JPWO2014057519A1 - Cold-rolled steel sheet having excellent shape freezing property and manufacturing method thereof - Google Patents

Cold-rolled steel sheet having excellent shape freezing property and manufacturing method thereof Download PDF

Info

Publication number
JPWO2014057519A1
JPWO2014057519A1 JP2014540643A JP2014540643A JPWO2014057519A1 JP WO2014057519 A1 JPWO2014057519 A1 JP WO2014057519A1 JP 2014540643 A JP2014540643 A JP 2014540643A JP 2014540643 A JP2014540643 A JP 2014540643A JP WO2014057519 A1 JPWO2014057519 A1 JP WO2014057519A1
Authority
JP
Japan
Prior art keywords
less
cold
steel sheet
rolled steel
sheet according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014540643A
Other languages
Japanese (ja)
Inventor
太郎 木津
太郎 木津
藤田 耕一郎
耕一郎 藤田
秀晴 古賀
秀晴 古賀
容任 森川
容任 森川
健司 田原
健司 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2014057519A1 publication Critical patent/JPWO2014057519A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Abstract

形状凍結性に優れた冷延鋼板およびその製造方法を提供する。質量%で、C:0.0010〜0.0030%、Si:0.05%以下、Mn: 0.1〜0.5%、Ti:0.021〜0.060%、B:0.0005〜0.0050%を含み、かつBとCを、B/Cが0.5以上を満たすように含有する組成の鋼素材に、仕上圧延終了温度:870〜950℃とする仕上圧延を施し、巻取温度:450〜630℃で巻き取る熱延工程と、冷延圧下率:90%以下とする冷延工程と、冷延工程後、600℃以上の温度域を1〜30℃/sの平均加熱速度で、700〜850℃の範囲の均熱温度まで加熱し、30〜200s間保持したのち、600℃までの温度域を平均で3℃/s以上の冷却速度で、冷却する焼鈍工程を施す。これにより、平均粒径:10〜30μmのフェライトを主体とする組織を有し、比例限が100MPa以下である、形状凍結性に優れた冷延鋼板が得られる。A cold-rolled steel sheet having excellent shape freezing properties and a method for producing the same are provided. In mass%, C: 0.0010 to 0.0030%, Si: 0.05% or less, Mn: 0.1 to 0.5%, Ti: 0.021 to 0.060%, B: 0.0005 to 0.0050%, and B and C, A steel material having a composition contained so as to satisfy 0.5 or more is subjected to finish rolling at a finish rolling finish temperature of 870 to 950 ° C and wound at a winding temperature of 450 to 630 ° C, and a cold rolling reduction ratio : 90% or less of the cold rolling process, and after the cold rolling process, the temperature range of 600 ° C. or higher is heated to a soaking temperature in the range of 700 to 850 ° C. at an average heating rate of 1 to 30 ° C./s, 30 After holding for ˜200 s, an annealing step is performed in which the temperature range up to 600 ° C. is cooled at an average cooling rate of 3 ° C./s or more. Thereby, a cold-rolled steel sheet having a structure mainly composed of ferrite having an average particle diameter of 10 to 30 μm and having a proportional limit of 100 MPa or less and excellent in shape freezing property is obtained.

Description

本発明は、電機、自動車、建材などの分野で形状精度の厳しい部品の部材用として好適な、成形性に優れた冷延鋼板およびその製造方法に係り、とくに、形状凍結性(shape fixability)の向上に関する。   The present invention relates to a cold-rolled steel sheet excellent in formability and suitable for use as a member for parts having severe shape accuracy in the fields of electric machinery, automobiles, building materials, and the like, and in particular, has a shape fixability. Regarding improvement.

近年、地球環境の保全のため、排出CO2量の削減という観点から自動車燃費の低減が要求されている。このような燃費低減要求に対し、自動車車体の軽量化が指向され、さらに低コスト化の要求と相まって、使用する鋼材の薄肉化を図り、鋼材使用量削減という要望が大きくなっている。しかし、鋼材(鋼板)を薄肉化すると部品剛性が低下し、部品のたわみ、べこつき、反りなどの問題が顕在化してくる。さらに、AV、OA機器などの家電分野では、部品の寸法精度に対する要求も厳しくなってきており、形状凍結性に優れた鋼板に対する要求は益々大きくなってきている。In recent years, in order to preserve the global environment, reduction of automobile fuel consumption has been demanded from the viewpoint of reducing the amount of CO 2 emissions. In response to such demands for reducing fuel consumption, the weight reduction of automobile bodies is aimed at, and coupled with the demand for cost reduction, there is a growing demand for reducing the amount of steel used by reducing the thickness of steel used. However, if the thickness of the steel (steel plate) is reduced, the rigidity of the parts decreases, and problems such as part deflection, stickiness, and warp become obvious. Furthermore, in the field of home appliances such as AV and OA equipment, the demand for the dimensional accuracy of parts has become stricter, and the demand for a steel sheet having excellent shape freezing properties has been increasing.

このような要望に対して、例えば特許文献1には、形状凍結性に優れたフェライト系薄鋼板が記載されている。特許文献1に記載された技術では、質量%で、C:0.0001〜0.05%、Si:0.01〜1.0%、Mn:0.01〜2.0%、P:0.15%以下、S:0.03%以下、Al:0.01%以下、N:0.01%以下、O:0.007%以下を含む成分組成の鋼を、950℃以下Ar変態点以上での圧下率の合計が25%以上、かつ950℃以下での熱間圧延における摩擦係数が0.2以下となるようにして、Ar変態点以上で熱間圧延を終了し、冷却後、所定の臨界温度以下の温度で巻き取り、これにより、板面に平行な{100}面と{111}面の比が1.0以上である薄鋼板が得られるとしている。このような薄鋼板では、曲げ加工時のすべり系が制御でき、曲げ加工を主体とする成形において、スプリングバックが抑制できるとしている。In response to such a demand, for example, Patent Document 1 describes a ferritic thin steel sheet having excellent shape freezing properties. In the technique described in Patent Document 1, in mass%, C: 0.0001 to 0.05%, Si: 0.01 to 1.0%, Mn: 0.01 to 2.0%, P: 0.15% or less, S: 0.03% or less, Al: 0.01 %, N: 0.01% or less, O: 0.007% or less of steel composition with hot rolling at 950 ° C or less Ar 3 transformation point or more total rolling reduction of 25% or more and 950 ° C or less The hot rolling is finished at the Ar 3 transformation point or higher so that the friction coefficient in the steel is 0.2 or less, and after cooling, it is wound up at a temperature below a predetermined critical temperature, and thus {100} parallel to the plate surface It is said that a thin steel sheet having a ratio of the plane to the {111} plane of 1.0 or more can be obtained. In such a thin steel plate, the slip system during bending can be controlled, and spring back can be suppressed in forming mainly bending.

また、特許文献2には、成形品の寸法精度に優れたプレス成形方法が記載されている。特許文献2に記載された技術では、板面に平行な{100}面と{111}面の比が1.0以上である鋼板を用いて、ハット型部材の縦壁部に材料引張強さの40〜100%の引張応力を付与しながら成形を行う、成形品の寸法精度に優れたプレス成形方法が記載されている。特許文献2に記載された技術によれば、ハット曲げ加工性が著しく向上し、スプリングバック量が少なく、形状凍結性に優れた部材が提供できるとしている。   Patent Document 2 describes a press molding method with excellent dimensional accuracy of a molded product. In the technique described in Patent Document 2, a steel plate having a ratio of {100} plane and {111} plane parallel to the plate surface of 1.0 or more is used, and a material tensile strength of 40 is applied to the vertical wall portion of the hat-shaped member. A press molding method that performs molding while applying a tensile stress of ˜100% and that is excellent in dimensional accuracy of a molded product is described. According to the technique described in Patent Document 2, a hat bending workability is remarkably improved, a springback amount is small, and a member excellent in shape freezing property can be provided.

国際公開WO 00/06791号International Publication WO 00/06791 特開2002−66637号公報JP 2002-66637 A

しかしながら、特許文献1に記載された技術では、曲げ加工以外のプレス成形を行った場合には、形状凍結性改善の程度が小さく、また、曲げ加工の場合においても、粒界すべり等の影響でスプリングバックが大きくなる場合があるなどの問題があった。また、特許文献2に記載された技術では、ハット成型以外のプレス成形を行った場合には、成型品の寸法精度を高める効果はなく、また、ハット成型を行う場合においても、縦壁部の応力を付与するためにはしわ押さえ圧を大きくする必要があり、そのためプレス機の能力を大きく増加する必要があり、コスト増に繋がるという問題があった。   However, in the technique described in Patent Document 1, when press molding other than bending is performed, the degree of improvement in shape freezing property is small, and also in the case of bending, due to the effects of grain boundary sliding and the like. There was a problem that the springback might become large. In addition, in the technique described in Patent Document 2, when press molding other than hat molding is performed, there is no effect of increasing the dimensional accuracy of the molded product. In order to apply the stress, it is necessary to increase the wrinkle pressing pressure. Therefore, it is necessary to greatly increase the capacity of the press machine, leading to an increase in cost.

