JPWO2014109326A1 - 酸化物超電導線材、その接続構造、および超電導機器 - Google Patents

酸化物超電導線材、その接続構造、および超電導機器 Download PDF

Info

Publication number
JPWO2014109326A1
JPWO2014109326A1 JP2014538548A JP2014538548A JPWO2014109326A1 JP WO2014109326 A1 JPWO2014109326 A1 JP WO2014109326A1 JP 2014538548 A JP2014538548 A JP 2014538548A JP 2014538548 A JP2014538548 A JP 2014538548A JP WO2014109326 A1 JPWO2014109326 A1 JP WO2014109326A1
Authority
JP
Japan
Prior art keywords
oxide superconducting
layer
superconducting
superconducting wire
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014538548A
Other languages
English (en)
Other versions
JP5695803B2 (ja
Inventor
哲雄 竹本
哲雄 竹本
輝 日高
輝 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2014538548A priority Critical patent/JP5695803B2/ja
Application granted granted Critical
Publication of JP5695803B2 publication Critical patent/JP5695803B2/ja
Publication of JPWO2014109326A1 publication Critical patent/JPWO2014109326A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/68Connections to or between superconductive connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0801Manufacture or treatment of filaments or composite wires
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices
    • H10N60/203Permanent superconducting devices comprising high-Tc ceramic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/34Cable fittings for cryogenic cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

テープ状の基材と、前記基材上に形成された中間層、酸化物超電導層、及び保護層と、を有する超電導積層体と、前記超電導積層体の周囲を覆う金属安定化層と、前記超電導積層体及び前記金属安定化層の間に介在する第1の導電性接合材と、前記超電導積層体の端末部に接続され、前記超電導積層体の長手方向に延出する、金属薄体からなる封止部材と、を備える酸化物超電導線材であって、前記金属安定化層は、前記封止部材の周囲を覆うように形成された延出部を備え、前記第1の導電性接合材は、前記金属安定化層の延出部と前記封止部材との間に介在して前記封止部材の周囲を覆うように形成された延出部を備える。

