JPWO2014057862A1 - Method for producing conductive polyimide film - Google Patents

Method for producing conductive polyimide film Download PDF

Info

Publication number
JPWO2014057862A1
JPWO2014057862A1 JP2014540822A JP2014540822A JPWO2014057862A1 JP WO2014057862 A1 JPWO2014057862 A1 JP WO2014057862A1 JP 2014540822 A JP2014540822 A JP 2014540822A JP 2014540822 A JP2014540822 A JP 2014540822A JP WO2014057862 A1 JPWO2014057862 A1 JP WO2014057862A1
Authority
JP
Japan
Prior art keywords
polyimide film
conductive polyimide
polyamic acid
film
molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014540822A
Other languages
Japanese (ja)
Other versions
JP6361507B2 (en
Inventor
聡志 奥
聡志 奥
▲柳▼田 正美
正美 ▲柳▼田
伊藤 卓
卓 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Publication of JPWO2014057862A1 publication Critical patent/JPWO2014057862A1/en
Application granted granted Critical
Publication of JP6361507B2 publication Critical patent/JP6361507B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1021Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(A)ピロメリット酸二無水物を含むテトラカルボン酸二無水物成分、および、一分子に3つ以上の芳香環を有するジアミンを含むジアミン化合物成分を反応させてなるポリアミド酸、(B)導電付与剤、並びに、(C)イミド化促進剤を含有する塗膜を、乾燥およびイミド化することで、フィルム強度に優れ、かつ、所望の抵抗率を有する導電性ポリイミドフィルムを生産性良く製造できる。(A) a polyamic acid obtained by reacting a tetracarboxylic dianhydride component containing pyromellitic dianhydride and a diamine compound component containing a diamine having three or more aromatic rings in one molecule; (B) conductive By drying and imidizing the coating film containing the imparting agent and the (C) imidization accelerator, a conductive polyimide film having excellent film strength and a desired resistivity can be produced with high productivity. .

Description

本発明は導電性ポリイミドフィルムの製造方法に関する。   The present invention relates to a method for producing a conductive polyimide film.

ポリイミドフィルムは、高い機械的強度、耐熱性、耐薬品性等の理由から航空宇宙分野から電子材料分野まで幅広い分野において実用化されている。また、そのポリイミドフィルムに導電性を付与した導電性ポリイミドフィルムは、金属系電子材料の代替材料として有用であり、特に電池の電極材料、電磁シールド材、静電吸着用フィルム、帯電防止剤、画像形成装置部品、電子デバイスなどに好適に使用され得る。   Polyimide films have been put into practical use in a wide range of fields from the aerospace field to the electronic materials field because of their high mechanical strength, heat resistance, chemical resistance, and the like. In addition, conductive polyimide film with conductivity imparted to the polyimide film is useful as an alternative material for metallic electronic materials, especially battery electrode material, electromagnetic shielding material, electrostatic adsorption film, antistatic agent, image It can be suitably used for forming apparatus parts, electronic devices and the like.

導電性ポリイミドフィルムは、以下の工程で製造される。
(1)導電付与剤を分散させたポリアミド酸溶液を支持体上に流延し、塗膜を形成する工程、
(2)溶媒の揮散・除去及びイミド化を行う工程。
The conductive polyimide film is manufactured by the following process.
(1) A step of casting a polyamic acid solution in which a conductivity-imparting agent is dispersed on a support to form a coating film;
(2) A step of volatilizing / removing the solvent and imidization.

従来、極性有機溶媒中にカーボンブラックを分散させた後に、テトラカルボン酸二無水物とジアミン成分を添加し反応させてポリアミド酸溶液とし、これをイミド化させていたが、カーボンブラックの分散性が低く、カーボンブラックの凝集が起こりやすい問題がある。   Conventionally, after carbon black was dispersed in a polar organic solvent, tetracarboxylic dianhydride and a diamine component were added and reacted to form a polyamic acid solution, which was imidized. There is a problem that carbon black is likely to agglomerate.

そこで、例えば、特許文献1では、ポリアミド酸希釈溶液に界面活性剤およびカーボンブラックを分散した後、テトラカルボン酸二無水物とジアミン成分とを添加して反応させることによって、重合時におけるカーボンブラックの凝集を抑制する方法が提案されており、実施例では熱イミド化させて半導電性ポリイミドベルトを得ている。   Therefore, for example, in Patent Document 1, after dispersing a surfactant and carbon black in a polyamic acid diluted solution, tetracarboxylic dianhydride and a diamine component are added and reacted, whereby carbon black at the time of polymerization is treated. A method for suppressing aggregation has been proposed, and in the examples, a semiconductive polyimide belt is obtained by thermal imidization.

特開2007−41214号公報JP 2007-41214 A

熱イミド化法はポリイミドフィルム製造における上記工程(2)に要する時間が極めて長時間となるため、生産性に劣る傾向がある。   The thermal imidization method tends to be inferior in productivity because the time required for the step (2) in the production of the polyimide film is extremely long.

一方、化学イミド化法により導電性ポリイミドフィルムを製法する場合には、イミド化や乾燥工程時においてカーボンブラックが再凝集するという化学イミド化法に特有の問題があり、化学イミド化法に適した改良が必要になる。   On the other hand, when producing a conductive polyimide film by the chemical imidization method, there is a problem specific to the chemical imidization method in which carbon black reaggregates during imidization and drying processes, which is suitable for the chemical imidization method. Improvement is needed.

さらに、フィルム内部に含まれるカーボンブラックにより、フィルム強度が低下する場合がある。フィルム強度の低下は生産性の低下に繋がるだけでなく、金属系電子材料の代替材料としての耐久性が低下するため、好ましくない。   Furthermore, the film strength may decrease due to the carbon black contained in the film. A decrease in film strength is not preferable because it not only leads to a decrease in productivity, but also decreases the durability as a substitute material for metal-based electronic materials.

そこで本発明は、フィルム強度に優れ、かつ、所望の抵抗率を有する導電性ポリイミドフィルムを生産性良く製造できる方法を提供することである。   Then, this invention is providing the method which can manufacture the conductive polyimide film which is excellent in film strength and has a desired resistivity with sufficient productivity.

本発明者らが上記点に鑑み鋭意検討を重ねた結果、テトラカルボン酸二無水物としてピロメリット酸二無水物を、ジアミン化合物として一分子に3つ以上の芳香環を有するジアミンを含有させたもので導電性ポリイミドフィルムを化学イミド化法で製造すると、熱イミド化法と遜色なく、所望どおりの低電気抵抗率に制御できるため、乾燥時間が短時間で済み、生産性よく導電性ポリイミドフィルムを製造可能であることを知見した。さらに、得られる導電性ポリイミドフィルムがフィルム強度も有することを見出し、本発明を完成するに至った。   As a result of intensive studies by the present inventors in view of the above points, pyromellitic dianhydride was added as a tetracarboxylic dianhydride, and a diamine having three or more aromatic rings in one molecule was added as a diamine compound. If a conductive polyimide film is manufactured by a chemical imidization method, it can be controlled to the desired low electrical resistivity without inferior to the thermal imidization method. It was found that can be manufactured. Furthermore, it discovered that the conductive polyimide film obtained also had film strength, and came to complete this invention.

すなわち、本発明は、導電付与剤とポリイミド樹脂とを含有する導電性ポリイミドフィルムの製造方法であって、
(A)ピロメリット酸二無水物を含むテトラカルボン酸二無水物成分、および、
一分子に3つ以上の芳香環を有するジアミンを含むジアミン化合物成分
を反応させてなるポリアミド酸、
(B)導電付与剤、並びに、
(C)イミド化促進剤
を含有する塗膜を、乾燥およびイミド化することを特徴とする、導電性ポリイミドフィルムの製造方法に関する。
That is, the present invention is a method for producing a conductive polyimide film containing a conductivity-imparting agent and a polyimide resin,
(A) a tetracarboxylic dianhydride component containing pyromellitic dianhydride, and
A polyamic acid obtained by reacting a diamine compound component containing a diamine having three or more aromatic rings in one molecule;
(B) a conductivity-imparting agent, and
(C) It is related with the manufacturing method of the conductive polyimide film characterized by drying and imidating the coating film containing an imidation accelerator.

本発明の導電性ポリイミドフィルムの製造方法において、上記一分子に3つ以上の芳香環を有するジアミンが、分子内において下記一般式(1)〜(6)のいずれかで表される構造を有することが好ましい。   In the method for producing a conductive polyimide film of the present invention, the diamine having three or more aromatic rings per molecule has a structure represented by any one of the following general formulas (1) to (6) in the molecule. It is preferable.

Figure 2014057862
(一般式(1)〜(6)における芳香環は、その一部がハロゲン、アルキル基、ハロゲン化アルキル基、アルコキシ基、フェニル基またはフェノキシ基で置換されていてもよい。
Figure 2014057862
(The aromatic ring in the general formulas (1) to (6) may be partially substituted with a halogen, an alkyl group, a halogenated alkyl group, an alkoxy group, a phenyl group or a phenoxy group.
)

本発明の導電性ポリイミドフィルムの製造方法において、上記一分子に3つ以上の芳香環を有するジアミンが、下記一般式(7)で表される化合物であることが好ましい。   In the method for producing a conductive polyimide film of the present invention, the diamine having three or more aromatic rings per molecule is preferably a compound represented by the following general formula (7).

Figure 2014057862
(一般式(7)中、Arは芳香環を表す。XはO、直接結合、CO、C(CH32、S、SO2からなる群から選択されるいずれかであって、一分子内で全て同じでも良いし、一部または全て異なっていても良い。n≧2である。また、Arはその一部がハロゲン、アルキル基、ハロゲン化アルキル基、アルコキシ基、フェニル基、またはフェノキシ基で置換されていてもよく、一分子内で全て同じでも良いし、一部または全て異なっていても良い。)
Figure 2014057862
(In the general formula (7), Ar represents an aromatic ring. X is any one selected from the group consisting of O, direct bond, CO, C (CH 3 ) 2 , S, SO 2 , one molecule May be all the same or may be partially or completely different, and n ≧ 2, and Ar is partially halogen, alkyl group, halogenated alkyl group, alkoxy group, phenyl group, or phenoxy It may be substituted with a group, and all may be the same within a molecule, or some or all may be different.)

本発明の導電性ポリイミドフィルムの製造方法において、上記一分子に3つ以上の芳香環を有するジアミンが、下記化学式(8)〜(16)で表される化合物からなる群から選択される少なくとも一種であることが好ましい。   In the method for producing a conductive polyimide film of the present invention, the diamine having three or more aromatic rings per molecule is at least one selected from the group consisting of compounds represented by the following chemical formulas (8) to (16). It is preferable that

Figure 2014057862
Figure 2014057862

本発明の導電性ポリイミドフィルムの製造方法において、上記ピロメリット酸二無水物の含有量が上記テトラカルボン酸二無水物成分100モル%において50〜100モル%であり、および/または、上記一分子に3つ以上の芳香環を有するジアミンの含有量が前記ジアミン化合物成分100モル%において50〜100モル%である好ましい。   In the method for producing a conductive polyimide film of the present invention, the pyromellitic dianhydride content is 50 to 100 mol% in 100 mol% of the tetracarboxylic dianhydride component and / or the single molecule. The content of the diamine having three or more aromatic rings is preferably 50 to 100 mol% in 100 mol% of the diamine compound component.

本発明の導電性ポリイミドフィルムの製造方法において、上記(B)導電付与剤が炭素性導電性粒子を含むことが好ましい。   In the manufacturing method of the electroconductive polyimide film of this invention, it is preferable that the said (B) electroconductivity imparting agent contains carbonaceous electroconductive particle.

本発明の導電性ポリイミドフィルムの製造方法において、上記(B)導電付与剤の含有量が、前記(A)ポリアミド酸100重量部に対して1〜50重量部であることが好ましい。   In the manufacturing method of the electroconductive polyimide film of this invention, it is preferable that content of the said (B) electroconductivity imparting agent is 1-50 weight part with respect to 100 weight part of said (A) polyamic acids.

本発明の導電性ポリイミドフィルムの製造方法において、上記(C)イミド化促進剤が触媒と化学脱水剤を含むことが好ましい。   In the method for producing a conductive polyimide film of the present invention, it is preferable that the (C) imidization accelerator includes a catalyst and a chemical dehydrating agent.

