JP2002066637A - Press forming method excellent in dimensional accuracy of formed object - Google Patents

Press forming method excellent in dimensional accuracy of formed object

Info

Publication number
JP2002066637A
JP2002066637A JP2000262113A JP2000262113A JP2002066637A JP 2002066637 A JP2002066637 A JP 2002066637A JP 2000262113 A JP2000262113 A JP 2000262113A JP 2000262113 A JP2000262113 A JP 2000262113A JP 2002066637 A JP2002066637 A JP 2002066637A
Authority
JP
Japan
Prior art keywords
steel sheet
steel plate
press
vertical wall
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000262113A
Other languages
Japanese (ja)
Inventor
Toru Yoshida
亨 吉田
Osamu Akisue
治 秋末
Manabu Takahashi
学 高橋
Naoki Yoshinaga
直樹 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000262113A priority Critical patent/JP2002066637A/en
Publication of JP2002066637A publication Critical patent/JP2002066637A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hut shape bending member excellent in shape frozenness in a press component using a steel plate. SOLUTION: Using a steel plate or a coated steel plate whose ratio of crystalline plane between the crystal face of ferrite 100} in the parallel surface to the rolling surface of the steel plate and the crystal face 111} is 1.0 or more, the press forming is performed imparting a tensile stress of 40 to 100% against the material tensile strength to the longitudinal wall portion. In this case, by setting up a blank holding load F [N] so as to satisfy the formula, 2btσB/5 μ<=F<=btσB/μ, the press forming is performed imparting the tensile stress of 40 to 100% against the material tensile strength to the longitudinal wall portion. (but, b: blank width [mm], t: raw steel plate wall thickness [mm], σB: tensile strength [MPa] of raw steel plate, μ: frictional coefficient of raw steel plate and die).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車の加工部品
等に用いられる、{100}集合組織の発達した鋼板を
用いて、寸法精度に優れた成形品を得る、ハット曲げ加
工を主とするプレス成形方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a hat bending process for obtaining a molded product excellent in dimensional accuracy by using a steel plate having a {100} texture developed for a processed part of an automobile and the like. The present invention relates to a press molding method.

【0002】[0002]

【従来の技術】従来、メンバ−などの自動車構造強度部
材は図1に示すように、フランジ付ハット型部材1が非
常に多く用いられており、フランジ面は車体組立の際の
スポット溶接部として使われている。このようなハット
型部材は、例えば図2のように鋼板をポンチ4とダイ
3、ブランクホルダ−2からなるプレス成形金型を用い
たプレス成形により断面形状をハット型に曲げて製造す
る場合が多い。最近、自動車からの炭酸ガスの排出量を
抑えるために、高強度鋼板を使用して自動車車体の軽量
化する工法の適用が進められている。また、搭乗者の安
全性の確保のためにも、自動車のメンバ−部品など構造
強度部材には軟鋼板の他に高強度鋼板が多く使用される
ようになってきている。
2. Description of the Related Art Conventionally, as shown in FIG. 1, a hat-shaped member 1 with a flange is used very frequently as a member for structural strength of an automobile such as a member, and a flange surface is used as a spot welded portion when assembling a vehicle body. It is used. Such a hat-shaped member may be manufactured by bending a steel sheet into a hat shape by press-forming using a press-forming mold including a punch 4, a die 3, and a blank holder 2 as shown in FIG. 2, for example. Many. Recently, in order to suppress the amount of carbon dioxide gas emitted from automobiles, application of a construction method for reducing the weight of automobile bodies by using high-strength steel plates has been promoted. In addition, in order to ensure the safety of the occupants, high-strength steel sheets in addition to mild steel sheets are increasingly used for structural strength members such as members and parts of automobiles.

【0003】このような更に自動車車体の軽量化を今後
進めていくために、従来以上に高強度鋼板の使用強度レ
ベルを高めたいという新たな要請が非常に高まりつつあ
る。しかしながら、高強度鋼板に曲げ加工を加えると、
加工後の形状はその高強度のゆえに、加工治具の形状か
ら離れて加工前の形状の方向にもどりやすくなる。加工
を加えても元の形状の方向にもどろうとするこの現象は
スプリングバックと呼ばれている。このスプリングバッ
クが発生すると、狙いとする加工部品の形状が得られな
いため、車体組立の際にスポット溶接などで部材同士を
接合することが困難である。
[0003] In order to further reduce the weight of automobile bodies in the future, new demands for further increasing the use strength level of high-strength steel sheets are increasing very much. However, when bending is applied to a high-strength steel sheet,
Due to its high strength, the shape after processing tends to return to the shape before processing away from the shape of the processing jig. This phenomenon of returning to the original shape direction even after processing is called springback. When this springback occurs, it is difficult to join the members by spot welding or the like at the time of assembling the vehicle body, because the target shape of the processed part cannot be obtained.

