリアクリル、ポリカーボネート、ポリエステル、ポリイミド、ポリスチレン、ポリ塩化ビニル、ポリアミド等が挙げられる。これらのなかでは、ポリエステル、特にポリエチレンテレフタレート(PET)が、透明耐熱フィルムとして大量に生産および使用されている。このような樹脂製の基板を用いることにより、薄くて軽いフレキシブルな色素増感太陽電池を製造することができる。   As the substrate on which the porous film constituting the photoelectrode is formed, a resin film or a resin sheet having a transparent conductive film formed on the surface can be used. As the resin (plastic), those having visible light permeability are preferable, and examples thereof include polyacryl, polycarbonate, polyester, polyimide, polystyrene, polyvinyl chloride, and polyamide. Among these, polyester, particularly polyethylene terephthalate (PET), is produced and used in large quantities as a transparent heat-resistant film. By using such a resin substrate, a thin and light flexible dye-sensitized solar cell can be manufactured.

前記電解液は、従来公知の色素増感太陽電池で使用されている電解液を適用できる。電解液には、酸化還元対(電解質)が溶解されている。電解液には、本発明の趣旨を逸脱しない範囲で、フィラーや増粘剤などの他の添加剤を含んでいてもよい。   As the electrolytic solution, an electrolytic solution used in a conventionally known dye-sensitized solar cell can be applied. A redox couple (electrolyte) is dissolved in the electrolytic solution. The electrolyte solution may contain other additives such as fillers and thickeners without departing from the spirit of the present invention.

また、電解液に代えて電解質層(固体電解質層)を適用してもよい。前記電解質層は、電解液と同様の機能を有し、ゲル状又は固体状の何れかの状態である。前記電解質層としては、例えば電解液にゲル化剤又は増粘剤を加え、必要に応じて溶媒を除去することにより、電解液をゲル化又は固体化して得たものが適用できる。ゲル状又は固体状の電解質層を用いることにより、色素増感太陽電池から電解液が漏出する虞がなくなる。   Further, an electrolyte layer (solid electrolyte layer) may be applied instead of the electrolytic solution. The electrolyte layer has a function similar to that of the electrolytic solution, and is in a gel or solid state. As the electrolyte layer, for example, a solution obtained by gelling or solidifying the electrolyte solution by adding a gelling agent or a thickener to the electrolyte solution and removing the solvent as necessary can be applied. By using the gel or solid electrolyte layer, there is no possibility of the electrolyte solution leaking from the dye-sensitized solar cell.

第四実施形態の色素増感太陽電池は、第三実施形態の光電極を用いること以外は、常法により製造することができる。   The dye-sensitized solar cell of the fourth embodiment can be manufactured by a conventional method except that the photoelectrode of the third embodiment is used.

第三実施形態の光電極を構成する第二実施形態の多孔質膜は、従来の粉体吹き付け法により形成された多孔質膜よりも構造的強度、構造的均一性、多孔度、多孔度の均一性、及び色素吸着性に優れる。この結果、第三実施形態の光電極および第四実施形態の色素増感太陽電池の、耐久性および光電変換効率を向上させることができる。   The porous film of the second embodiment constituting the photoelectrode of the third embodiment has a structural strength, structural uniformity, porosity, porosity that is higher than that of a porous film formed by a conventional powder spraying method. Excellent uniformity and dye adsorption. As a result, the durability and photoelectric conversion efficiency of the photoelectrode of the third embodiment and the dye-sensitized solar cell of the fourth embodiment can be improved.

次に、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited by these examples.

