JP3981737B2 - Manufacturing method of resin-inorganic composite structure and resin-inorganic composite film structure - Google Patents

Manufacturing method of resin-inorganic composite structure and resin-inorganic composite film structure Download PDF

Info

Publication number
JP3981737B2
JP3981737B2 JP2004043714A JP2004043714A JP3981737B2 JP 3981737 B2 JP3981737 B2 JP 3981737B2 JP 2004043714 A JP2004043714 A JP 2004043714A JP 2004043714 A JP2004043714 A JP 2004043714A JP 3981737 B2 JP3981737 B2 JP 3981737B2
Authority
JP
Japan
Prior art keywords
resin
inorganic
powder
composite
composite structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004043714A
Other languages
Japanese (ja)
Other versions
JP2005232542A (en
Inventor
純 明渡
浩也 阿部
牧男 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004043714A priority Critical patent/JP3981737B2/en
Publication of JP2005232542A publication Critical patent/JP2005232542A/en
Application granted granted Critical
Publication of JP3981737B2 publication Critical patent/JP3981737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は粉体の衝突固化現象を利用した樹脂無機複合構造体の製造法及び樹脂無機複合膜構造体に関する。       The present invention relates to a method for producing a resin-inorganic composite structure and a resin-inorganic composite film structure utilizing the impact solidification phenomenon of powder.

ガラス繊維強化プラスチックに代表されるような機械的特性を向上させることを目的とした樹脂と無機物質との複合材料が従来から知られている。例えば、特許文献1には、連続気孔を有するセラミックス多孔質体を溶融樹脂中に浸漬させて連続気孔内に樹脂を含浸せしめた構造が提案されている。   Conventionally known are composite materials of a resin and an inorganic substance for the purpose of improving mechanical properties such as a glass fiber reinforced plastic. For example, Patent Document 1 proposes a structure in which a ceramic porous body having continuous pores is immersed in a molten resin and the continuous pores are impregnated with the resin.

一方、室温に近い温度で複合構造物を製造する方法として、特許文献2や特許文献3にエアロデポジション法(ガスデポジション法)が提案されている。この方法は、微粒子を含むエアロゾルを基板に高速で衝突させ、衝突の衝撃によって前記微粒子を破砕・変形させ、この破砕・変形によって生じる新生面同士を接合させることで構造物を基板上に形成させるものである。   On the other hand, as a method for producing a composite structure at a temperature close to room temperature, Patent Document 2 and Patent Document 3 propose an aero deposition method (gas deposition method). In this method, an aerosol containing fine particles is collided with a substrate at high speed, the fine particles are crushed and deformed by the impact of the collision, and the new surfaces generated by the crushing and deformation are joined together to form a structure on the substrate. It is.

また、上記のエアロデポジション法を、樹脂とセラミックスとの複合構造体の作製に応用した先行技術として特許文献4が挙げられる。この特許文献4にはセラミックス微粒子表面に樹脂をコーティングして複合微粒子とし、この複合微粒子を基材表面に高速で衝突させて複合微粒子を変形または破砕させ、この変形または破砕にて生じた活性な新生面を介して複合微粒子同士を再結合せしめることが開示されている。   Further, Patent Document 4 is cited as a prior art in which the above-described aero deposition method is applied to the production of a composite structure of resin and ceramics. In Patent Document 4, resin particles are coated on the surface of ceramic fine particles to form composite fine particles, and the composite fine particles are collided with the substrate surface at a high speed to deform or crush the composite fine particles. It is disclosed that composite fine particles are recombined through a new surface.

特開2000−109375号公報JP 2000-109375 A 特開2000−212766号公報JP 2000-212766 A 特開2003−183848号公報JP 2003-183848 A WO02/34965号公報WO02 / 34965 publication

特許文献1に開示される方法では、セラミックス多孔質体中に溶融樹脂を含浸せしめるため、樹脂を溶融温度まで加熱しなければならず、装置が大掛かりとなり、作業環境も悪化しやすい。更に、この方法による場合は、微細なレベルで樹脂とセラミックスが混ざっているわけではないので、複合体全体としては特異な特性を示しても、その特性が複合体のどの部分でも均一に発現するわけではなく、均一な特性を要求される部品などには使用できない。   In the method disclosed in Patent Document 1, since the molten resin is impregnated in the ceramic porous body, the resin must be heated to the melting temperature, and the apparatus becomes large and the working environment tends to deteriorate. Furthermore, in this method, since the resin and ceramics are not mixed at a fine level, even if the composite as a whole exhibits unique characteristics, the characteristics are uniformly expressed in any part of the composite. However, it cannot be used for parts that require uniform characteristics.