【0004】従って、従来の自動車の車体では、主とし
て440MPa以下の高強度鋼板に限って使用されてき
た。自動車車体にとっては、490MPa以上の高強度
鋼板を使用して車体の軽量化を進めていく必要があるに
もかかわらず、490MPa以上の高強度鋼板を用いて
スプリングバックが少なく寸法精度に優れた部品を成形
する方法がないのが実状である。付け加えるまでもな
く、440MPa以下の高強度鋼板や軟鋼板についてス
プリングバックを減少させることは、自動車や家電製品
などの製品の形状精度を高める上で極めて必要であるこ
とはいうまでもない。本発明者らが発明した{100}
集合組織の発達した曲げ加工性に優れたフェライト系薄
鋼板はWO00/06791号公報に開示されている。
しかし、縦壁部に壁反りを発生するハット型部材の成形
方法についてはWO00/06791号公報には開示さ
れていない。
[0004] Therefore, in the conventional automobile body, mainly high-strength steel sheets of 440 MPa or less have been used. Despite the need to reduce the weight of automobile bodies by using high-strength steel plates of 490 MPa or more, parts with low springback and excellent dimensional accuracy using high-strength steel plates of 490 MPa or more for automobile bodies The fact is that there is no method for molding the. Needless to say, it is needless to say that reducing the springback of a high-strength steel sheet or a mild steel sheet of 440 MPa or less is extremely necessary for enhancing the shape accuracy of products such as automobiles and home electric appliances. {100} invented by the present inventors
A ferritic thin steel sheet having an improved texture and excellent in bending workability is disclosed in WO00 / 06791.
However, a method of forming a hat-shaped member that causes wall warpage in a vertical wall portion is not disclosed in WO 00/06792.

【0005】[0005]

【発明が解決しようとする課題】軟鋼板や高強度鋼板に
ハット曲げ加工を施すと、鋼板の強度に依存しながら大
きなスプリングバックが発生し、加工成形部品の形状凍
結性が悪いのが現状である。本発明は、この課題を根本
的に解決して、成形品の寸法精度に優れたプレス成形方
法を提供するものである。
When hat bending is applied to a mild steel sheet or a high-strength steel sheet, large springback occurs depending on the strength of the steel sheet, and the shape-freezing property of the machined part is poor at present. is there. The present invention fundamentally solves this problem and provides a press molding method excellent in dimensional accuracy of a molded product.

【0006】[0006]

【課題を解決するための手段】従来の知見によれば、ス
プリングバックを抑えるための方策としては、鋼板の降
伏点を低くすることがとりあえず重要であると考えられ
ていた。そして降伏点を低くするためには、引張強さの
低い鋼板を使用せざるを得なかった。しかし、これだけ
では鋼板のハット曲げ加工性を向上させ、スプリングバ
ック量を抑えるための根本的な解決にはならない。
According to the conventional knowledge, it has been considered that it is important to reduce the yield point of a steel sheet as a measure for suppressing springback. In order to lower the yield point, a steel sheet having a low tensile strength had to be used. However, this alone is not a fundamental solution for improving the hat bending workability of the steel sheet and suppressing the amount of springback.

【0007】そこで、本発明者らはハット曲げ加工性を
向上させてスプリングバックの発生を根本的に解決する
ために、新たに鋼板の集合組織の曲げ加工性への影響に
着目して、その作用効果を詳細に調査、研究した。そし
て鋼板のハット曲げ加工性に対する良い材料指標と成形
条件を見いだそうとしたものである。その結果、鋼板の
集合組織のうちで板面に平行な{100}結晶面と{1
11}結晶面の比が1.0以上存在する鋼板を用いて、
縦壁部に材料引張強さの40〜100%の引張応力を付
与しながらポンチ成形を行うと、寸法精度に優れたハッ
ト型部材が得られることを明らかにしたものである。本
発明は前述の知見に基づいて構成されているものであ
る。そして、その主旨とするところは以下のとおりであ
る。
Therefore, the present inventors newly focused on the influence of the texture of the steel sheet on the bending workability in order to improve the hat bending workability and fundamentally solve the occurrence of springback. The effect was investigated and studied in detail. The intent was to find a good material index for hat bending workability of steel sheets and forming conditions. As a result, in the texture of the steel sheet, the {100} crystal plane parallel to the sheet surface and the {1}
Using a steel plate having a 11} crystal plane ratio of 1.0 or more,
It has been clarified that, when punching is performed while applying a tensile stress of 40 to 100% of the material tensile strength to the vertical wall portion, a hat-shaped member having excellent dimensional accuracy can be obtained. The present invention is configured based on the above findings. The main points are as follows.

【0008】(1)鋼板のプレス加工成形方法におい
て、圧延面に平行な面におけるフェライトの{100}
結晶面と{111}結晶面の比が1.0以上である鋼板
又はめっき鋼板を用いて、縦壁部に材料引張強さの40
〜100%の引張応力を付与しながら成形を行うことを
特徴とする、成形品の寸法精度に優れたプレス成形方
法。 (2)しわ押さえ荷重Fを下記(1)式を満たす範囲に
設定することを特徴とする前記(1)記載の成形品の寸
法精度に優れたプレス成形方法。 2btσB /5μ ≦ F ≦ btσB /μ … (1) ただし b:ブランク幅[mm],t:素板板厚[mm],
σB :素板の引張強さ[MPa],μ:素板と金型の摩
擦係数
(1) In the press forming method of a steel sheet, {100} of ferrite on a plane parallel to a rolling surface is provided.
Using a steel plate or a plated steel plate in which the ratio of the crystal plane to the {111} crystal plane is 1.0 or more, the vertical wall portion has a material tensile strength of 40%.
A press molding method excellent in dimensional accuracy of a molded product, wherein the molding is performed while applying a tensile stress of 100100%. (2) The press molding method according to the above (1), wherein the wrinkle pressing load F is set in a range satisfying the following formula (1), and the molded product has excellent dimensional accuracy. 2btσ B / 5μ ≦ F ≦ btσ B / μ ... (1) provided that b: blank Width [mm], t: material plate thickness [mm],
σ B : Tensile strength of base plate [MPa], μ: Friction coefficient between base plate and mold

【0009】(3)ダイフェ−ス面に材料流入方向と直
角な方向に突起状のビ−ドを設けることを特徴とする前
記(1)又は(2)記載の成形品の寸法精度に優れたプ
レス成形方法。 (4)ハット型部材にプレス加工することを特徴とする
前記(1)〜(3)のいずれか1項に記載の成形品の寸
法精度に優れたプレス成形方法である。
(3) The molded article according to the above (1) or (2), wherein a protrusion-shaped bead is provided on the die surface in a direction perpendicular to the material inflow direction. Press molding method. (4) The press forming method according to any one of the above (1) to (3), wherein the hat-shaped member is press-worked, and the molded product has excellent dimensional accuracy.

【0010】[0010]

【発明の実施の形態】以下に本発明の内容を詳細に説明
する。本発明のプレス成形においては、特にスプリング
バックが発生し、形状凍結性の確保が難しいフランジ付
きハット型曲げ試験を実施し、弾性回復による開き量と
材料の結晶面の比と縦壁部張力の組み合わせに密接な関
係があることを見出した。ここでいう縦壁部張力とは図
2のように成形中に縦壁部に加わっている応力を表すも
ので、Pをポンチに加わる最大成形荷重、bを鋼板の
幅、tを鋼板板厚とした場合に公称縦壁張力σt
(2)式で与えられる。 σt =P/2bt … (2) ここで σt :公称縦壁張力[MPa], P:最大成形荷重
[N]
DESCRIPTION OF THE PREFERRED EMBODIMENTS The contents of the present invention will be described below in detail. In the press forming according to the present invention, in particular, a spring-back is generated, and a hat-type bending test with a flange, in which it is difficult to ensure shape freezing, is performed. We found that the combinations are closely related. The vertical wall tension as used herein refers to the stress applied to the vertical wall during forming as shown in FIG. 2, where P is the maximum forming load applied to the punch, b is the width of the steel sheet, and t is the thickness of the steel sheet. In this case, the nominal vertical wall tension σ t is given by equation (2). σ t = P / 2bt (2) where σ t : nominal vertical wall tension [MPa], P: maximum forming load [N]

【0011】本発明の根幹は、薄鋼板の板面に平行な
{100}結晶面と{111}結晶面の存在比が1.0
以上である鋼板に、縦壁部に材料引張強さの40%以上
の引張応力を付与しながら成形を行えば、薄鋼板のハッ
ト曲げ加工性が非常に向上することにある。数値限定す
る理由は以下のとおりである。まず、{100}結晶面
と{111}結晶面の存在比を1.0以上に限定したの
は、この比が1.0よりも小さいと薄鋼板を曲げ加工し
たときの弾性回復による開き量が非常に大きくなるから
である。結晶面の存在比が1.0以上において弾性回復
による開き量が非常に小さくなるのは、曲げ加工時にお
ける鋼板内での塑性変形が非常にスム−ズに進行するか
らであると思われる。結晶学の立場から曲げ加工変形を
考えると、{100}結晶面が多いことは、単純なすべ
り系のみによって曲げ加工変形が進行することになると
考えられる。
[0011] The basis of the present invention is that the ratio of the {100} crystal plane parallel to the plane of the thin steel sheet to the {111} crystal plane is 1.0.
If the above-mentioned steel sheet is formed while applying a tensile stress of 40% or more of the material tensile strength to the vertical wall portion, the hat bending workability of the thin steel sheet is greatly improved. The reasons for limiting the numerical values are as follows. First, the existence ratio of the {100} crystal plane and the {111} crystal plane was limited to 1.0 or more. When this ratio was smaller than 1.0, the opening amount due to elastic recovery when bending a thin steel plate. Is very large. The reason why the opening amount due to elastic recovery becomes very small when the crystal plane abundance is 1.0 or more is considered to be because plastic deformation in the steel sheet during bending is extremely smooth. Considering bending deformation from the viewpoint of crystallography, it is considered that the fact that there are many {100} crystal planes means that bending deformation proceeds only by a simple slip system.

【0012】一方、{111}結晶面が多いと、曲げ加
工時には複数の複雑なすべり系が活動することになる。
このことを換言すれば、曲げ加工変形にとって{11
1}結晶面の存在は不都合であると思われるのである。
これらのことから、{100}結晶面の存在量が{11
1}結晶面のそれよりも多くなって、その比が1.0以
上になると曲げ変形がスム−スに進行することになると
理解することができる。なお、薄鋼板の板面に平行な結
晶面の存在量は、X線の回折量に比例するものとして、
{200}や{222}などのX線の回折強度を測定す
ることによって求める。
On the other hand, if there are many {111} crystal planes, a plurality of complicated slip systems will be activated during bending.
In other words, $ 11 for bending deformation
The existence of the 1} crystal plane seems to be inconvenient.
From these facts, it can be seen that the abundance of the {100} crystal plane is {11}
It can be understood that when the ratio becomes larger than that of the 1} crystal plane and the ratio becomes 1.0 or more, the bending deformation smoothly proceeds. The amount of crystal planes parallel to the plane of the thin steel sheet is assumed to be proportional to the amount of X-ray diffraction,
It is determined by measuring the diffraction intensity of X-rays such as {200} and {222}.

【0013】従って、{200}や{222}などのX
線の回折強度は、対応する実体としての結晶面は、それ
ぞれ{100}や{111}結晶面の存在量に対応して
いることになる。いうまでもなく、X線の回折強度比、
{200}/{222}は存在する結晶面の比{10
0}/{111}と等価であるといって差し支えない。
{100}結晶面と{111}結晶面の存在比の上限は
特に定めることなく本発明の効果を得ることができる
が、ランクフォ−ド値が下がり深絞り性が悪くなるた
め、10以下であることが好ましい。
Therefore, X such as {200} or {222}
The diffraction intensity of the line means that the corresponding crystal planes as entities correspond to the abundance of {100} and {111} crystal planes, respectively. Needless to say, the X-ray diffraction intensity ratio,
{200} / {222} is the ratio of existing crystal planes {10
It can be said that it is equivalent to 0 / {111}.
The upper limit of the abundance ratio between the {100} crystal plane and the {111} crystal plane can be obtained without particular limitation, but the rank ford value is lowered and the deep drawability is deteriorated, so that the upper limit is 10 or less. Is preferred.

【0014】また、縦壁部に与える引張応力を材料引張
強さの40%以上に限定した理由は、この値が40%未
満であると、薄鋼板を曲げ加工したときの弾性回復によ
る開き量が大きく、スプリングバックを小さくする効果
が得られないからである。{100}結晶面と{11
1}結晶面の比が1.0以上である鋼板の縦壁部の引張
応力が材料引張強さの40%以上であると弾性回復によ
る開き量が非常に小さくなるのは、張力が加わることで
縦壁部の塑性変形がスム−スに進行し、ダイR部で曲げ
られた形状が縦壁部できれいに曲げ戻されるからである
と思われる。縦壁部に加わる引張応力の上限は破断の発
生を避けるため材料引張強さの100%以下とする。
The reason why the tensile stress applied to the vertical wall portion is limited to 40% or more of the material tensile strength is that if this value is less than 40%, the opening amount due to elastic recovery when bending a thin steel plate. This is because the effect of reducing springback cannot be obtained. {100} crystal plane and {11}
When the tensile stress of the vertical wall of a steel plate having a crystal plane ratio of 1.0 or more is 40% or more of the material tensile strength, the opening amount due to elastic recovery becomes very small because tension is applied. It is considered that the plastic deformation of the vertical wall portion smoothly progresses, and the shape bent at the die R portion is finely bent back at the vertical wall portion. The upper limit of the tensile stress applied to the vertical wall portion is set to 100% or less of the material tensile strength in order to avoid the occurrence of fracture.

【0015】また、縦壁部に張力を付与する方法として
は、しわ押さえ荷重を加える方法がある。しわ押さえ荷
重とはプレス成形中にしわの発生を抑制するために、図
2のようにブランクホルダ−に油圧などにより与える荷
重である。これを加えることにより、フランジ面で摩擦
抵抗が生じ、ポンチで成形する際に縦壁部に張力を発生
することが可能である。しわ押さえ荷重Fは縦壁張力が
材料引張強さの40〜100%になるように与えれば良
いが、(1)式の範囲に設定するとスプリングバックを
十分に小さくすることが可能である。Fが2btσB
5μより小さいと縦壁張力が十分でなく、スプリングバ
ックを小さくする効果が得られないからである。また、
FがbtσB /μを超えると縦壁部の張力が破断耐力を
超えてしまい、亀裂が発生するおそれがあるためであ
る。
Further, as a method of applying tension to the vertical wall portion, there is a method of applying a wrinkle holding load. The wrinkle pressing load is a load applied to the blank holder by hydraulic pressure or the like as shown in FIG. 2 in order to suppress the occurrence of wrinkles during press forming. By adding this, frictional resistance is generated on the flange surface, and it is possible to generate tension on the vertical wall portion when forming with a punch. The wrinkle holding load F may be applied so that the vertical wall tension is 40 to 100% of the tensile strength of the material, but if it is set in the range of the expression (1), the springback can be sufficiently reduced. F is 2 btσ B /
If it is smaller than 5 μm, the vertical wall tension is not sufficient, and the effect of reducing the springback cannot be obtained. Also,
If F exceeds btσ B / μ, the tension of the vertical wall portion exceeds the breaking strength, and there is a possibility that a crack may occur.

【0016】さらに、縦壁部に張力を付与する方法とし
ては、ダイフェ−ス面に材料流入方向と直角な方向に突
起状のビ−ドを設ける方法もある。ビ−ドは図3に示す
ような突起状のものであり、成形時に材料がビ−ドを通
過する際に受ける曲げ・曲げ戻し変形抵抗や摩擦抵抗に
より材料の流入を制御するものである。また、ビ−ド5
の断面形状としては図4に示すような丸断面、角断面、
ステップ状のものがある。ビ−ドによって与えられる縦
壁部の張力は材料の強度、板厚とビ−ドの断面幾何形状
によって決まるので、材料に応じて適当な断面形状のビ
−ドを選ぶ必要がある。実際上は式(2)によって求め
られる縦壁部張力σB が材料引張強さの40〜100%
となるようなビ−ド形状を設定すればよい。
Further, as a method of applying tension to the vertical wall portion, there is a method of providing a projecting bead on the die surface in a direction perpendicular to the material inflow direction. The bead has a protruding shape as shown in FIG. 3, and controls the inflow of the material by the bending / unbending deformation resistance and frictional resistance of the material when the material passes through the bead during molding. Also, bead 5
As a cross-sectional shape, a round cross section, a square cross section as shown in FIG.
There are steps. Since the tension of the vertical wall provided by the bead is determined by the strength, plate thickness and cross-sectional geometry of the bead, it is necessary to select a bead having an appropriate cross-sectional shape according to the material. Actually, the vertical wall tension σ B obtained by the equation (2) is 40 to 100% of the material tensile strength.
It is sufficient to set a bead shape such that

【0017】本発明の対象とする薄鋼板とは厚さ6mm
以下の鋼板と定義するが、ここで重要なことは、強度レ
ベルの低い軟鋼板から高強度鋼板にいたる総ての薄鋼板
において、薄鋼板の板面に平行な{100}結晶面と
{111}結晶面の存在比が1.0以上であり、縦壁部
に材料引張強さの40〜100%の引張応力を付与しな
がらポンチ成形を行えば、薄鋼板のハット曲げ加工性は
非常に向上するということである。いいかえれば、薄鋼
板の強度レベルの制約をこえたプレス加工変形に関する
基本的な加工方法ということである。
The thin steel sheet to be used in the present invention has a thickness of 6 mm.
The following steel sheet is defined, but what is important here is that, in all the thin steel sheets from low strength steel sheet to high strength steel sheet, the {100} crystal plane and the {111}存在 If the abundance ratio of the crystal plane is 1.0 or more and the punch forming is performed while applying a tensile stress of 40 to 100% of the material tensile strength to the vertical wall portion, the hat bending workability of the thin steel sheet is very high. Is to improve. In other words, it is a basic processing method related to press deformation that exceeds the restriction on the strength level of the thin steel sheet.

【0018】薄鋼板であれば上記の考え方は普遍的に適
用できるので、特に薄鋼板の種類を限定することは基本
的に必要のないことである。しかし、実用面からみて、
この技術の適用例として薄鋼板の種類に言及しておくこ
とにする。薄鋼板の種類は軟鋼板から高強度鋼板にわた
るものである。そして勿論のこととして、熱延鋼板や冷
延鋼板の区別は何ら問うものではない。本発明の効果は
薄鋼板の板面に平行な{100}結晶面と{111}結
晶面の存在比が1.0以上の鋼板を使って縦壁部に材料
引張強さの40〜100%の引張応力を付与しながらポ
ンチ成形を行うことで得られるが、さらに顕著な効果を
得ようとすれば前記存在比が1.5以上であるか、前記
引張応力が60〜100%であることが好ましい。ポン
チ肩半径やダイ肩半径は通常板厚の2〜15倍の範囲で用
いられるが、ここでは特に定めるものではない。
The above concept can be universally applied to a thin steel sheet, so that it is basically unnecessary to limit the type of the thin steel sheet. However, from a practical point of view,
As an application example of this technology, the type of thin steel sheet will be mentioned. The types of thin steel sheets range from mild steel sheets to high strength steel sheets. And, of course, the distinction between the hot-rolled steel sheet and the cold-rolled steel sheet does not matter at all. The effect of the present invention is that a steel plate having an existing ratio of {100} crystal plane and {111} crystal plane parallel to the plane of the thin steel sheet is 1.0 or more, and the vertical wall portion has 40 to 100% of the material tensile strength. It is obtained by performing punch forming while applying a tensile stress of the above, but in order to obtain a more remarkable effect, the existence ratio is 1.5 or more, or the tensile stress is 60 to 100%. Is preferred. The punch shoulder radius and die shoulder radius are usually used in a range of 2 to 15 times the plate thickness, but are not particularly specified here.

【0019】また、ポンチとダイのクリアランスは通常
板厚の0.8〜3倍の範囲で用いられるが、ここでは特
に定めない。さらに、本発明は上記の薄鋼板にめっき処
理をした鋼板にも適用可能であり、めっきの種類は特に
限定するものではなく、電気めっき、溶融めっき、蒸着
めっき等何れでも本発明の効果が得られる。尚、本発明
に係わるプレス成形方法は曲げ加工だけでなく、張出
し、絞り、伸びフランジ等、曲げ加工を主体とする複合
成形にも適用できる。
The clearance between the punch and the die is usually used in the range of 0.8 to 3 times the plate thickness, but is not particularly specified here. Further, the present invention is also applicable to a steel sheet obtained by plating the above-mentioned thin steel sheet, and the type of plating is not particularly limited, and the effect of the present invention can be obtained by any of electroplating, hot-dip plating, and vapor deposition plating. Can be The press forming method according to the present invention can be applied not only to bending, but also to composite forming mainly involving bending, such as overhang, drawing, and stretch flange.

【0020】[0020]

【実施例】成分組成が質量%でC:0.09%、Si:
0.02%、Mn:1.86%、P:0.017%、
S:0.017%、Al:0.055%、N:0.00
35%を有する炭素鋼を用いて検討した結果について説
明する。これらの鋼は、スラブの加熱温度として900
℃から1250℃までの温度の間で加熱し、熱間圧延を
施して板厚3mmの鋼板に仕上げた。その後の冷間圧延
によって1.4mmにまで板厚を減少させ、その鋼板に
引き続いて均熱温度が700℃から850℃の温度の間
で連続焼鈍法による焼鈍を施した。また、表1には上述
した方法によって得られた冷延鋼板と同じ1.4mmま
で熱間圧延した熱延鋼板も含めて機械的特性値とX線回
折強度比を示してある。スプリングバックの評価は、図
1に示すように断面形状がハット型の成形試験を行い、
得られた成形品を評価した。
EXAMPLES The composition of the components is C: 0.09% in mass%, Si:
0.02%, Mn: 1.86%, P: 0.017%,
S: 0.017%, Al: 0.055%, N: 0.00
The result of the examination using carbon steel having 35% will be described. These steels have a slab heating temperature of 900
It heated between the temperature of 1250 degreeC, and performed hot rolling, and finished it to the steel plate of thickness 3mm. Thereafter, the sheet thickness was reduced to 1.4 mm by cold rolling, and the steel sheet was subsequently annealed by a continuous annealing method at a soaking temperature of 700 ° C to 850 ° C. Table 1 shows mechanical property values and X-ray diffraction intensity ratios including the hot-rolled steel sheet hot-rolled to 1.4 mm, which is the same as the cold-rolled steel sheet obtained by the above-described method. The evaluation of the springback was performed by performing a hat type molding test as shown in FIG.
The obtained molded product was evaluated.

【0021】実験条件として、ブランク形状は270×
50mm、工具ポンチ幅78mm、ポンチ肩半径5m
m、ダイ肩半径5mm、クリアランス1.6mmで行っ
た。また、成形高さは70mmとし、しわ押さえ荷重を
変えることで、材料引張強さに対する縦壁張力の割合を
20〜120%と変化させて試験した。なお、縦壁張力
σB はポンチ成形荷重Pを測定し、素板形状から(2)
式を用いて算出した。また、成形品の寸法精度の評価は
3次元形状測定により、 壁反り量(縦壁部曲率)1/ρ 開き角 △θ=θ−90度(ポンチ底〜縦壁間の角
度)の測定を行い、比較した。評価結果を表1に併せて
示す。
As an experimental condition, the blank shape is 270 ×
50mm, tool punch width 78mm, punch shoulder radius 5m
m, die shoulder radius 5 mm, and clearance 1.6 mm. The test was performed by changing the ratio of the vertical wall tension to the material tensile strength to 20 to 120% by changing the forming height to 70 mm and changing the wrinkle holding load. The vertical wall tension σ B is obtained by measuring the punch forming load P,
It was calculated using the equation. The dimensional accuracy of the molded product was evaluated by measuring the amount of wall warpage (vertical wall curvature) 1 / ρ opening angle Δθ = θ-90 degrees (the angle between the punch bottom and the vertical wall) by measuring the three-dimensional shape. Performed and compared. The evaluation results are also shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】鋼種A,Dでは縦壁張力を変えても、壁反
り4.0×10-3(1/mm)以下、開き角4度以下と
なる成形品を得ることはできなかった。また鋼種B,C
で縦壁張力20%の場合も壁反り5.0×10-3(1/
mm)以下、開き角5度以下となる成形品は得られず、
十分な寸法精度が出なかった。一方、鋼種B,Cの縦壁
張力40%、60%では壁反り3.0×10-3(1/m
m)以下、開き角3度以下となり、寸法精度が大きく改
善され、良品を得ることができた。また、縦壁張力が材
料引張強さの100%を超えた場合では縦壁部で材料が
伸びて破断してしまい成形品を得ることができなかっ
た。本発明の圧延面に平行な面におけるフェライトの
{100}結晶面と{111}結晶面の比が1.0以上
である鋼板を用いて、縦壁部に材料引張強度の40〜1
00%の引張応力を付与しながらポンチ成形を行うプレ
ス成形方法により、効率よく良好なハット型部材の加工
が可能である。
With steel types A and D, even if the vertical wall tension was changed, it was not possible to obtain a molded product having a wall warpage of 4.0 × 10 −3 (1 / mm) or less and an opening angle of 4 ° or less. In addition, steel types B and C
And when the vertical wall tension is 20%, the wall warp is 5.0 × 10 -3 (1 /
mm) or less, a molded product having an opening angle of 5 degrees or less cannot be obtained.
Sufficient dimensional accuracy was not obtained. On the other hand, when the vertical wall tension of steel types B and C is 40% and 60%, the wall warp is 3.0 × 10 −3 (1 / m).
m) or less, the opening angle was 3 degrees or less, the dimensional accuracy was greatly improved, and good products could be obtained. Further, when the vertical wall tension exceeded 100% of the material tensile strength, the material was stretched and broken at the vertical wall portion, and a molded product could not be obtained. The steel plate having the ratio of {100} crystal plane and {111} crystal plane of ferrite in the plane parallel to the rolling plane of the present invention of 1.0 or more is used, and the vertical wall portion has a material tensile strength of 40 to 1.
By the press forming method of performing punch forming while applying a tensile stress of 00%, it is possible to efficiently and efficiently process a hat-shaped member.

【0024】[0024]

【発明の効果】本発明により、薄鋼板の集合組織を制御
した材料を用いて、縦壁に張力を付与しながら成形する
と、そのハット曲げ加工性は著しく向上し、スプリング
バック量が少なく、ハット曲げ加工を主体とする形状凍
結性に優れたハット型部材が提供できるようになった。
特に、従来は形状不良の問題から高強度鋼板の適用が難
しかった部品にも高強度鋼板が使用できるようになる。
自動車の軽量化の推進のためには、高強度鋼板の使用は
是非とも必要である。高強度鋼板を適用したスプリング
バック量が少ないハット型部材が成形できるようになる
と、自動車の一層の軽量化の推進に貢献できる。従っ
て、本発明は工業的に極めて高い価値のある発明であ
る。
According to the present invention, when a material having a controlled texture of a thin steel sheet is formed while applying tension to a vertical wall, its hat bending workability is remarkably improved, the amount of springback is small, and It has become possible to provide a hat-shaped member mainly formed by bending and having excellent shape freezing properties.
In particular, a high-strength steel sheet can be used for a part in which a high-strength steel sheet has conventionally been difficult to be applied due to a problem of poor shape.
The use of high-strength steel sheets is indispensable for promoting the weight reduction of automobiles. If a hat-shaped member using a high-strength steel plate and having a small springback can be formed, it can contribute to further weight reduction of automobiles. Therefore, the present invention is an industrially extremely valuable invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ハット型曲げ成形品の一例を示す図である。FIG. 1 is a diagram illustrating an example of a hat-shaped bent product.

【図2】ハット型曲げ成形における縦壁部張力を示す断
面図である。
FIG. 2 is a cross-sectional view showing vertical wall tension in hat-shaped bending.

【図3】ビ−ドの位置関係の例を示す図である。FIG. 3 is a diagram showing an example of a bead positional relationship.

【図4】ビ−ドの断面形状の例を示す図である。FIG. 4 is a diagram showing an example of a cross-sectional shape of a bead.

【図5】ハット型曲げ成形品の壁反り量を示す断面図で
ある。
FIG. 5 is a sectional view showing the amount of wall warpage of a hat-shaped bent product.

【図6】ハット曲げ成形品の開き角を示す断面図であ
る。
FIG. 6 is a cross-sectional view showing an opening angle of a hat bent product.

【符号の説明】[Explanation of symbols]

1 フランジ付ハット型部材 2 ブランクホルダー 3 ダイ 4 ポンチ 5 ビード DESCRIPTION OF SYMBOLS 1 Hat-type member with flange 2 Blank holder 3 Die 4 Punch 5 Bead

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 学 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 吉永 直樹 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4E063 AA01 BA01 CA06 DA01 JA01 JA07 KA06 LA12 MA18  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Manabu Takahashi 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Division (72) Inventor Naoki Yoshinaga 20-1 Shintomi, Futtsu-shi, Chiba Made in New Japan F-term in the Technology Development Division of Steel Corporation (reference) 4E063 AA01 BA01 CA06 DA01 JA01 JA07 KA06 LA12 MA18

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 鋼板のプレス加工成形方法において、圧
延面に平行な面におけるフェライトの{100}結晶面
と{111}結晶面の比が1.0以上である鋼板又はめ
っき鋼板を用いて、縦壁部に材料引張強さの40〜10
0%の引張応力を付与しながら成形を行うことを特徴と
する、成形品の寸法精度に優れたプレス成形方法。
In a method for press-forming a steel sheet, a steel sheet or a plated steel sheet having a ratio of a {100} crystal plane and a {111} crystal plane of ferrite in a plane parallel to a rolling plane is 1.0 or more, 40 to 10 of material tensile strength on vertical wall
A press molding method excellent in dimensional accuracy of a molded product, wherein molding is performed while applying a tensile stress of 0%.
【請求項2】 しわ押さえ荷重F[N]を下記(1)式
を満たす範囲に設定することを特徴とする請求項1記載
の成形品の寸法精度に優れたプレス成形方法。 2btσB /5μ ≦ F ≦ btσB /μ … (1) ただし b:ブランク幅[mm],t:素板板厚[mm],
σB :素板の引張強さ[MPa],μ:素板と金型の摩
擦係数
2. The press molding method according to claim 1, wherein the wrinkle pressing load F [N] is set in a range satisfying the following equation (1). 2btσ B / 5μ ≦ F ≦ btσ B / μ ... (1) provided that b: blank Width [mm], t: material plate thickness [mm],
σ B : Tensile strength of base plate [MPa], μ: Friction coefficient between base plate and mold
【請求項3】 ダイフェ−ス面に材料流入方向と直角な
方向に突起状のビ−ドを設けることを特徴とする請求項
1又は2記載の成形品の寸法精度に優れたプレス成形方
法。
3. The press-forming method according to claim 1, wherein a protrusion-shaped bead is provided on the die surface in a direction perpendicular to the material inflow direction.
【請求項4】 ハット型部材にプレス加工することを特
徴とする請求項1〜3のいずれか1項に記載の成形品の
寸法精度に優れたプレス成形方法。
4. The press-forming method according to claim 1, wherein the hat-shaped member is press-worked.
JP2000262113A 2000-08-31 2000-08-31 Press forming method excellent in dimensional accuracy of formed object Pending JP2002066637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000262113A JP2002066637A (en) 2000-08-31 2000-08-31 Press forming method excellent in dimensional accuracy of formed object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000262113A JP2002066637A (en) 2000-08-31 2000-08-31 Press forming method excellent in dimensional accuracy of formed object

Publications (1)

Publication Number Publication Date
JP2002066637A true JP2002066637A (en) 2002-03-05

Family

ID=18749841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000262113A Pending JP2002066637A (en) 2000-08-31 2000-08-31 Press forming method excellent in dimensional accuracy of formed object

Country Status (1)

Country Link
JP (1) JP2002066637A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057519A1 (en) 2012-10-11 2014-04-17 Jfeスチール株式会社 Cold-rolled steel sheet with superior shape fixability and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057519A1 (en) 2012-10-11 2014-04-17 Jfeスチール株式会社 Cold-rolled steel sheet with superior shape fixability and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP5639678B2 (en) Manufacturing method of hot press-formed steel member and hot press-formed steel member
JP5873385B2 (en) Hot press-formed product, manufacturing method thereof, and thin steel plate for hot press forming
JP5883351B2 (en) Hot press-formed product, manufacturing method thereof, and thin steel plate for hot press forming
JP5226013B2 (en) Method and apparatus for temperature controlled forming of hot rolled steel
JP5883350B2 (en) Hot press-formed product, manufacturing method thereof, and thin steel plate for hot press forming
Mori et al. Plate forging of tailored blanks having local thickening for deep drawing of square cups
WO2012169640A1 (en) Hot press molded article, method for producing same, and thin steel sheet for hot press molding
JP5695381B2 (en) Manufacturing method of press-molded products
JP2002102980A (en) Manufacturing method for collision reinforcing material for vehicle and collision reinforcing material
WO2004106573A1 (en) Method for hot forming and hot formed member
JP2008291282A (en) High strength dual-phase stainless steel sheet with excellent shape fixability, and its manufacturing method
KR101494113B1 (en) Press-molded article and method for producing same
JP2009082992A (en) Hot forming method
JP2005193287A (en) Method for manufacturing high-strength component having excellent shape accuracy
JP6898988B2 (en) Cold deformation method of austenitic steel
JP4959245B2 (en) Method for producing high-strength metal member
KR20210132158A (en) Blanks and structural members
JP2002066637A (en) Press forming method excellent in dimensional accuracy of formed object
US2095580A (en) Steel strip and its production
JP2005262235A (en) Hot forming method
JP3766626B2 (en) Manufacturing method of high strength steel plate press-formed body
JP2980004B2 (en) Cold rolled steel sheet excellent in burring workability and punching workability and its manufacturing method
JP2005271018A (en) Hot forming method having excellent strength after forming, and high-strength hot-formed part
JP4625263B2 (en) Hot forming method
Demeri Forming of advanced high-strength steels

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040902

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060728

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

A02 Decision of refusal

Effective date: 20061219

Free format text: JAPANESE INTERMEDIATE CODE: A02