[実施例1]
1次粒径の平均が約15nmの微粒子が約1μmになるまで凝集したTiOからなる市販の凝集粒子を購入して使用した。この凝集粒子を精製水等により洗浄し、凝集粒子同士が密に充填されないようにバット上に広げて乾燥させた。乾燥した粉状の約1μmの平均粒径の前記凝集粒子を試薬瓶に入れて一時保管した。
次に、その乾燥した粉状の凝集粒子10gを体積150cmのアルミナ製の容器に入れた。この際、粉体に圧力をかけることは行わず、粒子間にある程度の隙間が含まれる状態とした。また、この際、バインダーは使用していない。
この状態で、空気雰囲気で500℃で5時間焼成し、平均粒径が前記凝集粒子と同様の約1μmに揃ったTiOからなる多孔質粒子を得た。
得られた多孔質粒子の密度は、3.8g/cmとなった。
この多孔質粒子をAD法によって、ITOが製膜されたPEN基板上に吹き付けて、TiOからなる多孔質膜を製膜した。膜厚は0.1μm〜30μmの範囲で任意に調整することが可能であった。
[Example 1]
Commercially available agglomerated particles made of TiO 2 aggregated until fine particles having an average primary particle size of about 15 nm were about 1 μm were purchased and used. The aggregated particles were washed with purified water or the like, spread on a bat and dried so that the aggregated particles were not packed closely. The dried aggregated particles having an average particle diameter of about 1 μm were put in a reagent bottle and temporarily stored.
Next, 10 g of the dried powdery agglomerated particles was put in an alumina container having a volume of 150 cm 3 . At this time, no pressure was applied to the powder, and a certain amount of gaps were included between the particles. At this time, no binder is used.
In this state, calcination was performed at 500 ° C. for 5 hours in an air atmosphere to obtain porous particles made of TiO 2 having an average particle diameter of about 1 μm, which was the same as the aggregated particles.
The density of the obtained porous particles was 3.8 g / cm 3 .
The porous particles were sprayed onto the PEN substrate on which ITO was formed by AD method to form a porous film made of TiO 2 . The film thickness could be arbitrarily adjusted in the range of 0.1 μm to 30 μm.

[実施例2]
1次粒径の平均が約30nmの微粒子が約1μmになるまで凝集したTiOからなる市販の凝集粒子を購入して使用した。この凝集粒子を精製水等により洗浄し、凝集粒子同士が密に充填されないようにバット上に広げて乾燥させた。乾燥した粉状の約1μmの平均粒径の前記凝集粒子を試薬瓶に入れて一時保管した。
次に、その乾燥した粉状の凝集粒子10gを体積150cmのアルミナ製の容器に入れた。この際、粉体に圧力をかけることは行わず、粒子間にある程度の隙間が含まれる状態とした。また、この際、バインダーは使用していない。
この状態で、空気雰囲気で500℃で5時間焼成し、平均粒径が前記凝集粒子と同様の約1μmに揃ったTiOからなる多孔質粒子を得た。
得られた多孔質粒子の密度は、4.0g/cmとなった。
この多孔質粒子をAD法によって、ITOが製膜されたPEN基板上に吹き付けて、TiOからなる多孔質膜を製膜した。膜厚は0.1μm〜30μmの範囲で任意に調整することが可能であった。
[Example 2]
Commercially available agglomerated particles made of TiO 2 aggregated until fine particles having an average primary particle diameter of about 30 nm were about 1 μm were purchased and used. The aggregated particles were washed with purified water or the like, spread on a bat and dried so that the aggregated particles were not packed closely. The dried aggregated particles having an average particle diameter of about 1 μm were put in a reagent bottle and temporarily stored.
Next, 10 g of the dried powdery agglomerated particles was put in an alumina container having a volume of 150 cm 3 . At this time, no pressure was applied to the powder, and a certain amount of gaps were included between the particles. At this time, no binder is used.
In this state, calcination was performed at 500 ° C. for 5 hours in an air atmosphere to obtain porous particles made of TiO 2 having an average particle diameter of about 1 μm, which was the same as the aggregated particles.
The density of the obtained porous particles was 4.0 g / cm 3 .
The porous particles were sprayed onto the PEN substrate on which ITO was formed by AD method to form a porous film made of TiO 2 . The film thickness could be arbitrarily adjusted in the range of 0.1 μm to 30 μm.