一方、特許文献2〜4に開示される方法にあっては、機械的衝撃によって無機粒子を変形または破砕させることを前提としており、この変形または破砕の過程で微粒子表面に欠陥が導入されたり、変形または破砕前には有していた原料粉体の特性を失い、機能低下を招く不利がある。   On the other hand, the methods disclosed in Patent Documents 2 to 4 are based on the premise that the inorganic particles are deformed or crushed by mechanical impact, and defects are introduced into the surface of the fine particles in the process of deformation or crushed. There is a disadvantage of losing the characteristics of the raw material powder that it had before deformation or crushing, leading to functional degradation.

上記課題を解決すべく本発明に係る樹脂無機複合構造体の製造法は、樹脂材料と無機材料からなる複合粉体を基材表面に衝突させることにより、複合粉体中の樹脂材料の瞬間的な変形または融着を利用して、樹脂無機複合構造を形成させ、衝突過程における無機粒子の変形や破砕等が生じないようにした。 In order to solve the above-mentioned problems, the method for producing a resin-inorganic composite structure according to the present invention is such that a composite powder composed of a resin material and an inorganic material is allowed to collide with the surface of a substrate, whereby the resin material in the composite powder is instantaneously produced. The resin-inorganic composite structure was formed by utilizing such deformation or fusion, so that the inorganic particles were not deformed or crushed during the collision process .

前記無機材料としては、例えば、アルミナ、ジルコニア、チタン酸バリウム、チタン酸
ジルコン酸鉛、酸化チタン、酸化亜鉛、イットリアアルミガーネット、YBCO等の金属酸化物系セラミック、窒化アルミ、窒化珪素、窒化炭素等の非酸化物系セラミックス、Al、Mg、Feの金属並びに金属間化合物、Si、Ge、CeO、GaAs半導体の中の一種または二種以上を用いることができる。
Examples of the inorganic material include alumina, zirconia, barium titanate, lead zirconate titanate, titanium oxide, zinc oxide, yttria aluminum garnet, YBCO, and other metal oxide ceramics, aluminum nitride, silicon nitride, carbon nitride, etc. One or two or more of non-oxide ceramics, Al, Mg, Fe metals and intermetallic compounds, Si, Ge, CeO, and GaAs semiconductors can be used.

前記樹脂材料としては、アクリル系、フッ素系、スチレン系の中から一種または二種以上を用いることができる。   As the resin material, one or more of acrylic, fluorine, and styrene can be used.

また、前記複合粉体としては、無機粒子を樹脂で被覆した被覆型複合粒子が好ましい。この被覆型複合粒子は機械的な複合化処理により得ることができる。   The composite powder is preferably coated composite particles in which inorganic particles are coated with a resin. The coated composite particles can be obtained by a mechanical composite treatment.

また用いる複合粉体としては粒度分布が二峰性のものが好ましい。具体的には、大きい方のピークの粒子径を基準にして、小さい方のピークの粒子径が比率で0.5未満であって、そのピーク強度比が重量%にして、(大きい粒子径の粉体):(小さい粒子径の粉体)=7:3〜9:1であるものを用いる。   The composite powder used preferably has a bimodal particle size distribution. Specifically, based on the particle diameter of the larger peak, the particle diameter of the smaller peak is less than 0.5 in terms of the ratio, and the peak intensity ratio is set to wt% (the larger particle diameter Powder): (Powder having a small particle diameter) = 7: 3 to 9: 1 is used.