本発明の導電性ポリイミドフィルムの製造方法において、上記(C)イミド化促進剤の触媒の使用量が、前記(A)ポリアミド酸中のアミド酸1モルに対し、0.1〜4.0モル当量の範囲内であることが好ましい。   In the method for producing a conductive polyimide film of the present invention, the amount of the (C) imidization accelerator used is 0.1 to 4.0 mol with respect to 1 mol of amide acid in the (A) polyamic acid. It is preferable to be within an equivalent range.

本発明の導電性ポリイミドフィルムの製造方法において、上記(C)イミド化促進剤の化学脱水剤の使用量が、前記(A)ポリアミド酸中のアミド酸1モルに対し、1.0〜5.0モル当量の範囲内であることが好ましい。   In the method for producing a conductive polyimide film of the present invention, the amount of the chemical dehydrating agent (C) imidization accelerator used is 1.0 to 5. with respect to 1 mol of amic acid in the (A) polyamic acid. A range of 0 molar equivalent is preferred.

本発明の導電性ポリイミドフィルムの製造方法において、導電性ポリイミドフィルムの厚みが1〜100μmの範囲であってもよい。   In the method for producing a conductive polyimide film of the present invention, the thickness of the conductive polyimide film may be in the range of 1 to 100 μm.

本発明の導電性ポリイミドフィルムの製造方法において、導電性ポリイミドフィルムは、厚み方向の体積抵抗率が1.0×10-1〜1.0×102Ωcmの範囲内であり、および/または、表面抵抗率が1.0×101〜1.0×104Ω/□の範囲内であることが好ましい。In the method for producing a conductive polyimide film of the present invention, the conductive polyimide film has a volume resistivity in the thickness direction of 1.0 × 10 −1 to 1.0 × 10 2 Ωcm, and / or The surface resistivity is preferably in the range of 1.0 × 10 1 to 1.0 × 10 4 Ω / □.

本発明の導電性ポリイミドフィルムの製造方法において、導電性ポリイミドフィルムは、引裂伝播抵抗(R、単位:g/mm)値が120〜300の範囲にあることが好ましい。   In the method for producing a conductive polyimide film of the present invention, the conductive polyimide film preferably has a tear propagation resistance (R, unit: g / mm) value in the range of 120 to 300.

本発明に係る製造方法によれば、フィルム強度に優れ、かつ、熱イミド化方法と同様に、得られる導電性ポリイミドフィルムの抵抗率を所望通りに調整することが出来る。本製造方法は乾燥時間が短時間で済むため、装置の小型化や運転速度の高速化を図ることができ、生産性に優れる。   According to the production method of the present invention, the film strength is excellent, and the resistivity of the obtained conductive polyimide film can be adjusted as desired, similarly to the thermal imidization method. Since this production method requires a short drying time, the apparatus can be downsized and the operating speed can be increased, and the productivity is excellent.

本発明の一実施形態について説明すると以下の通りであるが、本発明はこれに限定されるものではない。   An embodiment of the present invention will be described as follows, but the present invention is not limited to this.

本発明の製法で使用されるポリアミド酸は、ジアミン化合物成分とテトラカルボン酸二無水物成分とを反応させることによって得られるものであるが、テトラカルボン酸二無水物成分としてピロメリット酸二無水物を、ジアミン化合物成分として一分子に3つ以上の芳香環を有するジアミンを必須とすることを特徴とする。   The polyamic acid used in the production method of the present invention is obtained by reacting a diamine compound component with a tetracarboxylic dianhydride component, and pyromellitic dianhydride as a tetracarboxylic dianhydride component. Is essentially a diamine having three or more aromatic rings per molecule as a diamine compound component.

テトラカルボン酸二無水物成分としては、ピロメリット酸二無水物に加えて、他のテトラカルボン酸二無水物を併用してもよい。具体的には、例えば、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、4,4’−オキシフタル酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)プロパン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)エタン二無水物、オキシジフタル酸二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、p−フェニレンビス(トリメリット酸モノエステル酸無水物)、エチレンビス(トリメリット酸モノエステル酸無水物)、ビスフェノールAビス(トリメリット酸モノエステル酸無水物)及びそれらの一部がハロゲン、アルキル基、ハロゲン化アルキル基、アルコキシ基、フェニル基、フェノキシ基等で置換された誘導体などが挙げられる。   As a tetracarboxylic dianhydride component, in addition to pyromellitic dianhydride, other tetracarboxylic dianhydrides may be used in combination. Specifically, for example, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalene Tetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 4,4′-oxyphthalic acid Dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) propane Dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (2,3-dicarboxy) Phenyl) methane dianhydride Bis (3,4-dicarboxyphenyl) ethane dianhydride, oxydiphthalic dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, p-phenylenebis (trimellitic acid monoester acid anhydride ), Ethylene bis (trimellitic acid monoester acid anhydride), bisphenol A bis (trimellitic acid monoester acid anhydride) and some of them are halogen, alkyl group, halogenated alkyl group, alkoxy group, phenyl group, Examples thereof include derivatives substituted with a phenoxy group and the like.

これらテトラカルボン酸二無水物の中でも、工業的に入手しやすい点から、3,3’,4,4’−フェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、4,4’−オキシフタル酸二無水物を好ましく併用できる。   Among these tetracarboxylic dianhydrides, 3,3 ′, 4,4′-phenyltetracarboxylic dianhydride and 3,3 ′, 4,4′-benzophenonetetracarboxylic acid are industrially easily available. Acid dianhydride and 4,4′-oxyphthalic dianhydride can be preferably used in combination.

これらは一種のみを使用してもよいが、2種以上を組み合わせて使用してもよい。   These may be used alone or in combination of two or more.

ジアミン化合物成分としては、一分子に3つ以上の芳香環を有するジアミンを含むことを特徴とする。   The diamine compound component includes a diamine having three or more aromatic rings per molecule.

本発明において、芳香環とは、有機化合物の環状不飽和構造のことを指す。有機化合物の環状不飽和構造には、四〜七員環の単環式芳香環、および、複数の単環が縮合してなる多環式芳香環がある。本発明において、芳香環として好ましいものとしては、単環式芳香環のベンゼン、多環式芳香環のナフタレン、アントラセンを挙げることができ、特にベンゼンが好ましい。これら芳香環を有するジアミンであれば、ポリイミドの合成をスムーズに行うことができる。   In the present invention, the aromatic ring refers to a cyclic unsaturated structure of an organic compound. The cyclic unsaturated structure of an organic compound includes a 4- to 7-membered monocyclic aromatic ring and a polycyclic aromatic ring formed by condensing a plurality of single rings. In the present invention, examples of preferred aromatic rings include monocyclic aromatic ring benzene, polycyclic aromatic ring naphthalene, and anthracene, with benzene being particularly preferred. If it is diamine which has these aromatic rings, the synthesis | combination of a polyimide can be performed smoothly.

本発明に用いるジアミンは、一分子に3つ以上の芳香環を有するものであるが、一分子あたりの芳香環の個数の上限は10であることが好ましく、6であることがより好ましい。10より多いと、ポリイミドの合成がスムーズに進まない場合がある。3より少ないと、所望の電気抵抗率を発現しない。   The diamine used in the present invention has three or more aromatic rings per molecule, but the upper limit of the number of aromatic rings per molecule is preferably 10, and more preferably 6. If it exceeds 10, the synthesis of polyimide may not proceed smoothly. If it is less than 3, the desired electrical resistivity is not exhibited.

一分子に3つ以上の芳香環を有するジアミンは、分子内において少なくとも下記一般式(1)〜(6)のいずれかで表される構造を含むことが好ましい。   The diamine having three or more aromatic rings in one molecule preferably includes at least a structure represented by any one of the following general formulas (1) to (6) in the molecule.

Figure 2014057862
Figure 2014057862

なお、上記一般式(1)〜(6)の芳香環の一部が、ハロゲン、アルキル基、ハロゲン化アルキル基、アルコキシ基、フェニル基、またはフェノキシ基で置換されていてもよい。
上記一般式(1)〜(6)のいずれかで表される構造を含んでいれば、最終的に得られるフィルムの強度に優れる。
In addition, a part of the aromatic rings of the general formulas (1) to (6) may be substituted with a halogen, an alkyl group, a halogenated alkyl group, an alkoxy group, a phenyl group, or a phenoxy group.
If the structure represented by any one of the general formulas (1) to (6) is included, the strength of the finally obtained film is excellent.

上記一般式(1)〜(6)に示される構造のいずれかを有する、一分子に3つ以上の芳香環を有するジアミンとしては、直鎖型のものでも、分枝型のものでもよいが、下記一般式(7)で表される化合物であることが好ましい。   The diamine having any one of the structures represented by the general formulas (1) to (6) and having three or more aromatic rings in one molecule may be either a linear type or a branched type. A compound represented by the following general formula (7) is preferable.

Figure 2014057862
Figure 2014057862

上記一般式(7)中、Arは芳香環を表す。XはO、直接結合、CO、C(CH32、S、SO2からなる群から選択されるいずれかであって、一分子内で全て同じでも良いし、一部または全て異なっていても良い。n≧2である。
また、Arはその一部がハロゲン、アルキル基、ハロゲン化アルキル基、アルコキシ基、フェニル基、またはフェノキシ基で置換されていてもよく、一分子内で全て同じでも良いし、一部または全て異なっていても良い。
In the general formula (7), Ar represents an aromatic ring. X is any one selected from the group consisting of O, direct bond, CO, C (CH 3 ) 2 , S, SO 2 , and all may be the same within a molecule, or some or all may be different. Also good. n ≧ 2.
Ar may be partially substituted with a halogen, an alkyl group, a halogenated alkyl group, an alkoxy group, a phenyl group, or a phenoxy group, and may all be the same within a molecule, or may be partially or completely different. May be.

一分子に3つ以上の芳香環を有する好ましいジアミンとして、下記化学式(8)〜(16)で示される化合物およびこれらの誘導体を例示することができる。   Examples of preferred diamines having three or more aromatic rings in one molecule include compounds represented by the following chemical formulas (8) to (16) and derivatives thereof.

Figure 2014057862
Figure 2014057862

ここで、誘導体としては、上記一般式(8)〜(16)の構造式の一部が、ハロゲン、アルキル基、ハロゲン化アルキル基、アルコキシ基、フェニル基、フェノキシ基等で置換されているものが挙げられる。 Here, as the derivative, a part of the structural formulas of the general formulas (8) to (16) is substituted with a halogen, an alkyl group, a halogenated alkyl group, an alkoxy group, a phenyl group, a phenoxy group, or the like. Is mentioned.

上記化合物の他、ビス{4−(4−アミノフェノキシ)フェニル}スルホン、ビス{4−(3−アミノフェノキシ)フェニル}スルホン等も好ましく用いることができる。   Besides the above compounds, bis {4- (4-aminophenoxy) phenyl} sulfone, bis {4- (3-aminophenoxy) phenyl} sulfone, and the like can be preferably used.

一分子に3つ以上の芳香環を有するジアミンは、単独で用いても良いし、複数用いても良い。   Diamines having three or more aromatic rings per molecule may be used alone or in combination.

ジアミン化合物成分には、本発明の効果を損なわない範囲であれば、一分子に1つまたは2つの芳香環を有するジアミンを併用することができる。具体的には、例えば、4,4’−オキシジアニリン、4,4’−ジアミノジフェニルイソプロパン、4,4’−ジアミノジフェニルメタン、ベンジジン、3,3’−ジクロロベンジジン、3,3’−ジメチルベンジジン、2,2’−ジメチルベンジジン、3,3’−ジメトキシベンジジン、2,2’−ジメトキシベンジジン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,3’−オキシジアニリン、3,4’−オキシジアニリン、1,5−ジアミノナフタレン、4,4’−ジアミノジフェニルジエチルシラン、4,4’−ジアミノジフェニルシラン、4,4’−ジアミノジフェニルエチルホスフィンオキシド、4,4’−ジアミノジフェニルN−メチルアミン、4,4’−ジアミノジフェニルN−フェニルアミン、1,4−ジアミノベンゼン(p−フェニレンジアミン)、1,3−ジアミノベンゼン、1,2−ジアミノベンゼン、3,3’−ジアミノベンゾフェノン、4,4’−ジアミノベンゾフェノン及びそれらの一部がハロゲン、アルキル基、ハロゲン化アルキル基、アルコキシ基、フェニル基、フェノキシ基等で置換された誘導体などが挙げられる。   In the diamine compound component, a diamine having one or two aromatic rings per molecule can be used in combination as long as the effects of the present invention are not impaired. Specifically, for example, 4,4′-oxydianiline, 4,4′-diaminodiphenylisopropane, 4,4′-diaminodiphenylmethane, benzidine, 3,3′-dichlorobenzidine, 3,3′-dimethyl. Benzidine, 2,2′-dimethylbenzidine, 3,3′-dimethoxybenzidine, 2,2′-dimethoxybenzidine, 4,4′-diaminodiphenylsulfide, 3,3′-diaminodiphenylsulfone, 4,4′-diamino Diphenylsulfone, 3,3′-oxydianiline, 3,4′-oxydianiline, 1,5-diaminonaphthalene, 4,4′-diaminodiphenyldiethylsilane, 4,4′-diaminodiphenylsilane, 4,4 '-Diaminodiphenylethylphosphine oxide, 4,4'-diaminodiphenyl N-methyla 4,4′-diaminodiphenyl N-phenylamine, 1,4-diaminobenzene (p-phenylenediamine), 1,3-diaminobenzene, 1,2-diaminobenzene, 3,3′-diaminobenzophenone, 4, , 4′-diaminobenzophenone and derivatives thereof partially substituted with halogen, alkyl group, halogenated alkyl group, alkoxy group, phenyl group, phenoxy group and the like.

