JP2007146268A - Corrosion protection-coated steel material and its production method - Google Patents

Corrosion protection-coated steel material and its production method Download PDF

Info

Publication number
JP2007146268A
JP2007146268A JP2005346254A JP2005346254A JP2007146268A JP 2007146268 A JP2007146268 A JP 2007146268A JP 2005346254 A JP2005346254 A JP 2005346254A JP 2005346254 A JP2005346254 A JP 2005346254A JP 2007146268 A JP2007146268 A JP 2007146268A
Authority
JP
Japan
Prior art keywords
steel material
cermet
fine particles
coated steel
anticorrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005346254A
Other languages
Japanese (ja)
Inventor
Masahito Kaneko
雅仁 金子
Masaji Murase
正次 村瀬
Yasutaka Fukuda
泰隆 福田
Satoshi Ando
聡 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005346254A priority Critical patent/JP2007146268A/en
Publication of JP2007146268A publication Critical patent/JP2007146268A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a corrosion protection-coated steel material having durability over a long period by efficiently forming a dense film having excellent damage resistance, abrasion resistance and corrosion resistance and hardly having defects on the surface of the steel material, and to provide its production method. <P>SOLUTION: The corrosion protection-coated steel material has a coating film formed by spraying solid particulates made into aerosol and having high hardness and abrasion resistance on the surface of the steel material. Optionally, the surface of a coating film, which is formed by spraying metal or alloy particulates made into aerosol and having sacrificial corrosion preventability on the surface of a steel material, is further provided with the coating film formed by spraying solid particulates made into aerosol and having high hardness and abrasion resistance on the surface of the steel material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、エアロゾル化させた高硬度且つ耐磨耗性を有する固体の微粒子を鋼材表面に吹き付けることで形成させた被覆膜を有する防食被覆鋼材及びその製造方法に関する。   The present invention relates to an anticorrosion-coated steel material having a coating film formed by spraying aerosolized solid fine particles having high hardness and wear resistance on the surface of the steel material, and a method for producing the same.

鋼材に耐傷付き性、耐磨耗性を付与する方法として、その表面硬度を向上させる方法が知られている。具体的には、例えば、浸炭処理、窒化処理、浸炭窒化処理、表面焼き入れ、硬質クロムめっき、クロム浸透めっきなどの方法がある。   As a method for imparting scratch resistance and wear resistance to a steel material, a method for improving its surface hardness is known. Specifically, for example, there are methods such as carburizing treatment, nitriding treatment, carbonitriding treatment, surface quenching, hard chromium plating, and chromium infiltration plating.

また、同じく鋼材に耐傷付き性、耐磨耗性を付与する方法として、高硬度、耐磨耗性を有する材料を鋼材に溶射する方法がある。   Similarly, as a method for imparting scratch resistance and wear resistance to a steel material, there is a method of spraying a material having high hardness and wear resistance onto the steel material.

一方、自然環境下において、鋼材はそのままでは腐食の進行により必要強度を維持できなくなる。そのため、通常は防食被覆処理を施すことにより腐食の進行を抑制するようにしている。   On the other hand, in a natural environment, the steel material cannot be maintained at the required strength due to the progress of corrosion as it is. Therefore, the progress of corrosion is usually suppressed by applying an anticorrosion coating treatment.

また、最近では、新たな成膜方法として、ガスデポジション法(特許文献1〜3参照)やエアロゾルデポジション法(特許文献4参照)などがある。これらの方法は、金属やセラミックス等の微粒子を室温でガス攪拌にてエアロゾル化し、ノズルから高速で基材に向けて噴出させ、基材に衝突した際に運動エネルギーの一部が熱に変換されることで焼結され、基材上に成膜される方法である。
特開昭59−80361号公報 特開平6−116743号公報 特許第3256741号公報 特許第3348154号公報
Recently, as a new film formation method, there are a gas deposition method (see Patent Documents 1 to 3), an aerosol deposition method (see Patent Document 4), and the like. In these methods, fine particles such as metals and ceramics are aerosolized by gas stirring at room temperature, ejected from the nozzle toward the substrate at high speed, and part of the kinetic energy is converted to heat when it collides with the substrate. This is a method of sintering and forming a film on a substrate.
JP 59-80361 A JP-A-6-116743 Japanese Patent No. 3256741 Japanese Patent No. 3348154

しかし、上記浸炭処理、窒化処理、浸炭窒化処理、表面焼き入れ、クロム浸透めっきなどの方法は、処理後の表面硬度は鋼種に依存するため、必要な耐傷つき性及び耐磨耗性が常に得られるとは限らない。また、上記硬質クロムめっき法では、多量の水素を吸収して有孔度が大きく、水素脆化を起こしやすくなる。   However, the methods such as carburizing, nitriding, carbonitriding, surface quenching, and chromium infiltration plating always provide the necessary scratch resistance and wear resistance because the surface hardness after treatment depends on the steel type. Not always. Further, in the hard chrome plating method, a large amount of hydrogen is absorbed, the porosity is large, and hydrogen embrittlement is likely to occur.

また、溶射による方法では、溶射は高温で行われるため、金属または合金を溶射する場合、被覆前の飛行溶射粒子が酸化されやすく、形成された被膜中に欠陥が生じやすいという問題がある。   Further, in the method by thermal spraying, since the thermal spraying is performed at a high temperature, there is a problem that when spraying a metal or an alloy, the flying sprayed particles before coating are easily oxidized, and defects are easily generated in the formed coating film.

また、上記特許文献1〜4に記載の方法は、基本的にどのような微粒子でも緻密な被膜を基材上に形成できるとしているが、鋼材の防食を目的に鋼材表面に犠牲防食性を有する被膜を形成させた例はない。   Moreover, although the method of the said patent documents 1-4 is supposed that a fine film can be fundamentally formed on a base material with what kind of microparticles | fine-particles, it has sacrificial corrosion resistance on the steel material surface for the purpose of corrosion protection of steel materials. There is no example of forming a film.