本発明は、かかる従来技術の問題を解決し、とくに成形後の部材平坦部に大きなゆがみが発生しない、形状凍結性に優れた冷延鋼板およびその製造方法を提供することを目的とする。   An object of the present invention is to solve such problems of the prior art, and particularly to provide a cold-rolled steel sheet excellent in shape freezing property and a manufacturing method thereof, in which a large distortion does not occur in a flat part after forming.

本発明者らは、上記した目的を達成するために、形状凍結性、とくに成形後の部材平坦部のゆがみに影響する要因について、鋭意研究した。その結果、成形後の部材平坦部のゆがみは、使用鋼板の比例限に大きく影響されることに想到した。とくに比例限が100MPa超えとなると、成形後の部材平坦部のゆがみが著しく増加するという知見を得た。そして、更なる研究を行った結果、比例限を100MPa以下とするためには、極低炭素系でTi、Bを必須含有する組成として、さらにB含有量とC含有量の比、B/C、が0.5以上を満足する
ように調整することが必要であることを見出した。
In order to achieve the above-mentioned object, the present inventors diligently studied the factors affecting the shape freezing property, in particular, the distortion of the flat part after molding. As a result, it has been conceived that the deformation of the flat part after forming is greatly influenced by the proportional limit of the steel sheet used. In particular, when the proportional limit exceeds 100 MPa, it has been found that the deformation of the flat part after molding is significantly increased. As a result of further research, in order to set the proportional limit to 100 MPa or less, as a composition containing Ti and B as an essential component in an extremely low carbon system, the ratio of B content to C content, B / C , Found that it is necessary to adjust to satisfy 0.5 or more.

まず、本発明の基礎となった実験結果について説明する。   First, the experimental results on which the present invention is based will be described.

質量%で、0.0010〜0.0035%C、0.01〜0.03%Si、0.10〜0.45%Mn、0.03〜0.08%Al、0.022〜0.060%Ti、0.0003〜0.0048%B、0.0015〜0.0040%Nを含む組成の鋼素材(スラブ)を、熱間圧延と、冷間圧延と、さらに加熱均熱冷却条件を種々変更した焼鈍とを施し、冷延焼鈍板とした。   Steel with a composition containing 0.0010 to 0.0035% C, 0.01 to 0.03% Si, 0.10 to 0.45% Mn, 0.03 to 0.08% Al, 0.022 to 0.060% Ti, 0.0003 to 0.0048% B, and 0.0015 to 0.0040% N by mass The material (slab) was subjected to hot rolling, cold rolling, and annealing with various heating soaking and cooling conditions changed to obtain a cold-rolled annealing plate.

得られた冷延焼鈍板から、引張方向が圧延方向となるように、JIS 5号試験片を採取し、比例限を求めた。なお、引張試験片の平行部に長さ5mmの歪ゲージを貼付し、引張速度:1mm/minの引張速度で引張試験を実施し、応力−歪曲線の傾きが小さくなりはじめる応力を、比例限とした。   From the obtained cold-rolled annealed plate, a JIS No. 5 test piece was sampled so that the tensile direction was the rolling direction, and the proportional limit was obtained. A strain gauge with a length of 5 mm is affixed to the parallel part of the tensile test piece, a tensile test is performed at a tensile speed of 1 mm / min, and the stress at which the slope of the stress-strain curve begins to decrease is proportionally limited. It was.

また、得られた冷延焼鈍板から、試験材(大きさ:120×120mm)を採取し、張出し成形を行った。張出し成形は、直径20mmの球頭ポンチで試験材中央部を8mm張り出すプレス成形とした。なお、張出し成形においては、図1に示すように、直径28〜54mmの領域(斜線部)を100kNの荷重で押えながら、成形した。ついで、図2に模式的に示すように、成形後の試験材を、定盤の上に置き、フランジ部の最大ゆがみ高さを測定した。なお、得られた冷延焼鈍板について組織を観察したが、いずれの冷延焼鈍板もフェライトを主体とする組織であった。   Further, a test material (size: 120 × 120 mm) was collected from the obtained cold-rolled annealed plate and subjected to stretch forming. The overhang forming was press forming in which a central portion of the test material was overlaid by 8 mm with a ball head punch having a diameter of 20 mm. In the stretch forming, as shown in FIG. 1, the region (shaded portion) having a diameter of 28 to 54 mm was pressed with a load of 100 kN. Next, as schematically shown in FIG. 2, the molded test material was placed on a surface plate, and the maximum distortion height of the flange portion was measured. In addition, although the structure | tissue was observed about the obtained cold-rolled annealing board, all the cold-rolling annealing boards were the structures | tissues which have ferrite as a main component.

得られた結果を図3、図4に示す。図3は、フランジ部の最大ゆがみ高さと比例限との関係を、図4に、比例限とB/Cとの関係を、示す。   The obtained results are shown in FIGS. FIG. 3 shows the relationship between the maximum distortion height of the flange portion and the proportional limit, and FIG. 4 shows the relationship between the proportional limit and B / C.

図3から、比例限が100MPaを超えて大きくなると、フランジ部の最大ゆがみ高さが急激に増加することがわかる。また、図4から、比例限を100MPa以下とするためには、B/Cを0.5以上とする必要があることがわかる。   FIG. 3 shows that when the proportional limit exceeds 100 MPa, the maximum distortion height of the flange portion increases rapidly. FIG. 4 also shows that B / C needs to be 0.5 or more in order to set the proportional limit to 100 MPa or less.

このようなことから、Ti、Bを必須含有し、B/Cを0.5以上とする組成と、組織をフェライト主体の組織とを有し、比例限が100MPa以下である鋼板を素材とすることにより、プレス部品の形状凍結性が向上し、とくに成形後の部材平坦部のゆがみが顕著に低減することを知見した。そして、本発明者らの更なる検討によれば、Cが固溶状態となるように熱間圧延条件を適正化し、さらに冷間圧延を施し、さらに焼鈍時に、C、Feを含むBの粗大析出物を、粒界、さらには粒内に、析出させることが、形状凍結性向上に有効であることを知見した。このような組織であれば、分散析出したBの粗大析出物が、プレス加工時に、適度に転位を固着し、析出物まわりに歪を集中させて、粒界に転位が集中するのを妨げることで転位が絡みあうのを抑制し、これによりスプリングバックが大きく低減され、比例限が低くなって、形状凍結性が顕著に向上するものと考えた。   For this reason, by using as a raw material a steel sheet having a composition containing Ti and B as essential, B / C being 0.5 or more, and a structure mainly composed of ferrite and having a proportional limit of 100 MPa or less. It has been found that the shape freezing property of the pressed parts is improved, and in particular, the distortion of the flat portion of the member after molding is significantly reduced. Further, according to further studies by the present inventors, the hot rolling conditions are optimized so that C is in a solid solution state, further cold rolling is performed, and further, the coarseness of B containing C and Fe during annealing. It has been found that it is effective to improve the shape freezing property by precipitating the precipitates at the grain boundaries and further within the grains. With such a structure, the coarse precipitates of B that have been dispersed and precipitated moderately fix dislocations during press working, concentrate strain around the precipitates, and prevent dislocations from concentrating on the grain boundaries. It is considered that the dislocations are prevented from being entangled with each other, which greatly reduces the springback, lowers the proportional limit, and remarkably improves the shape freezing property.