[実施例3]
1次粒径の平均が約15nmの微粒子が約1μmになるまで凝集したTiOからなる市販の凝集粒子を購入して使用した。この凝集粒子を精製水等により洗浄し、凝集粒子同士が密に充填されないようにバット上に広げて乾燥させた。乾燥した粉状の約1μmの平均粒径の前記凝集粒子を試薬瓶に入れて一時保管した。
次に、その乾燥した粉状の凝集粒子10gを体積150cmのアルミナ製の容器に入れた。この際、粉体に圧力をかけることは行わず、粒子間にある程度の隙間が含まれる状態とした。また、この際、バインダーは使用していない。
この状態で、空気雰囲気で300℃で5時間焼成し、平均粒径が前記凝集粒子と同様の約1μmに揃ったTiOからなる多孔質粒子を得た。
得られた多孔質粒子の密度は、3.7g/cmとなった。
この多孔質粒子をAD法によって、ITOが製膜されたPEN基板上に吹き付けて、TiOからなる多孔質膜を製膜した。膜厚は0.1μm〜30μmの範囲で任意に調整することが可能であった。
[Example 3]
Commercially available agglomerated particles made of TiO 2 aggregated until fine particles having an average primary particle size of about 15 nm were about 1 μm were purchased and used. The aggregated particles were washed with purified water or the like, spread on a bat and dried so that the aggregated particles were not packed closely. The dried aggregated particles having an average particle diameter of about 1 μm were put in a reagent bottle and temporarily stored.
Next, 10 g of the dried powdery agglomerated particles was put in an alumina container having a volume of 150 cm 3 . At this time, no pressure was applied to the powder, and a certain amount of gaps were included between the particles. At this time, no binder is used.
In this state, calcination was performed at 300 ° C. for 5 hours in an air atmosphere to obtain porous particles made of TiO 2 having an average particle diameter of about 1 μm, which was the same as the aggregated particles.
The density of the obtained porous particles was 3.7 g / cm 3 .
The porous particles were sprayed onto the PEN substrate on which ITO was formed by AD method to form a porous film made of TiO 2 . The film thickness could be arbitrarily adjusted in the range of 0.1 μm to 30 μm.

[比較例1]
公知の火炎溶融法によって作製された、1次粒径の平均が約15nmのTiO粒子および1次粒径の平均が2μmのTiO粒子を10:90(体積比)で混合した粒子を焼成せずに用い、AD法によって、ITOが製膜されたPEN基板上に前記混合した粒子を吹き付けて、TiOからなる多孔質膜を製膜した。膜厚は0.1μm〜30μmの範囲で任意に調整することが可能であった。
しかしながら、1次粒子のTiO粒子を結着させずにそのまま吹き付けて製膜しているので、得られた多孔質膜におけるTiO粒子同士の接合は、吹き付け時の衝突エネルギーにのみ依存している。このため、充分な衝突エネルギーを得るために強く吹き付ける必要がある。しかし、強く吹き付けると多孔質膜の多孔度が下がり、極端な場合には緻密膜になってしまう。また、衝突エネルギーは、吹き付ける粒子の大きさや基板の材質(硬度)によっても左右される。このように、衝突エネルギーの強さだけで多孔度を調整することは不可能ではないが、非常に困難である。
[Comparative Example 1]
Produced by a known flame fusion method, an average primary particle size calcined particles with an average of TiO 2 particles and the primary particle size of about 15nm was mixed TiO 2 particles 2μm 10:90 (volume ratio) The porous particles made of TiO 2 were formed by spraying the mixed particles on the PEN substrate on which ITO was formed by using the AD method. The film thickness could be arbitrarily adjusted in the range of 0.1 μm to 30 μm.
However, since the film as it is sprayed without binding the TiO 2 particles of primary particles, the bonding of the TiO 2 particles are in the obtained porous film, depending only on the collision energy at the time of spraying Yes. For this reason, it is necessary to spray strongly in order to obtain sufficient collision energy. However, when strongly sprayed, the porosity of the porous film decreases, and in an extreme case, it becomes a dense film. The collision energy also depends on the size of the particles to be sprayed and the material (hardness) of the substrate. Thus, it is not impossible to adjust the porosity only by the strength of the collision energy, but it is very difficult.

[比較例2]
公知の火炎溶融法によって作製された1次粒径の平均が15nmのTiO粒子を用いて、この粒子を焼成せずに用い、AD法によって、ITOが製膜されたPEN基板上に前記粒子を吹き付けて、TiOからなる多孔質膜の製膜を試みた。しかし、構造的に脆弱な圧粉体しか得られなかった。
[Comparative Example 2]
Using TiO 2 particles having an average primary particle diameter of 15 nm prepared by a known flame melting method, the particles are used without firing, and the particles are formed on the PEN substrate on which ITO is formed by AD method. To make a porous film made of TiO 2 . However, only a structurally fragile green compact was obtained.