そこで本発明は、耐傷つき性、耐磨耗性および耐食性に優れた欠陥のほとんどない緻密な被膜を効率的に鋼材表面に形成させることで、長期に渡る耐久性を有する防食被覆鋼材及びその製造方法を提供することを目的とする。   Accordingly, the present invention provides an anticorrosion coated steel material having durability over a long period of time by efficiently forming a dense film with few defects excellent in scratch resistance, abrasion resistance and corrosion resistance on the surface of the steel material, and its production It aims to provide a method.

上記課題を解決するために、本発明は以下のような特徴を有する。
[1]エアロゾル化させた高硬度且つ耐磨耗性を有する固体の微粒子を鋼材表面に吹き付けることで形成させた被覆膜を有することを特徴とする防食被覆鋼材。
[2]エアロゾル化させた犠牲防食性を有する金属または合金の微粒子を鋼材表面に吹き付けることで形成させた被覆膜の上に、さらに、エアロゾル化させた高硬度且つ耐磨耗性を有する固体の微粒子を鋼材表面に吹き付けることで形成させた被覆膜を有することを特徴とする防食被覆鋼材。
[3]上記[1]または[2]において、高硬度且つ耐磨耗性を有する固体がサーメットであることを特徴とする防食被覆鋼材。
[4]上記[3]において、サーメットが、炭化物系サーメット、グラファイト系サーメット、酸化物系サーメット、窒化物系サーメットのうちのいずれか1種または2種以上であることを特徴とする防食被覆鋼材。
[5]上記[2]乃至[4]のいずれかにおいて、犠牲防食性を有する金属または合金が、亜鉛、アルミニウム、マグネシウムのうちのいずれか1種または2種以上を含有することを特徴とする防食被覆鋼材。
[6]鋼材表面に、エアロゾル化させた高硬度且つ耐磨耗性を有する固体の微粒子を吹き付け、被覆膜を形成させることを特徴とする防食被覆鋼材の製造方法。
[7]鋼材表面に、エアロゾル化させた犠牲防食性を有する金属または合金の微粒子を吹き付け、被覆膜を形成させた後、該被覆膜の上に、さらに、エアロゾル化させた高硬度且つ耐磨耗性を有する固体の微粒子を吹き付け、被覆膜を積層させることを特徴とする防食被覆鋼材の製造方法。
[8]上記[6]または[7]において、高硬度且つ耐磨耗性を有する固体がサーメットであることを特徴とする防食被覆鋼材の製造方法。
[9]上記[8]において、サーメットが、炭化物系サーメット、グラファイト系サーメット、酸化物系サーメット、窒化物系サーメットのうちのいずれか1種または2種以上であることを特徴とする防食被覆鋼材の製造方法。
[10]上記[7]乃至[9]のいずれかにおいて、犠牲防食性を有する金属または合金が、亜鉛、アルミニウム、マグネシウムのうちのいずれか1種または2種以上を含有することを特徴とする防食被覆鋼材の製造方法。
In order to solve the above problems, the present invention has the following features.
[1] An anticorrosion-coated steel material having a coating film formed by spraying aerosolized solid fine particles having high hardness and wear resistance on the surface of the steel material.
[2] On a coating film formed by spraying aerosolized metal or alloy fine particles having sacrificial anticorrosive properties on the surface of a steel material, an aerosolized solid having high hardness and wear resistance An anticorrosion-coated steel material having a coating film formed by spraying fine particles of the steel material on the surface of the steel material.
[3] The anticorrosion-coated steel material according to [1] or [2] above, wherein the solid having high hardness and wear resistance is cermet.
[4] The anticorrosion coated steel material according to [3], wherein the cermet is one or more of carbide cermet, graphite cermet, oxide cermet, and nitride cermet. .
[5] In any one of the above [2] to [4], the metal or alloy having sacrificial corrosion resistance contains any one or more of zinc, aluminum, and magnesium. Anticorrosion coated steel.
[6] A method for producing an anticorrosion-coated steel material, characterized in that aerosolized solid fine particles having high hardness and wear resistance are sprayed on the surface of the steel material to form a coating film.
[7] A metal or alloy fine particle having a sacrificial anticorrosive property that has been aerosolized is sprayed onto the surface of the steel material to form a coating film, and then the aerosol is further applied to the coating film to obtain a high hardness and A method for producing an anticorrosion-coated steel material, characterized by spraying solid fine particles having wear resistance and laminating a coating film.
[8] The method for producing an anticorrosion-coated steel material according to [6] or [7] above, wherein the solid having high hardness and wear resistance is cermet.
[9] The anticorrosion coated steel material according to [8], wherein the cermet is any one or more of carbide cermet, graphite cermet, oxide cermet, and nitride cermet. Manufacturing method.
[10] In any one of [7] to [9] above, the sacrificial anticorrosive metal or alloy contains one or more of zinc, aluminum, and magnesium. A method for producing a corrosion-resistant coated steel material.

本発明によれば、耐傷つき性、耐磨耗性および耐食性に優れた欠陥のほとんどない緻密な被膜を効率的に鋼材表面に形成させることが可能となり、長期に渡る耐久性を有する防食被覆鋼材及びその製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to form efficiently the fine film with few defects excellent in damage resistance, abrasion resistance, and corrosion resistance on the steel material surface, and the anticorrosion coating steel material which has durability over a long period of time And a method of manufacturing the same.

以下、本発明を実施するための最良の形態の一例を説明するが、本発明はこれに限定されるものではない。   Hereinafter, an example of the best mode for carrying out the present invention will be described, but the present invention is not limited thereto.

本発明に係る防食被覆鋼材及び防食被覆鋼材の製造方法の各構成要件について以下に説明する。   Each component of the anticorrosion-coated steel material and the method for producing the anticorrosion-coated steel material according to the present invention will be described below.