上記の方法によって得られる本願発明の樹脂無機複合構造体は、無機粒子の変形や破砕を伴わないので、構造体中の無機粒子の粒度分布、結晶構造が原料の無機粒子とほぼ同じになる特徴を有する。 Since the resin-inorganic composite structure of the present invention obtained by the above method is not accompanied by deformation or crushing of the inorganic particles, the particle size distribution and crystal structure of the inorganic particles in the structure are substantially the same as the raw inorganic particles. Have

また機能膜としては、厚さは1〜500μm、気孔含有率は10%未満であることが好ましく、無機粒子の大きさは80nm〜5μmが好ましく、無機粒子間の樹脂の厚みは5μm未満が好ましい。   As the functional film, the thickness is preferably 1 to 500 μm, the pore content is preferably less than 10%, the size of the inorganic particles is preferably 80 nm to 5 μm, and the thickness of the resin between the inorganic particles is preferably less than 5 μm. .

本発明によれば、基材上に粉体の衝突固化現象を利用して樹脂無機複合構造体を作製するにあたり、無機粒子の変形や破砕を伴わないので、原料粉体の特性を維持でき且つ極めて残留応力の小さな機能性構造体を得ることができる。   According to the present invention, when producing a resin-inorganic composite structure using the collision solidification phenomenon of powder on a base material, since the inorganic particles are not deformed or crushed, the characteristics of the raw material powder can be maintained and A functional structure having a very small residual stress can be obtained.

(実施例1)
原材料に、気相成長させた高純度アルミナ粉体(平均粒子径1.89μm、住友化学製AA−2)と非架橋のアクリル粉体(平均粒子径0.08μm、日本ペイント製FS101)を用いて、樹脂被覆型の樹脂無機複合粉体を作製した。ここで、樹脂の配合量比はアルミナ重量に対し4mass%とした。因みに、この樹脂の配合量はアルミナ粉体と樹脂粉体とがそれぞれ前記平均粒子径を有する球と仮定した場合に、アルミナ粒子表面を樹脂で100%覆うに必要な量である。
Example 1
High-purity alumina powder (average particle size 1.89 μm, AA-2 manufactured by Sumitomo Chemical) and non-crosslinked acrylic powder (average particle size 0.08 μm, FS101 manufactured by Nippon Paint) were used as raw materials. Thus, a resin-coated resin-inorganic composite powder was produced. Here, the blending ratio of the resin was 4 mass% with respect to the alumina weight. Incidentally, the blending amount of the resin is an amount necessary to cover 100% of the alumina particle surface with the resin, assuming that the alumina powder and the resin powder are spheres having the average particle diameter.

粒子複合化には、粉体層への強い摩擦力と圧縮力の印加が可能なメカノフュ−ジョンシステム(ホソカワミクロン(株)製、AM-20F)を用いた。秤量されたアルミナ粉体並びに樹脂粉体を上記装置の容器に入れ、大気中室温にて10分間の処理を行った。   For the particle composite, a mechano-fusion system (manufactured by Hosokawa Micron Corporation, AM-20F) capable of applying a strong frictional force and compressive force to the powder layer was used. The weighed alumina powder and resin powder were placed in the container of the above apparatus and treated for 10 minutes at room temperature in the atmosphere.

図1は処理前のアルミナ粉体の電子顕微鏡写真、図2は処理後の粉体の電子顕微鏡写真であり、図1と図2を比較すると、この処理によりアルミナ粉体は微細化することなくその表面が樹脂に覆われた複合粉体が得られることがわかる。   FIG. 1 is an electron micrograph of the alumina powder before treatment, and FIG. 2 is an electron micrograph of the powder after treatment. When FIG. 1 and FIG. 2 are compared, the alumina powder is not refined by this treatment. It turns out that the composite powder by which the surface was covered with resin is obtained.

本発明の原料である樹脂無機粒子の作製には上記の機械的な手法による複合化が有効であった。一般に微粉体中には多くの凝集粒子が観察され、特に本実施例で用いた樹脂粉体は数μm以上の凝集粒子を多数含む粉体であったが、上記の機械的手法では、図2に示すように、無機粒子であるアルミナ粉体を粉砕することなく凝集樹脂を解砕し、更に樹脂粒子とアルミナ粒子とを結合させている。   For the production of the resin inorganic particles as the raw material of the present invention, the compounding by the mechanical method described above was effective. In general, many agglomerated particles are observed in the fine powder. In particular, the resin powder used in this example was a powder containing a large number of agglomerated particles of several μm or more. As shown in FIG. 2, the aggregated resin is crushed without crushing the alumina powder, which is inorganic particles, and the resin particles and the alumina particles are further bonded.