[比較例3]
公知の火炎溶融法によって作製された1次粒径の平均が15nmのTiO粒子と、バインダーであるポリエチレングリコール(PEG)(Mw:6000):を97:3(重量比)で混合した。この混合物を室温で乾燥固化させて、1次粒子が凝集した凝集体を得た。この凝集体を500℃で5時間焼成したのち、得られた焼結体の塊を乳鉢によって解砕し、25μmのメッシュに通すことにより、TiOからなる多孔質粒子を作製した。
得られた多孔質粒子の平均粒径は約10μmであった。この多孔質粒子を用いて、AD法によって、ITOが製膜されたPEN基板上に前記多孔質粒子を吹き付けてTiOからなる膜(膜厚1.8μm)を製膜した。
続いて10μm以上の厚みを有する多孔質膜の製膜を試みたが、吹き付ける粒子中に10μmを超える大径の粒子が多数混在しており、ブラスト作用が優勢であったため、厚い多孔質膜を得ることができなかった。
[Comparative Example 3]
TiO 2 particles having an average primary particle diameter of 15 nm prepared by a known flame melting method and polyethylene glycol (PEG) (Mw: 6000): as a binder were mixed at 97: 3 (weight ratio). This mixture was dried and solidified at room temperature to obtain an aggregate in which primary particles were aggregated. After this aggregate was fired at 500 ° C. for 5 hours, the resulting sintered mass was crushed with a mortar and passed through a 25 μm mesh to produce porous particles made of TiO 2 .
The average particle diameter of the obtained porous particles was about 10 μm. Using the porous particles, the porous particles were sprayed onto a PEN substrate on which ITO was formed by AD method to form a film (film thickness: 1.8 μm) made of TiO 2 .
Subsequently, an attempt was made to form a porous film having a thickness of 10 μm or more. However, a large number of large-diameter particles exceeding 10 μm were mixed in the particles to be sprayed, and the blasting action was dominant. Couldn't get.

<比表面積の測定>
実施例1、実施例2および比較例1の製膜方法により、膜厚の異なる複数の多孔質膜を作製し、その多孔度を比較した。多孔度の比較は、色素吸着量を比較することにより評価した。具体的には、各多孔質膜をN719色素が含まれる溶液に浸漬し、色素を吸着させた後、別の溶媒に多孔質膜を浸漬して、多孔質膜に吸着していた色素を脱離させた。この脱離した色素量を測定し、各多孔質膜の単位体積あたりの色素吸着量(色素吸着密度)を算出することにより、多孔度を比較した。その結果を図2に示す。
<Measurement of specific surface area>
A plurality of porous films having different film thicknesses were produced by the film forming methods of Example 1, Example 2, and Comparative Example 1, and the porosities thereof were compared. The comparison of the porosity was evaluated by comparing the dye adsorption amount. Specifically, each porous film is immersed in a solution containing N719 dye to adsorb the dye, and then the porous film is immersed in another solvent to remove the dye adsorbed on the porous film. Released. The amount of the desorbed dye was measured, and the porosities were compared by calculating the dye adsorption amount (dye adsorption density) per unit volume of each porous film. The result is shown in FIG.

実施例1及び実施例2の製膜方法により得られた多孔質膜においては、膜厚が変化しても色素吸着密度は変化せずに、ほぼ一定であった。これは、多孔質膜の膜厚を変化させても、その多孔度が一定であることを示している。また、実施例1の多孔質膜は実施例2よりも色素吸着密度が高く、比表面積が大きい。これは、実施例1の製膜方法で用いた1次粒子の平均粒径が実施例2よりも小さいため、比表面積が大きくなったことを示している。したがって、本発明の製膜方法において使用する1次粒子の平均粒径を調整することによって、得られる多孔質膜の多孔度が制御可能であることが示された。   In the porous membranes obtained by the film forming methods of Example 1 and Example 2, the dye adsorption density did not change even when the film thickness changed, and was almost constant. This indicates that the porosity is constant even when the thickness of the porous film is changed. Further, the porous membrane of Example 1 has a higher dye adsorption density and a larger specific surface area than Example 2. This indicates that the specific surface area is increased because the average particle diameter of the primary particles used in the film forming method of Example 1 is smaller than that of Example 2. Therefore, it was shown that the porosity of the obtained porous film can be controlled by adjusting the average particle diameter of the primary particles used in the film forming method of the present invention.