これらジアミンの中でも、工業的に入手しやすい点から、4,4’−オキシジアニリン、4,4’−ジアミノジフェニルイソプロパン、1,4−ジアミノベンゼンを好ましく併用できる。   Among these diamines, 4,4′-oxydianiline, 4,4′-diaminodiphenylisopropane, and 1,4-diaminobenzene can be preferably used in combination from the viewpoint of industrial availability.

本発明において、ピロメリット酸二無水物の含有量は、特に限定されるわけではないが、フィルム強度に優れ、かつ、高い導電性を有する導電性ポリイミドフィルムが得られる点で、テトラカルボン酸二無水物成分の全モル数100モル%において50〜100モル%含有されることが好ましく、70〜100モル%含有されることがより好ましい。   In the present invention, the content of pyromellitic dianhydride is not particularly limited, but tetracarboxylic acid dianhydride is obtained in that a conductive polyimide film having excellent film strength and high conductivity can be obtained. It is preferable that 50-100 mol% is contained in the total mole number 100 mol% of an anhydride component, and it is more preferable that 70-100 mol% is contained.

本発明において、一分子に3つ以上の芳香環を有するジアミンの含有量は、特に限定されるわけではないが、フィルム強度に優れ、かつ、高い導電性を有する導電性ポリイミドフィルムが得られる点で、ジアミン化合物成分の全モル数100モル%において50〜100モル%含有されることが好ましく、70〜100モル%含有されることがより好ましい。   In the present invention, the content of diamine having three or more aromatic rings per molecule is not particularly limited, but a conductive polyimide film having excellent film strength and high conductivity can be obtained. In the total number of moles of the diamine compound component, it is preferably 50 to 100 mol%, more preferably 70 to 100 mol%.

本発明においては、ピロメリット酸二無水物または一分子に3つ以上の芳香環を有するジアミンが上記好ましい含有量であることが好ましい。いずれか一方が上記好ましい含有量であれば、フィルム強度に優れ、かつ、高い導電性を有する導電性ポリイミドフィルムが得られやすい。フィルム強度、および、導電性が優れる点で、両方ともが上記好ましい含有量である場合がより好ましい。   In the present invention, pyromellitic dianhydride or diamine having three or more aromatic rings per molecule is preferably the above-mentioned content. If either one is the said preferable content, it will be easy to obtain the conductive polyimide film which is excellent in film strength and has high electroconductivity. The case where both are the said preferable content is more preferable at the point which is excellent in film strength and electroconductivity.

ポリアミド酸の製造としては公知のあらゆる方法を用いることができ、通常、テトラカルボン酸二無水物とジアミン化合物を、実質的等モル量を有機溶媒中に溶解させて、制御された温度条件下で、上記テトラカルボン酸二無水物とジアミン化合物の重合が完了するまで攪拌することによって製造される。   Any known method can be used for the production of the polyamic acid. Usually, a tetracarboxylic dianhydride and a diamine compound are dissolved in an organic solvent in a substantially equimolar amount, under controlled temperature conditions. , And stirring until the polymerization of the tetracarboxylic dianhydride and the diamine compound is completed.

ポリアミド酸を合成するための好ましい溶媒は、ポリアミド酸を溶解する溶媒であればいかなるものも用いることができるが、アミド系溶媒すなわちN,N−ジメチルフォルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンなどが好ましく、中でも、N,N−ジメチルフォルムアミド、N,N−ジメチルアセトアミドが特に好ましく用い得る。これらは単独で用いても良いし、2種以上の混合物であっても良い。   As the preferred solvent for synthesizing the polyamic acid, any solvent can be used as long as it dissolves the polyamic acid. However, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N- Methyl-2-pyrrolidone and the like are preferable, and among them, N, N-dimethylformamide and N, N-dimethylacetamide can be particularly preferably used. These may be used alone or as a mixture of two or more.

ポリアミド酸溶液は通常5〜35wt%が好ましく、10〜30wt%の濃度で得られることがより好ましい。この範囲の濃度である場合に適当な分子量と溶液粘度を得ることができる。   The polyamic acid solution is usually preferably 5 to 35 wt%, more preferably 10 to 30 wt%. When the concentration is in this range, an appropriate molecular weight and solution viscosity can be obtained.

重合方法としてはあらゆる公知の方法およびそれらを組み合わせた方法を用いることができる。ポリアミド酸の製造における重合方法の特徴はそのモノマーの添加順序にあり、このモノマー添加順序を制御することにより得られるポリイミドの諸物性を制御することができる。従い、本発明においてポリアミド酸の重合にはいかなるモノマーの添加方法を用いても良い。代表的な重合方法として次のような方法が挙げられる。すなわち、
1)ジアミン化合物を有機極性溶媒中に溶解し、これと実質的に等モルのテトラカルボン酸二無水物を反応させて重合する方法。
2)テトラカルボン酸二無水物とこれに対し過小モル量のジアミン化合物とを有機極性溶媒中で反応させ、両末端に酸無水物基を有するプレポリマーを得る。続いて、全工程においてテトラカルボン酸二無水物とジアミン化合物が実質的に等モルとなるようにジアミン化合物を用いて重合させる方法。
3)テトラカルボン酸二無水物とこれに対し過剰モル量のジアミン化合物とを有機極性溶媒中で反応させ、両末端にアミノ基を有するプレポリマーを得る。続いてここにジアミン化合物を追加添加後、全工程においてテトラカルボン酸二無水物とジアミン化合物が実質的に等モルとなるようにテトラカルボン酸二無水物を用いて重合する方法。
4)テトラカルボン酸二無水物を有機極性溶媒中に溶解及び/または分散させた後、実質的に等モルとなるようにジアミン化合物を用いて重合させる方法。
5)実質的に等モルのテトラカルボン酸二無水物とジアミン化合物の混合物を有機極性溶媒中で反応させて重合する方法。
などのような方法である。これら方法を単独で用いても良いし、部分的に組み合わせて用いることもできる。
As the polymerization method, any known method and a combination thereof can be used. The characteristic of the polymerization method in the production of polyamic acid is the order of addition of the monomers, and various physical properties of the resulting polyimide can be controlled by controlling the order of addition of the monomers. Therefore, in the present invention, any method of adding monomers may be used for the polymerization of polyamic acid. The following method is mentioned as a typical polymerization method. That is,
1) A method in which a diamine compound is dissolved in an organic polar solvent, and this is reacted with a substantially equimolar amount of tetracarboxylic dianhydride for polymerization.
2) A tetracarboxylic dianhydride and a minimal molar amount of a diamine compound are reacted in an organic polar solvent to obtain a prepolymer having acid anhydride groups at both ends. Then, the method of superposing | polymerizing using a diamine compound so that tetracarboxylic dianhydride and a diamine compound may become substantially equimolar in all the processes.
3) A tetracarboxylic dianhydride and an excess molar amount of a diamine compound are reacted in an organic polar solvent to obtain a prepolymer having amino groups at both ends. Subsequently, after additionally adding a diamine compound, polymerization is performed using tetracarboxylic dianhydride so that the tetracarboxylic dianhydride and the diamine compound are substantially equimolar in all steps.
4) A method in which tetracarboxylic dianhydride is dissolved and / or dispersed in an organic polar solvent and then polymerized using a diamine compound so as to be substantially equimolar.
5) A method in which a mixture of substantially equimolar tetracarboxylic dianhydride and diamine compound is reacted in an organic polar solvent for polymerization.
And so on. These methods may be used singly or in combination.

本発明の製法で使用される導電付与剤は、特に限定されるわけではないが、いわゆるフィラー系導電性樹脂組成物に含有されうる導電性フィラーであれば、公知のものを用いることでき、例えば、アルミニウム粒子、SUS粒子、炭素性導電性粒子、銀粒子、金粒子、銅粒子、チタン粒子、合金粒子などを挙げることができる。これらの中でも、比重が小さく、導電性フィルムの軽量化が容易であるなどの理由で炭素性導電性粒子を好ましく用いることができる。炭素性導電性粒子にはケッチェンブラック、アセチレンブラック、オイルファーネスブラック、カーボンナノチューブなどが挙げられるが、材料そのものの導電性が比較的高く、樹脂に対して少量の添加量で所望の高い導電性が得られやすいとの理由で特にケッチェンブラックやカーボンナノチューブを好ましく用いることが出来る。   The conductivity-imparting agent used in the production method of the present invention is not particularly limited, but any known conductive filler can be used as long as it is a conductive filler that can be contained in a so-called filler-based conductive resin composition. , Aluminum particles, SUS particles, carbon conductive particles, silver particles, gold particles, copper particles, titanium particles, alloy particles, and the like. Among these, carbon-based conductive particles can be preferably used for the reason that the specific gravity is small and the conductive film can be easily reduced in weight. Carbon conductive particles include ketjen black, acetylene black, oil furnace black, carbon nanotubes, etc., but the material itself has a relatively high conductivity, and a desired high conductivity with a small amount added to the resin. In particular, ketjen black and carbon nanotubes can be preferably used because they are easily obtained.

導電付与剤は、ポリアミド酸100重量部に対して1〜50重量部含まれることが好ましく、5〜20重量部がより好ましい。1重量部より少ないと導電性が低下し、導電性フィルムとしての機能が損なわれる場合があり、逆に50重量部より多いと得られる導電性フィルムの強度が低下し、取り扱いが困難となる場合がある。   It is preferable that 1-50 weight part is contained with respect to 100 weight part of polyamic acids, and 5-20 weight part is more preferable. When the amount is less than 1 part by weight, the conductivity may be reduced, and the function as a conductive film may be impaired. On the other hand, when the amount is more than 50 parts by weight, the strength of the obtained conductive film is reduced and handling becomes difficult. There is.

ポリアミド酸と導電付与剤との複合化、すなわち、導電付与剤を分散させたポリアミド酸溶液の調製は、例えば、
1.重合前または途中に重合反応液に導電付与剤を添加する方法、
2.重合完了後、3本ロールなどを用いて導電付与剤を混錬する方法、
3.導電付与剤を含む分散液を用意し、これをポリアミド酸溶液に混合する方法
などが挙げられ、いかなる方法を用いてもよい。導電付与剤による製造ラインの汚染を最も小さく抑えられる点から、導電付与剤を含む分散液をポリアミド酸溶液に混合する方法、特に塗膜を製造する直前に混合する方法が好ましい。導電付与剤を含む分散液を用意する場合、ポリアミド酸の重合溶媒と同じ溶媒を用いるのが好ましい。導電付与剤を良好に分散させ、また分散状態を安定化させるために分散剤、増粘剤等をフィルム物性に影響を及ぼさない範囲内で用いてもよい。導電付与剤が凝集を伴わずに安定的に分散させやすい点から、分散剤としてポリイミドの前駆体であるポリアミド酸溶液を少量添加することが好ましい。
The compounding of the polyamic acid and the conductive agent, that is, the preparation of the polyamic acid solution in which the conductive agent is dispersed is, for example,
1. A method of adding a conductivity-imparting agent to the polymerization reaction solution before or during the polymerization,
2. A method of kneading the conductivity-imparting agent using three rolls after completion of the polymerization;
3. There is a method of preparing a dispersion containing a conductivity-imparting agent and mixing it with a polyamic acid solution, and any method may be used. From the viewpoint of minimizing the contamination of the production line by the conductivity-imparting agent, a method of mixing the dispersion containing the conductivity-imparting agent with the polyamic acid solution, particularly a method of mixing immediately before producing the coating film is preferable. When preparing a dispersion containing a conductivity-imparting agent, it is preferable to use the same solvent as the polyamic acid polymerization solvent. In order to satisfactorily disperse the conductivity-imparting agent and stabilize the dispersion state, a dispersing agent, a thickener and the like may be used within a range that does not affect the physical properties of the film. It is preferable to add a small amount of a polyamic acid solution, which is a precursor of polyimide, as a dispersant because the conductivity-imparting agent is easily dispersed stably without aggregation.