また、図2に示した処理後の被覆型複合粒子と処理前のアルミナ粒子とを安息角で比較すると、被覆型複合粒子は安息角が約10°低くなり流動性が増している。   Moreover, when the coated composite particles after the treatment shown in FIG. 2 and the alumina particles before the treatment are compared in terms of the angle of repose, the angle of repose of the coated composite particles is reduced by about 10 ° and the fluidity is increased.

以上によって得られた被覆型複合粒子を用い、衝突固化現象を利用した樹脂無機複合構造体の製造を試みた。
先ず、被覆型複合粒子をHeガス中でエアロゾル化し、ロータリポンプに直結した真空チャンバー内に搬送した。このとき、Heガスの流量は10リットル/分、真空チャンバー内の圧力はガス導入状態で数百Paであった。一方、真空チャンバー内でエアロゾル搬送管端部に取り付けられたノズルより5mm隔てた箇所にはガラス基板(無アルカリガラス コーニング1737)をセットしておき、このガラス基板に向けてエアロゾルを30秒間噴射し衝突せしめた。
Using the coated composite particles obtained as described above, an attempt was made to produce a resin-inorganic composite structure using a collision solidification phenomenon.
First, the coated composite particles were aerosolized in He gas and conveyed into a vacuum chamber directly connected to a rotary pump. At this time, the flow rate of He gas was 10 liters / minute, and the pressure in the vacuum chamber was several hundred Pa when the gas was introduced. On the other hand, a glass substrate (non-alkali glass Corning 1737) is set at a location 5 mm away from the nozzle attached to the end of the aerosol carrying tube in the vacuum chamber, and the aerosol is sprayed onto the glass substrate for 30 seconds. I collided.

得られた構造体(樹脂無機複合体厚膜)の電子顕微鏡写真を図3に示す。図3からわかるように、樹脂無機複合体厚膜は無機粒子の樹脂を介した結合によって形成されていることがわかる。電子顕微鏡によって撮影した2次元画像データから算出した無機粒子の平均粒径は1.85μmであった。本実施例の範囲内では、出発のアルミナ原料の平均粒子径と樹脂無機複合体厚膜中のアルミナ粒子の平均粒子径の平均径の有意差はないことから、衝突過程における無機粒子の変形、破砕等は生じなかったと言える。   An electron micrograph of the obtained structure (resin inorganic composite thick film) is shown in FIG. As can be seen from FIG. 3, it can be seen that the resin-inorganic composite thick film is formed by bonding inorganic particles through the resin. The average particle size of the inorganic particles calculated from the two-dimensional image data photographed with an electron microscope was 1.85 μm. Within the scope of this example, since there is no significant difference between the average particle diameter of the starting alumina raw material and the average particle diameter of the alumina particles in the resin-inorganic composite thick film, the deformation of the inorganic particles in the collision process, It can be said that crushing did not occur.

また、複合粉体のエアロゾルがガラス基板に衝突する際、プラズマ光の発生が観察されなかったこと、出発のアルミナ原料と樹脂無機複合体厚膜のXRDは両者とも同一のアルミナの回折パターンを示したこと等の結果からも、衝突による無機粒子の変形、破砕等は生じなかったと言える。   In addition, when the composite powder aerosol collided with the glass substrate, the generation of plasma light was not observed, and the XRD of the starting alumina raw material and the resin-inorganic composite thick film both showed the same diffraction pattern of alumina. From these results, it can be said that the inorganic particles were not deformed or crushed by the collision.

Heがス流量は10リットル/分以上が好ましかった。ある程度以上の高いガス流量が成膜に必要であったことから、個々の粒子の衝突だけでなく粉体層(エアロゾル)の衝突による圧縮過程を含めた複合場が樹脂層の変形(融着)に不可欠な要素であると考えられる。   The flow rate of He was preferably 10 liters / minute or more. Since a high gas flow rate of a certain level was necessary for film formation, the composite field including the compression process due to the collision of the powder layer (aerosol) as well as the collision of individual particles deformed (fused) the resin layer. It is considered an essential element.