一方、比較例1の製膜方法により得られた多孔質膜においては、膜厚によって色素吸着密度が変化し、厚い膜になるほど色素吸着密度が減少した。これは、製膜中に粒子の脆性変形が生じ、多孔質膜の多孔質構造が押し潰されて緻密化したことを示唆する。   On the other hand, in the porous film obtained by the film forming method of Comparative Example 1, the dye adsorption density changed depending on the film thickness, and the dye adsorption density decreased as the film became thicker. This suggests that brittle deformation of the particles occurred during film formation, and the porous structure of the porous film was crushed and densified.

<光電変換効率ηの測定>
実施例1、実施例2、比較例1及び比較例3の製膜方法により得た多孔質膜を色素増感太陽電池の光電極として用い、その変換効率を測定した。対極として、片面にプラチナの付いたガラス基板を用いた。色素としてN719を用い、電解液としてAN50(ソラロニクス社製)を用いて、常法により太陽電池セルを作製した。各多孔質膜を備えた各太陽電池セルの光電変換効率を、市販のソーラーシミュレータを用いて測定した。この結果を表1に示す。
<Measurement of photoelectric conversion efficiency η>
The porous film obtained by the film forming method of Example 1, Example 2, Comparative Example 1 and Comparative Example 3 was used as a photoelectrode of a dye-sensitized solar cell, and its conversion efficiency was measured. A glass substrate with platinum on one side was used as the counter electrode. Using N719 as the dye and AN50 (manufactured by Solaronics) as the electrolyte, solar cells were produced by a conventional method. The photoelectric conversion efficiency of each solar battery cell provided with each porous film was measured using a commercially available solar simulator. The results are shown in Table 1.

測定の結果、実施例1及び実施例2の多孔質膜を用いた太陽電池セルの方が、比較例1の多孔質膜を用いた太陽電池セルよりも高い光電変換効率を示した。この結果は、実施例1及び実施例2の多孔質膜の色素吸着密度(多孔度)が比較例1よりも高いことを反映していると考えられる。また、比較例3の多孔質膜は膜厚が薄いため、光電変換効率は低かった。この結果から、本発明の製膜方法によって得られる多孔質膜は、色素増感太陽電池の光電極として有用であることが示された。   As a result of the measurement, the solar cell using the porous film of Example 1 and Example 2 showed higher photoelectric conversion efficiency than the solar cell using the porous film of Comparative Example 1. This result is considered to reflect that the dye adsorption density (porosity) of the porous films of Example 1 and Example 2 is higher than that of Comparative Example 1. Moreover, since the porous film of Comparative Example 3 was thin, the photoelectric conversion efficiency was low. From this result, it was shown that the porous film obtained by the film forming method of the present invention is useful as a photoelectrode of a dye-sensitized solar cell.