Description

本発明は、酸化物超電導線材、その酸化物超電導線材の接続構造、及びこの接続構造を備えた超電導機器に関する。
本願は、2013年1月9日に、日本に出願された特願2013−001947号に基づき優先権を主張し、その内容をここに援用する。
低損失の導電材料として酸化物超電導体を用いたケーブル、コイル、モーター、マグネットなどの超電導機器が開発されている。これら超電導機器に用いられる超電導体として、例えば、RE−123系(REBaCu7−x:REはYやGdなどを含む希土類元素)等の酸化物超電導体が知られている。RE−123系の酸化物超電導体は、液体窒素温度付近で超電導特性を示し、強磁界においても優れた臨界電流密度を維持できるため、実用上有望な導電材料として期待されている。
上述の酸化物超電導体を電気機器に使用するために、一般的には線材に加工された酸化物超電導体を、導体あるいはコイルとして利用する。具体的には、金属製の基材上に結晶配向性の良好な配向層を介して酸化物超電導層を形成し、この酸化物超電導層を覆うように保護層や金属安定化層を積層することで酸化物超電導線材を得ることができる。
この種のRE123系の酸化物超電導線材の問題の1つとして、希土類系の酸化物超電導体の中に水分との反応性に富む材料が含まれていることが挙げられる。したがって、上述のようなRE123系の酸化物超電導線材を用いる場合には、酸化物超電導層の水分による劣化を防止できる構造が重要と考えられる。例えば、酸化物超電導線材の端末部分からの水分の浸入を防止できるような構造が必要とされる。
従来から、酸化物超電導線材の端末どうしの接合部分を封止する構造として、以下の特許文献1に記載の構造が知られている。特許文献1に記載の構造では、積層構造のテープ状の超電導線材の端末どうしが近接するように配置され、これらを橋渡しするように接続する短尺の接続用超電導線材が設けられている。この構造では、隣接する酸化物超電導線材と短尺の接続用超電導線材との接合部分を導電性フィラーで覆って封止している。
米国特許8030246号公報
特許文献1に記載の接続構造において、導電性フィラーとしてSnなどの低融点金属を用いる場合、接続構造を確立した後に、半田付け等の一般的な手法により端末部分に溶融状態のSnを流して端末部分を封止することにより、接合部分を封止することが考えられる。
しかしながら、RE123系の酸化物超電導線材を用いる場合、上述のような封止を行うには難しい問題がある。
RE123系の酸化物超電導線材では、ハステロイ(米国ヘインズ社商品名)などの耐熱ニッケル合金からなるテープ状の基材上に複数の中間層を介して酸化物超電導層が積層され、更に保護層や金属安定化層が被覆されている。基材を構成する耐熱Ni合金は半田が付き難い材料である。また、基材上に積層される中間層及び酸化物超電導層は、酸化物層あるいはセラミック層であるので、基材と同様に半田密着性を確保し難い材料である。
このため、テープ状の酸化物超電導線材の両側面(基材側面と中間層側面と超電導層側面)と裏側に形成された安定化材の表面とを良好な密着性を得つつ半田で覆うことは難しい。従って、RE123系の酸化物超電導線材の端末全体あるいは接合部分の全体を半田などの低融点金属で完全に覆った構造を提供することが望まれている。
本発明は、上記事情に鑑みなされたもので、端末部分からの水分の浸入を防止できる構造を有する酸化物超電導線材とその接続構造、およびその接続構造を備えた超電導機器の提供を目的とする。
本発明の一態様に係る酸化物超電導線材は、テープ状の基材と、前記基材上に形成された中間層、酸化物超電導層、及び保護層と、を有する超電導積層体と、前記超電導積層体の周囲を覆う金属安定化層と、前記超電導積層体及び前記金属安定化層の間に介在する第1の導電性接合材と、前記超電導積層体の端末部に接続され、前記超電導積層体の長手方向に延出する、金属薄体からなる封止部材と、を備え、前記金属安定化層は、前記封止部材の周囲を覆うように形成された延出部を備え、前記第1の導電性接合材は、前記金属安定化層の延出部と前記封止部材との間に介在して前記封止部材の周囲を覆うように形成された延出部を備える。
テープ状の超電導積層体及びその端末部に接続した封止部材が導電性接合材と金属安定化層とそれらの延出部とで覆われているため、端末部分からの水分浸入を防止できる。封止部材が金属薄体からなるので、導電性接合材は金属安定化層の延出部と封止部材とを良好な密着性を得つつ接合することができる。その結果、水分の浸入を防止できる端末構造を提供できる。
前記超電導積層体の端末部に前記封止部材が突き合わせ溶接されていてもよい。
封止部材が超電導積層体の端末部に突き合わせ溶接されているため、超電導積層体の端末部に段差などが生じない。また、これら超電導積層体及び封止部材が、導電性接合材を介して金属安定化層により覆われているため、水分の浸入を防止できる端末構造を提供できる。
前記超電導積層体の端末部に段差部が形成され、前記段差部に前記封止部材の端部が重ねられて溶接されていてもよい。
超電導積層体の端末部に設けた段差部に封止部材が接続されているため、封止部材の厚さと超電導積層体の厚さとが異なっている場合でも、段差部において厚さの違いを吸収することができ、超電導積層体の端末部において超電導積層体と封止部材との厚さの差に起因する段差を少なくできる。このため、超電導積層体に対し段差の少ない状態で接続した封止部材の周囲を導電性接合材と安定化層の延出部とで高い密閉性を得つつ覆うことができ、その結果、水分浸入を防ぐことができる封止構造を得ることができる。
本発明の一態様に係る酸化物超電導線材の接続構造は、2つの上記酸化物超電導線材と、前記2つの酸化物超電導線材どうしを接合する第2の導電性接合材と、を備え、前記各酸化物超電導線材の上方に位置する前記金属安定化層の上面は、互いに対向するように互いに重ねられて、前記第2の導電性接合材により接合されている。
酸化物超電導線材の端末部分が水分浸入を防止する封止構造を有しているので、2つの酸化物超電導線材どうしが接続された部分においても水分浸入を防止できる接続構造を提供できる。
本発明の一態様に係る酸化物超電導線材の接続構造は、上記酸化物超電導線材である、第1の酸化物超電導線材、第2の酸化物超電導線材、および第3の酸化物超電導線材と、前記第1の酸化物超電導線材と前記第3の酸化物超電導線材とを接合する第3の導電性接合材と、前記第2の酸化物超電導線材と前記第3の酸化物超電導線材とを接合する第4の導電性接合材と、を備え、前記第1の酸化物超電導線材の上方に位置する前記金属安定化層の上面と前記第3の酸化物超電導線材の上方に位置する前記金属安定化層の上面とは、互いに対向するように互いに重ねられて、前記第3の導電性接合材により接合され、前記第2の酸化物超電導線材の上方に位置する前記金属安定化層の上面と前記第3の酸化物超電導線材の上方に位置する前記金属安定化層の上面とは、互いに対向するように互いに重ねられて、前記第4の導電性接合材により接合されている。
酸化物超電導線材の端末部分が水分浸入を防止する封止構造を有しているので、第1の酸化物超電導線材と第3の酸化物超電導線材との接続部分および第1の酸化物超電導線材と第3の酸化物超電導線材との接続部分においても水分浸入を防止できる接続構造を提供できる。
本発明の一態様に係る超電導機器は、上記酸化物超電導線材を備えている。
上記超電導機器によれば、酸化物超電導線材の端末部分において水分浸入を防止する構造が設けられているため、水分による超電導特性の劣化が生じない超電導機器を提供できる。
本発明の一態様に係る超電導機器は、上記酸化物超電導線材の接続構造を備えている。
上記超電導機器によれば、酸化物超電導線材間の接続部分においても水分浸入を防止する構造が設けられているため、水分による超電導特性の劣化が生じない超電導機器を提供できる。
上記本発明の態様によれば、端末部分において水分浸入による劣化が生じ難い酸化物超電導線材、およびこの酸化物超電導線材を用いた接続構造を提供できる。また、上記本発明の態様によれば、水分浸入による劣化が生じ難い超電導機器を提供できる。