また、エアロゾル温度は室温乃至ガラス転移温度(Tg)未満が好ましかった。前記非架橋アクリル樹脂のガラス転移温度(Tg)は約65℃であるが、エアロゾル温度をこれ以上の温度に上げると、樹脂による固定化が生じなかった。したがって、本発明方法は低温のエアロゾルの衝突による接触点での瞬間的な樹脂の変形若しくは融着を利用した成膜法といえる。   The aerosol temperature was preferably room temperature to less than the glass transition temperature (Tg). The glass transition temperature (Tg) of the non-crosslinked acrylic resin is about 65 ° C. However, when the aerosol temperature was raised to a temperature higher than this, no immobilization by the resin occurred. Therefore, the method of the present invention can be said to be a film forming method utilizing instantaneous resin deformation or fusion at a contact point due to collision of a low temperature aerosol.

また、図3の暗い部分は気孔若しくは樹脂で埋まった部分であった。この例ではアルミナ粉体は粒子間に小粒子が詰まるような粒度分布を持たなかった。
小粒子として、平均粒径0.3μmのアルミナ粉体(住友化学製、AKP−50)を前記アルミナ粒子との配合比でおよそ3:7(小粒子が少ない)の二峰性粒子径分布を用いると、ほぼ緻密膜が得られた。また、本実施例の範囲内では重量%にして、(大きい粒子径の粉体):(小さい粒子径の粉体)=7:3〜9:1に粒度分布を設計した複合粒子を用いた場合に、電子顕微鏡観察の範囲内で緻密膜が得られた。
Further, the dark part in FIG. 3 was a part filled with pores or resin. In this example, the alumina powder did not have a particle size distribution such that small particles were packed between the particles.
As a small particle, an alumina powder (AKP-50, manufactured by Sumitomo Chemical Co., Ltd.) having an average particle diameter of 0.3 μm has a bimodal particle size distribution of about 3: 7 (small particles are small) in a mixing ratio with the alumina particles. When used, a nearly dense film was obtained. In addition, the composite particles having a particle size distribution of 7: 3 to 9: 1 were used in the range of the present example, in terms of% by weight (powder with a large particle size) :( powder with a small particle size) = 7: 3 to 9: 1. In some cases, a dense film was obtained within the scope of electron microscope observation.

また、本実施例での成膜レートは約30μm/秒であった。このような高い成膜レートが得られた要因の一つとして、前記したように複合化による粉体の高流動化が挙げられる。粉体の流動抵抗が大きいと搬送管内あるいはノズルでの目詰まり頻度が大きくなるおそれがあり、粉体の高流動化は量産プロセス化へのスケールアップには必要な粉体設計項目であるといえる。   In addition, the film formation rate in this example was about 30 μm / second. As described above, one of the factors for obtaining such a high film formation rate is to increase the fluidity of the powder by compositing as described above. If the flow resistance of the powder is high, the clogging frequency in the transfer pipe or nozzle may increase, and it can be said that high powder flow is a necessary powder design item for scaling up to mass production process. .

(実施例2)
実施例1の非架橋アクリル樹脂に替えて、架橋アクリル樹脂およびポリスチレン樹脂を用いて、同様の条件で、樹脂無機複合体厚膜を作製したところ、同様の結果が得られた。
(Example 2)
When a thick resin-inorganic composite film was produced under the same conditions using a crosslinked acrylic resin and a polystyrene resin instead of the non-crosslinked acrylic resin of Example 1, the same results were obtained.

本発明に係る樹脂無機複合構造体の製造法および当該製造法で得られた樹脂無機複合構造体は、DNAチップ、蛋白質チップ、細胞チップなどのバイオチップ材料、人工骨、人工歯根、医療用カテーテルなどのバイオ材料、摺動部材の耐摩耗表面コート、防汚表面コート、撥水コート、親水コート、酸化防止膜、防錆材料、耐食材料、抗菌防黴材料、低誘電材料、選択吸収フィルター、蛍光ソーラー集光器の蛍光膜、色素レーザー、微小球レーザー、超高速光スイッチなどの非線形光学材料、フォトニクスデバイス素子、フォトクロミック材料、色素増感型太陽電池、耐熱性を有する建材用保護コート、回路基板用誘電体膜、傾斜機能材料、多孔質材料などに利用することが可能である。   The method for producing a resin-inorganic composite structure according to the present invention and the resin-inorganic composite structure obtained by the production method include biochip materials such as DNA chips, protein chips, and cell chips, artificial bones, artificial tooth roots, and medical catheters. Biomaterials such as, wear-resistant surface coating of sliding members, antifouling surface coating, water-repellent coating, hydrophilic coating, anti-oxidation film, anti-rust material, anti-corrosion material, antibacterial anti-fouling material, low dielectric material, selective absorption filter, Fluorescent solar concentrator fluorescent films, dye lasers, microsphere lasers, nonlinear optical materials such as ultrafast optical switches, photonics device elements, photochromic materials, dye-sensitized solar cells, heat-resistant protective coatings for building materials, circuits It can be used for dielectric films for substrates, functionally gradient materials, porous materials, and the like.

複合化処理前のアルミナ粉体の電子顕微鏡写真Electron micrograph of alumina powder before compounding 複合化処理後の粉体の電子顕微鏡写真Electron micrograph of powder after compounding 構造体(厚膜)の電子顕微鏡写真であり、(b)は(a)を2倍に拡大している。It is an electron micrograph of a structure (thick film), (b) has expanded (a) 2 times.

Claims (6)

樹脂材料と無機材料からなる複合粉体を基材表面に衝突させることにより、樹脂材料と無機材料との複合構造体を製造する方法であって、前記複合粉体は粒度分布が二峰性であり、大きい方のピークの粒子径を基準にして、小さい方のピークの粒子径が比率で0.5未満であって、そのピーク強度比が重量%にして、(大きい粒子径の粉体):(小さい粒子径の粉体)=7:3〜9:1であり、また複合構造体の形成は複合粉体中の樹脂材料の瞬間的な変形または融着を利用することで、衝突過程における無機粒子の変形や破砕等を生じないようにしたことを特徴とする樹脂無機複合構造体の製造法。 A method of manufacturing a composite structure of a resin material and an inorganic material by colliding a composite powder composed of a resin material and an inorganic material with the surface of the substrate , wherein the composite powder has a bimodal particle size distribution. Yes, on the basis of the particle diameter of the larger peak, the particle diameter of the smaller peak is less than 0.5 in terms of the ratio, and the peak intensity ratio is in weight% (powder with larger particle diameter) : (Powder with a small particle diameter) = 7: 3 to 9: 1, and the formation of the composite structure is a collision process by utilizing instantaneous deformation or fusion of the resin material in the composite powder. A method for producing a resin-inorganic composite structure characterized in that the inorganic particles are not deformed or crushed . 請求項1に記載の樹脂無機複合構造体の製造法において、前記複合粉体として、無機粒子を樹脂で被覆した被覆型複合粒子を用いることを特徴とする樹脂無機複合構造体の製造法。   The method for producing a resin-inorganic composite structure according to claim 1, wherein coated composite particles obtained by coating inorganic particles with a resin are used as the composite powder. 樹脂材料と無機材料からなる複合粉体を基材表面に衝突させることにより形成される樹脂材料と無機材料との複合構造体であって、前記複合粉体は粒度分布が二峰性であり、大きい方のピークの粒子径を基準にして、小さい方のピークの粒子径が比率で0.5未満であって、そのピーク強度比が重量%にして、(大きい粒子径の粉体):(小さい粒子径の粉体)=7:3〜9:1であり、且つ複合構造体を構成する無機粒子は衝突の際に変形や破砕を伴わず、樹脂無機複合膜中の無機粒子の粒度分布、結晶構造が原料の無機粒子と同じであることを特徴とする樹脂無機複合構造体。 A composite structure of a resin material and an inorganic material formed by colliding a composite powder composed of a resin material and an inorganic material against the surface of the substrate, wherein the composite powder has a bimodal particle size distribution, Based on the particle diameter of the larger peak, the particle diameter of the smaller peak is less than 0.5 in terms of the ratio, and the peak intensity ratio is wt%, (powder with larger particle diameter): ( Small particle size powder) = 7: 3 to 9: 1, and the inorganic particles constituting the composite structure are not deformed or crushed upon collision, and the particle size distribution of the inorganic particles in the resin-inorganic composite film A resin-inorganic composite structure characterized in that the crystal structure is the same as that of the raw material inorganic particles. 請求項に記載の樹脂無機複合構造体において、前記樹脂無機複合膜の厚さは1〜500μmであり、気孔含有率は10%未満であることを特徴とする樹脂無機複合構造体。 4. The resin-inorganic composite structure according to claim 3 , wherein the resin-inorganic composite film has a thickness of 1 to 500 μm and a pore content of less than 10%. 請求項に記載の樹脂無機複合構造体において、前記無機粒子の大きさが80nm〜5μmであることを特徴とする樹脂無機複合構造体。 The resin-inorganic composite structure according to claim 3 , wherein the inorganic particles have a size of 80 nm to 5 μm. 請求項に記載の樹脂無機複合構造体において、前記無機粒子間の樹脂の厚みが5μm未満であることを特徴とする樹脂無機複合構造体。 4. The resin-inorganic composite structure according to claim 3 , wherein the resin thickness between the inorganic particles is less than 5 [mu] m.
JP2004043714A 2004-02-19 2004-02-19 Manufacturing method of resin-inorganic composite structure and resin-inorganic composite film structure Expired - Lifetime JP3981737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004043714A JP3981737B2 (en) 2004-02-19 2004-02-19 Manufacturing method of resin-inorganic composite structure and resin-inorganic composite film structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004043714A JP3981737B2 (en) 2004-02-19 2004-02-19 Manufacturing method of resin-inorganic composite structure and resin-inorganic composite film structure