Figure 2014115763
Figure 2014115763

[実施例と比較例のまとめ]
実施例1及び2の製膜方法によって膜厚の厚い多孔質膜が得られた。その比表面積が大きく、色素吸着量が多いため、高い光電変換効率ηを示した。また、製膜に使用する1次粒子の平均粒径が小さい実施例1の方が、実施例2よりも大きい比表面積を有することから、1次粒子の平均粒径を小さくすることにより、その比表面積を大きくすることが可能であることがわかった。
比較例1の製膜方法でも実施例1及び2と同様に膜厚の厚い多孔質膜が得られたが、その比表面積は実施例よりも小さく、光電変換効率ηも劣っていた。また、前述したように、吹き付ける粒子同士の衝突エネルギーのみで多孔質膜の多孔度を制御しているため、吹き付けの条件検討に多大な労力を要した。
比較例2では、平均粒径が小さい15nmの粒子のみを吹き付けたため、粒子が堆積しただけの圧粉体となった。圧粉体の構造は基板から容易に剥がれ落ちるほど脆弱であり、色素増感太陽電池の多孔質膜として使用可能な強度はなかった。
比較例3では、1次粒子をバインダーで固めて焼結させた塊を更に解砕して得た粒子で製膜したため、厚い多孔質膜が得られなかった。この理由として、吹き付ける粒子の平均粒径が約10μmであり、この吹き付け粒子中に10μmよりも大きい粒子も混在していたため、製膜中に製膜効果とブラスト効果が拮抗し、膜成長が止まってしまったためであると考えられる。また、製膜条件によっては膜が途中で割れてしまう現象も見られた。
[Summary of Examples and Comparative Examples]
A thick porous film was obtained by the film forming methods of Examples 1 and 2. Since the specific surface area was large and the amount of dye adsorption was large, a high photoelectric conversion efficiency η was exhibited. Moreover, since Example 1 in which the average particle diameter of primary particles used for film formation is smaller has a larger specific surface area than Example 2, by reducing the average particle diameter of primary particles, It was found that the specific surface area can be increased.
In the film forming method of Comparative Example 1, a thick porous film was obtained as in Examples 1 and 2, but the specific surface area was smaller than that in Example and the photoelectric conversion efficiency η was also inferior. In addition, as described above, since the porosity of the porous film is controlled only by the collision energy between the particles to be sprayed, much labor has been required for examining the spraying conditions.
In Comparative Example 2, since only particles with a small average particle diameter of 15 nm were sprayed, a green compact with only particles deposited was obtained. The structure of the green compact was so weak that it easily peeled off from the substrate, and there was no strength that could be used as a porous film of a dye-sensitized solar cell.
In Comparative Example 3, since a film obtained by further pulverizing a lump obtained by solidifying primary particles with a binder and sintering the film was formed, a thick porous film could not be obtained. The reason is that the average particle size of the particles to be sprayed is about 10 μm, and particles larger than 10 μm were also mixed in the particles to be sprayed, so that the film-forming effect and the blast effect antagonized during film formation, and the film growth stopped. It is thought that this is because it has been. In addition, depending on the film forming conditions, a phenomenon that the film breaks in the middle was also observed.

以上で説明した各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはなく、請求項(クレーム)の範囲によってのみ限定される。   The configurations and combinations thereof in the embodiments described above are examples, and the addition, omission, replacement, and other modifications of the configurations can be made without departing from the spirit of the present invention. Further, the present invention is not limited by each embodiment, and is limited only by the scope of the claims.

本発明に係る製膜方法、多孔質膜、前記多孔質膜を備えた光電極及び前記光電極を用いた色素増感太陽電池は、太陽電池の分野に広く適用可能である。   The film forming method, the porous film, the photoelectrode provided with the porous film, and the dye-sensitized solar cell using the photoelectrode are widely applicable in the field of solar cells.

51…製膜室、52…ノズル、53…基材、54…多孔質粒子、55…ボンベ、56…搬送管、57マスフロー制御器、58…エアロゾル発生器、59…解砕器、60…製膜装置、61…分級器、62…真空ポンプ、63…基台、71…製膜面、72…製膜面の反対側の面、73…基台の載置面(上面) DESCRIPTION OF SYMBOLS 51 ... Film forming chamber, 52 ... Nozzle, 53 ... Base material, 54 ... Porous particle, 55 ... Cylinder, 56 ... Transfer pipe, 57 Mass flow controller, 58 ... Aerosol generator, 59 ... Crusher, 60 ... Product made Membrane device, 61 ... classifier, 62 ... vacuum pump, 63 ... base, 71 ... film-forming surface, 72 ... surface opposite to the film-forming surface, 73 ... mounting surface (upper surface) of the base

Claims (11)