本発明の第1実施形態に係る酸化物超電導線材の積層構造を示す部分断面斜視図である。 同酸化物超電導線材の端末部分の構造を示す縦断面図である。 同酸化物超電導線材の端末部分の構造を示す部分断面図である。 第2実施形態に係る酸化物超電導線材を示す縦断面図である。 第2実施形態に係る酸化物超電導線材を示す部分断面図である。 複数の第1実施形態に係る酸化物超電導線材を接続した構造の第1の例を示す縦断面図である。 複数の第1実施形態に係る酸化物超電導線材を接続した構造の第2の例を示す縦断面図である。 端末封止した酸化物超電導線材を備えた超電導ケーブルの一例を示す斜視図である。 端末封止した酸化物超電導線材を備えた超電導限流器の一例を示す斜視図である。 端末封止した酸化物超電導線材を備えた超電導モーターの一例を示す斜視図である。 端末封止した酸化物超電導線材を備えた超電導モーターの一例を示す斜視図である。 端末封止した酸化物超電導線材を備えた超電導コイルの一例を示す斜視図である。 端末封止した酸化物超電導線材を備えた超電導コイルの一例を示す斜視図である。 第1実施形態に係る酸化物超電導線材を製造する装置の一例を示す構成図である。
以下、本発明の実施形態に係る酸化物超電導線材および酸化物超電導線材の接続構造とその製造方法を図面に基づいて詳細に説明する。なお、本発明は以下に説明する実施形態に限定されない。また、図面において、説明のため、いくつかの部分を拡大して示しているが、図面に表されている各構成要素の寸法比率などが実際と同じであるとは限らない。
図1に示すように、本実施形態に係る酸化物超電導線材1は、テープ状の基材2と、基材2の一面(表面)上に積層された中間層5、酸化物超電導層6、及び保護層7と、を有する超電導積層体9と、超電導積層体9の外周を覆う金属安定化層8と、を備えている。図1に示す例において、金属安定化層8は基材2の裏面中央部を除いて超電導積層体9の全周を覆うように横断面において略C字形に形成されている。
金属安定化層8の内周面のほぼ全面に半田層等からなる導電性接合材3(第1の導電性接合材)が形成されている。金属安定化層8は、導電性接合材3を介して超電導積層体9の周面に密着している。
図1は酸化物超電導線材1の横断面構造を示している。酸化物超電導線材1の長さ方向両端の端末部分を除く部分は図1に示す構造を有しており、酸化物超電導線材1の端末部分は図2A及び2Bに示す構造を有している。
酸化物超電導線材1の端末部分において、超電導積層体9の先端部に、超電導積層体9と略同じ幅で略同じ厚さであって長さ5mm程度の金属テープからなる封止材(封止部材)10が突き合わせ溶接されている。封止材10は、超電導積層体9の長さ方向に延出している。超電導積層体9を覆っている金属安定化層8は、超電導積層体9の端部から延出する封止材10の外周を覆う延出部8aを有している。金属安定化層8は、延出部8aの内面に設けられた導電性接合材3の延出部3aを介して、封止材10の周面に密着して接合している。
酸化物超電導線材1の基材2は、可撓性を有する長尺の超電導線材を得るために、テープ状やシート状あるいは薄板状であることが好ましい。また、基材2に用いられる材料は、機械的強度が比較的高く、耐熱性があり、線材に加工することが容易な金属を有しているものが好ましい。そのような材料として、例えば、ステンレス鋼、ハステロイ等のニッケル合金等の各種耐熱性金属材料、もしくはこれら各種金属材料上にセラミックスを配した材料などが挙げられる。中でも、市販品であれば、Ni合金の1種として知られているハステロイ(商品名、米国ヘインズ社製)が好適である。モリブデン、クロム、鉄、コバルト等の成分量が異なる、ハステロイB、C、G、N、W等の種類のハステロイがある。基材2にはいずれの種類のハステロイも使用できる。また、基材2の厚さは、目的に応じて適宜調整すれば良く、通常は10〜500μm、好ましくは20〜200μmである。また、基材2として、ニッケル合金に集合組織を導入した配向Ni−W合金テープ基材等を採用することもできる。
中間層5には、一例として、拡散防止層またはベッド層からなる下地層と、配向層と、キャップ層がこの順に積層された構造を採用することができる。
拡散防止層は、この層の上に形成される他の層が加熱処理された結果、基材2や他の層が熱履歴を受ける場合、基材2の構成元素の一部が拡散し、不純物として酸化物超電導層6に混入することを抑制する機能を有する。拡散防止層の具体的な構造は、上記機能を発現し得るものであれば特に限定されない。不純物の混入を防止する効果が比較的高いAl、Si、又はGZO(GdZr)等から構成される単層構造あるいは複層構造の拡散防止層が望ましい。
ベッド層は、基材2と酸化物超電導層6との界面における構成元素の反応を抑え、この層の上に設けられる層の配向性を向上させるために用いられる。ベッド層の具体的な構造は、上記機能を発現し得るものであれば特に限定されない。耐熱性が高いY、CeO、La、Dy、Er、Eu、Hoなどの希土類酸化物から構成される単層構造あるいは複層構造のベッド層が望ましい。拡散防止層及びベッド層の両方を設けても良く、また、どちらか一方のみを設けても良く、配向層の構成材料によっては拡散防止層及びベッド層を省略しても良い。
配向層は、その上に形成されるキャップ層や酸化物超電導層6の結晶配向性を制御する機能と、基材2の構成元素が酸化物超電導層6へ拡散することを抑制する機能と、熱膨張率や格子定数といった物理的特性における基材2と酸化物超電導層6との差を緩和する機能等を有する。配向層の構成材料は、前記機能を発現し得るものであれば特に限定されない。GdZr、MgO、ZrO−Y(YSZ)等の金属酸化物が特に好適である。これらのような金属酸化物を配向層の材料として用いると、後述するイオンビームアシスト蒸着法(以下、IBAD法と呼ぶことがある。)において、結晶配向性の高い配向層が得られ、その上に形成されるキャップ層及び酸化物超電導層6の結晶配向性をより良好にできる。
キャップ層は、酸化物超電導層6の結晶配向性を配向層と同等ないしそれ以上強く制御し、酸化物超電導層6を構成する元素の中間層5への拡散や、酸化物超電導層6の積層時に使用するガスと中間層5との反応を抑制する機能等を有する。
キャップ層の構成材料は、上記機能を発現し得るものであれば特に限定されないが、CeO、Y、Al、Gd、ZrO、Ho、Nd、Zr、LMnO等の金属酸化物が酸化物超電導層6との格子整合性の観点から好適である。これらのなかでも、酸化物超電導層6とのマッチング性の観点から、CeOあるいはLMnOが特に好適である。
キャップ層にCeOを用いる場合、キャップ層は、Ceの一部が他の金属原子又は金属イオンで置換されたCe−M−O系酸化物を含んでいても良い。
酸化物超電導層6は、超電導状態の時に電流を流す機能を有する。酸化物超電導層6に用いられる材料には、通常知られている組成の酸化物超電導体材料を広く採用することができる。例えば、Y系超電導体などの銅酸化物超電導体などが挙げられる。Y系超電導体の組成としては、例えば、REBaCu7−x(REはY、La、Nd、Sm、Er、Gd等の希土類元素、xは酸素欠損を表す。)が挙げられ、具体的には、Y123(YBaCu7−x)、Gd123(GdBaCu7−x)が挙げられる。この酸化物超電導体について、絶縁体である母物質に、酸素アニール処理により酸素を取り込むことで結晶構造の整った超電導特性を示す酸化物超電導体が得られる。優れた結晶配向性を示す酸化物超電導層6を得るためには、良好な結晶配向性を示すキャップ層上に酸化物超電導層6を成膜する必要がある。
優れた結晶配向性を有する酸化物超電導層6を酸化物超電導線材1に用いた場合、臨界温度以下の温度で通電を行うと、優れた臨界電流特性を発揮する。
保護層7は、酸化物超電導線材1への通電時に、何らかの異常により発生する過電流をバイパスする電流路として機能する。また保護層7は、酸化物超電導層6に酸素を取り込ませやすくするために、加熱時には酸素を透過しやすくする機能を有する。このため、保護層7は、Agあるいは少なくともAgを含む材料から形成されることが好ましい。
また、保護層7を形成する材料は、Au、Ptなどの貴金属を含む混合物もしくは合金であってもよく、これらを組み合わせたものでもよい。なお、保護層7は、超電導積層体9の全周、即ち、基材2、中間層5、及び酸化物超電導層6の積層物の全周を覆うように形成しても良い。
本実施形態では超電導積層体9および封止材10を覆うように延出部8aを含む金属安定化層8が設けられている。金属安定化層8に要求される機能は、酸化物超電導線材1の用途により異なる。