[下地鋼材]
下地となる被覆される鋼材は特に限定されるものではなく、鋼種としては普通鋼、低合金鋼などを用いることができ、また、厚板、形鋼、薄板、鋼管、線材等のいずれにおいても適用可能である。また、被覆前の鋼材表面の状態に関しても特に限定されるものではないが、ブラスト処理、酸洗処理等で清浄な状態にしておくのが好ましい。被覆膜の密着性が良好となるからである。
[Underlying steel]
The steel material to be coated as a base is not particularly limited, and normal steel, low alloy steel, etc. can be used as the steel type, and in any of thick plate, shape steel, thin plate, steel pipe, wire, etc. Applicable. Further, the state of the surface of the steel material before coating is not particularly limited, but it is preferable to keep the surface clean by blasting, pickling or the like. This is because the adhesion of the coating film is improved.

[高硬度且つ耐磨耗性を有する固体の微粒子]
本発明において適用できる高硬度且つ耐磨耗性を有する固体の微粒子としては、高硬度且つ耐磨耗性を有するものであれば特に限定されないが、サーメットを用いることが好ましく、特に、炭化物系サーメット(タングステンカーバイドサーメット(WC−Co, WC−Ni, WC−Co−Cr, WC−Co+Ni−Cr(−Al)など)、チタンカーバイドサーメット(TiC−Ni, TiC−Co, TiC−Ni−Crなど)、クロムカーバイドサーメット(Cr−Ni−Cr, Cr−Ni−Alなど)シリコンカーバイドサーメット(SiCなど))、グラファイト系サーメット(Ni−C(Graphite), Al−Si−C(Graphite)など)、酸化物系サーメット(Al−Ni−Al, Al−Co−Cr−Al−Y,ZrO・Y−Ni−Cr, ZrO・CaO−Ni−Al, ZrO・MgO−Ni−Al(−Cr)など)、窒化物系サーメット(窒化珪素系サーメット(Si−Co, Si−Niなど)、窒化ほう素系サーメット(BN−Ni−Cr−Fe−Al, BN−Fe−Alなど)、窒化珪素ウイスカ(Si−ZrO−Y, Si−Alなど))等を用いることがより好ましい。
[Solid fine particles with high hardness and wear resistance]
The solid fine particles having high hardness and wear resistance that can be applied in the present invention are not particularly limited as long as they have high hardness and wear resistance. However, it is preferable to use cermet, and in particular, carbide cermet. (Tungsten carbide cermets (WC-Co, WC-Ni, WC-Co-Cr, WC-Co + Ni-Cr (-Al), etc.), titanium carbide cermets (TiC-Ni, TiC-Co, TiC-Ni-Cr, etc.) , Chromium carbide cermet (Cr 3 C 2 —Ni—Cr, Cr 3 C 2 —Ni—Al, etc.) silicon carbide cermet (SiC etc.), graphite cermet (Ni—C (Graphite), Al—Si—C ( Graphite)), oxide-based cermets (Al 2 O 3 —Ni—Al, Al 2 O 3 —Co—Cr—Al) -Y, ZrO 2 · Y 2 O 3 -Ni-Cr, ZrO 2 · CaO-Ni-Al, ZrO 2 · MgO-Ni-Al (-Cr), etc.), nitride cermets (silicon nitride cermets (Si 3 N 4 -Co, such as Si 3 N 4 -Ni), boron nitride Motokei cermet (BN-Ni-Cr-Fe -Al, such as BN-Fe-Al), silicon nitride whisker (Si 3 N 4 -ZrO 2 It is more preferable to use —Y 2 O 3 , Si 3 N 4 —Al 2 O 3 )) or the like.

前記高硬度且つ耐磨耗性を有する固体の微粒子の平均粒径としては0.1〜5μm程度が好ましい。平均粒径が0.1μm未満では衝突エネルギーが不十分で成膜が困難になり、平均粒径が5μmを超えるとエッチングが顕著になり、成膜が困難になるからである。   The average particle diameter of the solid particles having high hardness and wear resistance is preferably about 0.1 to 5 μm. This is because if the average particle size is less than 0.1 μm, the collision energy becomes insufficient and film formation becomes difficult, and if the average particle size exceeds 5 μm, etching becomes significant and film formation becomes difficult.

ここで、前記微粒子の平均粒径は、例えば、レーザー回折法、レーザー散乱法などの方法により求めることができる。   Here, the average particle diameter of the fine particles can be determined by a method such as a laser diffraction method or a laser scattering method.

また、前記微粒子は、原料となる固体を、例えば遊星ミルなどの粉砕機により粉砕した後、乾式気流分級器、静電分級器等の分級器を用いて分級することで粒径の調整を行うことができる。   In addition, the fine particles are adjusted by adjusting the particle size by pulverizing the solid as a raw material with a pulverizer such as a planetary mill, and then using a classifier such as a dry air classifier or an electrostatic classifier. be able to.

[犠牲防食性を有する金属または合金の微粒子]
本発明において適用できる犠牲防食性を有する金属または合金の微粒子としては、被覆の施される鋼材に対して犠牲防食性を示すものであれば特に限定されないが、前記金属または合金としては、亜鉛、アルミニウム、マグネシウムのうちのいずれか1種または2種以上を含有するものを用いることが好ましい。
[Metal or alloy fine particles with sacrificial anticorrosive properties]
The fine particles of the metal or alloy having sacrificial corrosion resistance that can be applied in the present invention are not particularly limited as long as they exhibit sacrificial corrosion resistance to the steel material to be coated, but the metal or alloy includes zinc, It is preferable to use one containing at least one of aluminum and magnesium.