原料化合物を含有する溶媒中において、前記原料化合物を原料とする無機物質の微粒子を合成するとともに前記微粒子を凝集させてなる凝集粒子を用いて、前記凝集粒子に含まれる前記微粒子同士の結合を強化する工程を経て多孔質粒子を作製し、前記多孔質粒子を基材に吹き付けて、前記基材と前記多孔質粒子とを接合させると共に、前記多孔質粒子同士を接合させることによって、前記基材上に前記無機物質によって構成された多孔質膜を製膜することを含むことを特徴とする製膜方法。   In the solvent containing the raw material compound, the fine particles of the inorganic substance using the raw material compound as a raw material are synthesized and the aggregated particles obtained by aggregating the fine particles are used to strengthen the bonding between the fine particles contained in the aggregated particles. The porous substrate is produced through the step of performing, the porous particle is sprayed on the base material, the base material and the porous particle are joined together, and the porous particles are joined together to form the base material. A film forming method comprising forming a porous film composed of the inorganic substance on the film. 前記微粒子同士の結合を強化する工程において、前記凝集粒子を密に充填しないことにより、前記凝集粒子内の前記微粒子同士を接合させることを特徴とする請求項1に記載の製膜方法。   2. The film forming method according to claim 1, wherein in the step of strengthening the bonding between the fine particles, the fine particles in the aggregated particles are joined by not densely filling the aggregated particles. 前記微粒子同士の結合を強化する工程において、固相反応によって前記微粒子同士が接触している箇所を接合可能な温度以上、前記無機物質の融点以下、の温度域で焼成することにより前記微粒子同士を接合することを特徴とする請求項1又は2に記載の製膜方法。   In the step of strengthening the bonding between the fine particles, the fine particles are baked at a temperature range from a temperature at which the fine particles are in contact with each other by a solid-phase reaction to a temperature above the melting point of the inorganic substance and below. The film forming method according to claim 1, wherein bonding is performed. 前記微粒子同士の結合を強化する工程において、前記微粒子を構成する金属又は半導体が含まれる反応性化合物と前記凝集粒子とを混合し、前記反応性化合物を介して前記微粒子同士を化学的に接合することを特徴とする請求項1〜3の何れか一項に記載の製膜方法。   In the step of strengthening the bonding between the fine particles, a reactive compound containing a metal or a semiconductor constituting the fine particles and the aggregated particles are mixed, and the fine particles are chemically bonded via the reactive compound. The film forming method according to any one of claims 1 to 3, wherein: 前記凝集粒子及び前記多孔質粒子の平均粒径が200nm〜2μmであることを特徴とする請求項1〜4の何れか一項に記載の製膜方法。   5. The film forming method according to claim 1, wherein an average particle diameter of the aggregated particles and the porous particles is 200 nm to 2 μm. 前記微粒子の平均粒径が10nm〜100nmであることを特徴とする請求項1〜5の何れか一項に記載の製膜方法。   The film forming method according to any one of claims 1 to 5, wherein an average particle size of the fine particles is 10 nm to 100 nm. 前記基材に吹き付けられる前記多孔質粒子の中に、粒径が5μm以上の多孔質粒子を含まないことを特徴とする請求項1〜6の何れか一項に記載の製膜方法。   The film forming method according to any one of claims 1 to 6, wherein the porous particles sprayed onto the substrate do not include porous particles having a particle size of 5 µm or more. 前記多孔質膜が色素増感太陽電池の光電極用の多孔質膜であることを特徴とする請求項1〜7の何れか一項に記載の製膜方法。 The said porous film is a porous film for the photoelectrodes of a dye-sensitized solar cell, The film forming method as described in any one of Claims 1-7 characterized by the above-mentioned. 請求項1〜8の何れか一項に記載の製膜方法によって製膜された多孔質膜。 The porous film formed by the film forming method as described in any one of Claims 1-8. 請求項9に記載の多孔質膜を備えたことを特徴とする光電極。 A photoelectrode comprising the porous film according to claim 9. 請求項10に記載の光電極を備えたことを特徴とする色素増感太陽電池。 A dye-sensitized solar cell comprising the photoelectrode according to claim 10.
JP2014558592A 2013-01-22 2014-01-22 Film-forming method, porous film, photoelectrode, and dye-sensitized solar cell Pending JPWO2014115763A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013009210 2013-01-22
JP2013009210 2013-01-22
PCT/JP2014/051253 WO2014115763A1 (en) 2013-01-22 2014-01-22 Film-forming method, porous film, photo-electrode, and dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
JPWO2014115763A1 true JPWO2014115763A1 (en) 2017-01-26

Family

ID=51227554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014558592A Pending JPWO2014115763A1 (en) 2013-01-22 2014-01-22 Film-forming method, porous film, photoelectrode, and dye-sensitized solar cell

Country Status (5)