本発明は、かかる知見に基いて、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1) 質量%で、
C:0.0010〜0.0030%、 Si:0.05%以下、
Mn: 0.1〜0.5%、 P:0.05%以下、
S:0.02%以下、 Al:0.10%以下、
N:0.0050%以下、 Ti:0.021〜0.060%、
B:0.0005〜0.0050%を含み、かつBとCを、B/Cが0.5以上を満たすように含有し、残部Feおよび不可避的不純物からなる組成と、平均粒径:10〜30μmのフェライトを主体とする組織とを有し、比例限が100MPa以下である形状凍結性に優れた冷延鋼板。
(2)前記組成に加えてさらに、質量%で、Nb:0.009%以下を含有する(1)に記載の冷延鋼板。
(3)前記組成に加えてさらに、質量%で、Cr:0.06%以下を含有する(1)に記載の冷延鋼板。
(4)前記組成に加えてさらに、質量%で、Nb:0.009%以下とCr:0.06%以下を含有する(1)に記載の冷延鋼板。
(5)前記Nb含有量が、質量%で、0.001〜0.009%である(2)に記載の冷延鋼板。
(6)前記Cr含有量が、質量%で、0.001〜0.06%である(3)に記載の冷延鋼板。
(7)前記B/Cが、0.5以上、5以下である(1)に記載の冷延鋼板。
(8)前記B/Cが、1.0以上、3.3以下である(7)に記載の冷延鋼板。
(9)前記B/Cが、1.5以上、3.3以下である(8)に記載の冷延鋼板。
(10)前記比例限が、40MPa以上、 100MPa以下である(1)に記載の冷延鋼板。
(11)前記フェライトを主体とする組織が、フェライトを面積率で95%以上含有する組織である(1)に記載の冷延鋼板。
(12)鋼素材に、熱間圧延工程と、酸洗工程と、冷間圧延工程と、焼鈍工程とを順次施す冷延鋼板の製造方法において、
前記鋼素材を、質量%で、
C:0.0010〜0.0030%、 Si:0.05%以下、
Mn: 0.1〜0.5%、 P:0.05%以下、
S:0.02%以下、 Al:0.10%以下、
N:0.0050%以下、 Ti:0.021〜0.060%、
B:0.0005〜0.0050%
を含み、かつBとCを、B/Cが0.5以上を満たすように含有し、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、
前記熱延工程を、前記鋼素材に、加熱し粗圧延と仕上圧延終了温度:870〜950℃とする仕上圧延とを施し、巻取温度:450〜630℃で巻き取る工程とし、
前記冷延工程を、圧下率:90%以下である冷間圧延を施す工程とし、
前記焼鈍工程を、600℃以上の温度域を平均で、1〜30℃/sの加熱速度で、700〜850℃の範囲の均熱温度まで加熱し、該均熱温度で30〜200s間保持したのち、600℃までの温度域を平均で、3℃/s以上の冷却速度で冷却する工程とする、
形状凍結性に優れた冷延鋼板の製造方法。
(13)前記組成に加えてさらに、質量%で、Nb:0.009%以下を含有する(12)に記載の冷延鋼板の製造方法。
(14)前記組成に加えてさらに、質量%で、Cr:0.06%以下を含有する(12)に記載の冷延鋼板の製造方法。
(15)前記組成に加えてさらに、質量%で、Nb:0.009%以下とCr:0.06%以下を含有する(12)に記載の冷延鋼板の製造方法。
(16)前記Nb含有量が、質量%で、0.001〜0.009%である(13)に記載の冷延鋼板の製造方法。
(17)前記Cr含有量が、質量%で、0.001〜0.06%である(14)に記載の冷延鋼板の製造方法。
(18)前記B/Cが、0.5以上、5以下である(12)に記載の冷延鋼板の製造方法。
(19)前記B/Cが、1.0以上、3.3以下である(18)に記載の冷延鋼板の製造方法。
(20)前記B/Cが、1.5以上、3.3以下である(19)に記載の冷延鋼板の製造方法。
The present invention has been completed based on such findings and further investigations. That is, the gist of the present invention is as follows.
(1) In mass%,
C: 0.0010 to 0.0030%, Si: 0.05% or less,
Mn: 0.1 to 0.5%, P: 0.05% or less,
S: 0.02% or less, Al: 0.10% or less,
N: 0.0050% or less, Ti: 0.021 to 0.060%,
B: Containing 0.0005 to 0.0050%, and containing B and C so that B / C satisfies 0.5 or more, the balance consisting of Fe and inevitable impurities, and ferrite having an average particle size of 10 to 30 μm A cold-rolled steel sheet having an excellent shape freezing property and having a proportional limit of 100 MPa or less.
(2) The cold-rolled steel sheet according to (1), further containing Nb: 0.009% or less in mass% in addition to the composition.
(3) The cold-rolled steel sheet according to (1), further containing Cr: 0.06% or less in mass% in addition to the composition.
(4) The cold-rolled steel sheet according to (1), further containing Nb: 0.009% or less and Cr: 0.06% or less in mass% in addition to the composition.
(5) The cold-rolled steel sheet according to (2), wherein the Nb content is 0.001 to 0.009% by mass.
(6) The cold-rolled steel sheet according to (3), wherein the Cr content is 0.001 to 0.06% by mass.
(7) The cold-rolled steel sheet according to (1), wherein the B / C is 0.5 or more and 5 or less.
(8) The cold-rolled steel sheet according to (7), wherein the B / C is 1.0 or more and 3.3 or less.
(9) The cold-rolled steel sheet according to (8), wherein the B / C is 1.5 or more and 3.3 or less.
(10) The cold-rolled steel sheet according to (1), wherein the proportional limit is 40 MPa or more and 100 MPa or less.
(11) The cold-rolled steel sheet according to (1), wherein the structure mainly composed of ferrite is a structure containing 95% or more of ferrite by area ratio.
(12) In the method of manufacturing a cold-rolled steel sheet, in which a hot rolling process, a pickling process, a cold rolling process, and an annealing process are sequentially performed on the steel material,
The steel material in mass%,
C: 0.0010 to 0.0030%, Si: 0.05% or less,
Mn: 0.1 to 0.5%, P: 0.05% or less,
S: 0.02% or less, Al: 0.10% or less,
N: 0.0050% or less, Ti: 0.021 to 0.060%,
B: 0.0005-0.0050%
And B and C are contained so that B / C satisfies 0.5 or more, and a steel material having a composition composed of the balance Fe and inevitable impurities,
The hot rolling step is a step of heating the steel material, subjecting it to rough rolling and finish rolling to a finish rolling finish temperature of 870 to 950 ° C, and winding at a winding temperature of 450 to 630 ° C.
The cold rolling step is a step of performing cold rolling with a rolling reduction of 90% or less,
The annealing step is heated to a soaking temperature in the range of 700 to 850 ° C. at a heating rate of 1 to 30 ° C./s on average over a temperature range of 600 ° C. or more and held at the soaking temperature for 30 to 200 s. After that, the temperature range up to 600 ℃ on average, it is a process of cooling at a cooling rate of 3 ℃ / s,
A method for producing a cold-rolled steel sheet having excellent shape freezing properties.
(13) The method for producing a cold-rolled steel sheet according to (12), further containing Nb: 0.009% or less in mass% in addition to the composition.
(14) The method for producing a cold-rolled steel sheet according to (12), further containing, in addition to the above composition, Cr: 0.06% or less by mass%.
(15) The method for producing a cold-rolled steel sheet according to (12), further containing Nb: 0.009% or less and Cr: 0.06% or less in mass% in addition to the composition.
(16) The method for producing a cold-rolled steel sheet according to (13), wherein the Nb content is 0.001 to 0.009% by mass.
(17) The method for producing a cold-rolled steel sheet according to (14), wherein the Cr content is 0.001 to 0.06% by mass.
(18) The method for producing a cold-rolled steel sheet according to (12), wherein the B / C is 0.5 or more and 5 or less.
(19) The method for producing a cold-rolled steel sheet according to (18), wherein the B / C is 1.0 or more and 3.3 or less.
(20) The method for producing a cold-rolled steel sheet according to (19), wherein the B / C is 1.5 or more and 3.3 or less.

本発明によれば、比例限が顕著に低下し、成形後の形状凍結性に優れた冷延鋼板を、容易にしかも安価に製造でき、産業上格段の効果を奏する。また、本発明によれば、部材の薄肉化を促進できるという効果もある。   According to the present invention, a cold-rolled steel sheet having a significantly reduced proportional limit and excellent shape freezing property after forming can be manufactured easily and inexpensively, and a remarkable industrial effect can be achieved. Moreover, according to this invention, there also exists an effect that the thinning of a member can be accelerated | stimulated.

張出し成形用試験片と、成形試験時のフランジ押さえ領域(斜線部)を模式的に示す説明図である。It is explanatory drawing which shows typically the test piece for bulge forming, and the flange holding | suppressing area | region (hatched part) at the time of a forming test. 張出し成形試験後の最大ゆがみ高さの測定方法を模式的に示す説明図である。It is explanatory drawing which shows typically the measuring method of the maximum distortion height after an overhanging test. 最大ゆがみ高さと比例限との関係を示すグラフである。It is a graph which shows the relationship between the maximum distortion height and a proportional limit. 比例限とB/Cの関係を示すグラフである。It is a graph which shows the relationship between a proportional limit and B / C.

まず、本発明冷延鋼板の組成限定理由について説明する。なお、以下、とくに断わらない限り質量%は、単に%で記す。   First, the reason for limiting the composition of the cold-rolled steel sheet of the present invention will be described. Hereinafter, unless otherwise specified, mass% is simply expressed as%.

C:0.0010〜0.0030%
Cは、固溶してBの粗大析出物の形成を促進し、比例限の低下に寄与する元素である。このような効果は0.0010%以上の含有で顕著となる。一方、0.0030%を超える多量の含有は、固溶Cや炭化物が多くなり強度が高くなりすぎて、延性の低下を招く。このため、Cは0.0010〜0.0030%の範囲に限定した。なお、好ましくは0.0020%以下である。
C: 0.0010 to 0.0030%
C is an element that dissolves and promotes the formation of coarse precipitates of B and contributes to the reduction of the proportional limit. Such an effect becomes remarkable when the content is 0.0010% or more. On the other hand, a large content exceeding 0.0030% increases the solid solution C and carbide, increases the strength too much, and causes a decrease in ductility. For this reason, C was limited to the range of 0.0010 to 0.0030%. In addition, Preferably it is 0.0020% or less.

Si:0.05%以下
Siは、多量に含有すると、硬質化により加工性が劣化したり、焼鈍時にSi酸化物を生成し、めっき性を阻害する。また、多量のSi含有は、オーステナイト(γ)→フェライト(α)変態点を高温とするため、熱間圧延時に、γ域で圧延を終了させることが困難になる。このため、Siは0.05%以下に限定した。
Si: 0.05% or less
When Si is contained in a large amount, workability deteriorates due to hardening, or Si oxide is generated during annealing, thereby impairing the plateability. In addition, when a large amount of Si is contained, the austenite (γ) → ferrite (α) transformation point is set to a high temperature, so that it is difficult to finish rolling in the γ region during hot rolling. For this reason, Si was limited to 0.05% or less.

Mn: 0.1〜0.5%
Mnは、熱間での延性を著しく低下させる有害な鋼中Sと結合し、MnSを形成し、Sの無害化に寄与するとともに、鋼を硬質化する作用を有する。このような効果を得るためには0.1%以上の含有を必要とする。一方、0.5%を超える多量の含有は、硬質化による延性の低下や、焼鈍時のフェライトの再結晶を抑制する。このため、Mnは0.1〜0.5%の範囲に限定した。なお、好ましくは0.3%以下、より好ましくは0.2%以下である。
Mn: 0.1-0.5%
Mn combines with the harmful S in steel, which significantly reduces the hot ductility, forms MnS, contributes to detoxification of S, and hardens the steel. In order to obtain such an effect, a content of 0.1% or more is required. On the other hand, a large content exceeding 0.5% suppresses deterioration of ductility due to hardening and recrystallization of ferrite during annealing. For this reason, Mn was limited to the range of 0.1 to 0.5%. In addition, Preferably it is 0.3% or less, More preferably, it is 0.2% or less.

P:0.05%以下
Pは、粒界に偏析して、延性を低下させる作用を有するため、本発明ではできるだけ低減することが好ましいが、0.05%までは許容できる。このようなことから、Pは0.05%以下に限定した。なお、好ましくは0.03%以下、より好ましくは0.02%以下である。
P: 0.05% or less P has a function of segregating at grain boundaries and reducing ductility. Therefore, P is preferably reduced as much as possible in the present invention, but up to 0.05% is acceptable. Therefore, P is limited to 0.05% or less. In addition, Preferably it is 0.03% or less, More preferably, it is 0.02% or less.

S:0.02%以下
Sは不純物元素としてできるだけ低減することが望ましい。Sは、熱間での延性を著しく低下させ、熱間割れを誘発し、表面性状を著しく劣化させる悪影響を有し、さらにSは、強度にほとんど寄与しないばかりか、粗大なMnSを形成し延性を低下させる。このようなことは、0.02%を超えると顕著となるため、本発明ではSは0.02%以下に限定した。なお、好ましくは0.01%以下である。
S: 0.02% or less It is desirable to reduce S as an impurity element as much as possible. S has the adverse effect of significantly reducing hot ductility, inducing hot cracking, and significantly deteriorating the surface properties. Further, S does not contribute to the strength but also forms coarse MnS to form ductility. Reduce. Such a phenomenon becomes remarkable when it exceeds 0.02%, so in the present invention, S is limited to 0.02% or less. In addition, Preferably it is 0.01% or less.

Al:0.10%以下
Alは、脱酸剤として作用する元素であり、このような効果を得るためには0.02%以上含有することが望ましい。一方、Alは、鋼のγ→α変態点を上昇させる作用を有するため、0.10%を超える多量の含有は、熱間圧延時に、γ域で圧延を終了させるのが困難になる。このため、Alは0.10%以下に限定した。
Al: 0.10% or less
Al is an element that acts as a deoxidizer, and in order to obtain such an effect, it is desirable to contain 0.02% or more. On the other hand, Al has the effect of increasing the γ → α transformation point of steel, so a large content exceeding 0.10% makes it difficult to finish rolling in the γ region during hot rolling. For this reason, Al was limited to 0.10% or less.

N:0.0050%以下
Nは、窒化物形成元素と結合し窒化物を形成し、析出強化により鋼を硬質化させる作用を有する元素であり、0.0050%を超える多量の含有は、延性を低下させるだけでなく、熱間圧延中のスラブ割れを生じ、表面疵を多発させる恐れがある。このため、Nは0.0050%以下に限定した。なお、好ましくは0.0030%以下、より好ましくは0.0020%以下である。
N: 0.0050% or less N is an element that combines with a nitride-forming element to form nitride and harden the steel by precipitation strengthening. A large content exceeding 0.0050% only reduces ductility. In addition, slab cracking may occur during hot rolling, and surface defects may occur frequently. For this reason, N was limited to 0.0050% or less. In addition, Preferably it is 0.0030% or less, More preferably, it is 0.0020% or less.

Ti:0.021〜0.060%
Tiは、Nを窒化物として固定し、固溶Nによる硬質化や時効劣化を抑制する作用を有する元素である。このような効果を得るためには、0.021%以上の含有を必要とする。一方、0.060%を超える多量の含有は、炭化物の析出を促進し、固溶Cを低減するため、C、Feを含むBの粗大析出物の生成を抑制することになるため、所望の比例限の低下を達成できなくなる。このようなことから、Tiは0.021〜0.060%の範囲に限定した。なお、好ましくは、0.050%以下である。
Ti: 0.021 to 0.060%
Ti is an element having an action of fixing N as nitride and suppressing hardening and aging deterioration due to solute N. In order to obtain such an effect, a content of 0.021% or more is required. On the other hand, a large content exceeding 0.060% promotes the precipitation of carbides and reduces the solid solution C, and therefore suppresses the formation of coarse precipitates of B containing C and Fe. Can not be achieved. For these reasons, Ti is limited to the range of 0.021 to 0.060%. In addition, Preferably, it is 0.050% or less.

B:0.0005〜0.0050%
Bは、本発明では重要な元素であり、粗大なB析出物を形成することで比例限の低減に寄与する。このような効果を得るためには0.0005%以上の含有を必要とする。一方、0.0050%を超える多量の含有は、スラブ割れを引き起こす。このため、Bは0.0005〜0.0050%の範囲に限定した。なお、好ましくは0.0010%以上、より好ましくは0.0020%以上、さらに好ましくは0.0030%以上である。
B: 0.0005-0.0050%
B is an important element in the present invention, and contributes to the reduction of the proportional limit by forming coarse B precipitates. In order to acquire such an effect, 0.0005% or more needs to be contained. On the other hand, a large content exceeding 0.0050% causes slab cracking. For this reason, B was limited to the range of 0.0005 to 0.0050%. In addition, Preferably it is 0.0010% or more, More preferably, it is 0.0020% or more, More preferably, it is 0.0030% or more.

B/C:0.5以上
本発明では、上記した範囲のC,Bを含み、さらに、B含有量とC含有量の比、B/Cが0.5以上を満たすように、C,B含有量を調整する。B/Cが0.5未満では、Bの粗大な析出物を形成することが困難となる。このため、B/Cは0.5以上に限定した。なお、好ましくは1.0以上、より好ましくは1.5以上、さらに好ましくは2.0以上である。
B / C: 0.5 or more In the present invention, the C and B contents are adjusted so as to include C and B in the above range, and further, the ratio of B content to C content, and B / C to satisfy 0.5 or more. To do. If B / C is less than 0.5, it becomes difficult to form coarse precipitates of B. For this reason, B / C was limited to 0.5 or more. In addition, Preferably it is 1.0 or more, More preferably, it is 1.5 or more, More preferably, it is 2.0 or more.

上記した成分が基本の成分であるが、本発明では基本の組成に加えてさらに、必要に応じて選択元素として、Nb:0.009%以下、および/または、Cr:0.06%以下を含有することができる。   The above-mentioned components are basic components, but in the present invention, in addition to the basic composition, Nb: 0.009% or less and / or Cr: 0.06% or less may be further included as a selection element as necessary. it can.

Nb:0.009%以下
Nbは、Tiと同様に、Nと結合して窒化物を形成し、Nを固定し、固溶Nによる硬質化や時効劣化を抑制し、形状凍結性向上に寄与する元素であり必要に応じて含有できる。このような効果を得るためには、0.001%以上含有することが望ましいが、0.009%を超える多量の含有は、結晶粒の細粒化を招く。このため、含有する場合には、Nbは0.009%以下に限定することが好ましい。
Nb: 0.009% or less
Nb, like Ti, forms a nitride by bonding with N, fixes N, suppresses hardening and aging deterioration due to solute N, and contributes to improvement of shape freezing property. Can be contained. In order to acquire such an effect, it is desirable to contain 0.001% or more. However, if it contains more than 0.009%, crystal grains become finer. For this reason, when it contains, it is preferable to limit Nb to 0.009% or less.

Cr:0.06%以下
Crは、固溶状態のCを不安定化し、Cを含むBの粗大析出物の生成を促進する元素であり、必要に応じて含有できる。このような効果を得るには、0.001%以上含有することが望ましい。一方、0.06%を超える多量のCr含有は、Cを含むBの粗大析出の生成をかえって阻害する。このため、含有する場合には、Crは0.06%以下に限定することが好ましい。
上記した成分以外の残部は、Feおよび不可避的不純物からなる。
Cr: 0.06% or less
Cr is an element that destabilizes C in a solid solution state and promotes the formation of a coarse precipitate of B containing C, and can be contained as necessary. In order to acquire such an effect, it is desirable to contain 0.001% or more. On the other hand, a large amount of Cr exceeding 0.06% inhibits the formation of coarse precipitates of B containing C. For this reason, when contained, Cr is preferably limited to 0.06% or less.
The balance other than the components described above consists of Fe and inevitable impurities.

つぎに、本発明冷延鋼板の組織限定理由について説明する。   Next, the reason for limiting the structure of the cold-rolled steel sheet of the present invention will be described.

本発明冷延鋼板は、平均粒径:10〜30μmのフェライトを主体とする組織を有する。フェライトを主体とする組織とすることにより、鋼板が軟質化し、加工性を向上させることができる。なお、ここでいう「フェライトを主体とする組織」は、フェライト(ポリゴナルフェライト)が面積率で95%以上、好ましくは100%を占める組織をいうものとする。
フェライト以外の第二相は、セメンタイト、ベイナイトとすることが好ましい。また、フェライトの平均粒径を10μm以上とすることにより、成形時に、粒界への歪の集中を抑制し、析出物周りに歪を集中させ、比例限の低減が可能となる。一方、フェライトの平均粒径が30μmを超えて大きくなると、プレス加工時に肌荒れなどの表面模様が顕在化する。
このため、フェライトの平均粒径は10〜30μmの範囲に限定した。なお、好ましくは15〜25μmである。
The cold-rolled steel sheet of the present invention has a structure mainly composed of ferrite having an average particle diameter of 10 to 30 μm. By making the structure mainly composed of ferrite, the steel sheet is softened and the workability can be improved. Here, the “structure mainly composed of ferrite” refers to a structure in which ferrite (polygonal ferrite) occupies 95% or more, preferably 100% in area ratio.
The second phase other than ferrite is preferably cementite or bainite. Further, by setting the average grain size of ferrite to 10 μm or more, it is possible to suppress the concentration of strain on the grain boundary during molding, to concentrate the strain around the precipitate, and to reduce the proportional limit. On the other hand, when the average grain size of ferrite exceeds 30 μm, surface patterns such as rough skin become apparent during press working.
For this reason, the average particle diameter of the ferrite was limited to the range of 10 to 30 μm. In addition, Preferably it is 15-25 micrometers.

つぎに、本発明冷延鋼板の好ましい製造方法について説明する。   Next, a preferred method for producing the cold-rolled steel sheet of the present invention will be described.

上記した組成の鋼素材(スラブ)を出発素材とする。   A steel material (slab) having the above composition is used as a starting material.

鋼素材の製造方法は、特に限定する必要はないが、上記した組成の溶鋼を、常用の転炉、電気炉等で溶製したのち、常用の連続鋳造法、造塊−分塊圧延法で、スラブ(鋼素材)とすることが好ましい。連続鋳造製スラブであれば、鋳造後、熱間圧延が可能な熱を保有している場合は、室温まで冷却することなく、そのまま、あるいは、一次的に加熱炉に装入し、保熱したのち、あるいは、室温まで冷却したのち加熱炉に装入して、好ましくは1100〜1250℃の範囲の温度に再加熱したのち、熱間圧延を施すことが好ましい。   The method for producing the steel material is not particularly limited, but after melting the molten steel having the above composition in a conventional converter, electric furnace, etc., the conventional continuous casting method or ingot-splitting rolling method is used. It is preferable to use a slab (steel material). If the slab is made of continuous casting, if it has heat that can be hot-rolled after casting, it is kept in the heating furnace as it is or without being cooled to room temperature. After or after cooling to room temperature, it is preferably charged in a heating furnace and preferably reheated to a temperature in the range of 1100 to 1250 ° C. and then hot rolled.

加熱された鋼素材には、ついで、熱延工程が施される。   The heated steel material is then subjected to a hot rolling process.

熱延工程では、粗圧延、仕上圧延からなる熱間圧延が施され、ついで巻取られる。   In the hot rolling step, hot rolling consisting of rough rolling and finish rolling is performed and then wound.

粗圧延では、所望の寸法形状のシートバーを確保できればよく、その条件はとくに限定されない。ついで、シートバーには、仕上圧延が施され、熱延板とされる。   In rough rolling, it is only necessary to secure a sheet bar having a desired size and shape, and the conditions are not particularly limited. Next, the sheet bar is subjected to finish rolling to form a hot-rolled sheet.

仕上圧延は、仕上圧延終了温度が870〜950℃である圧延とする。   In the finish rolling, the finish rolling finish temperature is 870 to 950 ° C.

仕上圧延終了温度が、870℃未満と低くなると、圧延途中に組織がオーステナイトからフェライトと変化し、圧延機の荷重制御が困難になることで、通板中に破断などが起こる危険性が増大する。なお、仕上圧延の入側からフェライト域で圧延すれば、上記したような通板中の破断等は回避できるが、圧延温度の低下で、熱延板の組織が未再結晶フェライトとなり、冷間圧延時の荷重が増大するという問題がある。一方、仕上圧延終了温度が950℃を超えて高くなると、熱延板のフェライト粒径が大きくなる。そのため、冷延焼鈍板のフェライト粒径も大きくなりすぎる。このようなことから、仕上圧延終了温度は870〜950℃の範囲の温度に限定した。仕上圧延終了後、熱延板は巻き取られる。なお、仕上圧延後、巻取りまでの冷却は、特に限定しないが、空冷以上の冷却速度があれば十分であるが、必要に応じて、100℃/s以上の急冷をおこなってもとくに問題はない。   When the finish rolling finish temperature is lowered to less than 870 ° C, the structure changes from austenite to ferrite during rolling, and the load control of the rolling mill becomes difficult, which increases the risk of breakage or the like in the plate. . Note that if rolling is performed in the ferrite region from the entry side of finish rolling, the above-described breakage in the sheet-passing can be avoided, but due to the reduction in rolling temperature, the structure of the hot-rolled sheet becomes non-recrystallized ferrite, and cold There is a problem that the load during rolling increases. On the other hand, when the finish rolling finish temperature exceeds 950 ° C., the ferrite grain size of the hot-rolled sheet increases. For this reason, the ferrite grain size of the cold-rolled annealed plate is too large. For this reason, the finish rolling end temperature is limited to a temperature in the range of 870 to 950 ° C. After finishing rolling, the hot rolled sheet is wound up. In addition, although it does not specifically limit cooling after finishing rolling, although it is sufficient if there is a cooling rate more than air cooling, even if it performs rapid cooling of 100 degrees C / s or more as needed, a problem is especially problematic. Absent.

仕上圧延終了後の巻取温度は、450〜630℃の範囲の温度とする。   The coiling temperature after finishing rolling is set to a temperature in the range of 450 to 630 ° C.

巻取温度が450℃未満では、アシキュラーフェライトが生成し、鋼板が硬質化し、その後の冷間圧延の荷重が高くなり、熱間圧延の操業上の困難を伴う。一方、巻取温度が630℃を超える高温では、炭化物の析出が促進され、固溶C量が低下し、熱延段階で所望の固溶C量を確保できなくなる。このため、巻取温度は450〜630℃の範囲の温度に限定した。   When the coiling temperature is less than 450 ° C., acicular ferrite is generated, the steel plate becomes hard, and the subsequent cold rolling load becomes high, resulting in hot rolling operation difficulties. On the other hand, when the coiling temperature is higher than 630 ° C., the precipitation of carbide is promoted, the solid solution C amount is lowered, and a desired solid solution C amount cannot be secured in the hot rolling stage. For this reason, the coiling temperature was limited to a temperature in the range of 450 to 630 ° C.

巻き取られた熱延板は、ついで、通常の酸洗工程を施された後、冷間圧延工程を施され、冷延板とされる。   The wound hot rolled sheet is then subjected to a normal pickling process, followed by a cold rolling process to form a cold rolled sheet.

冷間圧延工程では、冷延圧下率:90%以下の冷間圧延を施し、冷延板とする。   In the cold rolling step, cold rolling at a cold rolling reduction ratio of 90% or less is performed to obtain a cold rolled sheet.

冷延圧下率が90%を超えて大きくすると、焼鈍後の再結晶フェライト粒が微細化するが、同時に冷間圧延荷重が増大し、冷間圧延の操業上の困難を伴う。このため、冷延圧下率は90%以下に限定した。なお、好ましくは80%以下である。一方、冷延圧下率の下限は特に規定しないが、冷延圧下率が小さい場合は、決まった製品厚に対して、熱延板の板厚を小さくする必要があり、熱延や酸洗での生産性が低下することから、冷延圧下率は50%以上とすることが好ましい。   When the cold rolling reduction ratio exceeds 90%, the recrystallized ferrite grains after annealing become finer, but at the same time, the cold rolling load increases, resulting in operational difficulties in cold rolling. For this reason, the cold rolling reduction ratio is limited to 90% or less. In addition, Preferably it is 80% or less. On the other hand, the lower limit of the cold rolling reduction ratio is not particularly specified, but when the cold rolling reduction ratio is small, it is necessary to reduce the thickness of the hot rolled sheet relative to the determined product thickness. Therefore, the cold rolling reduction ratio is preferably 50% or more.

冷延板には、ついで焼鈍工程が施され、冷延焼鈍板となる。   The cold-rolled sheet is then subjected to an annealing step to become a cold-rolled annealed sheet.

焼鈍工程は、600℃以上の温度域を平均で、1〜30℃/sの加熱速度で、700〜850℃の範囲の均熱温度まで加熱し、該均熱温度で30〜200s間保持したのち、3℃/s以上の冷却速度で、600℃以下まで冷却する工程とする。焼鈍工程では、冷間圧延された加工フェライトを再結晶させ、所望の平均粒径のフェライトとするとともに、粒界、粒内に粗大な、C,Feを含むB析出物を分散析出させる。   In the annealing step, the temperature range of 600 ° C. or higher was heated to a soaking temperature in the range of 700 to 850 ° C. at a heating rate of 1 to 30 ° C./s on average, and held at the soaking temperature for 30 to 200 s. Then, it is set as the process of cooling to 600 degrees C or less with the cooling rate of 3 degrees C / s or more. In the annealing step, the cold-rolled processed ferrite is recrystallized to obtain a ferrite having a desired average grain size, and coarse B precipitates containing C and Fe are dispersed and precipitated in the grain boundaries and grains.

加熱速度:1〜30℃/s
600℃以上均熱温度までの温度域での平均の加熱速度が1℃/s未満では、フェライト粒の粒成長が著しく、所望の平均粒径のフェライトとすることができなくなる。一方、30℃/sを超えて加熱速度が大きくなると、加熱途中でのB析出物の生成に代えて、TiCが析出し、所望のBの粗大析出物の形成が困難となる。このため、600℃以上の温度域での加熱速度は平均で1〜30℃/sの範囲に限定した。なお、好ましくは5℃/s以上、より好ましくは10℃/s以上である。
Heating rate: 1-30 ° C / s
If the average heating rate in the temperature range from 600 ° C. to the soaking temperature is less than 1 ° C./s, the ferrite grains grow remarkably, and it becomes impossible to obtain a ferrite having a desired average particle diameter. On the other hand, when the heating rate is higher than 30 ° C./s, TiC precipitates instead of forming B precipitates during heating, and it becomes difficult to form desired B coarse precipitates. For this reason, the heating rate in the temperature range of 600 ° C. or higher was limited to the range of 1 to 30 ° C./s on average. In addition, Preferably it is 5 degrees C / s or more, More preferably, it is 10 degrees C / s or more.

均熱温度:700〜850℃
焼鈍工程では、冷間加工フェライトの再結晶を完了させる必要があることから、均熱温度は700℃以上とする。一方、均熱温度が850℃を超えて高くなると、フェライト粒が粗大化し、所望の平均粒径を有するフェライトとすることができなくなる。このため、均熱温度は700〜850℃に限定した。
Soaking temperature: 700-850 ° C
In the annealing process, it is necessary to complete recrystallization of cold-worked ferrite, so the soaking temperature is 700 ° C. or higher. On the other hand, if the soaking temperature is higher than 850 ° C., the ferrite grains become coarse and it becomes impossible to obtain a ferrite having a desired average particle diameter. For this reason, the soaking temperature was limited to 700 to 850 ° C.

均熱保持時間:30〜200s
冷間加工フェライトの再結晶を完了させるために、均熱保持時間を30s以上とする。
均熱保持時間が短いと、再結晶が完了しないか、あるいはフェライト粒が微細のままとなる。一方、均熱保持時間が200sを超えて長時間となると、フェライト粒が成長し過ぎる。このため、均熱保持時間は30〜200sに限定した。
Soaking time: 30-200s
In order to complete recrystallization of cold-worked ferrite, the soaking time is set to 30 seconds or more.
When the soaking time is short, recrystallization is not completed or ferrite grains remain fine. On the other hand, when the soaking time is longer than 200 s, the ferrite grains grow too much. For this reason, the soaking time was limited to 30 to 200 s.

冷却速度:3℃/s以上
均熱保持後の冷却速度が小さいと、フェライト粒の成長が促進される。このため、均熱温度から600℃までの温度域の平均の冷却速度は3℃/s以上に限定した。なお、冷却速度の上限はとくに限定する必要はなく、冷却設備の能力に依存して決定される。通常の冷却設備であれば、冷却速度の上限は、30℃/s程度である。
Cooling rate: 3 ° C./s or more If the cooling rate after soaking is small, the growth of ferrite grains is promoted. For this reason, the average cooling rate in the temperature range from the soaking temperature to 600 ° C. is limited to 3 ° C./s or more. The upper limit of the cooling rate is not particularly limited, and is determined depending on the capacity of the cooling facility. If it is a normal cooling facility, the upper limit of the cooling rate is about 30 ° C./s.

なお、600℃まで冷却すれば、フェライトの粒成長による組織の粗大化は抑制でき、所望の平均粒径を有するフェライトを主体とする組織を得ることが可能となる。また、600℃以下の冷却条件は、とくに限定する必要はなく、任意の冷却でとくに問題はない。   In addition, if it cools to 600 degreeC, the coarsening of the structure | tissue by the grain growth of a ferrite can be suppressed, and it becomes possible to obtain the structure | tissue which mainly has the ferrite which has a desired average particle diameter. Further, the cooling conditions of 600 ° C. or lower are not particularly limited, and there is no particular problem with arbitrary cooling.

なお、冷却停止後、必要に応じて、480℃近傍での溶融亜鉛めっきを行ってもよい。また、溶融亜鉛めっき後、500℃以上に再加熱して溶融亜鉛めっきを合金化してもよい。また、冷却途中に保持を行うなどの熱履歴を施してもよい。さらに、必要に応じて、0.5〜2%程度の調質圧延を施してもよい。また、めっきを施さなかった場合には、耐腐食性を向上させるために電気亜鉛めっきなどを行ってもよい。さらに、冷延鋼板やめっき鋼板の上に、化成処理などにより皮膜をつけてもよい。   Note that after the cooling is stopped, galvanizing at around 480 ° C. may be performed as necessary. Further, after hot dip galvanization, the hot dip galvanization may be alloyed by reheating to 500 ° C. or higher. Further, a heat history such as holding during cooling may be applied. Furthermore, you may perform temper rolling of about 0.5 to 2% as needed. Further, when plating is not performed, electrogalvanization or the like may be performed in order to improve corrosion resistance. Further, a film may be formed on the cold-rolled steel plate or the plated steel plate by chemical conversion treatment or the like.

以下、実施例に基づき、さらに本発明について説明する。   Hereinafter, based on an Example, this invention is demonstrated further.

表1に示す組成を有する鋼素材(スラブ)を出発素材とした。これらスラブを1200℃に加熱したのち、該スラブに、熱間圧延工程、酸洗工程、冷間圧延工程、さらに焼鈍工程を順次施し、冷延焼鈍板とした。熱間圧延工程では、鋼素材に粗圧延を施しシートバーとしたのち、シートバーに、仕上圧延終了温度が表2に示す温度(FT)となる仕上圧延を施し、表2に示す巻取温度(CT)で巻き取り、表2に示す板厚の熱延板とした。ついで、熱延板には、酸洗工程を施したのち、表2に示す冷延圧下率の冷間圧延を施し、表2に示す板厚の冷延板とした。   A steel material (slab) having the composition shown in Table 1 was used as a starting material. After these slabs were heated to 1200 ° C., a hot rolling process, a pickling process, a cold rolling process, and an annealing process were sequentially performed on the slab to obtain a cold-rolled annealed sheet. In the hot rolling step, the steel material is subjected to rough rolling to form a sheet bar, and then the sheet bar is subjected to finish rolling at which the finish rolling finish temperature (FT) is shown in Table 2, and the winding temperature shown in Table 2 is applied. It was wound up with (CT) to obtain a hot-rolled sheet having a thickness shown in Table 2. Next, the hot-rolled sheet was subjected to a pickling process, and then cold-rolled at the cold rolling reduction shown in Table 2 to obtain cold-rolled sheets having the thickness shown in Table 2.

ついで、冷延板に、焼鈍工程を施し、冷延焼鈍板とした。焼鈍工程では、表2に示す加熱速度、均熱温度、均熱保持時間、冷却速度で焼鈍を施した。なお、600℃以下についても同様の冷却速度で室温まで冷却した。なお、焼鈍工程を施した後に、圧下率:1.0%の調質圧延を行った。   Subsequently, the cold-rolled sheet was subjected to an annealing process to obtain a cold-rolled sheet. In the annealing step, annealing was performed at the heating rate, the soaking temperature, the soaking time, and the cooling rate shown in Table 2. In addition, about 600 degrees C or less, it cooled to room temperature with the same cooling rate. In addition, after performing the annealing process, temper rolling with a rolling reduction of 1.0% was performed.

得られた冷延焼鈍板(冷延鋼板)について、組織観察、引張試験、張出し成形試験を実施した。試験方法は次のとおりとした。
(1)組織観察
得られた冷延焼鈍板から、組織観察用試験片を採取し、圧延方向断面(L断面)を研磨し腐食して、光学顕微鏡(倍率:100倍)および走査型電子顕微鏡(倍率:1000倍)を用いて、組織を観察し、撮像して、画像解析により、フェライトの平均粒径、フェライトの分率、第二相の種類および分率を測定した。なお、フェライトについて、300×300μmの領域で、フェライト粒の圧延方向と板厚方向の平均切片長さを求め、それぞれをA、Bとし、2/(1/A+1/B)の値を平均粒径とした。また、フェライト分率の測定は、300×300μmの領域について行った。
(2)引張試験
得られた冷延焼鈍板から、引張方向が圧延方向となるように、JIS 5号試験片を採取し、比例限を求めた。なお、引張試験片の平行部に歪ゲージを貼付し、引張速度:1mm/minの引張速度で引張試験を実施し、引張特性(比例限、引張強さ、伸び)を求めた。なお、比例限は、応力−歪曲線の傾きが小さくなりはじめる応力とした。
(3)張出し成形試験
得られた冷延焼鈍板から、試験材(大きさ:120×120mm)を採取し、張出し成形を行った。張出し成形は、直径20mmの球頭ポンチで試験材中央部を8mm張り出すプレス成形とした。なお、張出し成形においては、図1に示すように、直径28〜54mmの領域(斜線部)を100kNの荷重で押えながら、成形した。成形後、図2に模式的に示すように、試験材を定盤の上に置き、フランジ部の最大ゆがみ高さを測定した。
得られた結果を表3に示す。
The obtained cold-rolled annealed plate (cold-rolled steel plate) was subjected to a structure observation, a tensile test, and a stretch forming test. The test method was as follows.
(1) Structure observation From the obtained cold-rolled annealed plate, a structure observation specimen is collected, the rolling direction cross section (L cross section) is polished and corroded, and an optical microscope (magnification: 100 times) and scanning electron microscope are used. Using (magnification: 1000 times), the structure was observed, imaged, and the average particle diameter of ferrite, the fraction of ferrite, the type and fraction of the second phase were measured by image analysis. For ferrite, in the region of 300 x 300 μm, calculate the average intercept length in the rolling direction and the thickness direction of the ferrite grains, and let A and B be the values of 2 / (1 / A + 1 / B). The average particle size was taken. Further, the ferrite fraction was measured in the region of 300 × 300 μm.
(2) Tensile test A JIS No. 5 test piece was collected from the obtained cold-rolled annealed plate so that the tensile direction was the rolling direction, and the proportional limit was determined. A strain gauge was attached to the parallel part of the tensile test piece, and a tensile test was performed at a tensile rate of 1 mm / min to obtain tensile properties (proportional limit, tensile strength, elongation). The proportional limit is a stress at which the slope of the stress-strain curve starts to decrease.
(3) Stretching test A test material (size: 120 × 120 mm) was sampled from the obtained cold-rolled annealed plate and stretched. The overhang forming was press forming in which a central portion of the test material was overlaid by 8 mm with a ball head punch having a diameter of 20 mm. In the stretch forming, as shown in FIG. 1, the region (shaded portion) having a diameter of 28 to 54 mm was pressed with a load of 100 kN. After the molding, as schematically shown in FIG. 2, the test material was placed on a surface plate, and the maximum distortion height of the flange portion was measured.
The obtained results are shown in Table 3.

Figure 2014057519
Figure 2014057519

Figure 2014057519
Figure 2014057519

Figure 2014057519
Figure 2014057519

本発明例はいずれも、100MPa以下の低い比例限を有し、張出し成形部材の平坦部最大ゆがみ高さが0.8mm以下となっており、形状凍結性に優れた冷延鋼板となっている。一方、本発明の範囲を外れる比較例は、比例限が100MPaを超えているか、最大ゆがみ高さが0.8mmを超えて大きくなっており、形状凍結性が低下している。   Each of the examples of the present invention has a low proportional limit of 100 MPa or less, the flat part maximum distortion height of the stretch-formed member is 0.8 mm or less, and is a cold-rolled steel sheet excellent in shape freezing property. On the other hand, in the comparative example out of the scope of the present invention, the proportional limit exceeds 100 MPa, or the maximum distortion height exceeds 0.8 mm, and the shape freezing property is reduced.

Claims (20)

質量%で、
C:0.0010〜0.0030%、 Si:0.05%以下、
Mn: 0.1〜0.5%、 P:0.05%以下、
S:0.02%以下、 Al:0.10%以下、
N:0.0050%以下、 Ti:0.021〜0.060%、
B:0.0005〜0.0050%を含み、かつBとCを、B/Cが0.5以上を満たすように含有し、残部Feおよび不可避的不純物からなる組成と、平均粒径:10〜30μmのフェライトを主体とする組織とを有し、比例限が100MPa以下である形状凍結性に優れた冷延鋼板。
% By mass
C: 0.0010 to 0.0030%, Si: 0.05% or less,
Mn: 0.1 to 0.5%, P: 0.05% or less,
S: 0.02% or less, Al: 0.10% or less,
N: 0.0050% or less, Ti: 0.021 to 0.060%,
B: Containing 0.0005 to 0.0050%, and containing B and C so that B / C satisfies 0.5 or more, the balance consisting of Fe and inevitable impurities, and ferrite having an average particle size of 10 to 30 μm A cold-rolled steel sheet having an excellent shape freezing property and having a proportional limit of 100 MPa or less.
前記組成に加えてさらに、質量%で、Nb:0.009%以下を含有する請求項1に記載の冷延鋼板。   The cold-rolled steel sheet according to claim 1, further comprising Nb: 0.009% or less by mass% in addition to the composition. 前記組成に加えてさらに、質量%で、Cr:0.06%以下を含有する請求項1に記載の冷延鋼板。   The cold-rolled steel sheet according to claim 1, further comprising Cr: 0.06% or less by mass% in addition to the composition. 前記組成に加えてさらに、質量%で、Nb:0.009%以下とCr:0.06%以下を含有する請求項1に記載の冷延鋼板。   The cold-rolled steel sheet according to claim 1, further comprising, by mass%, Nb: 0.009% or less and Cr: 0.06% or less in addition to the composition. 前記Nb含有量が、質量%で、0.001〜0.009%である請求項2に記載の冷延鋼板。   The cold-rolled steel sheet according to claim 2, wherein the Nb content is 0.001 to 0.009% in mass%. 前記Cr含有量が、質量%で、0.001〜0.06%である請求項3に記載の冷延鋼板。
The cold-rolled steel sheet according to claim 3, wherein the Cr content is 0.001 to 0.06% by mass%.
前記B/Cが、0.5以上、5以下である請求項1に記載の冷延鋼板。 The cold-rolled steel sheet according to claim 1, wherein the B / C is 0.5 or more and 5 or less. 前記B/Cが、1.0以上、3.3以下である請求項7に記載の冷延鋼板。 The cold-rolled steel sheet according to claim 7, wherein the B / C is 1.0 or more and 3.3 or less. 前記B/Cが、1.5以上、3.3以下である請求項8に記載の冷延鋼板。 The cold-rolled steel sheet according to claim 8, wherein the B / C is 1.5 or more and 3.3 or less. 前記比例限が、40MPa以上、 100MPa以下である請求項1に記載の冷延鋼板。 The cold-rolled steel sheet according to claim 1, wherein the proportional limit is 40 MPa or more and 100 MPa or less. 前記フェライトを主体とする組織が、フェライトを面積率で95%以上含有する組織である請求項1に記載の冷延鋼板。 The cold-rolled steel sheet according to claim 1, wherein the structure mainly composed of ferrite is a structure containing 95% or more of ferrite by area ratio. 鋼素材に、熱間圧延工程と、酸洗工程と、冷間圧延工程と、焼鈍工程とを順次施す冷延鋼板の製造方法において、
前記鋼素材を、質量%で、
C:0.0010〜0.0030%、 Si:0.05%以下、
Mn: 0.1〜0.5%、 P:0.05%以下、
S:0.02%以下、 Al:0.10%以下、
N:0.0050%以下、 Ti:0.021〜0.060%、
B:0.0005〜0.0050%
を含み、かつBとCを、B/Cが0.5以上を満たすように含有し、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、
前記熱延工程を、前記鋼素材に、加熱し粗圧延と仕上圧延終了温度:870〜950℃とする仕上圧延とを施し、巻取温度:450〜630℃で巻き取る工程とし、
前記冷延工程を、圧下率:90%以下である冷間圧延を施す工程とし、
前記焼鈍工程を、600℃以上の温度域を平均で、1〜30℃/sの加熱速度で、700〜850℃の範囲の均熱温度まで加熱し、該均熱温度で30〜200s間保持したのち、600℃までの温度域を平均で、3℃/s以上の冷却速度で冷却する工程とする、
形状凍結性に優れた冷延鋼板の製造方法。
In the method of manufacturing a cold-rolled steel sheet, in which a hot rolling process, a pickling process, a cold rolling process, and an annealing process are sequentially performed on a steel material,
The steel material in mass%,
C: 0.0010 to 0.0030%, Si: 0.05% or less,
Mn: 0.1 to 0.5%, P: 0.05% or less,
S: 0.02% or less, Al: 0.10% or less,
N: 0.0050% or less, Ti: 0.021 to 0.060%,
B: 0.0005-0.0050%
And B and C are contained so that B / C satisfies 0.5 or more, and a steel material having a composition composed of the balance Fe and inevitable impurities,
The hot rolling step is a step of heating the steel material, subjecting it to rough rolling and finish rolling to a finish rolling finish temperature of 870 to 950 ° C, and winding at a winding temperature of 450 to 630 ° C.
The cold rolling step is a step of performing cold rolling with a rolling reduction of 90% or less,
The annealing step is heated to a soaking temperature in the range of 700 to 850 ° C. at a heating rate of 1 to 30 ° C./s on average over a temperature range of 600 ° C. or more and held at the soaking temperature for 30 to 200 s. After that, the temperature range up to 600 ℃ on average, it is a process of cooling at a cooling rate of 3 ℃ / s,
A method for producing a cold-rolled steel sheet having excellent shape freezing property
前記組成に加えてさらに、質量%で、Nb:0.009%以下を含有する請求項12に記載の冷延鋼板の製造方法。   The method for producing a cold-rolled steel sheet according to claim 12, further comprising Nb: 0.009% or less by mass% in addition to the composition. 前記組成に加えてさらに、質量%で、Cr:0.06%以下を含有する請求項12に記載の冷延鋼板の製造方法。   The method for producing a cold-rolled steel sheet according to claim 12, further comprising Cr: 0.06% or less by mass% in addition to the composition. 前記組成に加えてさらに、質量%で、Nb:0.009%以下とCr:0.06%以下を含有する請求項12に記載の冷延鋼板の製造方法。   The method for producing a cold-rolled steel sheet according to claim 12, further comprising Nb: 0.009% or less and Cr: 0.06% or less in mass% in addition to the composition. 前記Nb含有量が、質量%で、0.001〜0.009%である請求項13に記載の冷延鋼板の製造方法。   The method for producing a cold-rolled steel sheet according to claim 13, wherein the Nb content is 0.001 to 0.009% in mass%. 前記Cr含有量が、質量%で、0.001〜0.06%である請求項14に記載の冷延鋼板の製造方法。   The method for producing a cold-rolled steel sheet according to claim 14, wherein the Cr content is 0.001 to 0.06% by mass. 前記B/Cが、0.5以上、5以下である請求項12に記載の冷延鋼板の製造方法。 The method for producing a cold-rolled steel sheet according to claim 12, wherein the B / C is 0.5 or more and 5 or less. 前記B/Cが、1.0以上、3.3以下である請求項18に記載の冷延鋼板の製造方法。 The method for producing a cold-rolled steel sheet according to claim 18, wherein the B / C is 1.0 or more and 3.3 or less. 前記B/Cが、1.5以上、3.3以下である請求項19に記載の冷延鋼板の製造方法。

The method for producing a cold-rolled steel sheet according to claim 19, wherein the B / C is 1.5 or more and 3.3 or less.

JP2014540643A 2012-10-11 2012-10-11 Cold-rolled steel sheet having excellent shape freezing property and manufacturing method thereof Pending JPWO2014057519A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/006532 WO2014057519A1 (en) 2012-10-11 2012-10-11 Cold-rolled steel sheet with superior shape fixability and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JPWO2014057519A1 true JPWO2014057519A1 (en) 2016-08-25

Family

ID=50477012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014540643A Pending JPWO2014057519A1 (en) 2012-10-11 2012-10-11 Cold-rolled steel sheet having excellent shape freezing property and manufacturing method thereof

Country Status (7)

Country Link
US (1) US20150252456A1 (en)
EP (1) EP2907887B1 (en)
JP (1) JPWO2014057519A1 (en)
KR (1) KR20150060957A (en)
CN (1) CN104870678A (en)
IN (1) IN2015KN00599A (en)
WO (1) WO2014057519A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101819358B1 (en) * 2016-08-12 2018-01-17 주식회사 포스코 High-strength thin steel sheet having excellent formability and method for manufacturing the same
US20190203309A1 (en) * 2016-12-21 2019-07-04 Nippon Steel & Sumitomo Metal Corporation H section and method for manufacturing same
KR20210079460A (en) * 2019-12-19 2021-06-30 주식회사 포스코 Cold-rolled steel sheet having high hardness and formability and manufacturing method thereof
WO2023140239A1 (en) * 2022-01-21 2023-07-27 日本製鉄株式会社 Cold-rolled steel sheet and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073429A (en) * 1993-06-21 1995-01-06 Nippon Steel Corp Production of cold rolled steel sheet for deep drawing, excellent in dent resistance and surface strain resistance
JPH0770650A (en) * 1993-09-02 1995-03-14 Kawasaki Steel Corp Production of cold rolled steel sheet extremely excellent in deep drawability
JP2003055738A (en) * 2001-06-05 2003-02-26 Nippon Steel Corp Ferritic steel plate with excellent shape freezing property
JP2012007196A (en) * 2010-06-23 2012-01-12 Jfe Steel Corp Cold-rolled thin steel sheet having excellent shape fixability, and method for producing the same
JP5541243B2 (en) * 2011-07-15 2014-07-09 Jfeスチール株式会社 Cold-rolled steel sheet having excellent shape freezing property and manufacturing method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116648A (en) * 1992-10-02 1994-04-26 Nippon Steel Corp Production of cold rolled steel sheet or hot dip galvanized steel sheet excellent in baking hardenability and non-aging characteristic
EP1026278B2 (en) 1998-07-27 2014-04-30 Nippon Steel & Sumitomo Metal Corporation Use of a ferritic steel sheet having excellent shape fixability and manufacturing method thereof
JP2002066637A (en) 2000-08-31 2002-03-05 Nippon Steel Corp Press forming method excellent in dimensional accuracy of formed object
JP3674502B2 (en) * 2000-11-30 2005-07-20 Jfeスチール株式会社 Bake-hardening cold-rolled steel sheet and method for producing the same
EP2806046B1 (en) * 2006-03-16 2019-07-03 JFE Steel Corporation Cold-rolled steel sheet, method of producing the same, battery, and method of producing the same
JP5407591B2 (en) * 2008-07-22 2014-02-05 Jfeスチール株式会社 Cold-rolled steel sheet, manufacturing method thereof, and backlight chassis
JP5093029B2 (en) * 2008-09-29 2012-12-05 住友金属工業株式会社 Cold rolled steel sheet and method for producing the same
JP5515732B2 (en) * 2009-12-25 2014-06-11 Jfeスチール株式会社 Method for producing hot-rolled steel sheet without edge cracks and method for producing cold-rolled steel sheet without edge cracks
JP5051247B2 (en) * 2010-01-15 2012-10-17 Jfeスチール株式会社 Cold-rolled steel sheet excellent in formability and shape freezing property and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073429A (en) * 1993-06-21 1995-01-06 Nippon Steel Corp Production of cold rolled steel sheet for deep drawing, excellent in dent resistance and surface strain resistance
JPH0770650A (en) * 1993-09-02 1995-03-14 Kawasaki Steel Corp Production of cold rolled steel sheet extremely excellent in deep drawability
JP2003055738A (en) * 2001-06-05 2003-02-26 Nippon Steel Corp Ferritic steel plate with excellent shape freezing property
JP2012007196A (en) * 2010-06-23 2012-01-12 Jfe Steel Corp Cold-rolled thin steel sheet having excellent shape fixability, and method for producing the same
JP5541243B2 (en) * 2011-07-15 2014-07-09 Jfeスチール株式会社 Cold-rolled steel sheet having excellent shape freezing property and manufacturing method thereof

Also Published As

Publication number Publication date
KR20150060957A (en) 2015-06-03
EP2907887A4 (en) 2015-12-02
IN2015KN00599A (en) 2015-07-17
WO2014057519A1 (en) 2014-04-17
US20150252456A1 (en) 2015-09-10
CN104870678A (en) 2015-08-26
EP2907887B1 (en) 2018-12-05
EP2907887A1 (en) 2015-08-19

Similar Documents

Publication Publication Date Title
JP5609945B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP5594344B2 (en) High-strength hot-rolled steel sheet with excellent bending characteristics and low-temperature toughness and method for producing the same
JP5884714B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
KR20120008033A (en) Cold-rolled steel sheet having excellent slow-aging property and high curability in baking, and method for producing same
KR20170107057A (en) High-strength cold-rolled steel plate and method for producing same
JP5958669B1 (en) High strength steel plate and manufacturing method thereof
JP6597938B1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and methods for producing them
WO2012033210A1 (en) High-strength cold-rolled steel sheet having excellent stretch flange properties, and process for production thereof
WO2016035236A1 (en) Cold-rolled ferritic stainless steel sheet
JP2012153957A (en) High-strength cold-rolled steel sheet with excellent ductility, and method for producing the same
TWI427162B (en) Cold rolled steel sheet having excellent formability and shape fixability and method for manufacturing the same
JP5811725B2 (en) High-tensile cold-rolled steel sheet excellent in surface distortion resistance, bake hardenability and stretch flangeability, and method for producing the same
JP5958668B1 (en) High strength steel plate and manufacturing method thereof
WO2014057519A1 (en) Cold-rolled steel sheet with superior shape fixability and manufacturing method therefor
CN115087756A (en) Hot rolled steel plate
JP5217617B2 (en) Ferritic stainless steel cold-rolled steel sheet and manufacturing method thereof
JP5541243B2 (en) Cold-rolled steel sheet having excellent shape freezing property and manufacturing method thereof
JP2010150580A (en) Steel sheet and method of manufacturing the same
JP5434375B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP6628018B1 (en) Hot rolled steel sheet
JP6225733B2 (en) High strength hot rolled steel sheet and method for producing the same
JP6573054B1 (en) steel sheet
JP2017025397A (en) Hot rolled steel sheet and method of producing the same
JP5846343B1 (en) Ferritic stainless steel cold rolled steel sheet
JP5582284B2 (en) Thin steel plate having a high proportional limit and method for producing the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151208