上記複合化では、ボールミル、ビーズミル、サンドミル、コロイドミル、ジェットミル、ローラーミルなどを用いることが好ましい。ビーズミル、ボールミル等の方法で流動性のある液体状態になるように分散させると、フィルム化工程において、導電付与剤を分散させたポリアミド酸溶液の取り扱いが良好となる。ボールミルやビーズミルに用いるメディア径は、特に限定されるわけではないが、10mm以下が好ましい。   In the above compounding, it is preferable to use a ball mill, a bead mill, a sand mill, a colloid mill, a jet mill, a roller mill or the like. When dispersed in a fluid liquid state by a method such as a bead mill or a ball mill, the polyamic acid solution in which the conductivity-imparting agent is dispersed becomes better in the film forming step. The media diameter used in the ball mill or bead mill is not particularly limited, but is preferably 10 mm or less.

得られる導電性ポリイミドフィルムのすべり性、摺動性、熱伝導性、耐コロナ性、ループスティフネス等のフィルムの諸特性を改善する目的でフィラーを使用してもよい。フィラーとしてはいかなるものを用いても良いが、好ましい例としてはシリカ、酸化チタン、アルミナ、窒化珪素、窒化ホウ素、リン酸水素カルシウム、リン酸カルシウム、雲母などが挙げられる。   A filler may be used for the purpose of improving various properties of the resulting conductive polyimide film such as slipperiness, slidability, thermal conductivity, corona resistance, and loop stiffness. Any filler may be used, but preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica and the like.

フィラーの粒子径は改質すべきフィルム特性と添加するフィラーの種類によって決定されるため、特に限定されるものではないが、一般的には平均粒径が0.05〜100μmが好ましく、より好ましくは0.1〜75μm、更に好ましくは0.1〜50μm、特に好ましくは0.1〜25μmである。粒子径がこの範囲を下回ると改質効果が現れにくい場合があり、この範囲を上回ると表面性を大きく損なったり、フィルム強度が大きく低下したりする場合がある。   The particle size of the filler is not particularly limited because it is determined by the film characteristics to be modified and the type of filler to be added, but generally the average particle size is preferably 0.05 to 100 μm, more preferably It is 0.1 to 75 μm, more preferably 0.1 to 50 μm, and particularly preferably 0.1 to 25 μm. If the particle diameter is below this range, the modification effect may be difficult to appear, and if it exceeds this range, the surface properties may be greatly impaired, or the film strength may be greatly reduced.

フィラーの添加部数についても改質すべきフィルム特性やフィラー粒子径などにより決定されるため特に限定されるものではない。一般的にフィラーの添加量はポリイミド100重量部に対して0.01〜100重量部が好ましく、より好ましくは0.01〜90重量部、更に好ましくは0.02〜80重量部である。フィラー添加量がこの範囲を下回るとフィラーによる改質効果が現れにくい場合があり、この範囲を上回るとフィルム強度が大きく損なわれる場合がある。   The number of added parts of the filler is not particularly limited because it is determined by the film properties to be modified, the filler particle diameter, and the like. In general, the amount of filler added is preferably 0.01 to 100 parts by weight, more preferably 0.01 to 90 parts by weight, and still more preferably 0.02 to 80 parts by weight with respect to 100 parts by weight of polyimide. If the amount of filler added is below this range, the effect of modification by the filler may be difficult to appear, and if it exceeds this range, the film strength may be greatly impaired.

フィラーの添加方法は、上記複合化・分散方法を同様に適用でき、導伝付与剤の複合化・分散時に一緒に添加しても良いし、別途添加しても良い。   The above-mentioned compounding / dispersing method can be applied in the same manner as the method for adding the filler, and may be added together at the time of compounding / dispersing the conductive agent, or may be added separately.

本発明の製法は、イミド化促進剤を用いる化学イミド化法で上記ポリアミド酸をポリイミドに転化させるため、短時間の乾燥で済み、生産性に優れる。 In the production method of the present invention, since the polyamic acid is converted to polyimide by a chemical imidation method using an imidization accelerator, drying in a short time is sufficient, and productivity is excellent.

イミド化促進剤は触媒及び化学脱水剤を含んでいればよく、これら以外に溶剤を含んでいても良い。溶剤にはポリアミド酸溶液に含まれるものと同種であることが特に好ましい。   The imidization accelerator may contain a catalyst and a chemical dehydrating agent, and may contain a solvent in addition to these. The solvent is particularly preferably the same type as that contained in the polyamic acid solution.

触媒には3級アミン化合物を好適に用いることが出来る。特に好ましい化合物として、キノリン、イソキノリン、3,5−ジメチルピリジン、3,5−ジエチルピリジン、α−ピコリン、β−ピコリン、γ−ピコリンなどが挙げられる。これら化合物は、単独で用いても良いし、2種類以上の混合物として用いてもよい。   A tertiary amine compound can be preferably used as the catalyst. Particularly preferred compounds include quinoline, isoquinoline, 3,5-dimethylpyridine, 3,5-diethylpyridine, α-picoline, β-picoline, γ-picoline and the like. These compounds may be used alone or as a mixture of two or more.

触媒の使用量としては、ポリアミド酸中のアミド酸1モルに対し0.1〜4.0モル当量が好ましく、0.3〜3.0モル当量がより好ましく、0.5〜2.0モル当量がさらに好ましい。0.1モル当量より少ないと触媒としての作用が不十分となり、イミド化が完全に進まずフィルム強度が低下する問題が生じる場合がある。一方、4.0モル当量より多くしても添加量を増やすことによる効果が殆ど無く得られない上に、一連の加熱処理においても溶剤を蒸発させることが困難となり、残存量が多くなるため、得られるフィルム強度がやはり低下してしまう場合がある。   As a usage-amount of a catalyst, 0.1-4.0 molar equivalent is preferable with respect to 1 mol of amic acid in a polyamic acid, 0.3-3.0 molar equivalent is more preferable, 0.5-2.0 molar The equivalent is more preferable. When the amount is less than 0.1 molar equivalent, the action as a catalyst becomes insufficient, and imidation does not progress completely, and there may be a problem that the film strength is lowered. On the other hand, even if it exceeds 4.0 molar equivalents, the effect of increasing the addition amount is hardly obtained and it is difficult to evaporate the solvent even in a series of heat treatments, and the residual amount increases. The film strength obtained may also decrease.

化学脱水剤は特に限定されるものではないが、例えば脂肪族酸無水物、芳香族酸無水物、ハロゲン化低級脂肪酸無水物等を好適に用いることが出来る。これらは単独で用いても良いし、2種類以上の混合物として用いても良い。上記化学脱水剤の中でも特に好ましい化合物として、無水酢酸、無水プロピオン酸が挙げられる。これら化合物も、上記と同様、単独、または2種類以上の混合物として用いることが出来る。   The chemical dehydrating agent is not particularly limited, and for example, aliphatic acid anhydrides, aromatic acid anhydrides, halogenated lower fatty acid anhydrides, and the like can be suitably used. These may be used alone or as a mixture of two or more. Among the chemical dehydrating agents, particularly preferred compounds include acetic anhydride and propionic anhydride. These compounds can also be used alone or as a mixture of two or more, as described above.

化学脱水剤の使用量としては、ポリアミド酸中のアミド酸1モルに対し、1.0〜5.0モル当量が好ましく、1.2〜4.0モル当量がより好ましく、1.5〜3.0モル当量がさらに好ましい。1.0モル当量より少ないと化学脱水剤の作用によるイミド化が完全に進まず、フィルム強度が低下する問題が生じる場合がある。一方、5.0モル当量より多いと、短時間でイミド化が進行してゲル化してしまうため、塗膜を形成しにくくなる場合がある。   As a usage-amount of a chemical dehydrating agent, 1.0-5.0 molar equivalent is preferable with respect to 1 mol of amic acid in polyamic acid, 1.2-4.0 molar equivalent is more preferable, 1.5-3 More preferred is 0.0 molar equivalent. When the amount is less than 1.0 molar equivalent, imidization due to the action of the chemical dehydrating agent does not proceed completely, and there may be a problem that the film strength is lowered. On the other hand, when the amount is more than 5.0 molar equivalents, imidization proceeds and gels in a short time, which may make it difficult to form a coating film.

ポリアミド酸にイミド化促進剤を添加するときの温度は10℃以下が好ましく、5℃以下がより好ましく、0℃以下がさらに好ましい。10℃より高温になると、短時間でイミド化が進行してゲル化してしまうため、塗膜を形成しにくくなる場合がある。   The temperature at which the imidization accelerator is added to the polyamic acid is preferably 10 ° C or lower, more preferably 5 ° C or lower, and further preferably 0 ° C or lower. When the temperature is higher than 10 ° C., imidization proceeds and gels in a short time, so that it may be difficult to form a coating film.

本発明の製法は、上記ポリアミド酸、導電付与剤、およびイミド化促進剤を含む塗膜を乾燥およびイミド化させることで導電性ポリイミドフィルムを形成する。   In the production method of the present invention, a conductive polyimide film is formed by drying and imidizing a coating film containing the polyamic acid, a conductivity-imparting agent, and an imidization accelerator.

塗膜を形成する塗布法としては、例えばダイコート法、スプレー法、ロールコート法、回転塗布法、バー塗布法、インクジェット法、スクリーン印刷法、スリットコート法などの公知の方法を適宜採用することが出来る。前記のいずれかの塗布法等により金属ドラムや金属ベルト等の支持体上に塗膜し室温から200℃程度の温度で自己支持性乾燥フィルムを得た後、さらにフィルムを固定し、最終温度が600℃程度の温度まで加熱し、導電性ポリイミドフィルムを得る。フィルムの固定は、ピンテンター方式、クリップテンター方式、ロール懸垂方式など公知の方法を適宜採用することが出来、その形態にとらわれない。   As a coating method for forming a coating film, for example, a known method such as a die coating method, a spray method, a roll coating method, a spin coating method, a bar coating method, an ink jet method, a screen printing method, or a slit coating method may be appropriately employed. I can do it. After coating on a support such as a metal drum or metal belt by any of the coating methods described above and obtaining a self-supporting dry film at a temperature from room temperature to about 200 ° C., the film is further fixed, and the final temperature is Heat to a temperature of about 600 ° C. to obtain a conductive polyimide film. For fixing the film, a known method such as a pin tenter method, a clip tenter method, or a roll suspension method can be appropriately employed, and the film is not limited to the form.

加熱温度は適宜設定できるが、高い方が、イミド化が起こりやすいため、キュア速度を速くすることができ、生産性の面で好ましい。但し、温度が高すぎると熱分解を起こす可能性がある。一方、加熱温度が低すぎると、イミド化が進みにくく、キュア工程に要する時間が長くなってしまう。   The heating temperature can be set as appropriate, but a higher temperature is preferable because imidization is likely to occur, so that the curing rate can be increased, and productivity is preferable. However, if the temperature is too high, thermal decomposition may occur. On the other hand, if the heating temperature is too low, imidization is difficult to proceed, and the time required for the curing process becomes long.

