JPWO2014091974A1 - 発光材料 - Google Patents

発光材料 Download PDF

Info

Publication number
JPWO2014091974A1
JPWO2014091974A1 JP2014551995A JP2014551995A JPWO2014091974A1 JP WO2014091974 A1 JPWO2014091974 A1 JP WO2014091974A1 JP 2014551995 A JP2014551995 A JP 2014551995A JP 2014551995 A JP2014551995 A JP 2014551995A JP WO2014091974 A1 JPWO2014091974 A1 JP WO2014091974A1
Authority
JP
Japan
Prior art keywords
compound
platinum complex
formula
carbon atoms
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014551995A
Other languages
English (en)
Other versions
JP6316206B2 (ja
Inventor
健 直田
健 直田
成義 小宮
成義 小宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Publication of JPWO2014091974A1 publication Critical patent/JPWO2014091974A1/ja
Application granted granted Critical
Publication of JP6316206B2 publication Critical patent/JP6316206B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • C07F15/0093Platinum compounds without a metal-carbon linkage
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

固体であって、発光強度が強い発光材料を提供することを目的とすることを課題とする。式(I)で表される白金錯体を含む発光材料。【化21】[前記式中、nは、7〜25の整数であり、かつRは、水素原子または炭素数1〜6を有するアルコキシ基である。]