Publications (2)

Publication Number Publication Date
JP2005232542A JP2005232542A (en) 2005-09-02
JP3981737B2 true JP3981737B2 (en) 2007-09-26

Family

ID=35015797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004043714A Expired - Lifetime JP3981737B2 (en) 2004-02-19 2004-02-19 Manufacturing method of resin-inorganic composite structure and resin-inorganic composite film structure

Country Status (1)

Country Link
JP (1) JP3981737B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4982859B2 (en) * 2007-06-29 2012-07-25 地方独立行政法人 岩手県工業技術センター Formation method of organic film
EP2316374A1 (en) * 2009-11-02 2011-05-04 Straumann Holding AG Process for preparing a ceramic body having a surface roughness

Also Published As

Publication number Publication date
JP2005232542A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
Akedo Aerosol deposition of ceramic thick films at room temperature: densification mechanism of ceramic layers
Iwasawa et al. Plasma‐resistant dense yttrium oxide film prepared by aerosol deposition process
US6953603B2 (en) Functional ceramic layers based on a support layer produced with crystalline nanoparticles
EP0815285B1 (en) Method for producing thick ceramic films by a sol gel coating process
JP5209195B2 (en) Durable hard coating containing silicon nitride
Man et al. In situ formation of a TiN/Ti metal matrix composite gradient coating on NiTi by laser cladding and nitriding
Bahuguna et al. Thin film coating
JP4854445B2 (en) CMP conditioner and method of manufacturing the same
CN110709479A (en) Method for preparing antifouling coating composition and coating prepared by said method
JP2008514816A (en) Manufacturing method of hermetic crystalline mullite layer using thermal spraying method
Shibuya et al. Formation of mullite coating by aerosol deposition and microstructural change after heat exposure
US20080260952A1 (en) Ceramic Coating
JP3981737B2 (en) Manufacturing method of resin-inorganic composite structure and resin-inorganic composite film structure
JP5057457B2 (en) Magneto-optical material and manufacturing method thereof
WO2019022096A1 (en) Structure, laminated body thereof, and manufacturing method and manufacturing device thereof
JP2009504564A (en) High temperature stable ceramic layers and compacts
WO2005071141A1 (en) Ceramic coating
CN109554656B (en) Preparation method and system of compact ceramic coating in normal-temperature atmosphere
KR20230066513A (en) Fabrication method of high-quality alumina coating through novel, dual-particle aerosol deposition
JP6461687B2 (en) Zirconium oxide material, film forming method using the same, and film formed by the film forming method
De Hosson et al. Nanoceramic caotings produced by laser treatment
Yao et al. Oxidation Resistance of Boiler Steels with Al2O3–Y2O3 Nano-and Micro-Composite Coatings Produced by Sol–Gel Process
JP2002531590A (en) Coated, electrically polarizable, non-magnetic particles, methods for their manufacture and their use
WO2014115763A1 (en) Film-forming method, porous film, photo-electrode, and dye-sensitized solar cell
RU2751033C1 (en) Thermostatic coating on titanium and its alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070424

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

R150 Certificate of patent or registration of utility model

Ref document number: 3981737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term