例えば、酸化物超電導線材1を超電導ケーブルや超電導モーターなどに使用する場合、金属安定化層8が、何らかの異常により生じたクエンチによって酸化物超電導層6が常電導状態に転移した時に発生する過電流を転流させるバイパスのメイン部として機能することが求められる。この場合、金属安定化層8に用いられる材料は、銅、Cu−Zn合金(黄銅)、Cu−Ni合金等の銅合金、アルミ、アルミ合金、ステンレス等の比較的安価材料であることが好ましく、中でも高い導電性を有し、安価である銅を用いることが好ましい。
一方、酸化物超電導線材1を超電導限流器に使用する場合、金属安定化層8が、クエンチの発生により酸化物超電導層6が常電導状態に転移した時に発生する過電流を瞬時に抑制するように機能することが求められる。この場合、金属安定化層8に用いられる材料として、例えば、Ni−Cr等のNi系合金等の高抵抗金属が挙げられる。
金属安定化層8は、所定幅の金属テープから形成され、保護層7の表面から基材2の裏面に亘り超電導積層体9を覆うよう折り曲げられて横断面において略C字形を有する。
封止材10は、基材2を構成する金属材料と同等の金属材料から、あるいは基材2を構成する金属材料に対する溶接による接合性の良好な金属材料からなることが好ましい。また、封止材10は半田などの導電性接合材3に対し良好な密着性を有する材料からなることが好ましい。よって、封止材10の構成材料として、ステンレス鋼、Ni系合金、Cu系合金などの金属材料を挙げることができる。なお、導電性接合材3の材料として半田を用い、封止材10の材料として半田との密着性が悪い金属材料を用いる場合は、SnやAgなどの半田との密着性が良好な材料でその金属材料を予め被覆しておくことが好ましい。
延出部3aを含む導電性接合材3を構成する半田等のスズ合金の例として、Sn、Sn−Ag系合金、Sn−Bi系合金、Sn−Cu系合金、Sn−Zn系合金などのSnを主成分とする合金よりなる鉛フリー半田、Pb−Sn系合金半田、共晶半田、低温半田などが挙げられる。これらの半田のうちの1種、又は2種以上組み合わせたものを導電性接合材3の材料として使用することもできる。
図2A及び2Bに示す酸化物超電導線材1では、超電導積層体9の端末部分に封止材10が設けられ、超電導積層体9の端末部分を封止材10が閉じている。また、導電性接合材3の延出部3aと金属安定化層8の延出部8aとが封止材10の外周に密着して封止材10の外周を覆っている。したがって、端末部分からの水分の浸入を阻止できる。このため酸化物超電導線材1において、端末部分からの水分浸入に起因する酸化物超電導層6の劣化を阻止できる。
更に、封止材10と金属安定化層8の延出部8aとの間には、これらに対し密着性の良好な半田などの導電性接合材3の延出部3aを設けているので、封止材10と金属安定化層8の延出部8aとの間を隙間なく密着して封止材10を覆うことが可能となり、その結果、水分の浸入を阻止できる。
また、封止材10は、導電性接合材3の延出部3aと金属安定化層8の延出部8aとが形成されている領域において酸化物超電導線材1の端末部分を閉じるために必要十分な長さを有しているので、酸化物超電導線材1の端末を有効に封止できる。封止材10の長さは、水分浸入を防止するために必要な導電性接合材3の延出部3aの面積を確保するために、5mm以上であることが好ましい。封止材10の長さが5mmよりも短いと、導電性接合材3の延出部3aに部分的接合不良が生じてその部分が水分の進入路になる可能性がある。水分進入路を形成させないために必要充分な延出部3aを得るために封止材10の長さは5mm以上必要である。
図3A及び3Bは、第2実施形態に係る酸化物超電導線材11を示す。酸化物超電導線材11は、基材2と、基板2の上に積層された中間層5、酸化物超電導層6、及び保護層7と、が超電導積層体9を形成して且つ、超電導積層体9の外周が金属安定化層8で覆われている点において、第1実施形態に係る酸化物超電導線材1と構造上同等である。酸化物超電導線材11が第1実施形態に係る酸化物超電導線材1と構造上異なっているのは、超電導積層体9の端末部分に段部9aが形成され、段部9aにスポット溶接により封止材12の端部12aが接続され、封止材12が導電性接合材3の延出部3bを介して金属安定化層8の延出部8bにより覆われている点にある。
超電導積層体9の段部9aは、保護層7と酸化物超電導層6と中間層5と基材2の上部とを研削などにより部分的に除去することで形成されている。段部9aに第1実施形態に係る酸化物超電導線材1の封止材10と同等材料からなる封止材12の端部12aが重ねられ、段部9aと端部12aとをスポット溶接などの接合手段により接合することで超電導積層体9と封止材12とが一体化されている。
段部9aに封止材12の端部12aを重ねると、封止材12の端部12aと超電導積層体9の端部との間に段差を生む可能性がある。この段差ができるだけ小さくなるように段部9aの高さを設定することが好ましい。このため、段部9aの高さと封止材12の厚さとを略同一とすることが好ましい。あるいは、封止材12の超電導積層体9の上面9uからの突出量を許容値以下に抑えるように封止材12の厚さを設定することが好ましい。この許容値とは、超電導積層体9の上面9uと封止材12の端部12aの上面12uとの間の段差を導電性接合材3の延出部3bが水分浸入防止に支障無く埋めるために許容される突出量の最大値である。
以上説明のように、封止材12は、超電導積層体9の長さ方向に延出するように段部9aに溶接されて、超電導積層体9の端末部分に接合される。また、この接合部分と封止材12の周面とが導電性接合材の延出部3bを介して金属安定化層8の延出部8bにより被覆されている。
図3A及び3Bに示す第2実施形態に係る酸化物超電導線材11においても、上記第1実施形態に係る酸化物超電導線材1と同等の作用効果が得られる。即ち、酸化物超電導線材1と同様に、封止材12の外周に導電性接合材3の延出部3bと金属安定化層8の延出部8bとが密着して、封止材12の外周が覆われているので、端末部分からの水分の浸入を阻止でき、酸化物超電導層6の水分による劣化を阻止できる。
図4は上述した酸化物超電導線材1を接続するための構造の一例を示す。この例の接続構造Aは、図1に示す酸化物超電導線材1を2本接続する場合に適用できる。
図4に示すように、2本の酸化物超電導線材1は、これらの端面が隙間dをあけて対向するように隣接している。また、2本の酸化物超電導線材1は、基材2の厚さ方向において基材2と保護層7との位置関係が2本の酸化物超電導線材1の間で同じになるように直線状に配置されている。図4の例では、それぞれの酸化物超電導線材1について、保護層7が基材2の上方に配置されている。2つの酸化物超電線材1、1を橋渡しするように第3の酸化物超電導線材13が設けられ、酸化物超電導線材13は2つの酸化物超電線材1、1に被着されている。説明の便宜上、互いに接続される酸化物超電導線材1、1のうちの一方(図4の下(左)側)を第1の酸化物超電導線材1と呼称し、他方(図4の上(右)側)を第2の酸化物超電線材1と呼称する。
第3の酸化物超電導線材13は、第1、第2の酸化物超電導線材1と同等構造を有するが、短尺のテープ状の酸化物超電導線材である。即ち、第3の酸化物超電導線材13は、基材2と、基材2の上に積層された中間層5、酸化物超電導層6、及び保護層7と、を有する超電導積層体9と、超電導積層体9の周面を覆う金属安定化層8と、を備えているが、その長さは、例えば、数cm〜数10cm程度、具体的には接続対象にもよるが1cm〜20cm程度である。
第3の酸化物超電導線材13は、その内部に設けられている保護層7が前記第1、第2の酸化物超電導線材1、1の保護層7に対向するように且つ、金属安定化層8が第1、第2の酸化物超電導線材1、1の金属安定化層8に沿うように配置され、それら金属安定化層8の間に介在する半田等の導電性接合材(第3及び第4の導電性接合材)15により、第1、第2の酸化物超電導線材1、1に接続されている。すなわち、第3の酸化物超電導線材13の金属安定化層8の上面8uと、第1、第2の酸化物超電導線材1、1の金属安定化層8の上面8uとは、互いに対向するように互いに重ねられて、導電性接合材15により接合されている。
図4に示す接続構造Aによれば、接続部に位置する第1、第2の酸化物超電導線材1、1の端末部分と第3の酸化物超電導線材13の端末部分とが封止材10を用いた端末封止構造を有する。これにより、図4に示す接続構造の接続部分とその周囲において、酸化物超電導層6の水分による劣化を阻止できる。
図5は上述の酸化物超電導線材1を接続するための構造の他の例を示す。この例の接続構造Bは、図1に示す酸化物超電導線材1を2本直接接続する場合に適用できる。