Description

本発明は、白金錯体を含む発光材料、および、その白金錯体に関する。
有機金属錯体による燐光性の発光は、有機EL(エレクトロルミネッセンス)において蛍光性の発光よりも理論的に高い量子効率を達成することが可能である。このため、当該有機金属錯体は、例えば次世代技術である有機発光素子等の機能素子の材料、具体的には有機ELディスプレイの材料等として期待されている。
また、紫外光励起により強い固体発光(結晶発光)を示すPL(フォトルミネッセンス)化合物は、将来の機能性材料の観点からその開発が期待されている。
近年、有機金属錯体として有機白金錯体が燐光発光材料として着目されてきている。例えば、2個のNN型二座配位子または2個のNO型二座配位子が配位した白金原子を含む有機白金錯体が知られている(例えば、特許文献1)。また、四座配位子が配位した白金原子を含む有機白金錯体も知られている(例えば、特許文献2)。
また、白金に2種類の配位子を有する非対称型錯体として、たとえば、ppy(フェニルピリジン)、acac(アセチルアセトナート)が配位した白金錯体A(特許文献3、非特許文献1)が知られている。これらの白金錯体は、溶液や低濃度分散状態で発光することが報告されているが、しかし、これらの白金錯体は、平面性の高い分子であることから、結晶のような高密度状態では発光強度は弱いと考えられる。
特開2007−535807号公報 特開2009−224763号公報 特開2007−161886号公報
Thompsonら、Inorg. Chem., 2002, 41, 3055.
そこで、本発明は、固体であって、発光強度が強い発光材料を提供することを目的とする。
本発明は、式(I)で表される白金錯体を含む発光材料である。
[前記式中、nは、7〜25の整数であり、かつRは、水素原子または炭素数1〜6を有するアルコキシ基である。]
また、本発明は、式(X)で表される白金錯体である。
[前記式中、mは、7〜11または13〜25の整数であり、かつR’は、水素原子または炭素数1〜6を有するアルコキシ基であるか、または、
mは、12であり、かつR’は、炭素数1〜6を有するアルコキシ基である。]
本発明の白金錯体を含む発光材料は、固体であって、発光強度が強いという利点がある。
図1は、実施例1の化合物(1)の粉末X線回折(XRD)の図である。 図2は、実施例2の化合物(2)の粉末X線回折(XRD)の図である。 図3は、実施例3の化合物(3)の粉末X線回折(XRD)の図である。 図4は、実施例4の化合物(4)の粉末X線回折(XRD)の図である。 図5は、実施例5の化合物(5)の粉末X線回折(XRD)の図である。 図6は、比較例1の化合物(11)の単結晶X線解析結果からシミュレーションにより求めたXRDパターンの図である。 図7は、比較例2の化合物(12)の単結晶X線解析結果からシミュレーションにより求めたXRDパターンの図である。 図8は、実施例2の化合物(2)の結晶中におけるパッキング図である。 図9は、比較例1の化合物(11)の結晶中におけるパッキング図である。 図10は、比較例2の化合物(12)の結晶中におけるパッキング図である。
本発明者らは、ビス(イミノフェノキシ)白金を母骨格とし、イミノ窒素原子に、特定の炭素数の鎖状アルキル基を置換させると、結晶のような高密度の固体状態で強い発光強度を示すことを予想外に見出した。具体的には、下記式(I)において、nが7以上であれば、結晶中において分子が層状に並んだラメラ構造をとり、その結果、発光強度が強くなることを見出した。一方、下記式(I)においてnが5以下と短い場合、結晶中において前記ラメラ構造をとらず、その結果、発光強度は強くならないことも見出した。これらの知見に基づき、本発明者らは、本発明を完成した。
本発明の発光材料における白金錯体は、以下の式(I)で表される。
[前記式中、nは、7〜25の整数であり、かつRは、水素原子または炭素数1〜6を有するアルコキシ基である。]
なお、Rの置換位置は、下記式中に示す位置a、位置b、位置c、位置dのうち、いずれであってもよい。なお、位置a、位置b、位置cおよび位置dは、それぞれ、3位、4位、5位および6位とも呼ぶことがある。
本発明の発光材料における白金錯体は、nが、7〜25の整数であり、かつRが、水素原子または炭素数1〜6、好ましくは1〜3を有するアルコキシ基であり、Rが前記bの位置(4位)に結合する式(I)の白金錯体である。
また、本発明の発光材料における白金錯体は、nが8〜18の整数であり、かつRは水素原子または炭素数1〜3を有するアルコキシ基であり、Rが前記bの位置(4位)に結合する式(I)の白金錯体が好ましい。
また、本発明の発光材料における白金錯体は、例えば、以下の式で表される化合物が好ましい。
また、本発明の発光材料は、単結晶X線構造解析において、式(I)で表される白金錯体が、ラメラ構造をとるのが好ましい。
また、本発明の白金錯体は、以下の式(X)で表される。
[前記式中、mは、7〜11または13〜25の整数であり、かつR’は、水素原子または炭素数1〜6を有するアルコキシ基であるか、または、
mは、12であり、かつR’は、炭素数1〜6を有するアルコキシ基である。]
なお、R’の置換位置は、式(I)におけるRの置換基と同様、式中に示す位置a、位置b、位置c、位置dのうち、いずれであってもよい。なお、位置a、位置b、位置cおよび位置dは、それぞれ、3位、4位、5位および6位とも呼ぶことがある。
本発明の白金錯体は、mが、7〜11または13〜25の整数であり、かつR’が、水素原子または炭素数1〜6、好ましくは1〜3を有するアルコキシ基であり、R’が前記bの位置(4位)に結合する式(I)の白金錯体、およびmは、12であり、かつR’は、炭素数1〜6、好ましくは1〜3を有するアルコキシ基であり、R’が前記bの位置(4位)に結合する式(X)の白金錯体が好ましい。
また、本発明の白金錯体は、mが7〜11または13〜19の整数であり、かつ、R’が水素原子である式(X)の白金錯体がより好ましく、mが8〜11または13〜18の整数であり、かつ、R’が水素原子である式(X)の白金錯体がさらに好ましい。このような白金錯体であれば、強い発光強度を示すからである。
また、本発明の白金錯体は、mが7〜19の整数であり、かつ、R’が炭素数1〜6を有するアルコキシ基である式(X)の白金錯体がより好ましく、mが7〜19の整数であり、かつ、R’が炭素数1〜6を有するアルコキシ基であり、R’が前記bの位置(4位)に結合する式(X)の白金錯体がさらに好ましい。このような白金錯体であれば、強い発光強度を示すからである。
また、本発明の白金錯体は、例えば、以下の式で表される化合物が好ましい。
本発明の発光材料の白金錯体は、例えば、以下のようにして製造することができる。
前記式中、nおよびRは、式(I)における定義と同様である。
式(II)の化合物と、白金化合物とを、塩基存在下に反応させて式(I)の化合物を得る。この白金化合物としては、例えば、PtCl2(CH3CN)2、K2PtCl4が挙げられる。塩基としては、例えばK2CO3、NaH、トリエチルアミン等を用いてもよい。この反応は、例えば20〜120℃で、1時間〜48時間、行う。この反応の溶媒としては、限定されないが、例えば、ジメチルホルムアミド(DMF)とメタノールの混合物、ジメチルスルホキシド(DMSO)等が挙げられる。
前記式(I)の化合物は、例えば、芳香族炭化水素と脂肪族炭化水素との混合物から再結晶してもよい。前記芳香族炭化水素としては、例えば、ベンゼン、トルエンが挙げられる。前記脂肪族炭化水素としては、例えば、炭素数5〜7の脂肪族炭化水素が挙げられ、中でも、n−ヘキサンが好ましい。前記芳香族炭化水素と前記脂肪族炭化水素の混合比(体積比)は、例えば、1:1〜10であり、4:6が好ましい。
前記製造方法において、前記式(II)で表される化合物は、市販で入手してもよいし、公知文献を参照して自家製造してもよい。式(II)で表される化合物は、例えば、以下のようにして製造することができる。
前記式中、nおよびRは、式(I)における定義と同様である。
式(III)のサリチルアルデヒド誘導体と1当量のアミン(式(IV)の化合物)を、溶媒中で加熱することにより、式(II)の化合物を得る。この反応は、例えば20〜100℃で必要な時間、行う。この反応の溶媒としては、限定されないが、例えば、メタノール、ジメチルホルムアミド(DMF)とメタノールの混合物、ジメチルスルホキシド(DMSO)等が挙げられる。
本発明の式(X)で表される白金錯体は、式(I)で表される白金錯体と同様にして製造することができる。
本発明の発光材料は、有機EL素子の発光材料、具体的には発光層の材料として用いることができる。そのような有機EL素子としては、例えば、基板、陽極、正孔輸送層、本発明の発光材料を含む発光層、電子輸送層、および陰極をこの順に積層して構成される。前記基板、陽極、正孔輸送層、電子輸送層、および陰極については、従来公知の材料を用い、従来公知の製造方法により形成されていてもよい。
前記発光層は、本発明の発光材料のほかに、ホスト材料を含んでいてもよい。このホスト材料としては、例えば、ジアリールアミン骨格を有するもの、ピリジン骨格を有するもの、ピラジン骨格を有するもの、トリアジン骨格を有するもの、アリールシラン骨格を有するものが挙げられる。
以下に本発明を実施例によりさらに具体的に説明するが、本発明の範囲は、以下の実施例により限定されない。
種々のスペクトルは、以下の機器を用いて測定した。
核磁気共鳴(NMR)スペクトルはバリアン社製UNITY−INOVA核磁気共鳴装置(500MHz)を用いて測定し、測定溶媒の残存シグナルを内部基準として使用した。
量子収率は、蛍光光度計FP−6500N、燐光測定対応低温中積分球システムINK−533、および、液体試料用セルLPH−120(全て日本分光株式会社製)を用いて測定した。
本明細書の記載において、以下の略語を使用する。
DMSO:ジメチルスルホキシド
[実施例1]
trans-ビス(N-オクチルサリチルアルジミナト)白金(II)(1)の合成
化合物(1)をスキーム1に従い、合成した。サリチルアルデヒド(III−1)と1当量のオクチルアミン(IV−1)をエタノール中で加熱還流することで合成したN−オクチルサリチルアルジミン配位子(II−1)(362mg)と、PtCl2(CH3CN)2(286mg)、K2CO3(692mg)をDMSO(4.5mL)中、110℃で20時間反応させた。室温まで冷却したのち、水(9mL)を加え、生じた固体を吸引ろ過で集めた。NH−シリカゲルカラムクロマトグラフィ(溶出液;CH2Cl2)にて精製することで、化合物(1)を得た(オレンジ色粉末、109mg)。
1H NMR (500 MHz, CDCl3) δ 0.87 (t, J = 6.9 Hz, 6 H), 1.20-1.45 (m, 20H), 1.82 (quin, J = 7.4 Hz, 4 H), 3.84 (t, J = 7.4 Hz, 4 H), 6.59 (t, J = 7.3 Hz, 2 H), 6.88 (d, J = 8.5 Hz, 2 H), 7.25 (dd, J = 7.5, 1.6 Hz, 2 H), 7.33 (td, J = 7.6, 1.8 Hz, 2 H), 7.91 (s, 2 H);
HRMS (FAB+) m/z [M+H]+ C30H45O2N2 194Ptについて計算値: 659.3108, 測定値: 659.3088。
[実施例2]
trans-ビス(N-ヘキサデシルサリチルアルジミナト)白金(II)(2)の合成
化合物(2)をスキーム2に従い、合成した。サリチルアルデヒド(III-1)と1当量のヘキサデシルアミン(IV-2)をエタノール中で加熱還流することで合成したN−ヘキサデシルサリチルアルジミン配位子(II-2)(691mg)と、PtCl2(CH3CN)2(348mg)、K2CO3(901mg)をDMSO(6mL)中、110℃で20時間反応させた。室温まで冷却したのち、水(12mL)を加え、生じた固体を吸引ろ過で集めた。NH−シリカゲルカラムクロマトグラフィ(溶出液;CH2Cl2)にて精製することで、化合物(2)を得た(オレンジ色粉末、446mg)。
1H NMR (500 MHz, CDCl3) δ 0.88 (t, J = 7.1 Hz, 6 H), 1.19-1.44 (m, 52 H), 1.82 (quin, J = 7.4 Hz, 4 H), 3.84 (t, J = 7.5 Hz, 4 H), 6.59 (t, J = 7.8 Hz, 2 H), 6.88 (d, J = 8.0 Hz, 2 H), 7.25 (dd, J = 8.0, 1.8 Hz, 2 H), 7.33 (td, J = 7.6, 1.8 Hz, 2 H), 7.91 (s, 2 H);
HRMS (FAB+) m/z [M]+ C46H76O2N2 195Ptについて計算値:883.5552, 測定値: 883.5569.
[実施例3]
trans-ビス(N-オクタデシルサリチルアルジミナト)白金(II)(3)の合成
化合物(3)をスキーム3に従い、合成した。サリチルアルデヒド(III-1)と1当量のオクタデシルアミン(IV-3)をエタノール中で加熱還流することで合成したN−オクタデシルサリチルアルジミン配位子(II-3)(373mg)と、PtCl2(CH3CN)2(175mg)、K2CO3(459mg)をDMSO(3mL)中、110℃で20時間反応させた。室温まで冷却したのち、水(6mL)を加え、生じた固体を吸引ろ過で集めた。NH−シリカゲルカラムクロマトグラフィ(溶出液;CH2Cl2)にて精製することで、化合物(3)を得た(オレンジ色粉末、212mg)。
1H NMR (500 MHz, CDCl3) δ 0.88 (t, J = 7.0 Hz, 6 H), 1.17-1.44 (m, 60 H), 1.82 (quin, J = 7.5 Hz, 4 H), 3.84 (t, J = 7.4 Hz, 4 H), 6.59 (td, J = 7.4, 1.1 Hz, 2 H), 6.88 (d, J = 8.5 Hz, 2 H), 7.25 (dd, J = 7.8, 1.8 Hz, 2 H), 7.33 (td, J = 7.8, 1.8 Hz, 2 H), 7.91 (s, 2 H);
HRMS (FAB+) m/z [M]+ C50H84O2N2 196Ptについて計算値: 940.6182, 測定値: 940.6167。
[実施例4]
trans-ビス(N-ヘキサデシル-4-メトキシサリチルアルジミナト)白金(II)(4)の合成
化合物(4)をスキーム4に従い合成した。4−メトキシサリチルアルデヒド(III-2)と1等量のヘキサデシルアミン(IV-2)をエタノール中で加熱還流することにより合成したN−ヘキサデシル-4-メトキシサチリルアルジミン配位子(II−4)(564mg)と、PtCl2(CH3CN)2(262mg)、K2CO3(688mg)をDMSO(4.5mL)中、110℃で20時間反応させた。室温まで冷却したのち、水(9mL)を加え、生じた固体を吸引ろ過で集めた。NH−シリカゲルカラムクロマトグラフィ(溶出液;CH2Cl2)にて精製することで、化合物(4)を得た(オレンジ色粉末、418mg)。
1H NMR (500 MHz, CDCl3) δ 0.88 (t, J = 6.7 Hz, 6 H), 1.14-1.45 (m, 52 H), 1.81 (quin, J = 6.9 Hz, 4 H), 3.72-3.82 (m, 4 H), 3.77 (s, 6 H), 6.23 (dd, J = 8.7, 2.4 Hz, 2 H), 6.33 (d, J = 2.4 Hz, 2 H), 7.12 (d, J = 8.7 Hz, 2 H), 7.76 (s, 2 H);
HRMS (FAB+) m/z [M]+ C48H80O4N2 195Ptについて計算値:943.5766, 測定値: 943.5730。
[実施例5]
trans-ビス(N-ドデシルサリチルアルジミナト)白金(II)(5)の合成
化合物(5)をスキーム5に従い、合成した。サリチルアルデヒド(III−1)と1当量のドデシルアミン(IV−4)をエタノール中で加熱還流することで合成したN−ドデシルサリチルアルジミン配位子(II−5)(293mg)と、PtCl2(CH3CN)2(176mg)、K2CO3(459mg)をDMSO(3mL)中、110℃で20時間反応させた。室温まで冷却したのち、水(6mL)を加え、生じた固体を吸引ろ過で集めた。NH−シリカゲルカラムクロマトグラフィ(溶出液;CH2Cl2)にて精製することで、化合物(5)を得た(オレンジ色粉末、142mg)。
1H NMR (500 MHz, CDCl3) δ 0.88 (t, J = 7.1 Hz, 6 H), 1.20-1.43 (m, 36H), 1.82 (quin, J = 7.0 Hz, 4 H), 3.84 (t, J = 7.5 Hz, 4 H), 6.59 (td, J = 7.5, 1.3 Hz, 2 H), 6.88 (d, J = 8.4 Hz, 2 H), 7.26 (dd, J = 8.0, 1.7 Hz, 2 H), 7.33 (td, J = 7.7, 1.7 Hz, 2 H), 7.91 (s, 2 H);
HRMS (FAB+) m/z [M]+ C38H60O2N2 195Ptについて計算値: 771.4303, 測定値: 771.4321.
[比較例1]
trans-ビス(N-メチルサリチルアルジミナト)白金(II)(11)の合成
化合物(11)をスキーム6に従い、合成した。サリチルアルデヒド(III−1)と1当量のメチルアミン(IV−6)をメタノール中で加熱還流することで合成したN−メチルサリチルアルジミン配位子(II−7)(540mg)と、PtCl2(CH3CN)2(698mg)、K2CO3(1.86g)をDMSO(10mL)中、110℃で20時間反応させた。室温まで冷却したのち、水(20mL)を加え、生じた固体を吸引ろ過で集めた。NH−シリカゲルカラムクロマトグラフィ(溶出液;CH2Cl2)にて精製後、酢酸エチルから再結晶することで、化合物(11)を得た(オレンジ色粉末、158mg)。
1H NMR (500 MHz, CDCl3) δ 3.64 (s, 6 H), 6.59 (td, J = 7.4, 1.4 Hz, 2 H), 6.96 (d, J = 8.4 Hz, 2 H), 7.24 (dd, J = 8.0, 1.7 Hz, 2 H), 7.34 (td, J = 7.8, 1.7 Hz, 2 H), 7.91 (1 H, s);
元素分析:C16H16O2N2Ptについて計算値: C, 41.47; H, 3.48; N, 6.05. 測定値 C, 41.44; H, 3.38; N, 6.03。
[比較例2]
trans-ビス(N-ペンチルサリチルアルジミナト)白金 (II)(12)の合成
化合物(12)をスキーム7に従い、合成した。サリチルアルデヒド(III−1)と1当量のペンチルアミン(IV−7)をエタノール中で加熱還流することで合成したN−ペンチルサリチルアルジミン配位子(II−8)(191mg)と、PtCl2(CH3CN)2(174mg)、K2CO3(463mg)をDMSO(3mL)中、110℃で20時間反応させた。室温まで冷却したのち、水(9mL)を加え、生じた固体を吸引ろ過で集めた。NH−シリカゲルカラムクロマトグラフィ(溶出液;CH2Cl2)にて精製することで、化合物(12)を得た(オレンジ色粉末、77mg)。
1H NMR (500 MHz, CDCl3) δ 0.87 (t, J = 6.9 Hz, 6 H), 1.20-1.45 (m, 20H), 1.82 (quin, J = 7.4 Hz, 4 H), 3.84 (t, J = 7.4 Hz, 4 H), 6.59 (t, J = 7.3 Hz, 2 H), 6.88 (d, J = 8.5 Hz, 2 H), 7.25 (dd, J = 7.5, 1.6 Hz, 2 H), 7.33 (td, J = 7.6, 1.8 Hz, 2 H), 7.91 (s, 2 H);
HRMS (FAB+) m/z [M+H]+ C30H45O2N2 194Ptについて計算値: 659.3108, 測定値: 659.3088。
[固体発光量子収率の測定]
実施例1〜5および比較例1〜2で得た化合物(1)〜(5)および(11)〜(12)について、296Kおよび77Kにおける固体発光量子収率φ(%)を測定した。具体的には、化合物(1)〜(5)および(11)〜(12)の結晶状態(粉末)における発光量子収率を、絶対法によりそれぞれ求めた。化合物(1)〜(5)は、加熱して調製したn−ヘキサン/ベンゼン(体積比は、n−ヘキセン/ベンゼン=6/4)の溶液を室温で放冷することにより結晶化した結晶を用いた。化合物(11)および(12)は、加熱して調製した酢酸エチルの溶液を室温で放冷することにより結晶化した結晶を用いた。測定方法は以下の通りである。
(測定方法)
測定の際、酸素の影響を除くため、全てのサンプルは、石英セル中に結晶(化合物(1)〜(5)および(11)〜(12))をそのまま封入して、アルゴン雰囲気下で測定した。さらに、低温(77K)での測定は、石英製デュワーを用いて、結晶を封入した上記石英セルを液体窒素で冷やしながら測定した。全ての発光スペクトルは、標準光源を利用することにより補正を行った。励起光として420nmの波長の光を用いた。内部量子収率の算出には、固体量子効率計算プログラム(日本分光株式会社製)を用いた。また、各有機白金錯体が発する光の発光極大波長も、併せて測定した。測定結果を表1に示す。
前記表1に示すように、実施例1〜5および比較例1〜2の結果から、式(I)で表される白金錯体は、結晶状態において、室温において高い量子効率で燐光発光を示すことが確認できた。
[粉末X線回折]
実施例1の化合物(1)、実施例2の化合物(2)、実施例3の化合物(3)、実施例4の化合物(4)および、実施例5の化合物(5)ならびに比較例1の化合物(11)および比較例2の化合物(12)について、フィリップス(Philips)社製X’Pert−MPD粉末X線回折測定装置を用いて粉末X線回折を測定した。X線は、Cu−Kα線(λ=1.5406Å)を用いた。実施例1の化合物(1)、実施例2の化合物(2)、実施例3の化合物(3)、実施例4の化合物(4)および、実施例5の化合物(5)は、加熱して調製したn−ヘキサン/ベンゼン(体積比は、n−ヘキセン/ベンゼン=6/4)の溶液を室温で放冷することにより結晶化した結晶を用いた。得られた実施例1の化合物(1)のXRDパターンを図1に、実施例2の化合物(2)のXRDパターンを図2に、実施例3の化合物(3)のXRDパターンを図3に、実施例4の化合物(4)のXRDパターンを図4に、実施例5の化合物(5)のXRDパターンを図5に、比較例1の化合物(11)の単結晶X線構造解析結果からシミュレーションにより求めたXRDパターンを図6に、比較例2の化合物(12)の単結晶X線構造解析結果からシミュレーションにより求めたXRDパターンを図7に示す。
[単結晶X線構造解析]
実施例2の化合物(2)ならびに比較例1の化合物(11)および比較例2の化合物(12)について、株式会社リガク社製イメージングプレート単結晶自動X線構造解析装置PAPID−AUTOを用いて単結晶X線結晶解析を行った。X線は、Mo−Ka線(λ=0.71075Å)を用いた。実施例2の化合物(2)は、加熱して調製したn−ヘキサン/ベンゼン(体積比は、n−ヘキセン/ベンゼン=6/4)の溶液を室温で放冷することにより結晶化した結晶を用いた。得られた結晶解析の結果得られた実施例2の化合物(2)の結晶中におけるパッキング図を図8に、比較例1の化合物(11)の結晶中におけるパッキング図を図9に、比較例2の化合物(12)の結晶中におけるパッキング図を図10に示す。
図1〜図5に示すように、実施例の白金錯体は、結晶中において分子が層状に並び、かつ、nの数(アルキル鎖の長さ)に応じた格子面間隔(d)を有するラメラ構造をとることが確認できた。一方、図6および図7に示すように、比較例の白金錯体においては、このようなラメラ構造はとらないことが確認できた。
また、図8に示すように、実施例2の化合物(2)は、層状構造を有し、その層の周期は、前記XRDスペクトルの面間隔(d=26.7Å)に対応することが確認できた。一方、図9および図10に示すように、比較例の白金錯体は、層状構造を有さないことが確認できた。
このように、式(I)で表される化合物は、結晶中における分子の配列がラメラ構造をとる。その結果、式(I)で表される化合物は結晶状態で分子間で消光しあわないため、強い強度の燐光発光が実現できると考えられる。
本発明の発光材料は、固体であって、かつ、発光効率に優れるため、実用に足る発光強度を得ることができる。従って、本発明の発光材料は、次世代技術である有機発光素子等の材料として有用である。

Claims (8)

  1. 式(I)で表される白金錯体を含む発光材料。
    [前記式中、nは、7〜25の整数であり、かつRは、水素原子または炭素数1〜6を有するアルコキシ基である。]
  2. nが8〜18の整数であり、かつRは水素原子または炭素数1〜3を有するアルコキシ基である請求項1に記載の発光材料。
  3. 式(X)で表される白金錯体。
    [前記式中、mは、7〜11または13〜25の整数であり、かつR’は、水素原子または炭素数1〜6を有するアルコキシ基であるか、または、
    mは、12であり、かつR’は、炭素数1〜6を有するアルコキシ基である。]
  4. mが7〜11または13〜19の整数であり、かつ、R’が水素原子である請求項3に記載の白金錯体。
  5. mが7〜19の整数であり、かつ、R’が炭素数1〜6を有するアルコキシ基である請求項3に記載の白金錯体。
  6. 式(1)〜式(4)のいずれかで表される請求項3に記載の白金錯体。
  7. 単結晶X線構造解析において、式(I)で表される白金錯体が、ラメラ構造をとる請求項1または2に記載の発光材料。
  8. 式(I)で表される白金錯体が、芳香族炭化水素と脂肪族炭化水素との混合物から再結晶される請求項1または2に記載の発光材料。
JP2014551995A 2012-12-12 2013-12-04 発光材料 Active JP6316206B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012271485 2012-12-12
JP2012271485 2012-12-12
PCT/JP2013/082534 WO2014091974A1 (ja) 2012-12-12 2013-12-04 発光材料

Publications (2)

Publication Number Publication Date
JPWO2014091974A1 true JPWO2014091974A1 (ja) 2017-01-12
JP6316206B2 JP6316206B2 (ja) 2018-04-25

Family

ID=50934266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014551995A Active JP6316206B2 (ja) 2012-12-12 2013-12-04 発光材料

Country Status (2)

Country Link
JP (1) JP6316206B2 (ja)
WO (1) WO2014091974A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015053291A1 (ja) * 2013-10-11 2015-04-16 国立大学法人大阪大学 白金錯体を含む発光材料
CN105294489B (zh) * 2015-10-18 2017-12-12 桂林理工大学 4‑甲酰苯甲酸金刚烷酯缩邻溴苯胺席夫碱镍配合物合成及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342278A (ja) * 2002-05-30 2003-12-03 Ricoh Co Ltd 電界発光性亜鉛キレート、発光組成物及び有機電界発光素子
JP2011046699A (ja) * 2009-07-31 2011-03-10 Sumitomo Chemical Co Ltd 金属錯体、それを含む組成物及びそれを用いた発光素子
WO2012121189A1 (ja) * 2011-03-10 2012-09-13 国立大学法人九州大学 リン光発光材料、リン光発光材料の製造方法、及びリン光発光素子
JP2012222255A (ja) * 2011-04-12 2012-11-12 Fujifilm Corp 有機電界発光素子、有機電界発光素子用材料、膜、及び有機電界発光素子の作製方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342278A (ja) * 2002-05-30 2003-12-03 Ricoh Co Ltd 電界発光性亜鉛キレート、発光組成物及び有機電界発光素子
JP2011046699A (ja) * 2009-07-31 2011-03-10 Sumitomo Chemical Co Ltd 金属錯体、それを含む組成物及びそれを用いた発光素子
WO2012121189A1 (ja) * 2011-03-10 2012-09-13 国立大学法人九州大学 リン光発光材料、リン光発光材料の製造方法、及びリン光発光素子
JP2012222255A (ja) * 2011-04-12 2012-11-12 Fujifilm Corp 有機電界発光素子、有機電界発光素子用材料、膜、及び有機電界発光素子の作製方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
V.I.MINKIN ET AL,: "Photochromism and High-Temperature Thermal Isomerization of Metal-Chelate Complexes with an MN2O2 Co", RUSSINAN JOURNAL OF GENERAL CHEMISTRY, vol. 68, no. 1, JPN6018006763, 1998, pages 59 - 68, ISSN: 0003747107 *

Also Published As

Publication number Publication date
WO2014091974A1 (ja) 2014-06-19
JP6316206B2 (ja) 2018-04-25

Similar Documents

Publication Publication Date Title
Che et al. Photophysical properties and OLED applications of phosphorescent platinum (II) Schiff base complexes
Tronnier et al. (C^ C*) Cyclometalated binuclear N-heterocyclic biscarbene platinum (II) complexes–highly emissive phosphorescent emitters
Kwon et al. Functionalized phenylimidazole-based facial-homoleptic iridium (III) complexes and their excellent performance in blue phosphorescent organic light-emitting diodes
US7683183B2 (en) Emissive monomeric metal complexes
Kim et al. Ancillary ligand-assisted robust deep-red emission in iridium (III) complexes for solution-processable phosphorescent OLEDs
Komiya et al. Solid‐State Phosphorescence of trans‐Bis (salicylaldiminato) platinum (II) Complexes Bearing Long Alkyl Chains: Morphology Control towards Intense Emission
Alconchel et al. closo-or nido-Carborane diphosphane as responsible for strong thermochromism or time activated delayed fluorescence (TADF) in [Cu (N^ N)(P^ P)] 0/+
JP6316206B2 (ja) 発光材料
Sanner et al. Blue light emission from cyclometallated iridium (III) cyano complexes: Syntheses, crystal structures, and photophysical properties
US20100105918A1 (en) Metal complex, light-emitting device and display
WO2015053291A1 (ja) 白金錯体を含む発光材料
Liu et al. Luminescent lanthanide (III)-cored complexes based on the combination of 2-(5-bromothiophen) imidazo [4, 5-f][1, 10] phenanthroline and 2-thenoyltrifluoroacetonate ligands
Facendola et al. Synthesis and characterization of phosphorescent platinum and iridium complexes with cyclometalated corannulene
KR101335548B1 (ko) 인광재료용 백금 착체 및 이를 포함하는 유기전계발광소자
Yu et al. Synthesis, crystal structure and photoluminescence of phosphorescent copper (I) complexes containing hole-transporting carbazoly moiety
JP5967663B2 (ja) 白金錯体
JP6319888B2 (ja) 白金錯体およびそれを含む発光材料
Li et al. A series of dinuclear cuprous iodide complexes chelated with 1, 2-bis (diphenylphosphino) benzene derivatives: structural, photophysical and thermal properties
Yamaguchi et al. Strong Solid‐State Phosphorescence of 1, 2‐Telluraplatinacycles Incorporated into Rigid Dibenzobarrelene and Triptycene Skeletons
An et al. Synthesis, bright luminescence and crystal structure of a novel neutral europium complex
Yao et al. In-situ oxidation, addition and cyclization reaction of 5, 6-diamino-1, 10-phenanthroline to construct copper (I)-diimine–diphosphine complexes
KR101754977B1 (ko) 신규한 백금 착체, 이의 제조방법 및 이를 함유하는 유기발광소자
KR101500325B1 (ko) 1,10-페난트롤린 유도체를 포함하는 백금 착체 및 이를 함유하는 유기발광소자
Zhang et al. Rotational isomerization: spontaneous structural transformation of a thermally activated delayed fluorescence binuclear copper (i) complex
Sanner et al. Highly efficient phosphorescence from cyclometallated iridium (III) compounds: Improved syntheses of picolinate complexes and quantum chemical studies of their electronic structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180327

R150 Certificate of patent or registration of utility model

Ref document number: 6316206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250