加熱時間に関しては、実質的にイミド化および乾燥が完結するに十分な時間を取ればよく、一義的に限定されるものではないが、一般的には1〜600秒程度の範囲で適宜設定される。   Regarding the heating time, it suffices to take a sufficient time for imidization and drying to be substantially completed, and it is not uniquely limited, but is generally appropriately set within a range of about 1 to 600 seconds. The

本発明の製法は、支持体上における塗膜の厚み、ポリアミド酸の濃度、導電付与剤の重量部数を適宜調節することで導電性ポリイミドフィルムの厚みを適宜設定できる。塗膜の厚みは1〜1000μmであることが好ましい。1μmより薄いと最終的に得られるフィルム強度が乏しくなる場合があり、1000μmより厚いと支持体上で流動してしまう場合がある。最終的に得られる導電性ポリイミドフィルムの厚みは1〜100μmが好ましく、5〜50μmであることがより好ましい。1μmより薄いとフィルム強度が乏しくなる場合があり、100μmより厚いと均一にイミド化および乾燥することが困難になるため、機械的特性にバラツキが生じたり、発泡等の局所的な欠陥も現れやすくなる場合がある。   The manufacturing method of this invention can set the thickness of a conductive polyimide film suitably by adjusting suitably the thickness of the coating film on a support body, the density | concentration of a polyamic acid, and the weight part of a conductive provision agent. It is preferable that the thickness of a coating film is 1-1000 micrometers. If it is thinner than 1 μm, the film strength finally obtained may be poor, and if it is thicker than 1000 μm, it may flow on the support. 1-100 micrometers is preferable and, as for the thickness of the electroconductive polyimide film finally obtained, it is more preferable that it is 5-50 micrometers. If it is thinner than 1 μm, the film strength may be poor, and if it is thicker than 100 μm, it is difficult to uniformly imidize and dry, resulting in variations in mechanical properties and the appearance of local defects such as foaming. There is a case.

本発明の製法は、得られる導電性ポリイミドフィルムの厚み方向の体積抵抗率、および表面抵抗率を所望通りに調整できるため、ポリイミドの種類や導電付与剤の種類、添加量などを適宜設定できる。   In the production method of the present invention, the volume resistivity in the thickness direction and the surface resistivity of the obtained conductive polyimide film can be adjusted as desired, so that the type of polyimide, the type of conductivity-imparting agent, the amount added, and the like can be appropriately set.

導電性ポリイミドフィルムの厚み方向の体積抵抗率は1.0×10-1〜1.0×102Ωcmが好ましく、1.0×10-1〜8.0×101Ωcmがより好ましく、1.0×10-1〜5.0×101Ωcmがさらに好ましい。The volume resistivity in the thickness direction of the conductive polyimide film is preferably 1.0 × 10 −1 to 1.0 × 10 2 Ωcm, more preferably 1.0 × 10 −1 to 8.0 × 10 1 Ωcm. More preferably, it is 0.0 × 10 −1 to 5.0 × 10 1 Ωcm.

導電性ポリイミドフィルムの表面抵抗率は1.0×101〜1.0×104Ω/□が好ましく、1.0×101〜5.0×103Ω/□がより好ましく、1.0×101〜3.0×103Ω/□がさらに好ましい。The surface resistivity of the conductive polyimide film is preferably 1.0 × 10 1 to 1.0 × 10 4 Ω / □, more preferably 1.0 × 10 1 to 5.0 × 10 3 Ω / □. 0 × 10 1 to 3.0 × 10 3 Ω / □ is more preferable.

本発明の製法によって得られる導電性ポリイミドフィルムは、製膜時におけるフィルム搬送が安定的に行える観点から、導電性ポリイミドフィルムの引裂伝播抵抗(R、単位:g/mm)値が130〜300の範囲にあることが好ましい。Rの値が好ましい範囲にあれば、十分なフィルム強度を有していると判断できる。一方、Rの値が130に満たない場合、フィルム強度が不足しているため、生産性の低下のみならず耐久性の低下に繋がる場合がある。生産性および耐久性の観点から、Rの値が160〜300の範囲にあることがより好ましい。   The conductive polyimide film obtained by the manufacturing method of the present invention has a tear propagation resistance (R, unit: g / mm) value of 130 to 300 of the conductive polyimide film from the viewpoint of stably carrying the film during film formation. It is preferable to be in the range. If the value of R is in the preferred range, it can be determined that the film has sufficient film strength. On the other hand, when the value of R is less than 130, since the film strength is insufficient, not only the productivity but also the durability may be reduced. From the viewpoint of productivity and durability, the value of R is more preferably in the range of 160 to 300.

本発明の製造方法で得られる導電性ポリイミドフィルムは、導電付与剤の再凝集が抑えられており、最小限の導電付与剤の使用で所望の体積抵抗率および表面抵抗率を有する。そのため、金属系電子材料、電池の電極材料、電磁シールド材、静電吸着用フィルム、帯電防止剤、画像形成装置部品、電子デバイス等において長期にわたって安定的に使用可能になり、好適に採用することができる。   The conductive polyimide film obtained by the production method of the present invention suppresses reaggregation of the conductivity-imparting agent, and has a desired volume resistivity and surface resistivity with the use of a minimum conductivity-imparting agent. Therefore, it can be used stably over a long period of time in metal-based electronic materials, battery electrode materials, electromagnetic shielding materials, electrostatic adsorption films, antistatic agents, image forming apparatus parts, electronic devices, etc. Can do.

本発明について、実施例および比較例に基づいて効果をより具体的に説明するが、本発明はこれに限定されるものではない。当業者は本発明の範囲を逸脱することなく、種々の変更、修正、および改変を行うことができる。   The effects of the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to these. Those skilled in the art can make various changes, modifications, and alterations without departing from the scope of the present invention.

実施例および比較例で得られた導電性ポリイミドフィルムの体積抵抗率、表面抵抗率およびフィルム強度の評価は、以下のとおりに測定および評価した。 The volume resistivity, surface resistivity, and film strength of the conductive polyimide films obtained in Examples and Comparative Examples were measured and evaluated as follows.

(体積抵抗率)
得られた導電性ポリイミドフィルムを15mm□のサイズに切り抜き、両面の中央部10mm□の領域に金薄膜をスパッタ法により形成させた。金薄膜にそれぞれ銅箔を1MPaの加圧により密着させ、2つの銅箔の間に電流Iを流したときの、電位Vを測定し、測定値V/Iを体積抵抗率とした。抵抗値の測定にはLCR HiTESTER(3522−50、日置電機株式会社製)を用いた。
(Volume resistivity)
The obtained conductive polyimide film was cut out to a size of 15 mm □, and a gold thin film was formed by sputtering in the area of the central portion 10 mm □ on both sides. The copper foils were brought into close contact with the gold thin film by pressurization of 1 MPa, the potential V when the current I was passed between the two copper foils was measured, and the measured value V / I was taken as the volume resistivity. For the measurement of the resistance value, LCR HiTESTER (3522-50, manufactured by Hioki Electric Co., Ltd.) was used.

(表面抵抗率)
測定にはLORESTA−GP(MCP−T610、株式会社三菱アナリテック製)を用い、4探針プローブを得られた導電性ポリイミドフィルム表面に押し当てて表面抵抗率を測定
した。
(Surface resistivity)
For the measurement, LORESTA-GP (MCP-T610, manufactured by Mitsubishi Analytech Co., Ltd.) was used, and a four-probe probe was pressed against the surface of the obtained conductive polyimide film to measure the surface resistivity.

体積抵抗率の値が、1.0×10-1〜1.0×102Ωcmの範囲にあり、かつ表面抵抗率の値が1.0×101〜1.0×104Ω/□の範囲にあれば、電気抵抗に優れる(○)と判断し、体積抵抗率、表面抵抗率の両方がこの範囲を外れると、電気抵抗に劣る(×)と評価した。The volume resistivity value is in the range of 1.0 × 10 −1 to 1.0 × 10 2 Ωcm, and the surface resistivity value is 1.0 × 10 1 to 1.0 × 10 4 Ω / □. If it was in this range, it was judged that the electrical resistance was excellent (◯), and if both the volume resistivity and the surface resistivity were outside this range, it was evaluated that the electrical resistance was inferior (x).

(フィルム強度の評価)
得られた導電性ポリイミドフィルムの引裂伝播抵抗RはJIS K 7128 トラウザー引裂法に準じて測定した。引裂伝播抵抗(R、単位:g/mm)値が120〜300の範囲であればフィルム強度に優れる(○)と判断し、120未満であればフィルム強度に劣る(×)と評価した。
(Evaluation of film strength)
The tear propagation resistance R of the obtained conductive polyimide film was measured according to JIS K 7128 trouser tear method. When the tear propagation resistance (R, unit: g / mm) value was in the range of 120 to 300, it was judged that the film strength was excellent (◯), and when it was less than 120, the film strength was inferior (x).

(実施例1)
重合用の有機溶媒として、N,N−ジメチルフォルムアミド(以下、DMF)を用い、テトラカルボン酸二無水物としてピロメリット酸二無水物(以下、PMDA)100モル%を、ジアミン化合物として1分子に芳香環を3つ有する、1,3−ビス(4−アミノフェノキシ)ベンゼン(以下、TPE−R)100モル%を使用し、実質的にテトラカルボン酸二無水物とジアミン化合物が等モル%になるよう反応槽に添加して攪拌、重合することによりポリアミド酸溶液を合成した。このとき、得られるポリアミド酸溶液の固形分濃度は15重量%、粘度は300〜400Pa・s(東機産業株式会社製E型粘度計;TVE−22H、23℃における)となるように合成を行った。
Example 1
N, N-dimethylformamide (hereinafter referred to as DMF) is used as an organic solvent for polymerization, 100 mol% of pyromellitic dianhydride (hereinafter referred to as PMDA) is used as a tetracarboxylic dianhydride, and one molecule as a diamine compound. 1,3-bis (4-aminophenoxy) benzene (hereinafter referred to as TPE-R) having 100 mol%, and substantially equal mol% of tetracarboxylic dianhydride and diamine compound. The polyamic acid solution was synthesized by adding to the reaction vessel and stirring and polymerizing. At this time, the resulting polyamic acid solution was synthesized such that the solid content concentration was 15% by weight and the viscosity was 300 to 400 Pa · s (E-type viscometer manufactured by Toki Sangyo Co., Ltd .; TVE-22H at 23 ° C.). went.

得られたポリアミド酸溶液10重量部、ケッチェンブラック(ECP600JD、ライオン株式会社製)1重量部、および、DMF20重量部をボールミルで分散処理を施し、カーボン分散液を得た。分散には5mmφのジルコニア球を用い、回転数600rpmで30分間の処理時間とした。   10 parts by weight of the resulting polyamic acid solution, 1 part by weight of ketjen black (ECP600JD, manufactured by Lion Corporation) and 20 parts by weight of DMF were subjected to a dispersion treatment with a ball mill to obtain a carbon dispersion. For dispersion, zirconia spheres with a diameter of 5 mm were used, and the treatment time was 30 minutes at a rotation speed of 600 rpm.

さらに、得られたカーボン分散液100重量部、および、得られたポリアミド酸溶液183重量部を混合し、均一にしてカーボン分散ポリアミド酸溶液を得た。このとき、ポリアミド酸100重量部に対し、ケッチェンブラックは10重量部であった。   Furthermore, 100 parts by weight of the obtained carbon dispersion and 183 parts by weight of the obtained polyamic acid solution were mixed to obtain a uniform carbon-dispersed polyamic acid solution. At this time, ketjen black was 10 parts by weight with respect to 100 parts by weight of polyamic acid.

上記カーボン分散ポリアミド酸溶液100gに対し、イソキノリン11.4g、無水酢酸12g、およびDMF16.6gからなるイミド化促進剤を添加して均一にしたものを、アルミ箔上に最終厚みが25μmになるよう、かつ40cm幅で流延し、120℃で216秒間乾燥を行い、自己支持性フィルムを得た。自己支持性フィルムをアルミ箔から剥離した後、ピンに固定し、250℃で200秒間乾燥し、続けて400℃で64秒間乾燥を行って、導電性ポリイミドフィルムを得た。得られた導電性ポリイミドフィルムの、体積抵抗率、表面抵抗率、フィルム強度の測定を行った。   To 100 g of the above carbon-dispersed polyamic acid solution, an imidization accelerator consisting of 11.4 g of isoquinoline, 12 g of acetic anhydride, and 16.6 g of DMF is added and made uniform so that the final thickness is 25 μm on the aluminum foil. The film was cast at a width of 40 cm and dried at 120 ° C. for 216 seconds to obtain a self-supporting film. After peeling the self-supporting film from the aluminum foil, it was fixed to a pin, dried at 250 ° C. for 200 seconds, and subsequently dried at 400 ° C. for 64 seconds to obtain a conductive polyimide film. The volume resistivity, surface resistivity, and film strength of the obtained conductive polyimide film were measured.