図5では、第1及び第2の酸化物超電導線材1が、これらの端部が互いに所定長さ重なるように配置され、半田などの導電性接合材(第2の導電性接合材)15により接合されている。第1及び第2の酸化物超電導線材1は、導電性接合材15を挟んで各保護層7が互いに対向するように配置され、互いに対向する金属安定化層8どうしが導電性接合材15により接続されている。すなわち、第1の酸化物超電導線材1の金属安定化層8の上面8uと、第2の酸化物超電導線材1の金属安定化層8の上面8uとは、互いに対向するように互いに重ねられて、導電性接合材15により接合されている。
本例の接続構造Bでは、第1、第2の酸化物超電導線材1が接合部において表裏逆転しているので、この構造は接合部において各酸化物超電導線材の表裏が逆転していても支障がない場合に適用できる。
「超電導ケーブル」
図2A〜3Bに示す酸化物超電導線材1、11、および図4〜5に示す酸化物超電導線材1、11の接続構造A、Bは、例えば、図6に例示する高温超電導ケーブル80に適用することができる。図6に示す高温超電導ケーブル80では、中心部に設けたフォーマ81とフォーマ81の外周に巻線状に複数層配置された酸化物超電導線材1とが超電導層1Aを形成し、超電導層1Aと、その外周に形成された絶縁層82、超電導シールド層1B、及び保護層83とがコアケーブル85を構成している。コアケーブル85は、断熱管84の内部に冷媒流通用の間隙を残しながら収容されている。断熱管84は、例えば内管84aと外管84cとからなる2重管構造を有する。内管84aと外管84cとの間に真空断熱層84bが形成されている。超電導シールド層1Bは複数層巻線状に配置された酸化物超電導線材1から構成されている。
高温超電導ケーブル80を長尺のケーブルとして用いる場合、超電導層1Aを形成する酸化物超電導線材1、あるいは、超電導シールド層1Bを構成する酸化物超電導線材1を他の超電導ケーブルに接続するための構造が必要となり、さらに端末を封止する構造が必要となる。このために、図2A〜3Bに示す端末封止構造を有する酸化物超電導線材1、11、及び図4〜5に示す酸化物超電導線材1、11の接続構造A、Bを適用できる。
「超電導限流器」
図2A〜3Bに示す端末処理した酸化物超電導線材1、11、および図4〜5に示す酸化物超電導線材1、11の接続構造A、Bは、例えば、図7に示す超電導限流器99に適用できる。
図7に示す超電導限流器99において、図2A〜3Bに示す端末封止構造を有する酸化物超電導線材1、11あるいは図4〜5に示す端末接続構造A、Bを有する酸化物超電導線材1、11は、巻胴に複数層に渡って巻回されて超電導限流器用モジュール90を構成している。超電導限流器用モジュール90は、液体窒素98が充填された液体窒素容器95に格納されている。液体窒素容器95は、外部からの熱を遮断する真空容器96の内部に格納されている。
液体窒素容器95の上部には、液体窒素充填部91と冷凍機93とが設けられている。冷凍機93の下方には、熱アンカー92と熱板97とが設けられている。
また、超電導限流器99は、超電導限流器用モジュール90と外部電源(図示略)とを接続するための電流リード部94を有する。
以上のような、超電導限流器99の超電導限流器用モジュール90に酸化物超電導線材1、11を使用する場合において、先に説明したように、金属安定化層8としてNi−Cr等の高抵抗金属を用いる。
「超電導モーター」
図2A〜3Bに示す端末処理した酸化物超電導線材1、11、及び、図4〜5に示す酸化物超電導線材1、11の接続構造A、Bは、図8A及び8Bに示す超電導モーター130に適用することができる。
超電導モーター130は、円筒状の密閉型の容器131の内部に、回転自在に軸支された軸型の回転子132を備えている。
回転軸133の周面に複数の超電導モーター用コイル135が取り付けられている。複数の超電導モーター用コイル135の周囲には、容器131の内壁に支持された銅コイルからなる複数の常電導コイル136が配置されている。
超電導モーター用コイル135において、図2A〜3Bに示す端末処理した酸化物超電導線材1、11、あるいは、図4〜5に示す酸化物超電導線材1、11の接続構造A、Bを有する酸化物超電導線材1、11がレーストラック状のボビンに巻回されている。
回転軸133の内部には冷却ガスを流入させるか流出させるための複数の配管が設けられている。これら配管を通して、外部に別途設けられている図示略の冷媒供給装置から容器131の内部に冷却ガスが導入され、この冷却ガスにより超電導モーター用コイル135を臨界温度以下に冷却できる。なお、超電導モーター130の使用時において、超電導モーター用コイル135は臨界温度以下に冷却されるが、常電導コイル136は常温部として機能する。
図8A、8Bに示す超電導モーター130の使用時には、容器131の内部に冷却ガスを導入し、この冷却ガスにより超電導モーター用コイル135を臨界温度以下に冷却する。常電導コイル136には別途図示略の電源から必要な電流を供給し、超電導モーター用コイル135にも別途図示略の電源から必要な電流を供給すると、両者のコイルが生成する磁場に起因した回転力により回転軸133が回転する。
「超電導コイル」
図2A〜3Bに示す端末処理した酸化物超電導線材1、11、あるいは、図4〜5に示す接続構造A、Bを有する酸化物超電導線材1、11を、図9Bに示すパンケーキ状の超電導コイル101に用いることができる。また、複数の超電導コイル101を積層し、それぞれの超電導コイル101同士を接続することにより、図9Aに示す強力な磁力を発する超電導コイル100を形成することができる。
以上に説明したように、図2A〜3Bに示す端末処理した酸化物超電導線材1、1、あるいは、図4〜5に示す酸化物超電導線材1、11の接続構造A、Bは、様々な超電導機器に適用可能である。
ここで、超電導機器は、前記酸化物超電導線材1を有するものであれば特に限定されず、例えば、超電導ケーブル、超電導モーター、超電導限流器、超電導コイル、超電導変圧器、超電導電力貯蔵装置などを含む。
「超電導線材の製造方法」
次に、酸化物超電導線材1の製造方法の一例について説明する。
まず、テープ状の基材2の表面上に、拡散防止層とベッド層とを必要に応じて形成し、更に配向層とキャップ層を形成し、その上に酸化物超電導層6と保護層7とを形成し、酸化物超電導積層体9を得る。
拡散防止層とベッド層は、結晶性が特に問われないので、通常のスパッタ法等の成膜法により形成できる。配向層は、酸化物超電導層6やキャップ層の結晶配向性をより高く制御できることから、IBAD法を用いて形成することが好ましい。ここで、IBAD法とは、成膜時に、結晶の成膜面に対して所定の入射角度でArなどのイオンビームを照射することにより、結晶軸を配向させる方法である。
次に、配向層上にパルスレーザー蒸着法などによりキャップ層を形成し、キャップ層上に、酸化物超電導層6を形成する。上述の工程において、配向層とキャップ層とを良好な配向性を示すよう成膜しておけば、キャップ層上に成膜される酸化物超電導体の結晶粒も良好に配向し、良好な超電導特性を発揮する酸化物超電導層6が得られる。続いて、酸化物超電導層6上に保護層7を形成する。保護層7は、スパッタ法で成膜することができる。保護層7の膜厚は、通常は1〜30μmにすることができる。基材2と、その上に形成されている拡散防止層、ベッド層、配向層、キャップ層、及び酸化物超電導層6と、からなる積層物の全周を覆うように保護層7を形成しても良い。
次に、上述の酸化物超電導積層体9に対し、図示略の加熱炉を用いて、酸素アニール処理を施し、酸化物超電導層6の母物質に酸素を供給する。これにより酸化物超電導層6の結晶構造が整うため、超電導特性の良好な酸化物超電導体の結晶からなる酸化物超電導層6が得られる。酸素アニール処理の条件として、加熱温度300〜500℃、加熱時間数時間〜数10時間を選択することができる。
次に、酸素アニール処理後の超電導積層体9の端末部分に、超電導積層体9と同等幅、同等厚さの金属テープからなる封止材10を、封止材10が超電導積層体9からその長さ方向に延出するように、突き合わせ溶接する。この後、金属テープからなる安定化材をロールフォーミングにより成形しつつ超電導積層体9に被着することで超電導積層体9の外周を覆う金属安定化層8を形成する。金属安定化層8を構成する金属テープは、超電導積層体9の倍程度の幅を有し、銅などから形成される。また、片面にSnなどの低融点金属からなる厚さ2〜4μm程度の導電性接合材を被覆した金属テープを用いることができる。金属安定化層8の膜厚は、特に限定されず、適宜調整可能である。酸化物超電導線材1の可撓性を考慮すると、金属安定化層8の膜厚は10〜300μmとすることが好ましい。