前記合金としては、例えば、ISO:14919、JIS:H8300に記載されているAl合金だけではなく、Al−Cu系、Al−Mn系、Al−Mg系、Al−Mg−Si系、Al−Zn−Mg系、Al−Zn−Mg−Cu系、Al−Fe−Cr−Ni系、Al−Si系、Al−Zn−In−Si−Mg系などを用いることができる。また、Mg−Mn系、Mg−Al−Zn系,Mg−Al−Zn−Mn系,Mg−Zn−Zr系、Mg−Al−Mn系、Mg−Al−Si系などのMg合金を用いることもできる。   Examples of the alloy include not only Al alloys described in ISO: 14919 and JIS: H8300, but also Al—Cu, Al—Mn, Al—Mg, Al—Mg—Si, and Al—Zn. -Mg, Al-Zn-Mg-Cu, Al-Fe-Cr-Ni, Al-Si, Al-Zn-In-Si-Mg, and the like can be used. In addition, Mg alloys such as Mg—Mn, Mg—Al—Zn, Mg—Al—Zn—Mn, Mg—Zn—Zr, Mg—Al—Mn, and Mg—Al—Si are used. You can also.

前記犠牲防食性を有する金属または合金の微粒子の平均粒径としては0.1〜5μm程度が好ましい。平均粒径が0.1μm未満では衝突エネルギーが不十分で成膜が困難になり、平均粒径が5μmを超えるとエッチングが顕著になり、成膜が困難になるからである。   The average particle size of the metal or alloy fine particles having sacrificial corrosion resistance is preferably about 0.1 to 5 μm. This is because if the average particle size is less than 0.1 μm, the collision energy becomes insufficient and film formation becomes difficult, and if the average particle size exceeds 5 μm, etching becomes significant and film formation becomes difficult.

ここで、前記微粒子の平均粒径は、例えば、レーザー回折法、レーザー散乱法などの方法により求めることができる。   Here, the average particle diameter of the fine particles can be determined by a method such as a laser diffraction method or a laser scattering method.

また、前記微粒子は、原料となる固体を、例えば遊星ミルなどの粉砕機により粉砕した後、乾式気流分級器、静電分級器等の分級器を用いて分級することで粒径の調整を行うことができる。   In addition, the fine particles are adjusted by adjusting the particle size by pulverizing the solid as a raw material with a pulverizer such as a planetary mill, and then using a classifier such as a dry air classifier or an electrostatic classifier. be able to.

[被膜形成方法]
図1に、本発明に係る防食被覆鋼材の製造を行うための装置構成の一例を示す。図1に示す装置は、上記高硬度且つ耐磨耗性を有する固体の微粒子及び/または犠牲防食性を有する金属または合金の微粒子1をエアロゾル化するためのエアロゾル化室2、エアロゾル化された微粒子を分級するための分級室3、分級されたエアロゾルを噴射するノズル4、微粒子を搬送するガスの発生源5、鋼板表面にエアロゾル化された微粒子を吹き付け成膜させる成膜室6、成膜室6を減圧するための真空ポンプ7などから構成される。
[Film formation method]
In FIG. 1, an example of the apparatus structure for manufacturing the anti-corrosion coating steel material which concerns on this invention is shown. The apparatus shown in FIG. 1 includes an aerosolization chamber 2 for aerosolizing the above-mentioned solid fine particles having high hardness and wear resistance and / or fine particles 1 of metal or alloy having sacrificial corrosion resistance, and aerosolized fine particles. A classification chamber 3 for classifying the particles, a nozzle 4 for injecting the classified aerosol, a gas generation source 5 for conveying fine particles, a film formation chamber 6 for spraying the aerosolized fine particles onto the steel plate surface, and a film formation chamber 6 includes a vacuum pump 7 for depressurizing 6.

前記微粒子1はエアロゾル化室2において、ガス発生源5から送り出される搬送ガスにより分散されてエアロゾル化される。前記搬送ガスとしては、He,Nなどの不活性ガスを用いることが好ましい。 The fine particles 1 are dispersed and aerosolized in the aerosolization chamber 2 by the carrier gas sent from the gas generation source 5. As the carrier gas, an inert gas such as He or N 2 is preferably used.

前記エアロゾル化室2でエアロゾル化された微粒子は分級室3に搬送され、所定の粒径の微粒子のみが選別される。前記選別は、例えば、所定の粒径の微粒子のみを通過させるフィルター等を用いることで行うことができる。なお、微粒子の製造段階で分級を行っておけば分級室3は必ずしも必要でない場合もあるが、微粒子の製造段階で分級を実施していても、その後凝集している可能性があるので、分級室は設けておくことが好ましい。   The fine particles aerosolized in the aerosol generation chamber 2 are conveyed to the classification chamber 3 and only fine particles having a predetermined particle diameter are selected. The selection can be performed by using, for example, a filter that allows only fine particles having a predetermined particle diameter to pass through. The classification chamber 3 may not always be necessary if classification is performed in the production stage of the fine particles, but classification may be performed after the classification in the production stage of the fine particles. It is preferable to provide a chamber.

前記選別された所定の粒径の微粒子からなるエアロゾルは、ノズル4から成膜室6内に設置された鋼材8に向けて噴射され、鋼材表面に衝突、堆積されることで鋼材表面に成膜させる。ここで、前記鋼材表面に衝突した微粒子は、純力学過程に基づいた局所領域への短時間エネルギー開放により、高温・高圧の特殊な反応場が形成されることで成膜されると考えられる。   The selected aerosol having a predetermined particle size is sprayed from the nozzle 4 toward the steel material 8 installed in the film forming chamber 6 and collides with and deposits on the steel material surface to form a film on the steel material surface. Let Here, it is considered that the fine particles colliding with the steel material surface are formed by forming a special reaction field of high temperature and high pressure by releasing energy to a local region for a short time based on a pure mechanical process.

前記ノズル4から噴出される微粒子の線流速は100m/sec〜800m/sec程度とすることが好ましい。そのためには、例えば、前記ノズル4の直径を1mm程度で、搬送ガス流速が2〜10L/min程度、エアロゾル化室2の圧力を0.05〜500Torr(6.65Pa〜66.5kPa)、成膜室内の圧力は0.05〜10Torr(6.65Pa〜1.33kPa)程度とすることにより行うことができる。前記ノズル4から噴出される微粒子の線速度が100m/sec未満であると衝突エネルギーが不十分なため成膜が困難になり、800m/secを超えるとエッチングが顕著になり、やはり成膜が困難になるからである。   The linear flow velocity of the fine particles ejected from the nozzle 4 is preferably about 100 m / sec to 800 m / sec. For this purpose, for example, the diameter of the nozzle 4 is about 1 mm, the carrier gas flow rate is about 2 to 10 L / min, and the pressure of the aerosolization chamber 2 is 0.05 to 500 Torr (6.65 Pa to 66.5 kPa). The pressure in the membrane chamber can be set to about 0.05 to 10 Torr (6.65 Pa to 1.33 kPa). When the linear velocity of the fine particles ejected from the nozzle 4 is less than 100 m / sec, film formation becomes difficult because of insufficient collision energy, and when it exceeds 800 m / sec, etching becomes remarkable, and film formation is also difficult. Because it becomes.

また、被覆される鋼材8とノズル4の間隔は5〜25mm程度とすることが好ましい。クリアランスの確保という目的もあるが、この間隔を調整することで、鋼材表面に衝突する直前の微粒子の速度をある程度調整可能となる。   Moreover, it is preferable that the space | interval of the steel material 8 and the nozzle 4 to be coated shall be about 5-25 mm. Although there is the purpose of securing the clearance, by adjusting this distance, the speed of the fine particles immediately before colliding with the steel surface can be adjusted to some extent.

前記被覆される鋼材8は、上下、前後、左右の位置調整機能及び角度調整機能を備えた架台に設置させることで、鋼材8の任意の位置の面に、任意の膜厚で被膜を形成でき、必要な部分に必要な量だけ被覆することも可能になる。   The steel material 8 to be coated can be formed on a surface of an arbitrary position of the steel material 8 with an arbitrary film thickness by installing the steel material 8 on a gantry having a vertical position adjustment function and an angle adjustment function. It is also possible to cover a necessary part with a necessary amount.

さらに、エアロゾル化室2および分級室3を、それぞれ複数設置することも好ましい。これにより、搬送ガスの切り替えバルブの操作のみで組成の異なる被膜を任意に形成でき、例えば被膜の複層化も容易に実施可能となる。   Furthermore, it is also preferable to install a plurality of aerosolization chambers 2 and classification chambers 3 respectively. As a result, a film having a different composition can be arbitrarily formed only by operating the carrier gas switching valve. For example, the film can be easily formed into multiple layers.

本発明においては、鋼材表面に直接高硬度且つ耐磨耗性を有する固体の微粒子による皮膜を形成させてもよいが、特に防食性を必要とする被膜を形成する場合は、鋼材表面にまず鋼材に対して犠牲防食性を有する金属または合金の微粒子による皮膜を形成させた後、その上層に高硬度且つ耐磨耗性を有する固体の微粒子による皮膜を積層させることが好ましい。これにより、耐傷つき性、耐磨耗性および耐食性により優れた欠陥のほとんどない緻密な被膜が形成される。   In the present invention, a film made of solid fine particles having high hardness and wear resistance may be directly formed on the surface of the steel material. In particular, when a film that requires anticorrosion is formed, the steel material is first formed on the surface of the steel material. It is preferable to form a film made of fine particles of metal or alloy having sacrificial corrosion resistance, and then to form a film made of solid fine particles having high hardness and wear resistance on the upper layer. As a result, a dense film having almost no defects excellent in scratch resistance, abrasion resistance and corrosion resistance is formed.

上述の方法により成膜された被膜およびプロセス(製造方法)には以下のような特徴がある。   The coating film and process (manufacturing method) formed by the above method have the following characteristics.

1)高硬度且つ耐磨耗性を有する固体の微粒子を、緻密に、高い皮膜密着強度で鋼材に被覆できることで、防食被覆鋼材の耐食性が著しく向上する。
エアロゾル化された微粒子が鋼材表面に衝突した際、その衝突エネルギーにより、前記微粒子が更に微細な粒子に分割され鋼材表面に極めて粒度の細かい緻密な構造の膜が形成される。これにより鋼材表面での付着性が改善され、極めて高い付着強度が得られると共に、形成される被膜層自体の材料特性(機械的性質)が改善される。そのため溶射やメッキ被膜で得られるものよりも、被膜の付着強度が高く、耐傷つき性、耐磨耗性に優れた皮膜が得られ、長期耐久性に優れた防食被覆鋼材が得られる。
1) The corrosion resistance of the anticorrosion-coated steel material is remarkably improved by being able to coat the solid fine particles with high hardness and wear resistance densely on the steel material with high film adhesion strength.
When the aerosolized fine particles collide with the steel material surface, the fine particles are divided into finer particles by the collision energy, and a film having a very fine particle structure is formed on the steel material surface. As a result, adhesion on the surface of the steel material is improved, extremely high adhesion strength is obtained, and material properties (mechanical properties) of the formed coating layer itself are improved. Therefore, a coating film having higher adhesion strength, excellent scratch resistance and abrasion resistance than that obtained by thermal spraying or plating coating is obtained, and an anticorrosion-coated steel material having excellent long-term durability is obtained.

2)本発明では、被覆材料を自由に選択できるので、めっき、溶射などの他の方法では被覆できない材料を被覆可能である。さらに、本発明は、常温での成膜が可能なため、被覆前の粒子が酸化されず、欠陥の少ない被膜が形成でき、沸点が低い物質も散逸せず効率よく被覆できる。そのため、被膜中における空孔率が少なく、溶射と比べて緻密な膜が形成されるので封孔処理が不要となり、コストダウンも可能となる。   2) In the present invention, since a coating material can be freely selected, a material that cannot be coated by other methods such as plating and thermal spraying can be coated. Furthermore, since the present invention enables film formation at room temperature, particles before coating are not oxidized, a film with few defects can be formed, and a substance having a low boiling point can be efficiently coated without being dissipated. Therefore, the porosity in the coating is small, and a dense film is formed as compared with the thermal spraying, so that the sealing process is not required and the cost can be reduced.

3)必要な部分にだけ被覆が可能であり、また膜厚の制御も容易であるため、防食に必要な部分に必要な程度の被膜を形成でき、最適な防食設計が可能となる。   3) Since it is possible to cover only necessary portions, and the film thickness can be easily controlled, it is possible to form a coating film as much as necessary on the portions necessary for anticorrosion, and an optimal anticorrosion design is possible.

[被膜形成後の処理]
鋼材表面に上記被膜を形成させた後、必要に応じて加熱することが好ましい。これにより、更に強固で密着性に優れた被膜を形成させることが可能となる。また、前記被膜の上に塗装または樹脂などをライニングしてもかまわない。これにより、さらに防食性を高めることが可能となる。
[Treatment after film formation]
It is preferable to heat as necessary after forming the coating film on the surface of the steel material. This makes it possible to form a coating that is stronger and has better adhesion. Also, coating or resin may be lined on the coating. Thereby, it becomes possible to further improve corrosion resistance.

以下実施例を示して本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.

〔本発明例1〜10〕
100mm×100mm×6mmの熱延鋼板(JIS SS400相当)の表面をスチールグリッドによりブラスト処理を実施した。表面粗さは十点平均粗さ(Rz)で50μm程度であった。これを図1に示す装置の成膜室6内に設置し、搬送ガスをN(>99.999%)とし、流量5L/minでエアロゾル化室2に流入させた。エアロゾル化室2には被覆材料として表1に示す平均粒径1μm(レーザー散乱法にて測定)の微粒子を充填し、前記搬送ガスによりエアロゾル化させた。成膜室6の圧力を真空ポンプにて0.5Torr(66.5Pa)とし、エアロゾルをノズル4から前記鋼板表面に向けて噴出させた。前記鋼板の位置を適宜移動させながら、鋼板の片面に膜厚100μm程度になるように成膜させた。上記により作製した被覆鋼材の裏端部をシリコンシーラントによりシールした後、塩水噴霧試験(JIS Z2371)により赤錆発生時間(SST)を測定し、耐食性を評価した。また皮膜の表面硬度(Hv)を測定した。その結果を、併せて表1に示す。
[Invention Examples 1 to 10]
The surface of a 100 mm × 100 mm × 6 mm hot rolled steel sheet (equivalent to JIS SS400) was blasted with a steel grid. The surface roughness was about 50 μm in terms of 10-point average roughness (Rz). This was installed in the film forming chamber 6 of the apparatus shown in FIG. 1, the carrier gas was N 2 (> 99.999%), and the gas was introduced into the aerosol chamber 2 at a flow rate of 5 L / min. Aerosol chamber 2 was filled with fine particles having an average particle diameter of 1 μm (measured by a laser scattering method) shown in Table 1 as a coating material, and aerosolized with the carrier gas. The pressure in the film forming chamber 6 was set to 0.5 Torr (66.5 Pa) with a vacuum pump, and aerosol was ejected from the nozzle 4 toward the steel plate surface. The film was formed on one side of the steel sheet so as to have a film thickness of about 100 μm while appropriately moving the position of the steel sheet. After the back end portion of the coated steel material produced as described above was sealed with silicon sealant, the red rust occurrence time (SST) was measured by a salt spray test (JIS Z2371) to evaluate the corrosion resistance. Further, the surface hardness (Hv) of the film was measured. The results are also shown in Table 1.

〔本発明例11〜15〕
100mm×100mm×6mmの熱延鋼板(JIS SS400相当)の表面をスチールグリッドによりブラスト処理を実施した。表面粗さは十点平均粗さ(Rz)で50μm程度であった。これを図1に示す装置の成膜室6内に設置した。エアロゾル化室2Aには、被覆材料として表2(鋼材側(A))に示す平均粒径1μm(レーザー散乱法にて測定)の微粒子を充填し、搬送ガスをN(>99.999%)とし、流量5L/minでエアロゾル化室2Aに流入させ、エアロゾル化させた。成膜室6の圧力を真空ポンプにて0.5Torr(66.5Pa)とし、エアロゾルをノズル4から前記鋼板表面に向けて噴出させた。前記鋼板の位置を適宜移動させながら、鋼板の片面に膜厚100μm程度になるように成膜させた。さらにその上層に被覆材料として表2(表層側(B))に示す平均粒径1μm(レーザー散乱法にて測定)の微粒子を同様な方法で膜厚100μmとなるように成膜させた。なお、表2(表層側(B))に示す微粒子はエアロゾル化室2Bに充填し、表2(鋼材側(A))に示す微粒子を鋼材表面に積層させた後、エアロゾル化室2B側に搬送ガスのバルブを切り替えることで、皮膜が2層構造となるようにした。上記により作製した被覆鋼材の裏端部をシリコンシーラントによりシールした後、塩水噴霧試験(JIS Z2371)により赤錆発生時間(SST)を測定し、耐食性を評価した。また皮膜の表面硬度(Hv)を測定した。その結果を、併せて表2に示す。
[Invention Examples 11-15]
The surface of a 100 mm × 100 mm × 6 mm hot rolled steel sheet (equivalent to JIS SS400) was blasted with a steel grid. The surface roughness was about 50 μm in terms of 10-point average roughness (Rz). This was installed in the film forming chamber 6 of the apparatus shown in FIG. The aerosolization chamber 2A is filled with fine particles having an average particle diameter of 1 μm (measured by laser scattering method) shown in Table 2 (steel material side (A)) as a coating material, and the carrier gas is N 2 (> 99.999%). ) And flowed into the aerosolization chamber 2A at a flow rate of 5 L / min for aerosolization. The pressure in the film forming chamber 6 was set to 0.5 Torr (66.5 Pa) with a vacuum pump, and aerosol was ejected from the nozzle 4 toward the steel plate surface. The film was formed on one side of the steel sheet so as to have a film thickness of about 100 μm while appropriately moving the position of the steel sheet. Further, fine particles having an average particle diameter of 1 μm (measured by the laser scattering method) shown in Table 2 (surface layer side (B)) as a coating material were formed on the upper layer so as to have a film thickness of 100 μm by the same method. The fine particles shown in Table 2 (surface layer side (B)) are filled in the aerosolization chamber 2B, and the fine particles shown in Table 2 (steel material side (A)) are laminated on the steel material surface, and then the aerosolization chamber 2B side. By switching the valve of the carrier gas, the coating has a two-layer structure. After the back end portion of the coated steel material produced as described above was sealed with silicon sealant, the red rust occurrence time (SST) was measured by a salt spray test (JIS Z2371) to evaluate the corrosion resistance. Further, the surface hardness (Hv) of the film was measured. The results are also shown in Table 2.

〔比較例1〜10〕
100mm×100mm×6mmの熱延鋼板(JIS SS400相当)の表面をスチールグリッドによりブラスト処理を実施した。表面粗さは十点平均粗さ(Rz)で50μm程度であった。これにプラズマ溶射により表1に示す材料を膜厚100μm程度になるように成膜させた。上記により作製した被覆鋼材の裏端部をシリコンシーラントによりシールした後、塩水噴霧試験(JIS Z2371)により赤錆発生時間(SST)を測定し、耐食性を評価した。また皮膜の表面硬度(Hv)を測定した。その結果を、併せて表1に示す。
[Comparative Examples 1 to 10]
The surface of a 100 mm × 100 mm × 6 mm hot-rolled steel sheet (equivalent to JIS SS400) was blasted with a steel grid. The surface roughness was about 50 μm in terms of 10-point average roughness (Rz). The material shown in Table 1 was formed into a film thickness of about 100 μm by plasma spraying. After the back end portion of the coated steel material produced as described above was sealed with silicon sealant, the red rust occurrence time (SST) was measured by a salt spray test (JIS Z2371) to evaluate the corrosion resistance. Further, the surface hardness (Hv) of the film was measured. The results are also shown in Table 1.

〔比較例11〕
100mm×100mm×6mmの熱延鋼板(JIS SS400相当)を酸洗処理した後、これに硬質クロムメッキを膜厚100μmになるように施した。上記により作製した被覆鋼材の裏端部をシリコンシーラントによりシールした後、塩水噴霧試験(JIS Z2371)により赤錆発生時間(SST)を測定し、耐食性を評価した。また皮膜の表面硬度(Hv)を測定した。その結果を、併せて表1に示す。
[Comparative Example 11]
A hot-rolled steel sheet of 100 mm × 100 mm × 6 mm (equivalent to JIS SS400) was pickled and then hard chrome plated to a thickness of 100 μm. After the back end portion of the coated steel material produced as described above was sealed with silicon sealant, the red rust occurrence time (SST) was measured by a salt spray test (JIS Z2371) to evaluate the corrosion resistance. Further, the surface hardness (Hv) of the film was measured. The results are also shown in Table 1.

Figure 2007146268
Figure 2007146268

Figure 2007146268
Figure 2007146268

本発明例では、表面硬度が高く、かつ赤錆発生時間(SST)が4000時間以上となり、従来技術と比較して長期に渡る耐久性を有することが確認できた。   In the example of the present invention, the surface hardness was high and the red rust occurrence time (SST) was 4000 hours or more, and it was confirmed that it had durability over a long period of time as compared with the prior art.

本発明に係る防食被覆鋼材の製造を行うための装置構成の一例を示す図である。It is a figure which shows an example of the apparatus structure for manufacturing the anticorrosion coating | coated steel material which concerns on this invention.

符号の説明Explanation of symbols

1 高耐食牲を有する固体の微粒子
2 エアロゾル化室
3 分級室
4 ノズル
5 搬送ガス発生源
6 成膜室
7 真空ポンプ
8 鋼材
1 Solid particulates having high corrosion resistance 2 Aerosolization chamber 3 Classification chamber 4 Nozzle 5 Carrier gas generation source 6 Deposition chamber 7 Vacuum pump 8 Steel

Claims (10)

エアロゾル化させた高硬度且つ耐磨耗性を有する固体の微粒子を鋼材表面に吹き付けることで形成させた被覆膜を有することを特徴とする防食被覆鋼材。   An anticorrosion-coated steel material comprising a coating film formed by spraying aerosolized solid fine particles having high hardness and wear resistance on a steel material surface. エアロゾル化させた犠牲防食性を有する金属または合金の微粒子を鋼材表面に吹き付けることで形成させた被覆膜の上に、さらに、エアロゾル化させた高硬度且つ耐磨耗性を有する固体の微粒子を鋼材表面に吹き付けることで形成させた被覆膜を有することを特徴とする防食被覆鋼材。   On the coating film formed by spraying aerosolized metal or alloy fine particles with sacrificial anticorrosive properties onto the steel surface, aerosolized solid fine particles with high hardness and wear resistance are further formed. An anticorrosion-coated steel material comprising a coating film formed by spraying on a steel material surface. 高硬度且つ耐磨耗性を有する固体がサーメットであることを特徴とする請求項1または2に記載の防食被覆鋼材。   The anticorrosion-coated steel material according to claim 1 or 2, wherein the solid having high hardness and wear resistance is a cermet. サーメットが、炭化物系サーメット、グラファイト系サーメット、酸化物系サーメット、窒化物系サーメットのうちのいずれか1種または2種以上であることを特徴とする請求項3に記載の防食被覆鋼材。   The anticorrosion-coated steel material according to claim 3, wherein the cermet is one or more of carbide cermet, graphite cermet, oxide cermet, and nitride cermet. 犠牲防食性を有する金属または合金が、亜鉛、アルミニウム、マグネシウムのうちのいずれか1種または2種以上を含有することを特徴とする請求項2乃至4のいずれかに記載の防食被覆鋼材。   The anticorrosion-coated steel material according to any one of claims 2 to 4, wherein the metal or alloy having sacrificial corrosion resistance contains one or more of zinc, aluminum, and magnesium. 鋼材表面に、エアロゾル化させた高硬度且つ耐磨耗性を有する固体の微粒子を吹き付け、被覆膜を形成させることを特徴とする防食被覆鋼材の製造方法。   A method for producing an anticorrosion-coated steel material, characterized in that aerosolized solid fine particles having high hardness and wear resistance are sprayed onto a steel material surface to form a coating film. 鋼材表面に、エアロゾル化させた犠牲防食性を有する金属または合金の微粒子を吹き付け、被覆膜を形成させた後、該被覆膜の上に、さらに、エアロゾル化させた高硬度且つ耐磨耗性を有する固体の微粒子を吹き付け、被覆膜を積層させることを特徴とする防食被覆鋼材の製造方法。   After spraying aerosolized metal or alloy fine particles with sacrificial anticorrosive properties on the steel surface to form a coating film, the coating film is further aerosolized to have high hardness and wear resistance. A method for producing an anticorrosion-coated steel material, comprising spraying solid fine particles having properties and laminating a coating film. 高硬度且つ耐磨耗性を有する固体がサーメットであることを特徴とする請求項6または7に記載の防食被覆鋼材の製造方法。   The method for producing a corrosion-resistant coated steel material according to claim 6 or 7, wherein the solid having high hardness and wear resistance is cermet. サーメットが、炭化物系サーメット、グラファイト系サーメット、酸化物系サーメット、窒化物系サーメットのうちのいずれか1種または2種以上であることを特徴とする請求項8に記載の防食被覆鋼材の製造方法。   The method for producing an anticorrosion-coated steel material according to claim 8, wherein the cermet is one or more of carbide cermet, graphite cermet, oxide cermet, and nitride cermet. . 犠牲防食性を有する金属または合金が、亜鉛、アルミニウム、マグネシウムのうちのいずれか1種または2種以上を含有することを特徴とする請求項7乃至9のいずれかに記載の防食被覆鋼材の製造方法。
The metal or alloy having sacrificial anticorrosive properties contains at least one of zinc, aluminum, and magnesium, and the production of the anticorrosion-coated steel material according to any one of claims 7 to 9 Method.
JP2005346254A 2005-11-30 2005-11-30 Corrosion protection-coated steel material and its production method Pending JP2007146268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005346254A JP2007146268A (en) 2005-11-30 2005-11-30 Corrosion protection-coated steel material and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005346254A JP2007146268A (en) 2005-11-30 2005-11-30 Corrosion protection-coated steel material and its production method

Publications (1)

Publication Number Publication Date
JP2007146268A true JP2007146268A (en) 2007-06-14

Family

ID=38208024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005346254A Pending JP2007146268A (en) 2005-11-30 2005-11-30 Corrosion protection-coated steel material and its production method

Country Status (1)

Country Link
JP (1) JP2007146268A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009050835A1 (en) * 2007-10-16 2009-04-23 Panasonic Corporation Film formation method and film formation apparatus
JP2009136837A (en) * 2007-12-10 2009-06-25 Inax Corp Surface treatment method of object to be treated
JP2016155111A (en) * 2015-02-25 2016-09-01 国立研究開発法人産業技術総合研究所 Particle adhesion method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009050835A1 (en) * 2007-10-16 2009-04-23 Panasonic Corporation Film formation method and film formation apparatus
US8399045B2 (en) 2007-10-16 2013-03-19 Panasonic Corporation Film formation method and film formation apparatus
JP2009136837A (en) * 2007-12-10 2009-06-25 Inax Corp Surface treatment method of object to be treated
JP2016155111A (en) * 2015-02-25 2016-09-01 国立研究開発法人産業技術総合研究所 Particle adhesion method

Similar Documents

Publication Publication Date Title
US8628860B2 (en) Thermal spraying material, a thermally sprayed coating, a thermal spraying method and also a thermally coated workpiece
Gärtner et al. The cold spray process and its potential for industrial applications
US7141110B2 (en) Erosion resistant coatings and methods thereof
JP4628578B2 (en) Low temperature sprayed coating coated member and method for producing the same
JP2011140715A (en) Erosion and corrosion resistant coating system for compressor
Kekes et al. Wear micro-mechanisms of composite WC-Co/Cr-NiCrFeBSiC coatings. Part I: Dry sliding
JP2007146266A (en) Corrosion protection-covered steel material and its production method
JP2007146268A (en) Corrosion protection-coated steel material and its production method
JP2003301278A (en) Method for manufacturing complex metal and complex metallic member
JP2023503093A (en) Double layer protective coating for metal parts
EP3392378A1 (en) Method for coating steel plate with metal and metal-coated steel plate manufactured using same
JPH02236266A (en) Member for molten metal and its production
JP3881858B2 (en) Carbide cermet sprayed coating material with excellent corrosion resistance
Kim et al. Processing nanostructured metal and metal-matrix coatings by thermal and cold spraying
JP2007146267A (en) Corrosion protection-covered steel material and its production method
JPH0733567A (en) Carbon material having melt-spray coated non-oxide ceramic film and its production
Godwin et al. Tribological and Corrosion Behavior Spray Method-A Review
WO2022211114A1 (en) Ceramic coating member
JP2003105426A (en) Water-cooled lance for metallurgical use and manufacturing method therefor
JP2006213936A (en) Protective film for metallic substrate, forming method therefor and metallic substrate with protective film
JP4224150B2 (en) Roll member for molten metal plating bath and method for producing the same
JP3224166B2 (en) Material for molten metal bath
JP3379917B2 (en) Al-containing film-coated member and method for producing the same
JP2000144358A (en) Roll member for hot-dip metal coating bath, and its manufacture
Roy et al. A Review of the Cold Gas Dynamic Spraying Process