Country Link
JP (1) JPWO2014115763A1 (en)
KR (1) KR20150110455A (en)
CN (1) CN104508183B (en)
TW (1) TW201439375A (en)
WO (1) WO2014115763A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6698772B2 (en) * 2018-09-20 2020-05-27 積水化学工業株式会社 Brittle material film and manufacturing method thereof, photoelectrode, dye-sensitized solar cell
JP2020152951A (en) * 2019-03-19 2020-09-24 積水化学工業株式会社 Forming method for ceramic film, manufacturing apparatus for ceramic film, and film type flexible solar battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003208901A (en) * 2002-01-16 2003-07-25 Nissan Motor Co Ltd Porous oxide film, its manufacturing method and cell of fuel cell using the same
JP2004039286A (en) * 2002-06-28 2004-02-05 Toto Ltd Method for manufacturing optical semiconductor electrode and photoelectric conversion element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101127374B (en) * 2007-09-11 2010-11-10 西安交通大学 Making method for flexible dye sensitized solar battery nano crystal thin film
CN101289223B (en) * 2008-03-26 2011-06-15 重庆大学 Method for preparing titanic oxide nano powder with visual light catalytic activity
JP2012241244A (en) * 2011-05-20 2012-12-10 National Institute Of Advanced Industrial Science & Technology Film-formed body, photoelectrode provided with the film-formed body, and dye-sensitized solar cell provided with the photoelectrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003208901A (en) * 2002-01-16 2003-07-25 Nissan Motor Co Ltd Porous oxide film, its manufacturing method and cell of fuel cell using the same
JP2004039286A (en) * 2002-06-28 2004-02-05 Toto Ltd Method for manufacturing optical semiconductor electrode and photoelectric conversion element

Also Published As

Publication number Publication date
WO2014115763A1 (en) 2014-07-31
CN104508183B (en) 2017-07-18
TW201439375A (en) 2014-10-16
KR20150110455A (en) 2015-10-02
CN104508183A (en) 2015-04-08

Similar Documents

Publication Publication Date Title
Poolakkandy et al. Soft-template-assisted synthesis: a promising approach for the fabrication of transition metal oxides
Pol et al. Sonochemical synthesis and optical properties of europium oxide nanolayer coated on titania
US8920682B2 (en) Nanoparticle dispersions with ionic liquid-based stabilizers
Santos et al. A forming technique to produce spherical ceramic beads using sodium alginate as a precursor binder phase
CN108091856A (en) A kind of boehmite coated graphite composite negative pole material, preparation method and the usage
WO2014115763A1 (en) Film-forming method, porous film, photo-electrode, and dye-sensitized solar cell
Hayat et al. Different dimensionalities, morphological advancements and engineering of g‐C3N4‐based nanomaterials for energy conversion and storage
JP2012243629A (en) Film forming method, film body, and dye-sensitized solar cell
KR101419671B1 (en) Film forming method, body having film formed thereon, and dye-sensitized solar cell
Li et al. ZnO‐Reinforced Thermal Regulating Microcapsules with Double‐Layer Shell via Atomic Layer Deposition
JP2012241244A (en) Film-formed body, photoelectrode provided with the film-formed body, and dye-sensitized solar cell provided with the photoelectrode
KR20170125800A (en) Method for producing semiconductor film, and dye-sensitized solar cell
CN110105871B (en) Preparation method of super-hydrophobic photo-thermal ice-suppressing coating by taking iron-copper-manganese metal salt and nano silicon dioxide as raw materials
CN110240530B (en) Carbon nanotube/graphene modified metal/oxide nano energetic composite film and method thereof
CN107010939A (en) A kind of preparation method of high densification Al-Doped ZnO target
CN102502818A (en) One-step synthesis method of nano-sized zirconium oxide spherical agglomerated particles used for hot spray-coating
WO2016004381A1 (en) Porous media compositions and methods for producing the same
JP4626829B2 (en) Method for producing porous composite structure and porous fine particles used for the production
JP4103470B2 (en) Method for producing porous composite structure
JP2016108618A (en) Raw material powder for film deposition, and ceramic film
EP1818431B1 (en) Process for the manufacture of a noble metal having fibrous morphology
CN106756747B (en) The preparation method of porous palladium material
CN106006691B (en) A kind of metal thermal spraying nanometer-sized alumina material
JP3981737B2 (en) Manufacturing method of resin-inorganic composite structure and resin-inorganic composite film structure
JP2014038811A (en) Method for producing porous film, porous film, and dye sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170815

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180403