図10は、前記酸化物超電導線材1をロールフォーミング法により製造する装置の一例を示す。この例の製造装置20は、折り曲げ機構22と加熱機構23と加圧ロール24とを備えている。
第1の送出リール15Aにテープ状の超電導積層体9が巻き付けられ、第2の送出リール15Bに超電導積層体9より幅広の金属テープ8Aが巻き付けられている。第1の送出リール15Aから送り出された超電導積層体9に、導体沿わせ機構26と搬送ローラ27により金属テープ8A(片面に導電性接合材のめっき層が被覆されている)が沿わせられる。超電導積層体9に沿わせられた幅広の金属テープ8Aは、貼り合わせ機構28と折り曲げ機構22とにより横断面においてC字形をなすように超電導積層体9の外周を取り包むように塑性加工される。
その後、加熱機構23により金属テープ8Aをスズまたはスズ合金の溶融温度近傍まで加熱して導電性接合材を溶融させる。導電性接合材が溶融した状態で超電導積層体9の外周を取り包む金属テープ8Aが加圧ロール24を通過する際に、金属テープ8Aの形が安定化層8として整えられつつはんだ付けが行われる。金属安定化層8に周囲を囲まれた超電導積層体9を加圧ロール24から引き出して巻取ロール15Cに巻き取る。以上により、超電導積層体9の周囲が安定化層8で覆われ、超電導積層体9と安定化層8との間が導電性接合材3で充填された、即ち、図1に示す断面形状を有する酸化物超電導線材1を得ることができる。
なお、先端部と後端部とに予め溶接等の接合手段により封止材10が接合されたテープ状の超電導積層体9を第1の送出リール15Aに巻き付けておき、上述のロールフォーミング法を実施することにより、端末部分を封止した構造を有する酸化物超電導線材1を製造することができる。
以下、本発明の実施形態を、実施例を挙げてより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
「実施例1」
ハステロイ(商品名ハステロイC−276、米国ヘインズ社製)からなる幅5mm、厚さ100μm、長さ50mのテープ状の基材を複数用意し、各基材の表面を研磨した後、各基材をアルコール及び有機溶剤により洗浄した。
次に、複数の基材の一面上に、拡散防止層、ベッド層、配向層およびキャップ層をこの順に積層した。各層の成膜の際には、成膜装置の内部にテープ状の基材を搬送する送り出しリールと、巻き取りリールを設け、基材を所定の速度で移動させつつ基材上に順次成膜を行った。各層の成膜は、以下の条件により行った。
まず、イオンビームスパッタ法により、テープ状の基材の上にAlからなる膜厚100nmの拡散防止層を形成し、次に、イオンビームスパッタ法により、拡散防止層の上にYからなる膜厚20nmのベッド層を形成した。
次に、IBAD法により、ベッド層の上にMgOからなる膜厚10nmの配向層を形成した。
配向層の上にPLD法によりCeOからなる膜厚400nmのキャップ層を形成し、キャップ層の上にYBaCu7−xで表される組成を有する酸化物超電導層を形成し、更に酸化物超電導層の上に厚さ2μmのAgの保護層をスパッタ法により成膜して、積層体を得た。この積層体を500℃の酸素雰囲気中において10時間酸素アニール処理し、酸化物超電導積層体を得た。
この酸化物超電導積層体の両端部に厚さ150μm、幅5mm、長さ5mmのステンレス鋼製の封止材を突き合せ溶接により接合した。なお、封止材の両面には厚さ2μmのSnめっき層を形成した。
次に、片面に厚さ2μmのSnメッキを施した、幅8mmのCuからなる金属テープを、図10に示す装置を用いたロールフォーミング法によりC字形に折り曲げつつ積層体の外周に被着した。ロールフォーミング時に、加熱炉を用いてSnメッキを約200℃に加熱し溶融させることにより、酸化物超電導積層体の外周がSn層を介してCuの金属安定化層で覆われた構造を有する酸化物超電導線材が得られた。
この酸化物超電導積層体の両端部には、酸化物超電導体の長さ方向に延出するように溶接された封止材が形成され、各封止材をSn層を介しCuの金属安定化層で覆った。本実施例の酸化物超電導線材は、超電導積層体と封止材とが突き合わされた「突き合わせ構造」を有する。
「実施例2」
超電導積層体と封止材との接続方法を除いては、実施例1と同様の方法で実施例2に係る酸化物超電導線材を得た。本実施例では、超電導積層体の端末部分に段部を形成し、この段部にスポット溶接により封止材の端部を接続した。即ち、超電導積層体と封止材とが重ね合せられた「重ね合せ溶接構造」を有する酸化物超電導線材を作製した。
「比較例1」
超電導積層体に封止材を接続しないことを除いては、実施例1と同様の方法で比較例1に係る酸化物超電導線材を得た。本比較例では、超電導積層体の端末封止を特に行わずに、酸化物超電導線材を作製した。
得られた酸化物超電導線材に対し、浸透探傷試験によるスクリーニングを行った。浸透探傷試験では、浸透液を測定部位に振り掛けて浸透液を拭き取った後に測定部位に現像液をかけた際に、目視により赤い染色液の有無を確認する。
基材の裏面中央に配置されている金属テープの先端部分において、金属テープと超電導積層体/封止材との間に溶融Snの埋め込み不良による隙間が生じている場合、その隙間部分に浸透液が染み込み、残留する。この隙間部分に残留した浸透液に後で振りかけられる現像液が反応すると、赤い染色液となって目視により確認できる。
本実施例においては浸透液としてカラーチェック(株式会社タセト製)を用いた。
また、各試料に対して、高温(121℃)・高湿(100%)・高圧力(0.2MPa)下に100時間放置するプレッシャークッカー(PCT)試験を行い、その試験前後での臨界電流値を測定した。放置前の臨界電流値(Ic)に対する放置後の臨界電流値(Ic)の比をIc/Icとして、Ic/Icが1の試料を合格、0.7以下の試料を不合格と判断した。
以上の試験の結果を以下の表1に示す。
Figure 2014109326
なお、表1に示されているスクリーニング試験の結果について、「○」は赤い染色液が確認されなかったことを、「△」は一部赤い染色液が確認されたことを、「−」は試験を行わなかったことをそれぞれ表している。また、PCT試験の結果について、「○」は合格であったことを、「×」は不合格であったことをそれぞれ表している。
表1に示すように、スクリーニング試験において実施例1の試料では優良な結果が得られた。なお、重ね合わせ溶接構造を有する実施例2の試料では、超電導積層体と封止材との間の段差の影響により実施例1の試料に比較して浸透探傷試験結果が若干劣っているが、PCT試験は合格であった。したがって、実施例2の試料においても、端末部分からの水分浸入の防止効果が十分に得られていることがわかった。
実施例1と実施例2との比較から、「重ね合わせ溶接構造」よりも「突き合わせ溶接構造」の方が有利であると思われる。重ね合わせ溶接構造を有する実施例2の試料では、ロールフォーミング法により成形した金属テープの端部において、一部隙間が生じていた。しかしながら、その隙間は基材の裏面にしか存在せず、金属テープからなる金属安定化層の内側には導電性接合層が満たされているので、PCT試験に合格したものと思われる。
また、上述の長さ5mmの封止材よりも短い長さ3mmの封止材を用いて同様に端末処理した酸化物超電導線材を作製し、プレッシャークッカー試験を行った。作製した5個の試料のうちの2つでPCT試験によるIcの低下が見られた。
金属安定化層の内側にSnフィラーからなる導電性接合材が満たされていることが重要であると思われるので、溶接部分を含む封止材の長さは5mm以上必要であると想定できる。
本発明の実施形態によれば、端末部分において水分浸入による劣化が生じ難い酸化物超電導線材、およびこの酸化物超電導線材を用いた接続構造を提供できる。さらに、水分浸入による劣化が生じ難い超電導機器を提供できる。
1 酸化物超電導線材
2 基材
3 導電性接合材
3a 延出部
5 中間層
6 酸化物超電導層
7 保護層
8 金属安定化層
8a 延出部
9 超電導積層体
10 封止材
12 封止材
13 超電導線材
A、B 接続構造
20 製造装置
80 超電導ケーブル(超電導機器)
99 超電導限流器(超電導機器)
130 超電導モーター(超電導機器)
100 超電導コイル(超電導機器)