(実施例2)
重合用の有機溶媒として、DMFを用い、テトラカルボン酸二無水物としてPMDA100モル%を、ジアミン化合物として1分子に芳香環を4つ有する、2,2’−ビス{4−(4−アミノフェノキシ)フェニル}プロパン(以下、BAPP)100モル%を使用し、実質的にテトラカルボン酸二無水物とジアミン化合物が等モル%になるよう反応槽に添加して攪拌、重合することによりポリアミド酸溶液を合成した。このとき、得られるポリアミド酸溶液の固形分濃度は15重量%、粘度は300〜400Pa・s(東機産業株式会社製E型粘度計;TVE−22H、23℃における)となるように合成を行った。
(Example 2)
2,2′-bis {4- (4-aminophenoxy) having DMF as an organic solvent for polymerization, 100 mol% of PMDA as a tetracarboxylic dianhydride, and four aromatic rings per molecule as a diamine compound ) Phenyl} propane (hereinafter referred to as BAPP) 100 mol%, and the polyamic acid solution is obtained by adding to the reaction vessel so that the tetracarboxylic dianhydride and the diamine compound are substantially equimolar, stirring and polymerizing. Was synthesized. At this time, the resulting polyamic acid solution was synthesized so that the solid content concentration was 15% by weight, and the viscosity was 300 to 400 Pa · s (E-type viscometer manufactured by Toki Sangyo Co., Ltd .; TVE-22H, at 23 ° C.). went.

得られたポリアミド酸溶液10重量部、ケッチェンブラック(ECP600JD、ライオン株式会社製)1重量部、および、DMF20重量部をボールミルで分散処理を施し、カーボン分散液を得た。分散には5mmφのジルコニア球を用い、回転数600rpmで30分間の処理時間とした。   10 parts by weight of the resulting polyamic acid solution, 1 part by weight of ketjen black (ECP600JD, manufactured by Lion Corporation) and 20 parts by weight of DMF were subjected to a dispersion treatment with a ball mill to obtain a carbon dispersion. For dispersion, zirconia spheres with a diameter of 5 mm were used, and the treatment time was 30 minutes at a rotation speed of 600 rpm.

さらに、得られたカーボン分散液100重量部、および、得られたポリアミド酸溶液183重量部を混合し、均一にしてカーボン分散ポリアミド酸溶液を得た。このとき、ポリアミド酸100重量部に対し、ケッチェンブラックは10重量部であった。   Furthermore, 100 parts by weight of the obtained carbon dispersion and 183 parts by weight of the obtained polyamic acid solution were mixed to obtain a uniform carbon-dispersed polyamic acid solution. At this time, ketjen black was 10 parts by weight with respect to 100 parts by weight of polyamic acid.

上記カーボン分散ポリアミド酸溶液100gに対し、イソキノリン9.3g、無水酢酸9.7g、およびDMF21gからなるイミド化促進剤を添加して均一にしたものを、アルミ箔上に最終厚みが25μmになるよう、かつ40cm幅で流延し、120℃で216秒間乾燥を行い、自己支持性フィルムを得た。自己支持性フィルムをアルミ箔から剥離した後、ピンに固定し、250℃で200秒間乾燥し、続けて400℃で64秒間乾燥を行って、導電性ポリイミドフィルムを得た。得られた導電性ポリイミドフィルムの、体積抵抗率、表面抵抗率、フィルム強度の測定を行った。   To 100 g of the above carbon-dispersed polyamic acid solution, an imidization accelerator consisting of 9.3 g of isoquinoline, 9.7 g of acetic anhydride, and 21 g of DMF is added and made uniform so that the final thickness is 25 μm on the aluminum foil. The film was cast at a width of 40 cm and dried at 120 ° C. for 216 seconds to obtain a self-supporting film. After peeling the self-supporting film from the aluminum foil, it was fixed to a pin, dried at 250 ° C. for 200 seconds, and subsequently dried at 400 ° C. for 64 seconds to obtain a conductive polyimide film. The volume resistivity, surface resistivity, and film strength of the obtained conductive polyimide film were measured.

(実施例3)
最終厚みが12.5μmになるようにした以外は、実施例2と同様にして導電性ポリイミドフィルムを得た。得られた導電性ポリイミドフィルムの、体積抵抗率、表面抵抗率、フィルム強度の測定を行った。
(Example 3)
A conductive polyimide film was obtained in the same manner as in Example 2 except that the final thickness was 12.5 μm. The volume resistivity, surface resistivity, and film strength of the obtained conductive polyimide film were measured.

(実施例4)
重合用の有機溶媒として、DMFを用い、テトラカルボン酸二無水物としてPMDA100モル%を、ジアミン化合物として1分子に芳香環を5つ有する、1,3−ビス{4−(3−アミノフェノキシ)ベンゾイル}ベンゼン(以下、BABB)100モル%を使用し、実質的にテトラカルボン酸二無水物とジアミン化合物が等モル%になるよう反応槽に添加して攪拌、重合することによりポリアミド酸溶液を合成した。このとき、得られるポリアミド酸溶液の固形分濃度は15重量%、粘度は300〜400Pa・s(東機産業株式会社製E型粘度計;TVE−22H、23℃における)となるように合成を行った。
Example 4
1,3-bis {4- (3-aminophenoxy) having DMF as an organic solvent for polymerization, 100 mol% PMDA as tetracarboxylic dianhydride, and five aromatic rings per molecule as a diamine compound Benzoyl} benzene (hereinafter referred to as BABB) 100 mol% is added to the reaction vessel so that the tetracarboxylic dianhydride and the diamine compound are substantially equimolar%, and stirred and polymerized to obtain a polyamic acid solution. Synthesized. At this time, the resulting polyamic acid solution was synthesized so that the solid content concentration was 15% by weight, and the viscosity was 300 to 400 Pa · s (E-type viscometer manufactured by Toki Sangyo Co., Ltd .; TVE-22H, at 23 ° C.). went.

得られたポリアミド酸溶液10重量部、ケッチェンブラック(ECP600JD、ライオン株式会社製)1重量部、および、DMF20重量部をボールミルで分散処理を施し、カーボン分散液を得た。分散には5mmφのジルコニア球を用い、回転数600rpmで30分間の処理時間とした。   10 parts by weight of the obtained polyamic acid solution, 1 part by weight of ketjen black (ECP600JD, manufactured by Lion Corporation), and 20 parts by weight of DMF were subjected to a dispersion treatment with a ball mill to obtain a carbon dispersion. For dispersion, zirconia spheres with a diameter of 5 mm were used, and the treatment time was 30 minutes at a rotation speed of 600 rpm.

さらに、得られたカーボン分散液100重量部、および、得られたポリアミド酸溶液183重量部を混合し、均一にしてカーボン分散ポリアミド酸溶液を得た。このとき、ポリアミド酸100重量部に対し、ケッチェンブラックは10重量部であった。   Furthermore, 100 parts by weight of the obtained carbon dispersion and 183 parts by weight of the obtained polyamic acid solution were mixed to obtain a uniform carbon-dispersed polyamic acid solution. At this time, ketjen black was 10 parts by weight with respect to 100 parts by weight of polyamic acid.

上記カーボン分散ポリアミド酸溶液100gに対し、イソキノリン8.1g、無水酢酸8.5g、およびDMF23.4gからなるイミド化促進剤を添加して均一にしたものを、アルミ箔上に最終厚みが25μmになるよう、かつ40cm幅で流延し、120℃で216秒間乾燥を行い、自己支持性フィルムを得た。自己支持性フィルムをアルミ箔から剥離した後、ピンに固定し、250℃で200秒間乾燥し、続けて400℃で64秒間乾燥を行って、導電性ポリイミドフィルムを得た。得られた導電性ポリイミドフィルムの、体積抵抗率、表面抵抗率、フィルム強度の測定を行った。   To 100 g of the above carbon-dispersed polyamic acid solution, an imidization accelerator consisting of 8.1 g of isoquinoline, 8.5 g of acetic anhydride, and 23.4 g of DMF was added to make a uniform thickness on an aluminum foil to a final thickness of 25 μm. The film was cast with a width of 40 cm and dried at 120 ° C. for 216 seconds to obtain a self-supporting film. After peeling the self-supporting film from the aluminum foil, it was fixed to a pin, dried at 250 ° C. for 200 seconds, and subsequently dried at 400 ° C. for 64 seconds to obtain a conductive polyimide film. The volume resistivity, surface resistivity, and film strength of the obtained conductive polyimide film were measured.

(実施例5)
重合用の有機溶媒として、DMFを用い、テトラカルボン酸二無水物としてPMDA50モル%、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物50モル%を、ジアミン化合物として1分子に芳香環を2つ有する4、4’−オキシジアニリン(以下、ODA)50モル%、1分子に芳香環を4つ有するBAPP50モル%を使用し、実質的にテトラカルボン酸二無水物とジアミン化合物が等モル%になるよう反応槽に添加して攪拌、重合することによりポリアミド酸溶液を合成した。このとき、得られるポリアミド酸溶液の固形分濃度は15重量%、粘度は300〜400Pa・s(東機産業株式会社製E型粘度計;TVE−22H、23℃における)となるように合成を行った。
(Example 5)
As an organic solvent for polymerization, DMF is used, PMDA 50 mol% as tetracarboxylic dianhydride, 50 mol% of 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride in one molecule as a diamine compound. Using 4,4′-oxydianiline (hereinafter referred to as ODA) 50 mol% having two aromatic rings and Bmol 50 mol% having four aromatic rings per molecule, substantially tetracarboxylic dianhydride and diamine A polyamic acid solution was synthesized by adding the compound to an equimolar percentage in a reaction vessel, stirring and polymerizing. At this time, the resulting polyamic acid solution was synthesized such that the solid content concentration was 15% by weight and the viscosity was 300 to 400 Pa · s (E-type viscometer manufactured by Toki Sangyo Co., Ltd .; TVE-22H at 23 ° C.). went.

得られたポリアミド酸溶液10重量部、ケッチェンブラック(ECP600JD、ライオン株式会社製)1重量部、および、DMF20重量部をボールミルで分散処理を施し、カーボン分散液を得た。分散には5mmφのジルコニア球を用い、回転数600rpmで30分間の処理時間とした。   10 parts by weight of the resulting polyamic acid solution, 1 part by weight of ketjen black (ECP600JD, manufactured by Lion Corporation) and 20 parts by weight of DMF were subjected to a dispersion treatment with a ball mill to obtain a carbon dispersion. For dispersion, zirconia spheres with a diameter of 5 mm were used, and the treatment time was 30 minutes at a rotation speed of 600 rpm.

さらに、得られたカーボン分散液100重量部、および、得られたポリアミド酸溶液183重量部を混合し、均一にしてカーボン分散ポリアミド酸溶液を得た。このとき、ポリアミド酸100重量部に対し、ケッチェンブラックは10重量部であった。   Furthermore, 100 parts by weight of the obtained carbon dispersion and 183 parts by weight of the obtained polyamic acid solution were mixed to obtain a uniform carbon-dispersed polyamic acid solution. At this time, ketjen black was 10 parts by weight with respect to 100 parts by weight of polyamic acid.

上記カーボン分散ポリアミド酸溶液100gに対し、イソキノリン10.1g、無水酢酸10.6g、およびDMF19.3gからなるイミド化促進剤を添加して均一にしたものを、アルミ箔上に最終厚みが25μmになるよう、かつ40cm幅で流延し、120℃で216秒間乾燥を行い、自己支持性フィルムを得た。自己支持性フィルムをアルミ箔から剥離した後、ピンに固定し、250℃で200秒間乾燥し、続けて400℃で64秒間乾燥を行って、導電性ポリイミドフィルムを得た。得られた導電性ポリイミドフィルムの、体積抵抗率、表面抵抗率、フィルム強度の測定を行った。   To 100 g of the above carbon-dispersed polyamic acid solution, an imidization accelerator consisting of 10.1 g of isoquinoline, 10.6 g of acetic anhydride, and 19.3 g of DMF was added and made uniform to a final thickness of 25 μm on an aluminum foil. The film was cast with a width of 40 cm and dried at 120 ° C. for 216 seconds to obtain a self-supporting film. After peeling the self-supporting film from the aluminum foil, it was fixed to a pin, dried at 250 ° C. for 200 seconds, and subsequently dried at 400 ° C. for 64 seconds to obtain a conductive polyimide film. The volume resistivity, surface resistivity, and film strength of the obtained conductive polyimide film were measured.

(実施例6)
実施例2において、イソキノリンの代わりに3,5−ジエチルピリジンを使用するようにした以外は同様にして導電性ポリイミドフィルムを得た。得られた導電性ポリイミドフィルムの、体積抵抗率、表面抵抗率、フィルム強度の測定を行った。
(Example 6)
A conductive polyimide film was obtained in the same manner as in Example 2, except that 3,5-diethylpyridine was used instead of isoquinoline. The volume resistivity, surface resistivity, and film strength of the obtained conductive polyimide film were measured.

(比較例1)
重合用の有機溶媒として、DMFを用い、テトラカルボン酸二無水物としてPMDA100モル%を、ジアミン化合物として1分子に芳香環を1つ有するp−フェニレンジアミン(以下、p−PDA)100モル%を使用し、実質的にテトラカルボン酸二無水物とジアミン化合物が等モル%になるよう反応槽に添加して攪拌、重合することによりポリアミド酸溶液を合成した。このとき、得られるポリアミド酸溶液の固形分濃度は15重量%、粘度は300〜400Pa・s(東機産業株式会社製E型粘度計;TVE−22H、23℃における)となるように合成を行った。
(Comparative Example 1)
As an organic solvent for polymerization, DMF was used as tetracarboxylic dianhydride, 100 mol% of PMDA as a diamine compound, and 100 mol% of p-phenylenediamine (hereinafter referred to as p-PDA) having one aromatic ring per molecule as a diamine compound. The polyamic acid solution was synthesized by adding to the reaction vessel and stirring and polymerizing so that the tetracarboxylic dianhydride and the diamine compound were substantially equimolar%. At this time, the resulting polyamic acid solution was synthesized so that the solid content concentration was 15% by weight, and the viscosity was 300 to 400 Pa · s (E-type viscometer manufactured by Toki Sangyo Co., Ltd .; TVE-22H, at 23 ° C.). went.

得られたポリアミド酸溶液10重量部、ケッチェンブラック(ECP600JD、ライオン株式会社製)1重量部、および、DMF20重量部をボールミルで分散処理を施し、カーボン分散液を得た。分散には5mmφのジルコニア球を用い、回転数600rpmで30分間の処理時間とした。   10 parts by weight of the resulting polyamic acid solution, 1 part by weight of ketjen black (ECP600JD, manufactured by Lion Corporation) and 20 parts by weight of DMF were subjected to a dispersion treatment with a ball mill to obtain a carbon dispersion. For dispersion, zirconia spheres with a diameter of 5 mm were used, and the treatment time was 30 minutes at a rotation speed of 600 rpm.

さらに、得られたカーボン分散液100重量部、および、得られたポリアミド酸溶液183重量部を混合し、均一にしてカーボン分散ポリアミド酸溶液を得た。このとき、ポリアミド酸100重量部に対し、ケッチェンブラックは10重量部であった。   Furthermore, 100 parts by weight of the obtained carbon dispersion and 183 parts by weight of the obtained polyamic acid solution were mixed to obtain a uniform carbon-dispersed polyamic acid solution. At this time, ketjen black was 10 parts by weight with respect to 100 parts by weight of polyamic acid.

上記カーボン分散ポリアミド酸溶液100gに対し、イソキノリン17.8g、無水酢酸18.8g、およびDMF3.4gからなるイミド化促進剤を添加して均一にしたものを、アルミ箔上に最終厚みが25μmになるよう、かつ40cm幅で流延し、120℃で216秒間乾燥を行い、自己支持性フィルムを得た。自己支持性フィルムをアルミ箔から剥離した後、ピンに固定し、250℃で200秒間乾燥し、続けて400℃で64秒間乾燥を行って、導電性ポリイミドフィルムを得た。得られた導電性ポリイミドフィルムの、体積抵抗率、表面抵抗率、フィルム強度の測定を行った。   To 100 g of the above carbon-dispersed polyamic acid solution, an imidization accelerator consisting of 17.8 g of isoquinoline, 18.8 g of acetic anhydride, and 3.4 g of DMF was added and made uniform to a final thickness of 25 μm on an aluminum foil. The film was cast with a width of 40 cm and dried at 120 ° C. for 216 seconds to obtain a self-supporting film. After peeling the self-supporting film from the aluminum foil, it was fixed to a pin, dried at 250 ° C. for 200 seconds, and subsequently dried at 400 ° C. for 64 seconds to obtain a conductive polyimide film. The volume resistivity, surface resistivity, and film strength of the obtained conductive polyimide film were measured.

(比較例2)
重合用の有機溶媒として、DMFを用い、テトラカルボン酸二無水物としてPMDA100モル%を、ジアミン化合物として1分子に芳香環を2つ有するODA100モル%を使用し、実質的にテトラカルボン酸二無水物とジアミン化合物が等モル%になるよう反応槽に添加して攪拌、重合することによりポリアミド酸溶液を合成した。このとき、得られるポリアミド酸溶液の固形分濃度は15重量%、粘度は300〜400Pa・s(東機産業株式会社製E型粘度計;TVE−22H、23℃における)となるように合成を行った。
(Comparative Example 2)
As an organic solvent for polymerization, DMF is used, PMDA 100 mol% is used as tetracarboxylic dianhydride, and ODA 100 mol% having two aromatic rings in one molecule is used as a diamine compound, and tetracarboxylic dianhydride is substantially used. The polyamic acid solution was synthesized by adding the product and the diamine compound to an equimolar percentage in a reaction vessel, stirring and polymerizing. At this time, the resulting polyamic acid solution was synthesized so that the solid content concentration was 15% by weight, and the viscosity was 300 to 400 Pa · s (E-type viscometer manufactured by Toki Sangyo Co., Ltd .; TVE-22H, at 23 ° C.). went.

得られたポリアミド酸溶液10重量部、ケッチェンブラック(ECP600JD、ライオン株式会社製)1重量部、および、DMF20重量部をボールミルで分散処理を施し、カーボン分散液を得た。分散には5mmφのジルコニア球を用い、回転数600rpmで30分間の処理時間とした。   10 parts by weight of the resulting polyamic acid solution, 1 part by weight of ketjen black (ECP600JD, manufactured by Lion Corporation) and 20 parts by weight of DMF were subjected to a dispersion treatment with a ball mill to obtain a carbon dispersion. For dispersion, zirconia spheres with a diameter of 5 mm were used, and the treatment time was 30 minutes at a rotation speed of 600 rpm.

さらに、得られたカーボン分散液100重量部、および、得られたポリアミド酸溶液183重量部を混合し、均一にしてカーボン分散ポリアミド酸溶液を得た。このとき、ポリアミド酸100重量部に対し、ケッチェンブラックは10重量部であった。   Furthermore, 100 parts by weight of the obtained carbon dispersion and 183 parts by weight of the obtained polyamic acid solution were mixed to obtain a uniform carbon-dispersed polyamic acid solution. At this time, ketjen black was 10 parts by weight with respect to 100 parts by weight of polyamic acid.

上記カーボン分散ポリアミド酸溶液100gに対し、イソキノリン13.9g、無水酢酸14.6g、およびDMF11.5gからなるイミド化促進剤を添加して均一にしたものを、アルミ箔上に最終厚みが25μmになるよう、かつ40cm幅で流延し、120℃で216秒間乾燥を行い、自己支持性フィルムを得た。自己支持性フィルムをアルミ箔から剥離した後、ピンに固定し、250℃で200秒間乾燥し、続けて400℃で64秒間乾燥を行って、導電性ポリイミドフィルムを得た。得られた導電性ポリイミドフィルムの、体積抵抗率、表面抵抗率、フィルム強度の測定を行った。   To 100 g of the above carbon-dispersed polyamic acid solution, an imidization accelerator consisting of 13.9 g of isoquinoline, 14.6 g of acetic anhydride, and 11.5 g of DMF was added and made uniform to a final thickness of 25 μm on an aluminum foil. The film was cast with a width of 40 cm and dried at 120 ° C. for 216 seconds to obtain a self-supporting film. After peeling the self-supporting film from the aluminum foil, it was fixed to a pin, dried at 250 ° C. for 200 seconds, and subsequently dried at 400 ° C. for 64 seconds to obtain a conductive polyimide film. The volume resistivity, surface resistivity, and film strength of the obtained conductive polyimide film were measured.

(比較例3)
実施例2で得たカーボン分散ポリアミド酸溶液100gを、PETフィルムに最終厚みが25μmになるよう、かつ40cm幅で流延し、70℃で600秒間乾燥を行った。乾燥後の自己支持性フィルムをPETフィルムから剥離した後、ピンテンターに固定し、160℃から300℃まで450秒かけて昇温しながら乾燥し、続けて400℃で180秒間乾燥を行って導電性ポリイミドフィルムを得た。得られた導電性ポリイミドフィルムの、体積抵抗率、表面抵抗率、フィルム強度の測定を行った。
(Comparative Example 3)
100 g of the carbon-dispersed polyamic acid solution obtained in Example 2 was cast on a PET film so as to have a final thickness of 25 μm and a width of 40 cm, and dried at 70 ° C. for 600 seconds. After the dried self-supporting film is peeled off from the PET film, it is fixed to a pin tenter and dried while heating from 160 ° C. to 300 ° C. over 450 seconds, followed by drying at 400 ° C. for 180 seconds to conduct electricity. A polyimide film was obtained. The volume resistivity, surface resistivity, and film strength of the obtained conductive polyimide film were measured.

(比較例4)
比較例2で得たカーボン分散ポリアミド酸溶液100gを、PETフィルムに最終厚みが25μmになるよう、かつ40cm幅で流延し、70℃で600秒間乾燥を行った。乾燥後の自己支持性フィルムをPETフィルムから剥離した後、ピンテンターに固定し、160℃から300℃まで450秒かけて昇温しながら乾燥し、続けて400℃で180秒間乾燥を行って導電性ポリイミドフィルムを得た。得られた導電性ポリイミドフィルムの、体積抵抗率、表面抵抗率、フィルム強度の測定を行った。
(Comparative Example 4)
100 g of the carbon-dispersed polyamic acid solution obtained in Comparative Example 2 was cast on a PET film so as to have a final thickness of 25 μm and a width of 40 cm, and dried at 70 ° C. for 600 seconds. After the dried self-supporting film is peeled off from the PET film, it is fixed to a pin tenter and dried while heating from 160 ° C. to 300 ° C. over 450 seconds, followed by drying at 400 ° C. for 180 seconds to conduct electricity. A polyimide film was obtained. The volume resistivity, surface resistivity, and film strength of the obtained conductive polyimide film were measured.

以上の実施例および比較例のフィルムの評価結果を表1に示す。   Table 1 shows the evaluation results of the films of the above Examples and Comparative Examples.

Figure 2014057862
Figure 2014057862

表1に示されるとおり、実施例1〜6で得られた導電性ポリイミドフィルムは電気抵抗、フィルム強度ともに良好であるのに対し、比較例1〜2で得られた導電性ポリイミドフィルムは電気抵抗、フィルム強度を両立し得なかった。
また、実施例2と比較例3は同じポリイミド構造のものを化学イミド化法、熱イミド化法それぞれの製法で製造したが、製法によらず、同等の電気抵抗、およびフィルム強度の導電性ポリイミドフィルムが得られた。一方、比較例2と比較例4は同じポリイミド構造のものを化学イミド化法、熱イミド化法それぞれの製法で製造したが、化学イミド化法のものは電気抵抗が高く、熱イミド化法と同等の導電性ポリイミドフィルムを得ることができなかった。
As shown in Table 1, the conductive polyimide films obtained in Examples 1 to 6 have good electrical resistance and film strength, whereas the conductive polyimide films obtained in Comparative Examples 1 and 2 have electrical resistance. The film strength could not be compatible.
In addition, Example 2 and Comparative Example 3 were manufactured using the same polyimide structure by the chemical imidization method and the thermal imidization method, respectively. However, regardless of the production method, conductive polyimide having the same electrical resistance and film strength was used. A film was obtained. On the other hand, Comparative Example 2 and Comparative Example 4 were prepared with the same polyimide structure by the chemical imidization method and the thermal imidization method, respectively, but the chemical imidization method had a high electrical resistance, An equivalent conductive polyimide film could not be obtained.

これにより、本発明の製造方法が有効であることは明らかである。   Thus, it is clear that the production method of the present invention is effective.

Claims (13)

導電付与剤とポリイミド樹脂とを含有する導電性ポリイミドフィルムの製造方法であって、
(A)ピロメリット酸二無水物を含むテトラカルボン酸二無水物成分、および、
一分子に3つ以上の芳香環を有するジアミンを含むジアミン化合物成分
を反応させてなるポリアミド酸、
(B)導電付与剤、並びに、
(C)イミド化促進剤
を含有する塗膜を、乾燥およびイミド化することを特徴とする、導電性ポリイミドフィルムの製造方法。
A method for producing a conductive polyimide film containing a conductivity-imparting agent and a polyimide resin,
(A) a tetracarboxylic dianhydride component containing pyromellitic dianhydride, and
A polyamic acid obtained by reacting a diamine compound component containing a diamine having three or more aromatic rings in one molecule;
(B) a conductivity-imparting agent, and
(C) A method for producing a conductive polyimide film, comprising drying and imidizing a coating film containing an imidization accelerator.
前記一分子に3つ以上の芳香環を有するジアミンが、分子内において下記一般式(1)〜(6)のいずれかで表される構造を有する、請求項1に記載の導電性ポリイミドフィルムの製造方法。
Figure 2014057862
(一般式(1)〜(6)における芳香環は、その一部がハロゲン、アルキル基、ハロゲン化アルキル基、アルコキシ基、フェニル基またはフェノキシ基で置換されていてもよい。)
The conductive polyimide film according to claim 1, wherein the diamine having three or more aromatic rings in one molecule has a structure represented by any one of the following general formulas (1) to (6) in the molecule. Production method.
Figure 2014057862
(The aromatic ring in the general formulas (1) to (6) may be partially substituted with a halogen, an alkyl group, a halogenated alkyl group, an alkoxy group, a phenyl group or a phenoxy group.)
前記一分子に3つ以上の芳香環を有するジアミンが、下記一般式(7)で表される化合物である、請求項1または2に記載の導電性ポリイミドフィルムの製造方法。
Figure 2014057862
(一般式(7)中、Arは芳香環を表す。XはO、直接結合、CO、C(CH32、S、SO2からなる群から選択されるいずれかであって、一分子内で全て同じでも良いし、一部または全て異なっていても良い。n≧2である。また、Arはその一部がハロゲン、アルキル基、ハロゲン化アルキル基、アルコキシ基、フェニル基、またはフェノキシ基で置換されていてもよく、一分子内で全て同じでも良いし、一部または全て異なっていても良い。)
The manufacturing method of the conductive polyimide film of Claim 1 or 2 whose diamine which has a 3 or more aromatic ring in the said molecule | numerator is a compound represented by following General formula (7).
Figure 2014057862
(In the general formula (7), Ar represents an aromatic ring. X is any one selected from the group consisting of O, direct bond, CO, C (CH 3 ) 2 , S, SO 2 , one molecule May be all the same or may be partially or completely different, and n ≧ 2, and Ar is partially halogen, alkyl group, halogenated alkyl group, alkoxy group, phenyl group, or phenoxy It may be substituted with a group, and all may be the same within a molecule, or some or all may be different.)
前記一分子に3つ以上の芳香環を有するジアミンが、下記化学式(8)〜(16)で表される化合物からなる群から選択される少なくとも一種である、請求項1〜3のいずれか一項に記載の導電性ポリイミドフィルムの製造方法。
Figure 2014057862
The diamine having three or more aromatic rings in one molecule is at least one selected from the group consisting of compounds represented by the following chemical formulas (8) to (16). The manufacturing method of the electroconductive polyimide film as described in a term.
Figure 2014057862
前記ピロメリット酸二無水物の含有量が前記テトラカルボン酸二無水物成分100モル%において50〜100モル%であり、および/または、
前記一分子に3つ以上の芳香環を有するジアミンの含有量が前記ジアミン化合物成分100モル%において50〜100モル%である、請求項1〜4のいずれか一項に記載の導電性ポリイミドフィルムの製造方法。
The pyromellitic dianhydride content is 50 to 100 mol% in 100 mol% of the tetracarboxylic dianhydride component, and / or
The conductive polyimide film according to any one of claims 1 to 4, wherein the content of a diamine having three or more aromatic rings in one molecule is 50 to 100 mol% in 100 mol% of the diamine compound component. Manufacturing method.
前記(B)導電付与剤が炭素性導電性粒子を含む、請求項1〜5のいずれか一項に記載の導電性ポリイミドフィルムの製造方法。   The manufacturing method of the conductive polyimide film as described in any one of Claims 1-5 in which the said (B) electroconductivity imparting agent contains carbonaceous electroconductive particle. 前記(B)導電付与剤の含有量が、前記(A)ポリアミド酸100重量部に対して1〜50重量部である、請求項1〜6のいずれか一項に記載の導電性ポリイミドフィルムの製造方法。   The conductive polyimide film according to any one of claims 1 to 6, wherein the content of the (B) conductivity-imparting agent is 1 to 50 parts by weight with respect to 100 parts by weight of the (A) polyamic acid. Production method. 前記(C)イミド化促進剤が触媒と化学脱水剤を含む、請求項1〜7のいずれか一項に記載の導電性ポリイミドフィルムの製造方法。   The manufacturing method of the conductive polyimide film as described in any one of Claims 1-7 in which the said (C) imidation promoter contains a catalyst and a chemical dehydrating agent. 前記(C)イミド化促進剤の触媒の使用量が、前記(A)ポリアミド酸中のアミド酸1モルに対し、0.1〜4.0モル当量の範囲内である、請求項8に記載の導電性ポリイミドフィルムの製造方法。   The usage-amount of the catalyst of the said (C) imidation accelerator is in the range of 0.1-4.0 molar equivalent with respect to 1 mol of amic acid in the said (A) polyamic acid, The Claim 8 The manufacturing method of the conductive polyimide film. 前記(C)イミド化促進剤の化学脱水剤の使用量が、前記(A)ポリアミド酸中のアミド酸1モルに対し、1.0〜5.0モル当量の範囲内である、請求項8〜9のいずれか一項に記載の導電性ポリイミドフィルムの製造方法。   The usage-amount of the chemical dehydrating agent of the said (C) imidation accelerator is in the range of 1.0-5.0 molar equivalent with respect to 1 mol of amic acid in the said (A) polyamic acid. The manufacturing method of the electroconductive polyimide film as described in any one of -9. 導電性ポリイミドフィルムの厚みが1〜100μmの範囲である、請求項1〜10のいずれか一項に記載の導電性ポリイミドフィルムの製造方法。   The manufacturing method of the conductive polyimide film as described in any one of Claims 1-10 whose thickness of a conductive polyimide film is the range of 1-100 micrometers. 導電性ポリイミドフィルムは、厚み方向の体積抵抗率が1.0×10-1〜1.0×102Ωcmの範囲内であり、および/または、
表面抵抗率が1.0×101〜1.0×104Ω/□の範囲内である、
請求項1〜11のいずれか一項に記載の導電性ポリイミドフィルムの製造方法。
The conductive polyimide film has a volume resistivity in the thickness direction of 1.0 × 10 −1 to 1.0 × 10 2 Ωcm, and / or
The surface resistivity is in the range of 1.0 × 10 1 to 1.0 × 10 4 Ω / □,
The manufacturing method of the electroconductive polyimide film as described in any one of Claims 1-11.
導電性ポリイミドフィルムは、引裂伝播抵抗(R、単位:g/mm)値が120〜300の範囲にある、請求項1〜12のいずれか一項に記載の導電性ポリイミドフィルムの製造方法。   The method for producing a conductive polyimide film according to any one of claims 1 to 12, wherein the conductive polyimide film has a tear propagation resistance (R, unit: g / mm) value in a range of 120 to 300.
JP2014540822A 2012-10-10 2013-10-03 Method for producing conductive polyimide film Active JP6361507B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012225430 2012-10-10
JP2012225430 2012-10-10
PCT/JP2013/076942 WO2014057862A1 (en) 2012-10-10 2013-10-03 Process for manufacturing conductive polyimide film

Publications (2)

Publication Number Publication Date
JPWO2014057862A1 true JPWO2014057862A1 (en) 2016-09-05
JP6361507B2 JP6361507B2 (en) 2018-07-25

Family

ID=50477329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014540822A Active JP6361507B2 (en) 2012-10-10 2013-10-03 Method for producing conductive polyimide film

Country Status (4)

Country Link
JP (1) JP6361507B2 (en)
CN (1) CN104704025A (en)
TW (1) TWI605474B (en)
WO (1) WO2014057862A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6621248B2 (en) * 2014-06-27 2019-12-18 東京応化工業株式会社 Black composition
CN110358295A (en) * 2019-08-22 2019-10-22 深圳先进技术研究院 It is a kind of with electromagnetic shielding and the polyimide composite film of thermally conductive function and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170626A (en) * 1984-02-15 1985-09-04 Nitto Electric Ind Co Ltd Electrically conductive paste composition for electronic part
JPH06212075A (en) * 1992-12-15 1994-08-02 E I Du Pont De Nemours & Co Preparation of polyimide molding article containing pigment
JPH08143665A (en) * 1994-11-22 1996-06-04 Toho Rayon Co Ltd Electrically conductive composite and its production
JP2008188954A (en) * 2007-02-07 2008-08-21 Kaneka Corp Base material for single-sided metal-clad laminated sheet and manufacturing method of single-sided metal-clad laminated sheet
JP2011065020A (en) * 2009-09-18 2011-03-31 Fuji Xerox Co Ltd Polyimide polymer composition, polyimide endless belt, method of manufacturing polyimide endless belt, belt unit, and image forming apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2634220B1 (en) * 2010-10-28 2017-05-03 Kaneka Corporation Process for production of electrically conductive polyimide film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170626A (en) * 1984-02-15 1985-09-04 Nitto Electric Ind Co Ltd Electrically conductive paste composition for electronic part
JPH06212075A (en) * 1992-12-15 1994-08-02 E I Du Pont De Nemours & Co Preparation of polyimide molding article containing pigment
JPH08143665A (en) * 1994-11-22 1996-06-04 Toho Rayon Co Ltd Electrically conductive composite and its production
JP2008188954A (en) * 2007-02-07 2008-08-21 Kaneka Corp Base material for single-sided metal-clad laminated sheet and manufacturing method of single-sided metal-clad laminated sheet
JP2011065020A (en) * 2009-09-18 2011-03-31 Fuji Xerox Co Ltd Polyimide polymer composition, polyimide endless belt, method of manufacturing polyimide endless belt, belt unit, and image forming apparatus

Also Published As

Publication number Publication date
WO2014057862A1 (en) 2014-04-17
TWI605474B (en) 2017-11-11
JP6361507B2 (en) 2018-07-25
TW201423769A (en) 2014-06-16
CN104704025A (en) 2015-06-10

Similar Documents

Publication Publication Date Title
EP2634220B1 (en) Process for production of electrically conductive polyimide film
US20130240777A1 (en) Highly thermal-conductive polyimide film containing graphite powder
CN108117658A (en) The preparation method of electrostatic prevention suction agglomeration imide membrane
WO2006093027A1 (en) Method for producing polyimide film
JP5349492B2 (en) Conductive material and manufacturing method thereof
JP6102918B2 (en) Method for producing conductive polyimide film
JP4392578B2 (en) Sliding polyimide film and method for producing the same
JP5783789B2 (en) Method for producing conductive polyimide film
JP6499450B2 (en) Graphene oxide composite composition
JP2004035825A (en) Semiconductive polyimide film and method of producing the same
JP6361507B2 (en) Method for producing conductive polyimide film
JP5428172B2 (en) Method for producing polyimide film
JP5810833B2 (en) Method for producing conductive polyimide film
JP2007298692A (en) Anisotropic conductive polyimide belt and method for manufacturing the same
JP2016000769A (en) Method for producing conductive polyimide film
JP2004115788A (en) Polyimide film and method for producing the same
CN102030988A (en) Seamless belt and preparation method thereof
JP2004107658A (en) Polyimide film and method for producing the same
JP5464636B2 (en) Method for producing polyimide film and obtained polyimide film
JP2004094008A (en) Polyamide acid solution and semiconductive polyimide belt
JP2016139040A (en) Intermediate transfer belt for image forming apparatus
JP2009091443A (en) Polyimide film producing method and polyimide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180611

R150 Certificate of patent or registration of utility model

Ref document number: 6361507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250