JPWO2014073633A1 - Cold spray powder - Google Patents

Cold spray powder Download PDF

Info

Publication number
JPWO2014073633A1
JPWO2014073633A1 JP2014533509A JP2014533509A JPWO2014073633A1 JP WO2014073633 A1 JPWO2014073633 A1 JP WO2014073633A1 JP 2014533509 A JP2014533509 A JP 2014533509A JP 2014533509 A JP2014533509 A JP 2014533509A JP WO2014073633 A1 JPWO2014073633 A1 JP WO2014073633A1
Authority
JP
Japan
Prior art keywords
powder
particle size
cold spray
cold
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014533509A
Other languages
Japanese (ja)
Other versions
JP5679395B2 (en
Inventor
英子 福島
英子 福島
上坂 修治郎
修治郎 上坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2014533509A priority Critical patent/JP5679395B2/en
Application granted granted Critical
Publication of JP5679395B2 publication Critical patent/JP5679395B2/en
Publication of JPWO2014073633A1 publication Critical patent/JPWO2014073633A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Abstract

硬質で高融点の材料からなる緻密質堆積物をコールドスプレー法によって形成して得られる堆積物に関し、緻密で厚い堆積物を得ることが可能なコールドスプレー用粉末およびこの粉末を用いたスパッタリングターゲットの製造方法を提供する。コールドスプレー用粉末の累積粒度分布の10%粒径(D10)が4.0〜7.0μm、50%粒径(D50)が7.0〜11.0μm、90%粒径(D90)が11.0〜16.0μmの範囲とする。また、この粉末をコールドスプレー法により基体上に堆積させてバルク体を形成することでスパッタリングターゲットを得ることができる。The present invention relates to a deposit obtained by forming a dense deposit made of a hard, high-melting-point material by a cold spray method, and a powder for cold spraying capable of obtaining a dense and thick deposit and a sputtering target using this powder. A manufacturing method is provided. The 10% particle size (D10) of the cumulative particle size distribution of the powder for cold spray is 4.0 to 7.0 μm, the 50% particle size (D50) is 7.0 to 11.0 μm, and the 90% particle size (D90) is 11. The range is from 0 to 16.0 μm. Moreover, a sputtering target can be obtained by depositing this powder on a substrate by a cold spray method to form a bulk body.

Description

本発明は、コールドスプレー法で使用される粉末およびこの粉末を用いたスパッタリングターゲットの製造方法に関する。   The present invention relates to a powder used in a cold spray method and a method for producing a sputtering target using the powder.

金属、セラミックス、サーメットなどの粉末を基材に吹き付けて皮膜を形成させる方法のひとつに溶射法がある。しかし、溶射法で形成された皮膜は気孔率が高く、皮膜を形成している材料本来の特性を得ることができない。この溶射法の欠点を解消する新たな方法としてコールドスプレー法が、近年、注目されている。コールドスプレー法は、粉末を、溶融、あるいはガス化させることなく不活性ガスと共に超音速流で固相状態のまま基材に衝突させて堆積させる技術である。コールドスプレー法で得られた堆積物は、気孔率が低く緻密質とすることができる。   One of the methods for forming a film by spraying metal, ceramics, cermet powder or the like onto a substrate is a spraying method. However, the coating formed by the thermal spraying method has a high porosity, and the original characteristics of the material forming the coating cannot be obtained. In recent years, the cold spray method has attracted attention as a new method for solving the disadvantages of this thermal spraying method. The cold spray method is a technique in which powder is deposited by colliding with a base material in a solid state in supersonic flow together with an inert gas without melting or gasifying. The deposit obtained by the cold spray method has a low porosity and can be made dense.

コールドスプレー法では、スパッタリングターゲットのような用途に好適な硬質で高融点の材料からなる緻密質堆積物を形成しようとする場合、不活性ガスの流速を上げて衝突速度を高めるために、不活性ガスとして窒素よりも軽いヘリウムや水素などが使われる。   In the cold spray method, when a dense deposit made of a hard, high-melting material suitable for an application such as a sputtering target is to be formed, an inert gas flow rate is increased to increase the collision velocity. Helium or hydrogen, which is lighter than nitrogen, is used as the gas.

例えば特許文献1には、WC系サーメット皮膜を効率よく形成するのに適したコールドスプレー用粉末が提案されている。炭化タングステンを含有し、残部が造粒―焼結サーメットであり、炭化タングステンのフィッシャー径を0.05〜1μm、造粒―焼結サーメットの粒子の平均粒径を5〜20μmとし、ヘリウムガスを用い、ガス圧力3MPa、ガス温度500℃でコールドスプレーすることにより、耐摩耗性良好な皮膜が得られるとしている。   For example, Patent Document 1 proposes a cold spray powder suitable for efficiently forming a WC cermet film. Contains tungsten carbide, the remainder is granulated-sintered cermet, the tungsten carbide has a Fischer diameter of 0.05-1 μm, the granulated-sintered cermet particles have an average particle size of 5-20 μm, and helium gas It is said that a film having good wear resistance can be obtained by cold spraying at a gas pressure of 3 MPa and a gas temperature of 500 ° C.

また、特許文献2には、0.5〜150μmのTa粉末を、ヘリウムガスを用い、ガス圧3MPa、ガス温度600℃にてコールドスプレーすることにより、硬質で高融点の材料の延性が高まり、溶着率が向上し良好な皮膜が得られるとしている。   In Patent Document 2, 0.5 to 150 μm Ta powder is cold sprayed using helium gas at a gas pressure of 3 MPa and a gas temperature of 600 ° C., thereby increasing the ductility of a hard, high-melting material, The welding rate is improved and a good film is obtained.

また、非特許文献1には、平均粒子径約50μmのNi基合金粉末を、ヘリウムガスを用い、ガス温度1000℃、ガス圧2MPaでコールドスプレーすることにより、気孔率3.4%の皮膜が得られたとしている。   In Non-Patent Document 1, a Ni-based alloy powder having an average particle diameter of about 50 μm is cold sprayed with helium gas at a gas temperature of 1000 ° C. and a gas pressure of 2 MPa, thereby forming a film with a porosity of 3.4%. It is said that it was obtained.

特開2008−231527号公報JP 2008-231527 A 特表2010−509502号公報Special table 2010-509502 gazette

Thermal Spray 2012:Proceedings from the International Thermal Spray Conference and Exposition、May 21−24、2012、Houston、Texas、USA:Cold Spray Forming Inconel 718Thermal Spray 2012: Proceedings from the International Thermal Spray Conference and Exposure, May 21-24, 2012, Houston, Texas, USA: Cold Spray Inform 7

しかしながら、上記の先行技術文献に開示された高温、高圧のヘリウムガスを用いたコールドスプレー法によっても、硬質で高融点の材料の緻密質堆積物を得ることは必ずしも容易ではない。
本発明者の検討によると、上述した特許文献1に開示されるフィッシャー径0.05〜1μmの炭化タングステンと5〜20μmのサーメット粒子からなる粉末を用いた場合、緻密な皮膜を形成することが困難であることを確認した。
また、上述した特許文献2に開示される技術では、皮膜形成に用いる紛体の平均粒径を0.5〜150μmとしており、やはり緻密な皮膜を形成することは困難であることを確認した。
また、非特許文献1で開示される技術では、3.4%の気孔が存在しており、緻密化が不十分である。
本発明の目的は、コールドスプレー法によって得られる堆積物に関し、緻密で厚い堆積物を容易に得ることを可能にする、コールドスプレー用粉末およびこの粉末を用いたスパッタリングターゲットの製造方法を提供することである。
However, it is not always easy to obtain a dense deposit of a hard, high-melting-point material even by the cold spray method using high-temperature and high-pressure helium gas disclosed in the above-mentioned prior art documents.
According to the study of the present inventor, when a powder made of tungsten carbide having a Fischer diameter of 0.05 to 1 μm and cermet particles having a diameter of 5 to 20 μm disclosed in Patent Document 1 described above is used, a dense film can be formed. Confirmed that it was difficult.
Moreover, in the technique disclosed in Patent Document 2 described above, the average particle size of the powder used for film formation is 0.5 to 150 μm, and it has been confirmed that it is difficult to form a dense film.
Further, in the technique disclosed in Non-Patent Document 1, 3.4% of the pores exist and the densification is insufficient.
An object of the present invention relates to a deposit obtained by a cold spray method, and provides a powder for cold spray and a method for producing a sputtering target using the powder, which makes it possible to easily obtain a dense and thick deposit. It is.

本発明者は、従来技術におけるコールドスプレー用粉末とそれを用いて作製された堆積物を詳細に研究し、比較的低いガス温度、比較的低いガス圧力でも緻密で厚い堆積物が得られることを見出し、本発明に到達した。
すなわち本発明は、粉末の累積粒度分布の10%粒径(D10)が4.0〜7.0μm、50%粒径(D50)が7.0〜11.0μm、90%粒径(D90)が11.0〜16.0μmからなるコールドスプレー用粉末の発明である。
本発明に係るコールドスプレー用粉末は、MoもしくはMo基合金、TiもしくはTi基合金、またはNi基合金のいずれかであることが好ましい。
The present inventor has studied in detail the powder for cold spraying in the prior art and the deposits produced using the powder, and confirmed that dense and thick deposits can be obtained even at relatively low gas temperatures and relatively low gas pressures. The headline, the present invention has been reached.
That is, according to the present invention, the 10% particle size (D10) of the cumulative particle size distribution of the powder is 4.0 to 7.0 μm, the 50% particle size (D50) is 7.0 to 11.0 μm, and the 90% particle size (D90). Is an invention of a powder for cold spray consisting of 11.0 to 16.0 μm.
The powder for cold spray according to the present invention is preferably either Mo or Mo-based alloy, Ti or Ti-based alloy, or Ni-based alloy.

また、本発明は、粉末の累積粒度分布の10%粒径(D10)が4.0〜7.0μm、50%粒径(D50)が7.0〜11.0μm、90%粒径(D90)が11.0〜16.0μmである粉末をコールドスプレー法により基体上に堆積させてバルク体を形成するスパッタリングターゲットの製造方法の発明である。
前記粉末は、MoもしくはMo基合金、TiもしくはTi基合金、またはNi基合金のいずれかであることが好ましい。
In the present invention, the 10% particle size (D10) of the cumulative particle size distribution of the powder is 4.0 to 7.0 μm, the 50% particle size (D50) is 7.0 to 11.0 μm, and the 90% particle size (D90). Is a method of manufacturing a sputtering target in which a powder is deposited on a substrate by a cold spray method to form a bulk body.
The powder is preferably either Mo or Mo-based alloy, Ti or Ti-based alloy, or Ni-based alloy.

本発明に係るコールドスプレー用粉末を用いることにより、コールドスプレーにより形成された堆積物を緻密質でかつ、厚くすることができる。また、これまでコールドスプレーでは緻密化および厚膜化が困難とされていたMoのような硬質で高融点の材料でも緻密化および厚膜化が可能であり、スパッタリングターゲットの製造に有用な技術となる。   By using the powder for cold spray according to the present invention, the deposit formed by cold spray can be made dense and thick. In addition, it is possible to make a dense and thick film even with a hard and high melting point material such as Mo, which has been difficult to be made dense and thick with cold spray so far. Become.

本発明のコールドスプレー用粉末の一例を示す走査型顕微鏡写真である。It is a scanning microscope picture which shows an example of the powder for cold sprays of this invention. 本発明例1のコールドスプレー用粉末を用いて作製された堆積物の断面を示す金属顕微鏡組織写真である。4 is a metallographic microscope photograph showing a cross-section of a deposit produced using the cold spray powder of Example 1 of the present invention. 本発明例2のコールドスプレー用粉末を用いて作製された堆積物の断面を示す金属顕微鏡組織写真である。It is a metallographic microscope photograph which shows the cross section of the deposit produced using the powder for cold sprays of the example 2 of this invention. 比較例1のコールドスプレー用粉末を用いて作製された堆積物の断面を示す金属顕微鏡組織写真である。3 is a metallographic microstructure photograph showing a cross section of a deposit produced using the cold spray powder of Comparative Example 1. FIG.

本発明における重要な技術的特徴は、コールドスプレー法で緻密で厚い堆積物(皮膜)を得るために、その用いる粉末の粒度分布を厳密にコントロールすることにある。そして、その粉末の粒度分布は、累積粒度分布が10%、50%および90%となるときの粒径で定義した。
本発明のコールドスプレー用粉末は、累積粒度分布の50%粒径の7.0〜11.0μmを中心として、粒度分布をできるだけシャープにする。具体的には、本発明のコールドスプレー用粉末は、累積粒度分布の10%粒径(以下、D10という)が4.0〜7.0μm、50%粒径(以下、D50という)が7.0〜11.0μm、90%粒径(以下、D90という)が11.0〜16.0μmを同時に満足する。
累積粒度分布のD10が4.0μmより小さいか、D50が7.0μmより小さいと、粉末が基材に到達したときの衝撃が小さくなり堆積のために必要な塑性変形能に劣り、緻密化が阻害されてしまう。また、累積粒度分布のD50が11.0μmより大きいか、D90が16.0μmより大きいと、堆積に必要な塑性変形に到達せず、緻密化が阻害されてしまう。
本発明のコールドスプレー用粉末は、累積粒度分布のD10が5.0〜7.0μm、D50が8.0〜10.0μm、D90が11.0〜16.0μmにすることがより好ましい。これにより、基材への堆積が容易となり、緻密で厚い皮膜を形成することができる。
尚、本発明におけるコールドスプレー用粉末の累積粒度分布は、累積体積粒度分布で表される。また、本発明におけるコールドスプレー用粉末の粒径は、JIS Z 8901で規定される、レーザー光を用いた光散乱法による球相当径で表される。
また、本発明のコールドスプレー用粉末は、例えばガスアトマイズ法により作製した粉末を、所定の粒度分布となるようにふるい分けすることによって得ることができる。
An important technical feature of the present invention is to strictly control the particle size distribution of the powder used in order to obtain a dense and thick deposit (film) by the cold spray method. The particle size distribution of the powder was defined as the particle size when the cumulative particle size distribution was 10%, 50% and 90%.
The powder for cold spray of the present invention makes the particle size distribution as sharp as possible centering on 7.0 to 11.0 μm of 50% particle size of the cumulative particle size distribution. Specifically, the cold spray powder of the present invention has a cumulative particle size distribution with a 10% particle size (hereinafter referred to as D10) of 4.0 to 7.0 μm and a 50% particle size (hereinafter referred to as D50) of 7. 0 to 11.0 μm and 90% particle size (hereinafter referred to as D90) satisfy 11.0 to 16.0 μm at the same time.
If the cumulative particle size distribution D10 is less than 4.0 μm or D50 is less than 7.0 μm, the impact when the powder reaches the substrate is reduced, resulting in inferior plastic deformation required for deposition and densification. It will be disturbed. On the other hand, if the cumulative particle size distribution D50 is larger than 11.0 μm or D90 is larger than 16.0 μm, the plastic deformation necessary for deposition is not reached and densification is hindered.
More preferably, the powder for cold spray of the present invention has a cumulative particle size distribution D10 of 5.0 to 7.0 μm, D50 of 8.0 to 10.0 μm, and D90 of 11.0 to 16.0 μm. As a result, deposition on the substrate is facilitated, and a dense and thick film can be formed.
In addition, the cumulative particle size distribution of the cold spray powder in the present invention is represented by the cumulative volume particle size distribution. In addition, the particle size of the powder for cold spray in the present invention is represented by a sphere equivalent diameter by a light scattering method using laser light, which is defined by JIS Z 8901.
Moreover, the powder for cold sprays of this invention can be obtained by sieving the powder produced, for example by the gas atomizing method so that it may become a predetermined particle size distribution.

本発明のコールドスプレー用粉末は、特に、MoまたはMoを50原子%以上含むMo基合金、TiまたはTiを50原子%以上含むTi基合金、Ni基合金のいずれかに好適である。コールドスプレー法による粉末の基材への堆積を可能にするためには、粉末の塑性変形能が必要となり、粉末の塑性変形能は温度と圧力と粒度に依存する。MoやMo基合金、TiやTi基合金、Ni基合金は高融点のため、塑性変形させるためには高温度、高圧という条件が必要である。
しかし、たとえ高温度、高圧力の条件でコールドスプレーしても、小さい粒子が多いと、衝突の衝撃で跳ね返されてしまい堆積せず、一方、大きい粒子が多いと、基材に衝突しても変形が不十分となり堆積しない。そこで、本発明のコールドスプレー用粉末は、上述した特定の粒度分布にすることで、基材への堆積および厚膜化が可能となる粉末の塑性変形能が確保でき、高融点のMoやMo基合金、TiやTi基合金、Ni基合金を用いたコールドスプレーに好適となる。
そして、本発明では、上記で説明したコールドスプレー用粉末を、コールドスプレー法により基体上に堆積させてバルク体を形成することにより、スパッタリングターゲットを得ることができる。具体的には、上記の粉末の融点以下または軟化点温度以下で、粉末を超音速のガス流で加速させて、バッキングプレートあるいはバッキングチューブの表面に衝突させ、粉末の塑性変形により堆積させることで、スパッタリングターゲットの製造が可能となる。
なお、本発明のスパッタリングターゲットの製造方法では、コールドスプレーの条件を特に定めていないところ、これは用いるコールドスプレー用粉末の成分組成により適宜決定されるものであり、特に限定されない。
The powder for cold spray of the present invention is particularly suitable for any of Mo-based alloys containing Mo or Mo at 50 atomic% or more, Ti-based alloys containing Ti or Ti at 50 atomic% or more, and Ni-based alloys. In order to enable the powder to be deposited on the substrate by the cold spray method, the plastic deformability of the powder is required, and the plastic deformability of the powder depends on temperature, pressure and particle size. Mo, Mo-based alloys, Ti, Ti-based alloys, and Ni-based alloys have a high melting point, and therefore high temperature and high pressure are necessary for plastic deformation.
However, even if cold spraying is performed under conditions of high temperature and high pressure, if there are many small particles, they will bounce off due to the impact of collision and will not accumulate, while if there are many large particles, they will collide with the substrate. Deformation is insufficient and does not accumulate. Therefore, the powder for cold spray of the present invention can ensure the plastic deformability of the powder that can be deposited and thickened on the base material by making the specific particle size distribution described above, and can have high melting point Mo and Mo. It is suitable for cold spray using a base alloy, Ti, Ti base alloy, or Ni base alloy.
And in this invention, a sputtering target can be obtained by depositing the powder for cold spray demonstrated above on a base | substrate by the cold spray method, and forming a bulk body. Specifically, by accelerating the powder with a supersonic gas flow below the melting point or softening point temperature of the above powder, colliding with the surface of the backing plate or the backing tube, and depositing it by plastic deformation of the powder. The sputtering target can be manufactured.
In the method for producing a sputtering target of the present invention, conditions for cold spray are not particularly defined. However, this is determined as appropriate depending on the component composition of the powder for cold spray used, and is not particularly limited.

以下、本発明の実施例を説明する。ただし、本発明は、以下に述べる実施例に限定されるものではない。
表1に示す条件で、プラズマ技研株式会社製のコールドスプレー装置(PCS−1000)を用いて、Al製の基材に堆積させ、厚さ2mm以上の皮膜を成膜した。また、粉末の粒度は、日機装株式会社製のレーザー回折・散乱式粒度分析計(マイクロトラックMT3000)を用いて測定した。
各試料で得られた皮膜の相対密度を測定した。その結果を表1に示す。尚、ここでいう相対密度とは、アルキメデス法により測定されたかさ密度を、各皮膜の組成比から得られる質量比で算出した元素単体の加重平均として得た理論密度で除した値に100を乗じて得た値をいう。
Examples of the present invention will be described below. However, the present invention is not limited to the examples described below.
Under the conditions shown in Table 1, using a cold spray device (PCS-1000) manufactured by Plasma Giken Co., Ltd., a film having a thickness of 2 mm or more was deposited on an Al substrate. The particle size of the powder was measured using a laser diffraction / scattering particle size analyzer (Microtrac MT3000) manufactured by Nikkiso Co., Ltd.
The relative density of the film obtained with each sample was measured. The results are shown in Table 1. The relative density referred to here is 100 divided by a value obtained by dividing the bulk density measured by the Archimedes method by the theoretical density obtained as a weighted average of elemental elements calculated by the mass ratio obtained from the composition ratio of each film. The value obtained by multiplication.

Figure 2014073633
Figure 2014073633

本発明の範囲内である、累積粒度分布の10%粒径(D10)が4.0〜7.0μm、50%粒径(D50)が7.0〜11.0μm、90%粒径(D90)が11.0〜16.0μmのコールドスプレー用粉末を用いてコールドスプレーにより成膜した本発明例1〜本発明例4は、Mo粉末、Ti粉末、Ni基合金粉末のいずれの粉末においても、2mm以上の厚膜化が可能で、相対密度も98.3%以上と良好であることが確認できた。
図2は、本発明例1の相対密度99.6%の堆積物の断面を金属顕微鏡で観察した組織写真である。黒色の点で示される気孔がほとんどなく、緻密な組織を呈していることがわかる。また、図3は、本発明例2の相対密度98.3%の堆積物の断面を金属顕微鏡で観察した組織写真である。やや気孔が認められるが、緻密な組織を呈していることがわかる。
Within the scope of the present invention, the 10% particle size (D10) of the cumulative particle size distribution is 4.0 to 7.0 μm, the 50% particle size (D50) is 7.0 to 11.0 μm, and the 90% particle size (D90). Inventive Example 1 to Inventive Example 4 formed by cold spraying using a cold spray powder of 11.0 to 16.0 μm is applicable to any of Mo powder, Ti powder, and Ni-based alloy powder. It was confirmed that the film thickness can be increased to 2 mm or more, and the relative density is good at 98.3% or more.
FIG. 2 is a structural photograph of a cross section of a deposit having a relative density of 99.6% according to Example 1 of the present invention, which is observed with a metallographic microscope. It can be seen that there are almost no pores indicated by black dots, and a dense structure is exhibited. FIG. 3 is a structure photograph of a cross-section of the deposit of the present invention example 2 having a relative density of 98.3% observed with a metallographic microscope. Slightly pores are observed, but it can be seen that the structure is dense.

一方、本発明の範囲から外れる累積粒度分布のD90が18.7μmのMo粉末を用いた比較例1は、ガス圧を5MPaに設定して成膜しても、0.5mmしか成膜されず、厚膜化することができなかった。また、相対密度が85%と低い値を示すことを確認した。
図4は、比較例1の相対密度85%の堆積物の断面を金属顕微鏡で観察した組織写真である。図4の下の部分に見える基材上に皮膜厚さ0.5mmしか成膜されず、黒色部分の気孔が多く認められ、組織が緻密でないことがわかる。
また、本発明の範囲から外れる累積粒度分布のD50が11.5μmおよびD90が21.0μmのMo粉末を用いた比較例2は、0.2mmしか成膜されず、厚膜化することができなかった。また、相対密度が75%と低い値を示すことを確認した。
また、本発明の範囲から外れる累積粒度分布のD10が23.0μm、D50が31.0μm、D90が42.0μmのTi粉末を用いた比較例3は、2mmの成膜ができたが、相対密度が96.2%と低い値を示すことを確認した。
また、本発明の範囲から外れる累積粒度分布のD10が47.0μm、D50が50.0μm、D90が53.0μmのNi基合金粉末を用いた比較例4は、2mmの成膜ができたが、相対密度が96.6%と低い値を示すことを確認した。
On the other hand, Comparative Example 1 using Mo powder having a cumulative particle size distribution D90 of 18.7 μm, which is outside the scope of the present invention, is only 0.5 mm even when the gas pressure is set to 5 MPa. The film could not be thickened. It was also confirmed that the relative density was as low as 85%.
FIG. 4 is a structural photograph of a cross section of a deposit having a relative density of 85% in Comparative Example 1 observed with a metal microscope. It can be seen that a film thickness of only 0.5 mm was formed on the base material visible in the lower part of FIG. 4, many pores in the black part were observed, and the structure was not dense.
Further, Comparative Example 2 using Mo powder having a cumulative particle size distribution D50 of 11.5 μm and D90 of 21.0 μm, which is out of the scope of the present invention, is only 0.2 mm thick and can be thickened. There wasn't. It was also confirmed that the relative density was as low as 75%.
Further, in Comparative Example 3 using a Ti powder having a cumulative particle size distribution D10 of 23.0 μm, D50 of 31.0 μm, and D90 of 42.0 μm that is out of the scope of the present invention, a film thickness of 2 mm was obtained. It was confirmed that the density was as low as 96.2%.
Further, Comparative Example 4 using a Ni-based alloy powder having a cumulative particle size distribution D10 of 47.0 μm, D50 of 50.0 μm, and D90 of 53.0 μm that is outside the scope of the present invention was able to form a film of 2 mm. The relative density was confirmed to be as low as 96.6%.

本発明は、コールドスプレー法で使用される粉末に関する。 The present invention relates to a flour powder to be used in cold spray method.

Claims (4)

粉末の累積粒度分布の10%粒径(D10)が4.0〜7.0μm、50%粒径(D50)が7.0〜11.0μm、90%粒径(D90)が11.0〜16.0μmであることを特徴とするコールドスプレー用粉末。   The 10% particle size (D10) of the cumulative particle size distribution of the powder is 4.0 to 7.0 μm, the 50% particle size (D50) is 7.0 to 11.0 μm, and the 90% particle size (D90) is 11.0 to A powder for cold spraying, characterized by being 16.0 μm. 前記コールドスプレー用粉末は、MoもしくはMo基合金、TiもしくはTi基合金またはNi基合金のいずれかでなることを特徴とする請求項1に記載のコールドスプレー用粉末。   The powder for cold spray according to claim 1, wherein the powder for cold spray is made of Mo, Mo-based alloy, Ti, Ti-based alloy, or Ni-based alloy. 粉末の累積粒度分布の10%粒径(D10)が4.0〜7.0μm、50%粒径(D50)が7.0〜11.0μm、90%粒径(D90)が11.0〜16.0μmである粉末を、コールドスプレー法により基体上に堆積させてバルク体を形成することを特徴とするスパッタリングターゲットの製造方法。   The 10% particle size (D10) of the cumulative particle size distribution of the powder is 4.0 to 7.0 μm, the 50% particle size (D50) is 7.0 to 11.0 μm, and the 90% particle size (D90) is 11.0 to A method for producing a sputtering target, wherein a bulk body is formed by depositing a powder of 16.0 μm on a substrate by a cold spray method. 前記粉末は、MoもしくはMo基合金、TiもしくはTi基合金、またはNi基合金のいずれかであることを特徴とする請求項3に記載のスパッタリングターゲットの製造方法。   4. The method of manufacturing a sputtering target according to claim 3, wherein the powder is any one of Mo or Mo-based alloy, Ti or Ti-based alloy, or Ni-based alloy.
JP2014533509A 2012-11-12 2013-11-08 Cold spray powder Active JP5679395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014533509A JP5679395B2 (en) 2012-11-12 2013-11-08 Cold spray powder

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012248285 2012-11-12
JP2012248285 2012-11-12
JP2014533509A JP5679395B2 (en) 2012-11-12 2013-11-08 Cold spray powder
PCT/JP2013/080206 WO2014073633A1 (en) 2012-11-12 2013-11-08 Cold spray powder and method for manufacturing sputtering target in which same is used

Publications (2)

Publication Number Publication Date
JP5679395B2 JP5679395B2 (en) 2015-03-04
JPWO2014073633A1 true JPWO2014073633A1 (en) 2016-09-08

Family

ID=50684730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014533509A Active JP5679395B2 (en) 2012-11-12 2013-11-08 Cold spray powder

Country Status (2)

Country Link
JP (1) JP5679395B2 (en)
WO (1) WO2014073633A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101890507B1 (en) * 2014-07-03 2018-08-21 플란제 에스이 Method for producing a layer
AT14576U1 (en) * 2014-08-20 2016-01-15 Plansee Se Metallization for a thin film device, method of making the same and sputtering target
CN111118460B (en) * 2020-01-10 2022-06-03 广州市尤特新材料有限公司 Rotary titanium target and preparation method thereof
WO2023188873A1 (en) * 2022-03-29 2023-10-05 タツタ電線株式会社 Nozzle and film formation method
CN115007848B (en) * 2022-07-01 2023-07-18 长安大学 Coating for retarding crevice corrosion of aluminum-copper connector, and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215575A (en) * 2008-03-07 2009-09-24 Honda Motor Co Ltd Method for producing laminate of aluminum alloy
JP2009235534A (en) * 2008-03-28 2009-10-15 Ihi Corp Porous body forming method, electrode, and micro-spark coating device
JP5312855B2 (en) * 2008-06-20 2013-10-09 東邦瓦斯株式会社 Interconnector and manufacturing method thereof
US8043655B2 (en) * 2008-10-06 2011-10-25 H.C. Starck, Inc. Low-energy method of manufacturing bulk metallic structures with submicron grain sizes
JP5556004B2 (en) * 2008-11-21 2014-07-23 株式会社Ihi Cold spray device and cold spray method

Also Published As

Publication number Publication date
WO2014073633A1 (en) 2014-05-15
JP5679395B2 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
JP5679395B2 (en) Cold spray powder
US9919358B2 (en) Sintered molybdenum carbide-based spray powder
CN101368262B (en) Method for coating surface
US6641917B2 (en) Spray powder and method for its production
JP5676161B2 (en) Thermal spray powder and method of forming thermal spray coating
Ulianitsky et al. Detonation spraying behaviour of refractory metals: Case studies for Mo and Ta-based powders
JP6386137B2 (en) Cermet powder and method for forming sprayed coating
RU2014113180A (en) CERMET POWDER
JP2018154918A (en) Process and printed article
CN104936727A (en) Method for producing spray powders containing chromium nitride
US9890460B2 (en) Self-peening feedstock materials for cold spray deposition
RU2439198C2 (en) Production method of wear resistant composite nano-structured coating
Tria et al. Deposition and characterization of cold sprayed nanocrystalline NiTi
JP2007211293A (en) Spray deposit film, and powder for thermal spraying
JP5769255B2 (en) Cermet film and spray particles for forming the same, cermet film forming method, film forming product
JP2012031443A (en) Metal powder for cold spray
JP6475829B2 (en) Layer manufacturing method
JP2007084901A (en) Metal glass thin film laminated body
RU2371520C1 (en) Composition electrode material for receiving of dispersion-reinforced by nanoparticles coatings
KR101336755B1 (en) Thin film coating method of hard metal
JP2017508870A (en) Paint material
JP2007146268A (en) Corrosion protection-coated steel material and its production method
Yao et al. Fabrication of Porous Stainless Steel through Semi-Molten Spray Particles Deposition by Flame Spraying
JP5996305B2 (en) Cermet powder for thermal spraying and method for producing the same
JPS634077A (en) Method for joining sintered hard alloy

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141225

R150 Certificate of patent or registration of utility model

Ref document number: 5679395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350