Claims (8)

  1. テープ状の基材と、前記基材上に形成された中間層、酸化物超電導層、及び保護層と、を有する超電導積層体と、
    前記超電導積層体の周囲を覆う金属安定化層と、
    前記超電導積層体及び前記金属安定化層の間に介在する第1の導電性接合材と、
    前記超電導積層体の端末部に接続され、前記超電導積層体の長手方向に延出する、金属薄体からなる封止部材と、
    を備える酸化物超電導線材であって、
    前記金属安定化層は、前記封止部材の周囲を覆うように形成された延出部を備え、
    前記第1の導電性接合材は、前記金属安定化層の延出部と前記封止部材との間に介在して前記封止部材の周囲を覆うように形成された延出部を備える酸化物超電導線材。
  2. 前記超電導積層体の端末部に前記封止部材が突き合わせ溶接されている請求項1に記載の酸化物超電導線材。
  3. 前記超電導積層体の端末部に段差部が形成され、前記段差部に前記封止部材の端部が重ねられて溶接されている請求項1に記載の酸化物超電導線材。
  4. 2つの、請求項1〜3のいずれか一項に記載の酸化物超電導線材と、
    前記2つの酸化物超電導線材どうしを接合する第2の導電性接合材と、
    を備え、
    前記各酸化物超電導線材の上方に位置する前記金属安定化層の上面は、互いに対向するように互いに重ねられて、前記第2の導電性接合材により接合されている酸化物超電導線材の接続構造。
  5. 請求項1〜3のいずれか一項に記載の酸化物超電導線材である、第1の酸化物超電導線材、第2の酸化物超電導線材、および第3の酸化物超電導線材と、
    前記第1の酸化物超電導線材と前記第3の酸化物超電導線材とを接合する第3の導電性接合材と、
    前記第2の酸化物超電導線材と前記第3の酸化物超電導線材とを接合する第4の導電性接合材と、
    を備え、
    前記第1の酸化物超電導線材の上方に位置する前記金属安定化層の上面と前記第3の酸化物超電導線材の上方に位置する前記金属安定化層の上面とは、互いに対向するように互いに重ねられて、前記第3の導電性接合材により接合され、
    前記第2の酸化物超電導線材の上方に位置する前記金属安定化層の上面と前記第3の酸化物超電導線材の上方に位置する前記金属安定化層の上面とは、互いに対向するように互いに重ねられて、前記第4の導電性接合材により接合されている酸化物超電導線材の接続構造。
  6. 請求項1〜3のいずれか一項に記載の酸化物超電導線材を備えた超電導機器。
  7. 請求項4または5に記載の酸化物超電導線材の接続構造を備えた超電導機器。
  8. 請求項1に記載の酸化物超電導線材の製造方法であって、
    前記超電導積層体の端末部に前記封止部材を接合し、
    少なくとも一面に前記第1の導電性接合材が形成された被覆金属テープを用いて、前記封止部材の周囲と前記超電導積層体の周囲とにロールフォーミングにより前記被覆金属テープを被着し、
    前記第1の導電性接合材を溶融凝固させることにより、前記超電導積層体の周囲を前記第1の導電性接合材及び前記金属安定化層で覆い、
    前記封止部材の周囲を前記導電性接合材の延出部と前記金属安定化層の延出部とで覆う酸化物超電導線材の製造方法。
JP2014538548A 2013-01-09 2014-01-08 酸化物超電導線材、その接続構造、および超電導機器 Expired - Fee Related JP5695803B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014538548A JP5695803B2 (ja) 2013-01-09 2014-01-08 酸化物超電導線材、その接続構造、および超電導機器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013001947 2013-01-09
JP2013001947 2013-01-09
JP2014538548A JP5695803B2 (ja) 2013-01-09 2014-01-08 酸化物超電導線材、その接続構造、および超電導機器
PCT/JP2014/050128 WO2014109326A1 (ja) 2013-01-09 2014-01-08 酸化物超電導線材、その接続構造、および超電導機器

Publications (2)

Publication Number Publication Date
JP5695803B2 JP5695803B2 (ja) 2015-04-08
JPWO2014109326A1 true JPWO2014109326A1 (ja) 2017-01-19

Family

ID=51166974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014538548A Expired - Fee Related JP5695803B2 (ja) 2013-01-09 2014-01-08 酸化物超電導線材、その接続構造、および超電導機器

Country Status (4)

Country Link
US (1) US9362026B2 (ja)
EP (1) EP2945168B1 (ja)
JP (1) JP5695803B2 (ja)
WO (1) WO2014109326A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6297397B2 (ja) * 2014-04-23 2018-03-20 公益財団法人鉄道総合技術研究所 高温超電導コイル巻線方法及びその高温超電導コイル巻線機
KR101658727B1 (ko) * 2015-03-11 2016-09-21 창원대학교 산학협력단 이동형 철심을 이용한 초전도 자석 장치 및 그의 유도가열장치
WO2017057483A1 (ja) * 2015-10-01 2017-04-06 古河電気工業株式会社 超電導線材の接続構造
NZ752435A (en) * 2016-09-07 2022-10-28 Brookhaven Tech Group Inc Reel-to-reel exfoliation and processing of second generation superconductors
WO2018083826A1 (ja) * 2016-11-01 2018-05-11 住友電気工業株式会社 超電導線材
JP2018142409A (ja) * 2017-02-27 2018-09-13 古河電気工業株式会社 超電導線材の接続構造
DE102018216904A1 (de) * 2018-10-02 2020-04-02 Rolls-Royce Deutschland Ltd & Co Kg Elektrische Spuleneinrichtung mit erhöhter elektrischer Stabilität
CN111540560A (zh) * 2020-05-22 2020-08-14 中国科学院合肥物质科学研究院 一种万安级ybco高温超导电流引线装置及其制作方法
CN114464365B (zh) * 2020-11-10 2023-07-07 上海交通大学 复合超导带材、组合体及制备方法、接头连接或过渡方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3717683B2 (ja) 1998-10-30 2005-11-16 株式会社フジクラ 酸化物超電導導体の接続構造及び接続方法
US20050173679A1 (en) * 2002-02-21 2005-08-11 Mannhart Jochen D. Superconductors and methods for making such superconductors
US7774035B2 (en) * 2003-06-27 2010-08-10 Superpower, Inc. Superconducting articles having dual sided structures
US20050016759A1 (en) * 2003-07-21 2005-01-27 Malozemoff Alexis P. High temperature superconducting devices and related methods
US7816303B2 (en) * 2004-10-01 2010-10-19 American Superconductor Corporation Architecture for high temperature superconductor wire
JP4810268B2 (ja) * 2006-03-28 2011-11-09 株式会社東芝 超電導線材の接続方法及び超電導線材
WO2008118127A1 (en) * 2006-07-21 2008-10-02 American Superconductor Corporation Low resistance splice for high temperature superconductor wires
JP5094335B2 (ja) 2007-03-22 2012-12-12 株式会社フジクラ 安定化材複合酸化物超電導テープの製造方法
US8195260B2 (en) * 2008-07-23 2012-06-05 American Superconductor Corporation Two-sided splice for high temperature superconductor laminated wires
JP5548441B2 (ja) 2009-12-24 2014-07-16 株式会社フジクラ 超電導接続構造体および超電導線材の接続方法、超電導コイル装置
JP5723553B2 (ja) 2010-08-24 2015-05-27 株式会社フジクラ 酸化物超電導線材の製造装置および酸化物超電導線材の製造方法
US8716188B2 (en) * 2010-09-15 2014-05-06 Superpower, Inc. Structure to reduce electroplated stabilizer content
JP2014002833A (ja) * 2010-09-24 2014-01-09 Fujikura Ltd 酸化物超電導線材およびその製造方法
JP5684601B2 (ja) * 2011-01-25 2015-03-18 株式会社フジクラ 酸化物超電導線材およびその製造方法
EP2728591B1 (en) 2012-05-02 2018-04-25 Furukawa Electric Co., Ltd. Superconducting wire material, superconducting wire material connection structure, superconducting wire material connection method, and treatment method of superconducting wire material end

Also Published As

Publication number Publication date
EP2945168B1 (en) 2017-12-06
US20150332812A1 (en) 2015-11-19
JP5695803B2 (ja) 2015-04-08
EP2945168A1 (en) 2015-11-18
WO2014109326A1 (ja) 2014-07-17
EP2945168A4 (en) 2016-08-24
US9362026B2 (en) 2016-06-07

Similar Documents

Publication Publication Date Title
JP5695803B2 (ja) 酸化物超電導線材、その接続構造、および超電導機器
JP5933781B2 (ja) 酸化物超電導線材
JP5684601B2 (ja) 酸化物超電導線材およびその製造方法
JP5568361B2 (ja) 超電導線材の電極部接合構造、超電導線材、及び超電導コイル
WO2013187353A1 (ja) 酸化物超電導線材および超電導コイル
JP2014154320A (ja) 酸化物超電導線材の接続構造体及び超電導機器
JP6101491B2 (ja) 酸化物超電導線材及びその製造方法
JP6101490B2 (ja) 酸化物超電導線材の接続構造体及び超電導機器
JP6086852B2 (ja) 酸化物超電導線材、酸化物超電導線材の接続構造体、酸化物超電導線材と電極端子の接続構造体、及びこれを備えた超電導機器、並びにこれらの製造方法
JP5775785B2 (ja) 酸化物超電導線材及びその製造方法
JP6069269B2 (ja) 酸化物超電導線材、超電導機器及び酸化物超電導線材の製造方法
WO2014104333A1 (ja) 酸化物超電導線材の接続構造体およびその製造方法と超電導機器
JP2014130730A (ja) 酸化物超電導線材の接続構造体及び接続方法並びに接続構造体を用いた酸化物超電導線材
JP6002602B2 (ja) 酸化物超電導線材の接続構造体及びその製造方法
JP2013037991A (ja) 酸化物超電導線材の接続構造体及び酸化物超電導線材の接続方法
JP2014002833A (ja) 酸化物超電導線材およびその製造方法
JP2012150981A (ja) 酸化物超電導線材およびその製造方法
JP5775808B2 (ja) 酸化物超電導線材とその製造方法
JP2017091808A (ja) 酸化物超電導線材の製造方法及び超電導コイルの製造方法
JP5640022B2 (ja) 超電導線材と外部端子の接合方法、および超電導線材の外部端子接合構造体
JP2014110144A (ja) 酸化物超電導導体の接続構造及びそれを備えた超電導機器
JP2014167847A (ja) 酸化物超電導線材及び超電導コイル並びに酸化物超電導線材の製造方法
JP2020161278A (ja) 貼り合わせ超電導線材及び超電導コイル
JP5701356B2 (ja) 酸化物超電導線材およびその製造方法
JP2013131397A (ja) 酸化物超電導線材及びその製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150206

R151 Written notification of patent or utility model registration

Ref document number: 5695803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees