JPWO2013187098A1 - Optical transmission system, station side optical termination device, and communication line switching method - Google Patents

Optical transmission system, station side optical termination device, and communication line switching method Download PDF

Info

Publication number
JPWO2013187098A1
JPWO2013187098A1 JP2014520974A JP2014520974A JPWO2013187098A1 JP WO2013187098 A1 JPWO2013187098 A1 JP WO2013187098A1 JP 2014520974 A JP2014520974 A JP 2014520974A JP 2014520974 A JP2014520974 A JP 2014520974A JP WO2013187098 A1 JPWO2013187098 A1 JP WO2013187098A1
Authority
JP
Japan
Prior art keywords
side optical
subscriber
power saving
termination device
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014520974A
Other languages
Japanese (ja)
Other versions
JP5730443B2 (en
Inventor
健司 峯藤
健司 峯藤
向井 宏明
宏明 向井
香織 弥栄
香織 弥栄
竜介 川手
竜介 川手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2012/065257 external-priority patent/WO2013186900A1/en
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014520974A priority Critical patent/JP5730443B2/en
Application granted granted Critical
Publication of JP5730443B2 publication Critical patent/JP5730443B2/en
Publication of JPWO2013187098A1 publication Critical patent/JPWO2013187098A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

省電力モードに遷移可能なONUと、OLTと、OLTと冗長化された幹線により接続されるとともにONUとそれぞれ支線により接続される光スプリッタとを備える光伝送システムであって、OLTは、ONUの省電力モードに関する情報である状態管理テーブルを保持し、状態管理テーブルに基づいて、幹線の冗長切替を実施するか否かを判断する。An optical transmission system comprising an ONU that can be shifted to a power saving mode, an OLT, and an optical splitter that is connected to the OLT and a redundant trunk line and is connected to the ONU by a branch line. A state management table, which is information related to the power saving mode, is held, and it is determined whether or not to perform redundant switching of the trunk line based on the state management table.

Description

本発明は、光伝送システム、局側光終端装置および通信回線切替方法に関する。   The present invention relates to an optical transmission system, a station-side optical terminal device, and a communication line switching method.

近年、通信網の高速、および広帯域化に対応するために、光ネットワークの導入が図られている。光ネットワークは1つのOLT(Optical Line Terminal:局側光終端装置)と1つのONU(Optical Network Unit:加入者側光終端装置)が光伝送路(光ファイバ)を介して通信を行うものである。また、光ネットワークシステムのうちの1つであるPON(Passive Optical Network)システムは、1つのOLTが光スプリッタを介して複数のONUとPDS(Passive Double Star)型のネットワークを形成するため、高速アクセスサービスを安価で提供することが可能である。PONの代表的な規格として、IEEE(Institute of Electrical and Electronic Engineers)802.3で標準化されたEPON(Ethernet(登録商標) PON)がある。   In recent years, an optical network has been introduced in order to cope with the high speed and wide bandwidth of a communication network. In an optical network, one OLT (Optical Line Terminal) and one ONU (Optical Network Unit: subscriber side optical terminator) communicate via an optical transmission line (optical fiber). . In addition, a PON (Passive Optical Network) system, which is one of the optical network systems, has a high-speed access because one OLT forms a PDS (Passive Double Star) network with multiple ONUs via an optical splitter. Services can be provided at low cost. A typical PON standard is EPON (Ethernet (registered trademark) PON) standardized by the Institute of Electrical and Electronic Engineers (IEEE) 802.3.

PONの通信方式として、ONUからOLTに向かって送信される上り光信号と、OLTからONUに向かって送信される下り光信号はWDM(Wavelength Division Multiplexing:波長分割多重)によって多重される。ONUはOLTが許可した送信タイミングに従い、上り光信号を送信するTDMA(Time Division Multiple Access:時分割多重接続)を用いている。すなわち、OLTは接続されている複数のONUの上り光信号が互いに重複しない送信タイミングを、各ONUの上り信号用に動的に割当てている。OLTからONUに向かって送信される下り光信号はTDM(Time Division Multiplexing:時分割多重化)が用いられ、光伝送路で接続された全てのONUに受信される。その際、ONUは下り光信号のプリアンブル部に含まれる宛先情報を参照し、自分宛てではない下り光信号を破棄する。   As a PON communication method, an upstream optical signal transmitted from the ONU to the OLT and a downstream optical signal transmitted from the OLT to the ONU are multiplexed by WDM (Wavelength Division Multiplexing). The ONU uses TDMA (Time Division Multiple Access) that transmits an upstream optical signal according to the transmission timing permitted by the OLT. In other words, the OLT dynamically assigns transmission timings for the upstream signals of each ONU so that upstream optical signals of a plurality of connected ONUs do not overlap each other. A downstream optical signal transmitted from the OLT toward the ONU uses TDM (Time Division Multiplexing), and is received by all ONUs connected via the optical transmission path. At that time, the ONU refers to the destination information included in the preamble portion of the downstream optical signal, and discards the downstream optical signal that is not addressed to itself.

通信速度の向上、および接続される電子機器の増加に伴って、ONUの消費電力は増大傾向にある。ONUは加入者宅に設置されるため、ネットワーク上に多数配置されている。また、ONUは利用できる帯域を必要とする時間がOLT、上位スイッチ群と比較して短い。従って、ONUは通信を行わない間に無駄な電力を使用しながら放置されていることになる。   As the communication speed increases and the number of connected electronic devices increases, the power consumption of the ONU tends to increase. Since ONUs are installed at subscriber's homes, many ONUs are arranged on the network. Further, the ONU requires a shorter time for the available bandwidth than the OLT and the upper switch group. Therefore, the ONU is left while using wasted power while not performing communication.

下記特許文献1では、PONシステムにおいて、OLTはONUの下り光信号処理部がスリープ(省電力)状態であるかを管理するONU下りスリープ管理テーブルと、ONUの上り光信号処理部がスリープ(省電力)状態であるかを管理するONU上りスリープ管理テーブルを用いる手法を開示している。   In the following Patent Document 1, in the PON system, the OLT has an ONU downstream sleep management table for managing whether the downstream optical signal processing unit of the ONU is in a sleep (power saving) state, and the upstream optical signal processing unit of the ONU is in a sleep (saving) A method using an ONU upstream sleep management table for managing whether the state is (power) state is disclosed.

下記特許文献2では、ONUの識別情報を管理するテーブルと、当該ONUが上りおよび下り処理部の一部を停止させているスリープ(省電力)状態から復帰する時刻である復帰時刻を管理する管理テーブルを用いる手法を開示している(特許文献2)。   In the following Patent Document 2, a table for managing ONU identification information and a management for managing a return time that is a time when the ONU returns from a sleep (power saving) state in which a part of the upstream and downstream processing units are stopped A method using a table is disclosed (Patent Document 2).

特開2012−004642号公報JP 2012-004642 A 特開2011−229094号公報JP 2011-229094 A

通信網を形成する通信回線において障害が発生した場合、他の通信回線に切替える冗長構成をとるシステムがある。このように、通信回線の冗長構成をとることにより、通信障害へのロバスト性を高めることが可能である。通信回線の冗長構成をとる通信網では、通信装置が使用中の現行回線において通信回線障害を検出した場合に、障害が発生した通信回線から他の通信回線に切替え、リンクを確立して通信を再開する。   There is a system having a redundant configuration in which when a failure occurs in a communication line forming a communication network, the communication line is switched to another communication line. Thus, by adopting a redundant configuration of the communication line, it is possible to improve the robustness against communication failure. In a communication network with a redundant configuration of communication lines, when a communication line failure is detected on the current line being used by the communication device, the communication line that has failed is switched from the communication line to the other communication line, and a link is established to establish communication. Resume.

一方で、前述した近年の高速大容量通信の需要拡大に伴い、ONUの消費電力は増大傾向にあり、低電力動作が求められている。スリープ(省電力)状態にあるONUは、OLTとのデータの通信に用いる送信器、および受信器を共に停止させること、または送信器のみを停止させることにより消費電力の低減を図っている。スリープ(省電力)状態にあるONUは、OLTに対して上り光信号を送信せず、OLTからの制御信号に対しても応答しない。そのため、冗長構成とONUパワーセーブを併存させた場合、以下の課題が生じると考えられる。   On the other hand, with the recent increase in demand for high-speed and large-capacity communication as described above, the power consumption of ONUs is increasing and low power operation is required. The ONU in the sleep (power saving) state aims to reduce power consumption by stopping both the transmitter and the receiver used for data communication with the OLT, or by stopping only the transmitter. The ONU in the sleep (power saving) state does not transmit an upstream optical signal to the OLT and does not respond to a control signal from the OLT. Therefore, when the redundant configuration and the ONU power save coexist, the following problems are considered to occur.

光伝送路の冗長構成とONUスリープを併存させたPONシステムでは、OLTに接続されている全てのONUのスリープ(省電力)状態が一時的に重なってしまうと、ONUはOLTの発行する制御光信号に対して応答しない。そのため、OLTが光伝送路に障害が発生したと誤検知し、通信回線の切替えを行ってしまうという課題がある。   In the PON system in which the redundant configuration of the optical transmission path and the ONU sleep coexist, when the sleep (power saving) state of all ONUs connected to the OLT temporarily overlaps, the ONU issues a control light issued by the OLT. Does not respond to the signal. Therefore, there is a problem that the OLT erroneously detects that a failure has occurred in the optical transmission path and switches the communication line.

特許文献1では、OLTがONUの上下の光信号処理部のスリープ(省電力)状態を管理するスリープ管理テーブルを用いる手法を開示している。状態管理テーブルを用いて、通信データの存在とデータ種別を監視することでONUの消費電力を低減させることはできるが、光伝送路の冗長構成を併存させた場合の前述の課題、すなわち障害の誤検知の解決方法については特許文献1には全く開示されていない。特許文献2においても、光伝送路の冗長構成を併存させた場合の前述の課題、すなわち障害の誤検知の解決方法については全く開示されていない。   Patent Document 1 discloses a method using a sleep management table in which the OLT manages the sleep (power saving) state of the upper and lower optical signal processing units of the ONU. Although it is possible to reduce the power consumption of the ONU by monitoring the existence and data type of communication data using the status management table, the above-described problem when the redundant configuration of the optical transmission path coexists, that is, the failure No patent document 1 discloses a solution for erroneous detection. Also in Patent Document 2, there is no disclosure at all regarding the above-described problem when a redundant configuration of an optical transmission line coexists, that is, a solution to erroneous detection of a failure.

特許文献1においては、ONUの非通信時における消費電力を抑えるため、OLTが各ONUの通信状態を監視し、スリープ管理テーブルを用いて非通信時のONUに対してスリープ(省電力)制御を行う手法を開示している。この手法を用いて、冗長切替条件に該当しない時間範囲でONUをスリープ(省電力)状態とするよう制御を行うことで消費電力を抑えることが可能であるが、スリープ(省電力)時間に制約が生じ、ONUは頻繁に状態遷移を繰り返すことになり、多分岐のPONシステムの光伝送路上において、無視し得ない帯域を占有するとともにONUの消費電力低減効果は限定的となる。   In Patent Document 1, in order to reduce power consumption during non-communication of ONUs, the OLT monitors the communication state of each ONU and uses the sleep management table to perform sleep (power saving) control for the ONUs during non-communication. It discloses the technique to do. Using this method, it is possible to reduce power consumption by controlling the ONU to be in a sleep (power saving) state in a time range not corresponding to the redundancy switching condition, but the sleep (power saving) time is limited. Therefore, the ONU frequently repeats state transitions, occupying a band that cannot be ignored on the optical transmission line of the multi-branch PON system, and the power consumption reduction effect of the ONU is limited.

本発明は、上記に鑑みてなされたものであって、ONUの省電力制御と光伝送路の冗長構成とを併存させる場合に、光伝送路の障害の誤検知を防ぐことができる光伝送システム、局側光終端装置および通信回線切替方法を提供することを目的とする。   The present invention has been made in view of the above, and an optical transmission system capable of preventing erroneous detection of a failure in an optical transmission line when the ONU power saving control and the redundant configuration of the optical transmission line coexist. An object of the present invention is to provide a station side optical termination device and a communication line switching method.

上述した課題を解決し、目的を達成するために、本発明は、省電力モードに遷移可能な加入者側光終端装置と、局側光終端装置と、前記局側光終端装置と冗長化された幹線により接続されるとともに前記加入者側光終端装置とそれぞれ支線により接続される光スプリッタとを備える光伝送システムであって、前記局側光終端装置は、前記加入者側光終端装置の省電力モードに関する情報である省電力情報を管理し、前記省電力情報に基づいて、前記幹線の冗長切替を制御することを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention is made redundant with a subscriber-side optical termination device, a station-side optical termination device, and the station-side optical termination device that can be shifted to a power saving mode. And an optical splitter connected to each of the subscriber-side optical terminators and each of the branch lines, wherein the station-side optical terminator is a saving of the subscriber-side optical terminator. Power saving information, which is information related to the power mode, is managed, and redundancy switching of the trunk line is controlled based on the power saving information.

本発明にかかる光伝送システム、局側光終端装置および通信回線切替方法は、ONUの省電力制御と光伝送路の冗長構成とを併存させる場合に、光伝送路の障害の誤検知を防ぐことができるという効果を奏する。   The optical transmission system, the station-side optical termination device, and the communication line switching method according to the present invention prevent erroneous detection of a failure in an optical transmission line when the power saving control of the ONU and the redundant configuration of the optical transmission line coexist. There is an effect that can be.

図1は、本発明にかかるPONシステムを含む光アクセスネットワークの構成例を示す図である。FIG. 1 is a diagram showing a configuration example of an optical access network including a PON system according to the present invention. 図2は、PONシステムの構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of the PON system. 図3は、OLT部の構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of the OLT unit. 図4は、ONUの構成例を示す図である。FIG. 4 is a diagram illustrating a configuration example of the ONU. 図5は、ディスカバリ処理の通信動作シーケンス例を示す図である。FIG. 5 is a diagram illustrating a communication operation sequence example of discovery processing. 図6は、現用系幹線光ファイバに障害が発生した場合のシーケンスの一例を示す図である。FIG. 6 is a diagram illustrating an example of a sequence when a failure occurs in the active trunk optical fiber. 図7は、現用系幹線光ファイバに障害が発生した場合の幹線光ファイバ切替えシーケンスの一例を示す図である。FIG. 7 is a diagram illustrating an example of a trunk optical fiber switching sequence when a failure occurs in the active trunk optical fiber. 図8は、従来の通信経路切替方法により、通常運用に支障が生じる場合の通信動作シーケンスの一例を示す図である。FIG. 8 is a diagram illustrating an example of a communication operation sequence in a case where a normal operation is hindered by the conventional communication path switching method. 図9は、OLTの基本制御の一例を示すフローチャートである。FIG. 9 is a flowchart illustrating an example of basic control of the OLT. 図10は、OLTの省電力制御の一例を示すフローチャートである。FIG. 10 is a flowchart illustrating an example of OLT power saving control. 図11は、状態管理テーブルの一例を示す図である。FIG. 11 is a diagram illustrating an example of the state management table. 図12は、通信経路切替手順の一例を示すフローチャートである。FIG. 12 is a flowchart illustrating an example of a communication path switching procedure. 図13は、本発明にかかるOLTにおける通信路切替方法を実施した場合のシーケンスの一例を示す図である。FIG. 13 is a diagram showing an example of a sequence when the communication path switching method in the OLT according to the present invention is implemented. 図14は、OLTにおける省電力制御を実施した場合のシーケンスの一例を示す図である。FIG. 14 is a diagram illustrating an example of a sequence when power saving control is performed in the OLT. 図15−1は、ONUにおける省電力制御手順の一例を示す図である。FIG. 15A is a diagram illustrating an example of a power saving control procedure in the ONU. 図15−2は、ONUにおける省電力制御手順の一例を示す図である。FIG. 15-2 is a diagram illustrating an example of a power saving control procedure in the ONU. 図16は、支線が多段階となる構成例を示す図である。FIG. 16 is a diagram illustrating a configuration example in which branch lines have multiple stages. 図17は、実施の形態2のPONシステムの構成例を示す図である。FIG. 17 is a diagram illustrating a configuration example of the PON system according to the second embodiment. 図18は、実施の形態2の状態管理テーブルの構成例を示す図である。FIG. 18 is a diagram illustrating a configuration example of a state management table according to the second embodiment. 図19は、実施の形態2の省電力制御方法の一例を示す図である。FIG. 19 is a diagram illustrating an example of the power saving control method according to the second embodiment.

以下に、本発明にかかる光伝送システム、局側光終端装置および通信回線切替方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of an optical transmission system, a station-side optical terminal device, and a communication line switching method according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は、本発明にかかるPONシステム(光伝送システム)を含む光アクセスネットワークの構成例を示す図である。本実施の形態のPONシステムは、OLT(局側光終端装置)1とONU(加入者側光終端装置)2−1〜2−N(Nは1以上の整数)で構成される。OLT1は、上位ネットワーク4に接続される。ONU2−1はユーザ端末5−1に接続され、ONU2−Nはユーザ端末5−2に接続される。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration example of an optical access network including a PON system (optical transmission system) according to the present invention. The PON system of the present embodiment includes an OLT (station side optical terminal device) 1 and ONUs (subscriber side optical terminal devices) 2-1 to 2-N (N is an integer of 1 or more). The OLT 1 is connected to the upper network 4. The ONU 2-1 is connected to the user terminal 5-1, and the ONU 2-N is connected to the user terminal 5-2.

OLT1は、光スプリッタ3を介してONU2−1〜ONU2−Nと接続され、OLT1と光スプリッタ3の間は、幹線光ファイバ7で接続され、光スプリッタ3とONU2−1〜ONU2−Nの間は、それぞれ支線光ファイバ6−1〜6−Nで接続される。なお、OLT1に接続されるONUの数に制限はない。   The OLT 1 is connected to the ONU 2-1 to ONU 2-N via the optical splitter 3, and the OLT 1 and the optical splitter 3 are connected to each other via a trunk optical fiber 7, and between the optical splitter 3 and the ONU 2-1 to ONU 2-N. Are connected by branch optical fibers 6-1 to 6-N, respectively. The number of ONUs connected to the OLT 1 is not limited.

OLT1とONU2−1〜ONU2−NとはWDMによって多重された光信号を用いて通信を行っているため、上り方向の光信号と下り方向の光信号が衝突することはない。一方で、複数のONU2−1〜ONU2−Nは同一波長で通信を行うため、光送出の時刻が重ならないようにOLT1がONU2−1〜ONU2−Nのそれぞれの光送出時刻(上り送信時刻)を制御している。   Since the OLT 1 and the ONUs 2-1 to ONU2-N communicate using optical signals multiplexed by WDM, the upstream optical signal and the downstream optical signal do not collide. On the other hand, since the plurality of ONUs 2-1 to ONU2-N communicate at the same wavelength, the OLT 1 transmits the optical transmission times (upstream transmission times) of the ONUs 2-1 to ONU2-N so that the optical transmission times do not overlap. Is controlling.

図2は、本実施の形態のPONシステムの構成例を示す図である。図2に示すように、本実施の形態のOLT1は、冗長構成をとっており、OLT部1−1とOLT部1−2とOLT1全体を制御する制御部9とを備える。OLT部1−1とOLT部1−2は、いずれも単独でOLTとしての機能を有し、いずれか一方が運用に用いられる。ここでは、OLT部1−1が現用系(wOLT1−1)であるとし、OLT部1−2が予備系(sOLT1−2)であるとしている。OLT部1−1とOLT部1−2は、それぞれL2SW(Layer 2 Switch)8と接続し、L2SW8経由で上位ネットワーク4に接続する。また、幹線光ファイバ7は、現用系幹線光ファイバ7−1と予備系幹線光ファイバ7−2で構成され、現用系幹線光ファイバ7−1はwOLT1−1に接続し、予備系幹線光ファイバ7−2はsOLT1−2に接続する。図2では、ONUの台数を4台としているがONUの台数はこれに限定されない。   FIG. 2 is a diagram illustrating a configuration example of the PON system according to the present embodiment. As shown in FIG. 2, the OLT 1 of the present embodiment has a redundant configuration, and includes an OLT unit 1-1, an OLT unit 1-2, and a control unit 9 that controls the entire OLT 1. Each of the OLT unit 1-1 and the OLT unit 1-2 has a function as an OLT alone, and either one is used for operation. Here, it is assumed that the OLT unit 1-1 is the active system (wOLT1-1) and the OLT unit 1-2 is the standby system (sOLT1-2). The OLT unit 1-1 and the OLT unit 1-2 are each connected to an L2SW (Layer 2 Switch) 8, and are connected to the upper network 4 via the L2SW 8. The trunk optical fiber 7 is composed of a working trunk optical fiber 7-1 and a standby trunk optical fiber 7-2, and the working trunk optical fiber 7-1 is connected to the wOLT 1-1, and the spare trunk optical fiber. 7-2 is connected to sOLT1-2. In FIG. 2, the number of ONUs is four, but the number of ONUs is not limited to this.

光スプリッタ3は受動光素子であり、下り方向の通信においては、OLT1から現用系幹線光ファイバ7−1、また予備系幹線光ファイバ7−2を介して送信される下り光信号を、自身に接続されるONU2の台数(図2に例では4台)に分割し、分割された各光信号を支線光ファイバ6−1〜6−4にそれぞれに出力する。また、上り方向の通信においては、光スプリッタ3は、支線光ファイバ6−1〜6−4から送信される上り光信号を、現用系幹線光ファイバ7−1および予備系幹線光ファイバ7−2に出力する。   The optical splitter 3 is a passive optical element. In downstream communication, the downstream optical signal transmitted from the OLT 1 via the active trunk optical fiber 7-1 or the standby trunk optical fiber 7-2 is transmitted to itself. The number of ONUs 2 to be connected (four in the example in FIG. 2) is divided, and the divided optical signals are output to branch optical fibers 6-1 to 6-4, respectively. In the upstream communication, the optical splitter 3 converts the upstream optical signal transmitted from the branch optical fibers 6-1 to 6-4 into the active trunk optical fiber 7-1 and the standby trunk optical fiber 7-2. Output to.

OLT1は、ONU2−1〜2−4と通信経路設定を行い、制御することができる機能を備えている。ONU2−1〜2−4は、OLT1からの制御により光信号の送受信を行う通信装置であり、後述する省電力(スリープ)モードの機能を備えている。   The OLT 1 has a function capable of setting and controlling communication paths with the ONUs 2-1 to 2-4. The ONUs 2-1 to 2-4 are communication devices that transmit and receive optical signals under the control of the OLT 1, and have a power saving (sleep) mode function to be described later.

図3は、OLT部1−1(wOLT1−1)の構成例を示す図である。OLT部1−2(sOLT1−2)は、OLT部1−1と同様の構成である。図2、3に示すように、OLT部1−1は、PONプロトコルに基づいてOLT側の処理を実施するPON制御部10と、物理層処理部(PHY)11と、上り光信号と下り光信号を波長多重するWDMカプラ(WDM)12と、ONU2−1〜2−4へ送信する下り光信号のデータを格納するためのバッファである送信バッファ13と、ONU2−1〜2−4から受信する上り光信号のデータを格納するためのバッファである受信バッファ14と、光送受信器15と、を備える。   FIG. 3 is a diagram illustrating a configuration example of the OLT unit 1-1 (wOLT1-1). The OLT unit 1-2 (sOLT1-2) has the same configuration as the OLT unit 1-1. As shown in FIGS. 2 and 3, the OLT unit 1-1 includes a PON control unit 10 that performs processing on the OLT side based on the PON protocol, a physical layer processing unit (PHY) 11, an upstream optical signal, and downstream light. Received from a WDM coupler (WDM) 12 that wavelength-multiplexes signals, a transmission buffer 13 that is a buffer for storing data of downstream optical signals to be transmitted to the ONUs 2-1 to 2-4, and ONUs 2-1 to 2-4 A reception buffer 14 that is a buffer for storing upstream optical signal data, and an optical transceiver 15.

光送受信器15は、ONU2−1〜2−4から受信する光信号を電気信号に変換しPON制御部10へ出力する処理を行う光受信器(Rx:Receiver)16と、PON制御部10から入力された電気信号を光信号に変換しONU2−1〜2−4へ送信する処理を行う光送信器(Tx:Transmitter)17と、を備える。物理層処理部11は、ネットワークとの間でNNI(Network Node Interface)等の物理インタフェース機能を実現し、受信処理を行う受信部(Rx)18と、送信処理を行う送信部(Tx)19とで構成される。なお、本実施の形態のPONシステムでは、波長多重を用いるためWDM12を用いているが、単一波長で通信を行う場合にWDM12は必須ではない。   The optical transmitter / receiver 15 converts an optical signal received from the ONUs 2-1 to 2-4 into an electric signal and outputs the electric signal to the PON control unit 10, and from the PON control unit 10 And an optical transmitter (Tx: Transmitter) 17 that performs a process of converting the input electric signal into an optical signal and transmitting it to the ONUs 2-1 to 2-4. The physical layer processing unit 11 implements a physical interface function such as NNI (Network Node Interface) with the network, and performs a reception unit (Rx) 18 that performs reception processing, and a transmission unit (Tx) 19 that performs transmission processing. Consists of. In the PON system of the present embodiment, the WDM 12 is used because wavelength multiplexing is used. However, the WDM 12 is not indispensable when performing communication at a single wavelength.

また、PON制御部10は、信号処理部30、バッファ監視部31、スリープ制御信号処理部32、状態管理テーブル33、タイムカウンタ34を備える。   The PON control unit 10 includes a signal processing unit 30, a buffer monitoring unit 31, a sleep control signal processing unit 32, a state management table 33, and a time counter 34.

図4は、ONU2−1の構成例を示す図である。ONU2−2〜2−4も、ONU2−1と同様の構成である。図2、4に示すように、ONU2−1は、PONプロトコルに基づいてONU側の処理を実施するPON制御部20と、OLT1へ送信する上り光信号のデータを格納するためのバッファである送信バッファ23と、OLT1から受信する下り光信号のデータを格納するためのバッファである受信バッファ24と、上り光信号と下り光信号を波長多重するWDMカプラ(WDM)22と、ユーザ端末5−1との間で、UNI(Unser Network Interface)等の物理インタフェース機能を実現する物理層処理部(PHY)21と、を備える。   FIG. 4 is a diagram illustrating a configuration example of the ONU 2-1. The ONUs 2-2 to 2-4 have the same configuration as the ONU 2-1. As shown in FIGS. 2 and 4, the ONU 2-1 is a PON control unit 20 that performs processing on the ONU side based on the PON protocol, and a transmission that is a buffer for storing upstream optical signal data to be transmitted to the OLT 1. A buffer 23, a reception buffer 24 that is a buffer for storing data of a downstream optical signal received from the OLT 1, a WDM coupler (WDM) 22 that wavelength-multiplexes upstream and downstream optical signals, and a user terminal 5-1. And a physical layer processing unit (PHY) 21 for realizing a physical interface function such as UNI (Unser Network Interface).

光送受信器25は光信号を送信するための光送信器(Tx)27と、光信号を受信するための光受信器(Rx)26とで構成される。また、物理層処理部(PHY)21は、受信処理を行う受信部(Rx)28と、送信処理を行う送信部(Tx)29とで構成される。なお、波長多重を用いずに単一波長で通信を行う場合にWDM22は必須ではない。   The optical transceiver 25 includes an optical transmitter (Tx) 27 for transmitting an optical signal and an optical receiver (Rx) 26 for receiving an optical signal. The physical layer processing unit (PHY) 21 includes a reception unit (Rx) 28 that performs reception processing and a transmission unit (Tx) 29 that performs transmission processing. Note that the WDM 22 is not essential when communication is performed at a single wavelength without using wavelength multiplexing.

また、PON制御部20は、信号処理部35、バッファ監視部36、リンク監視部37、状態テーブル38、スリープ制御部39、タイムカウンタ40を備える。   The PON control unit 20 includes a signal processing unit 35, a buffer monitoring unit 36, a link monitoring unit 37, a state table 38, a sleep control unit 39, and a time counter 40.

本実施の形態では、OLT1は、障害検出の機能を有しており、PON制御部10では、ONU2−1〜2−4から光信号が一定時間届かない場合に、信号処理部30が障害検出信号を送出する。PONシステムにおける障害検出は、IEEEやITU−T(International Telecommunication Union Telecommunication Standardization Sector)で検討されている。   In this embodiment, the OLT 1 has a failure detection function. In the PON control unit 10, the signal processing unit 30 detects a failure when the optical signal does not reach the ONUs 2-1 to 2-4 for a certain time. Send a signal. Fault detection in the PON system is studied by IEEE and ITU-T (International Telecommunication Union Telecommunication Standardization Sector).

例えば、IEEE P1904.1TMでは、MAC LoS(Loss of Signal)、光LoSの障害検出が規定されている。MAC LoS、光LoSは、いずれも現用系幹線光ファイバの障害を検出したときに検出され、この障害が検出された場合、OLTは、現用系から予備系への切り替えを実施する。MAC LoSは、OLTが、一定期間以内にどのONUからもレポート(REPORTメッセージ)を受信しなかった場合に検出される障害検出であり、光LoSは、OLTの光受信器において一定期間以内に有効な光信号を受信できなかった場合に検出される。For example, IEEE P1904.1 defines failure detection of MAC LoS (Loss of Signal) and optical LoS. Both the MAC LoS and the optical LoS are detected when a failure of the active trunk optical fiber is detected. When this failure is detected, the OLT switches from the active system to the standby system. MAC LoS is a failure detection that is detected when the OLT does not receive a report (REPORT message) from any ONU within a certain period, and the optical LoS is valid within a certain period at the optical receiver of the OLT. Detected when an optical signal cannot be received.

また、ITU−T G.987.3では、障害検出として、LOBi(Loss of burst for ONUi)、LOS(Loss of Signal)が規定されている。LOBiは、OLTが、ONUごとにスケジュールされたバースト(ONUから送信される信号)を4回連続して受信失敗した場合に検出される。LOSは、OLTが、予想する上り方向の伝送フレームを4回連続して受信失敗した場合に検出される。LOBiはONUごとに検出されるため、ONUまたは支線の障害を示している。ONUまたは支線の障害の場合、OLTにおける現用系から予備系の切替は実施されず、例えば、運用管理者へ障害の通知が行われる。LOSが送出された場合は、上述の光LoS、MAC LoSの場合と同じく、幹線ファイバの現用系から予備系の切替が実施される。   In addition, ITU-T G.I. In 987.3, LOBi (Loss of burst for ONUi) and LOS (Loss of Signal) are defined as failure detection. LOBi is detected when the OLT fails to receive a burst (signal transmitted from the ONU) scheduled for each ONU four times in succession. The LOS is detected when the OLT fails to receive the expected uplink transmission frame four times in succession. Since LOBi is detected for each ONU, it indicates an ONU or branch line failure. In the case of an ONU or branch line failure, switching from the active system to the standby system in the OLT is not performed, and for example, the failure is notified to the operation manager. When the LOS is sent out, switching from the active system of the trunk fiber to the standby system is performed as in the case of the optical LoS and MAC LoS described above.

図2に示した構成例では、PON制御部10は、光送受信器15からの通知に基づいて光LoSを検出する。具体的には、光送受信器15がタイムカウンタを有して、Rx16が検出する光信号のレベルが閾値以下である状態が一定期間以上続いた場合に、PON制御部10へ通知し、この通知により信号処理部30が光LoSを送出してもよいし、光送受信器15はRx16の受信レベルを信号処理部30へ通知し、PON制御部10がタイムカウンタ34を用いて、受信レベルが閾値以下である状態が一定期間以上継続した場合に、光LoSを送出してもよい。   In the configuration example illustrated in FIG. 2, the PON control unit 10 detects the optical LoS based on the notification from the optical transceiver 15. Specifically, when the optical transceiver 15 has a time counter and the state in which the level of the optical signal detected by the Rx 16 is equal to or less than a threshold value continues for a certain period or longer, the PON control unit 10 is notified, and this notification The signal processing unit 30 may send out the optical LoS, or the optical transceiver 15 notifies the signal processing unit 30 of the reception level of Rx16, and the PON control unit 10 uses the time counter 34 to set the reception level to the threshold value. When the following state continues for a certain period or longer, the optical LoS may be transmitted.

MAC LoSについては、PON制御部10が、最後にONU2−1〜2−4からレポートを受信してからの経過時間をタイムカウンタ34により計測し、一定期間が経過するまでの間にどのONUからもレポート(REPORTメッセージ)を受信しなかった場合に検出する。LOBi、LOSについては、PON制御部10は、自身がONU2−1〜2−4に対して割り当てた上り帯域(上り送信許可時間帯)の情報を保持しているので、信号処理部30が、この情報に基づいて検出する。PON制御部10は、これらの障害が検出された場合には、対応する警報を送出する。制御部9は、この警報を受信する。   For the MAC LoS, the PON control unit 10 measures the elapsed time since the last reception of the report from the ONUs 2-1 to 2-4 by the time counter 34, and from which ONU until a certain period elapses. Is also detected when a report (REPORT message) is not received. For LOBi and LOS, the PON control unit 10 holds information on the upstream bandwidth (upstream transmission permission time zone) allocated to the ONUs 2-1 to 2-4 by itself. Detection is based on this information. When these failures are detected, the PON control unit 10 sends a corresponding alarm. The control unit 9 receives this warning.

光LoS、MAC LoS、LOSの警報が送出された場合、OLT1の制御部9は、用いる幹線光ファイバを現用系幹線光ファイバ7−1から予備系幹線光ファイバ7−2へ切り替える。図2に示すように、現用系幹線光ファイバ7−1は、wOLT1−1に接続し、予備系幹線光ファイバ7−2は、sOLT1−2に接続しており、運用に用いるOLTをwOLT1−1からsOLT1−2に切り替えることにより、幹線光ファイバの切り替えが実施される。なお、制御部9を備えずに、wOLT1−1がsOLT1−2へ直接警報を通知することにより、wOLT1−1からsOLT1−2に切り替えを実施してもよい。   When an optical LoS, MAC LoS, or LOS alarm is sent, the control unit 9 of the OLT 1 switches the trunk optical fiber to be used from the active trunk optical fiber 7-1 to the standby trunk optical fiber 7-2. As shown in FIG. 2, the working trunk optical fiber 7-1 is connected to the wOLT 1-1, the standby trunk optical fiber 7-2 is connected to the sOLT 1-2, and the OLT used for the operation is designated as wOLT1-. By switching from 1 to sOLT1-2, the trunk optical fiber is switched. In addition, you may implement switching from wOLT1-1 to sOLT1-2 by not providing the control part 9, but wOLT1-1 notifying sOLT1-2 of an alarm directly.

以下、本実施の形態では、障害検出信号のうち、幹線光ファイバの切り替え(すなわち運用に使用されるOLT部1−1,1−2の切り替え)が必要な障害検出(光LoS、MAC LoS、LOS等)を幹線障害検出と呼ぶこととする。幹線障害検出は、例えば、上述の光LoS、MAC LoS、LOSであってもよいし、幹線光ファイバの障害を検出するものであればこれら以外の障害検出方法であってもよい。   Hereinafter, in the present embodiment, out of the fault detection signals, fault detection (optical LoS, MAC LoS, and so on) that requires switching of the trunk optical fiber (that is, switching of the OLT units 1-1 and 1-2 used for operation) is performed. LOS etc.) will be referred to as trunk line fault detection. The trunk line failure detection may be, for example, the above-described optical LoS, MAC LoS, or LOS, or may be a failure detection method other than these as long as it detects a trunk line optical fiber failure.

以上のことから、光LoS、MAC LoS、LOS等の幹線障害の検出方法をまとめると、以下の条件のうち1つ以上を満たす場合に幹線障害として検出される。
(1)OLTの光受信器がX[ms]の間、光信号を受信しない場合(Xは予め定められた定数)。
(2)OLTがONUからの制御信号応答(例えば、MPCP(Multi-Point Control Protocol)フレーム)をY[ms]の間受信しない場合(Yは予め定められた定数)。
(3)OLTの送信許可信号に対して、ONUがZ回連続で反応しない場合(Zは予め定められた定数)。
From the above, when the trunk line fault detection methods such as optical LoS, MAC LoS, and LOS are summarized, a trunk fault is detected when one or more of the following conditions are satisfied.
(1) The optical receiver of the OLT does not receive an optical signal during X [ms] (X is a predetermined constant).
(2) When the OLT does not receive a control signal response (for example, MPCP (Multi-Point Control Protocol) frame) from the ONU for Y [ms] (Y is a predetermined constant).
(3) When ONU does not react continuously Z times to the OLT transmission permission signal (Z is a predetermined constant).

以下、OLT1のPON制御部10の機能について、図2、3を用いて説明する。PON制御部10は、タイムカウンタ34を備えており、ONU2−1〜2−4からの光信号が一定時間届かない(光受信器16において、一定時間有効な光信号を受信しない)場合、光LoS警報を上げる。   Hereinafter, functions of the PON control unit 10 of the OLT 1 will be described with reference to FIGS. The PON control unit 10 includes a time counter 34. When the optical signals from the ONUs 2-1 to 2-4 do not reach a certain time (the optical receiver 16 does not receive an optical signal valid for a certain time), Raise the LoS alarm.

信号処理部30は、検出されたONU2−1〜2−4と通信をするためのディスカバリ処理、および各ONU2−1〜2−4の通信帯域(上り送信時間帯)を割当てる帯域割当て処理等を行う。信号処理部30は、帯域割当て結果をONU2−1〜2−4へ、GATEメッセージ(帯域割当通知)により送信する。信号処理部30は、各ONU2−1〜2−4から送信される、上り割当て要求を含むREPORTメッセージ(応答信号)に基づいて、各ONU2−1〜2−4に帯域を割当てる。また、信号処理部30は、ONU2−1〜2−4から送信される応答信号(MPCPフレーム)を検出し、タイムカウンタ34を用いてONU2−1〜2−4毎に応答信号(MPCPフレーム)が一定時間届かない場合に、信号処理部30がMAC LoS警報を上げる。MPCPフレームは一定時間ごとに送受信されるGATEフレーム、REPORTフレームであり、データやスリープ許可および応答はデータフレームにより送信される。   The signal processing unit 30 performs discovery processing for communicating with the detected ONUs 2-1 to 2-4, band allocation processing for allocating communication bands (upstream transmission time zones) of the respective ONUs 2-1 to 2-4, and the like. Do. The signal processing unit 30 transmits the band allocation result to the ONUs 2-1 to 2-4 by a GATE message (band allocation notification). The signal processing unit 30 allocates a band to each ONU 2-1 to 2-4 based on a REPORT message (response signal) including an uplink allocation request transmitted from each ONU 2-1 to 2-4. Further, the signal processing unit 30 detects response signals (MPCP frames) transmitted from the ONUs 2-1 to 2-4, and uses the time counter 34 to respond to the ONUs 2-1 to 2-4 for each response signal (MPCP frame). Signal processing unit 30 raises the MAC LoS alarm when the signal does not reach for a certain time. The MPCP frame is a GATE frame and a REPORT frame that are transmitted and received at regular intervals, and data, sleep permission, and response are transmitted by the data frame.

スリープ制御信号処理部32は、各ONU2−1〜2−4の省電力状態を管理するテーブルである状態管理テーブル33を参照し、各ONU2−1〜2−4に対してそれぞれスリープ(省電力)モードを選択し、スリープモードへ遷移させるスリープ許可(Sleep_Allow)の制御信号を送信する。また、スリープ制御信号処理部32は、ONUからスリープ許可応答(Sleep_Ack)の制御信号を受けた場合に、状態管理テーブル33を更新する。また、スリープ制御信号処理部32は、スリープ(省電力)モードからONU2−1〜2−4を復帰させる場合、該当するスリープ(省電力)モードのONU2−1〜2−4に対して、通常モードに遷移させる復帰許可(WakeUp_Allow)の制御信号を送信する。スリープ制御信号処理部32は、ONU2−1〜2−4から復帰許可応答(WakeUp_Ack)の制御信号を受けた場合も、状態管理テーブル33を更新する。また、電源断通知(R−INH等)を受信した場合に、送信元のONU2−1〜2−4の状態をスリープモードとするよう状態管理テーブル33を更新するようにしてもよい。   The sleep control signal processing unit 32 refers to the state management table 33 that is a table for managing the power saving state of each ONU 2-1 to 2-4, and sleeps (power saving) for each ONU 2-1 to 2-4. ) A mode is selected, and a sleep permission (Sleep_Allow) control signal for transitioning to the sleep mode is transmitted. Further, the sleep control signal processing unit 32 updates the state management table 33 when receiving a sleep permission response (Sleep_Ack) control signal from the ONU. When the sleep control signal processing unit 32 returns the ONUs 2-1 to 2-4 from the sleep (power saving) mode, the sleep control signal processing unit 32 normally performs the ONUs 2-1 to 2-4 in the corresponding sleep (power saving) mode. A control signal for returning to the mode (WakeUp_Allow) is transmitted. The sleep control signal processing unit 32 also updates the state management table 33 when receiving a return permission response (WakeUp_Ack) control signal from the ONUs 2-1 to 2-4. Further, when a power-off notification (R-INH or the like) is received, the state management table 33 may be updated so that the state of the transmission source ONUs 2-1 to 2-4 is set to the sleep mode.

電源断通知に関する処理は例えば、次のように実施する。ONU2−1〜2−4の電源断検出部(図示せず)は、自身の電源断を検出するとPON制御部20へ通知する。PON制御部20は電源断の検出を通知されると、自身に電源断が発生したことを通知する電源断通知をOLT1へ送信する。   For example, the processing related to the power-off notification is performed as follows. The power-off detection unit (not shown) of the ONUs 2-1 to 2-4 notifies the PON control unit 20 when it detects its own power-off. When notified of the power-off detection, the PON control unit 20 transmits to the OLT 1 a power-off notification notifying that the power-off has occurred.

本実施の形態では、ONU2−1〜2−4が自身の電源断を検出した場合、電源断通知をOLT1へ送信するが、ONU2−1〜2−4がスリープ状態(省電力状態)である場合に電源断が発生すると、電源断通知を送信できる場合とできない場合がある。電源断通知を送信できるか否かは、帯域更新周期、ONU2−1〜2−4の省電力状態からの送受信機能の起動時間等に依存する。   In the present embodiment, when the ONUs 2-1 to 2-4 detect their own power-off, a power-off notification is transmitted to the OLT 1, but the ONUs 2-1 to 2-4 are in a sleep state (power saving state). In some cases, when a power failure occurs, a power failure notification may or may not be transmitted. Whether or not the power-off notification can be transmitted depends on the bandwidth update cycle, the activation time of the transmission / reception function from the power saving state of the ONUs 2-1 to 2-4, and the like.

スリープ時の電源断通知が可能な例を示す。OLT1は、接続された各ONU2−1〜2−4がスリープモード中であってもGATEフレームを帯域更新周期ごとに送信することとする。なお、スリープモード中の各ONU2−1〜2−4に割当てる帯域は、各ONU2−1〜2−4がREPORTフレームを送信するための帯域とする。   An example in which power-off notification during sleep is possible is shown. The OLT 1 transmits a GATE frame for each band update period even when the connected ONUs 2-1 to 2-4 are in the sleep mode. The bandwidth allocated to each ONU 2-1 to 2-4 in the sleep mode is a bandwidth for each ONU 2-1 to 2-4 to transmit a REPORT frame.

省電力状態(スリープ時)でONU2−1〜2−4において電源断が発生すると、ONU2−1〜2−4のPON制御部20は、スリープモードを解除し、オフ状態となっていた部分を起動する。例として、Rx起動時間(受信側起動時間:ONU2−1〜2−4の受信処理を行う構成要素のうちスリープ状態となることにより停止中であった部分が動作可能となるまでの時間)が経過した後に最初に受信したGATEフレームに基づいて、電源断通知を送信するための帯域を要求するREPORTフレームを送信している。なお、Rx起動時間の方がTx起動時間(送信側起動時間:ONU2−1〜2−4の送信処理を行う構成要素のうちスリープ状態となることにより停止中であった部分が動作可能となるまでの時間)より長いため、Rx起動時間が経過した時点でREPORTフレームの送信が可能となっている。   When a power failure occurs in the ONUs 2-1 to 2-4 in the power saving state (during sleep), the PON control unit 20 of the ONUs 2-1 to 2-4 cancels the sleep mode and replaces the part that has been turned off. to start. As an example, the Rx activation time (reception side activation time: time until the portion that has been stopped due to the sleep state among the components that perform reception processing of the ONUs 2-1 to 2-4 becomes operable) Based on the GATE frame received first after the elapse of time, a REPORT frame requesting a band for transmitting a power-off notification is transmitted. The Rx activation time is the Tx activation time (transmission side activation time: of the components that perform transmission processing of the ONUs 2-1 to 2-4, and the portion that has been stopped becomes operable by entering the sleep state. Therefore, the REPORT frame can be transmitted when the Rx activation time has elapsed.

ONU2−1〜2−4のPON制御部20は、電源断通知を送信するための帯域割当を通知するGATEフレームを受信すると、当該GATEフレームにより指示された帯域(送信時間帯)で電源断通知を送信する。電源断の発生から電源断電力保持時間(電源断からコンデンサ等を用いて電力を保持可能な時間である)が経過するまでの間に、電源断通知が完了するため、スリープ時の電源断通知が可能である。   When the PON control unit 20 of the ONUs 2-1 to 2-4 receives the GATE frame for notifying the band allocation for transmitting the power-off notification, the power-off notification is performed in the band (transmission time period) indicated by the GATE frame. Send. Since the power-off notification is completed between the occurrence of the power-off and the power-off power holding time (the time during which power can be held using a capacitor after the power-off) elapses, the power-off notification during sleep Is possible.

バッファ監視部31は、送信バッファ13の蓄積量を監視し、監視結果をスリープ制御信号処理部32へ通知する。スリープ制御信号処理部32は、ONU2−1〜2−4の光送受信器25の光送信器27をスリープ(省電力)モードに遷移させるか、光送信器27および光受信器26の両方をスリープ(省電力)モードに遷移させるかを、バッファ監視部31、およびONU2−1〜2−4から受信したONU2−1〜2−4のバッファ監視部36からの情報を基に決定する。信号処理部30は、スリープ制御信号処理部32の決定結果に基づいてスリープ許可(Sleep_Allow)、および復帰許可(WakeUp_Allow)の制御信号を生成し、光送信器17より送信する。   The buffer monitoring unit 31 monitors the accumulation amount of the transmission buffer 13 and notifies the sleep control signal processing unit 32 of the monitoring result. The sleep control signal processing unit 32 shifts the optical transmitter 27 of the optical transceivers 25 of the ONUs 2-1 to 2-4 to the sleep (power saving) mode, or sleeps both the optical transmitter 27 and the optical receiver 26. Whether to shift to the (power saving) mode is determined based on the information from the buffer monitoring unit 31 and the buffer monitoring unit 36 of the ONUs 2-1 to 2-4 received from the ONUs 2-1 to 2-4. The signal processing unit 30 generates control signals for sleep permission (Sleep_Allow) and return permission (WakeUp_Allow) based on the determination result of the sleep control signal processing unit 32, and transmits the control signal from the optical transmitter 17.

なお、光送信器27および光受信器26の両方をスリープ(省電力)モードでは、間欠的にスリープ(省電力)状態と一時起動状態とを繰り返すとし、ONU2−1〜2−4は、スリープモードにおいても、一定周期ごとにOLT1からの信号を受信可能である。   In both the optical transmitter 27 and the optical receiver 26 in the sleep (power saving) mode, the sleep (power saving) state and the temporary activation state are intermittently repeated. Even in the mode, signals from the OLT 1 can be received at regular intervals.

光受信器16が、ONU2−1〜2−4からスリープ許可応答(Sleep_Ack)、または復帰許可応答(WakeUp_Ack)受信した場合、スリープ制御信号処理部32は信号処理部30を介して状態管理テーブル33を更新する。同時に、スリープ制御信号処理部32は、タイムカウンタ34を用いてスリープ(省電力)時間を監視する。   When the optical receiver 16 receives a sleep permission response (Sleep_Ack) or a return permission response (WakeUp_Ack) from the ONUs 2-1 to 2-4, the sleep control signal processing unit 32 passes through the signal processing unit 30 to the state management table 33. Update. At the same time, the sleep control signal processing unit 32 monitors the sleep (power saving) time using the time counter 34.

光受信器16が、ONU2−1〜2−4より上り光信号のデータを受信すると、信号処理部30は、受信したデータを一時的に受信バッファ14へ格納する。信号処理部30はタイムカウンタ34を用いて処理のタイミングを決定し、決定したタイミングで受信バッファ14へ格納されたデータを読み出して物理層処理部11の受信部18経由でL2SW8へ送る。   When the optical receiver 16 receives the upstream optical signal data from the ONUs 2-1 to 2-4, the signal processing unit 30 temporarily stores the received data in the reception buffer 14. The signal processing unit 30 determines the processing timing using the time counter 34, reads the data stored in the reception buffer 14 at the determined timing, and sends it to the L2SW 8 via the receiving unit 18 of the physical layer processing unit 11.

次に、図2、図4を用いてONU2−1の機能について説明する。ONU2−2〜2−4もONU2−1と同様である。ONU2−1は、通信状態としてスリープ(省電力)モードに移行する機能を備えている。ここでいうスリープ(省電力)モードとは上り方向、または下り方向に送信すべきデータがない場合等に、光送信器27のみ、または光送信器27および光受信器26の両方の電源を落とすことで停止させ、消費電力の低減を図るモードである。ここでは、OLT1からONU2−1〜2−4に対してスリープ(省電力)モードへの遷移を要求し、ONU2−1〜2−4が当該要求に対する応答を送信した後に、スリープモードへ遷移する手順を例に説明する。   Next, the function of the ONU 2-1 will be described with reference to FIGS. The ONUs 2-2 to 2-4 are the same as the ONU 2-1. The ONU 2-1 has a function of shifting to a sleep (power saving) mode as a communication state. The sleep (power saving) mode here refers to powering off only the optical transmitter 27 or both the optical transmitter 27 and the optical receiver 26 when there is no data to be transmitted in the upstream direction or the downstream direction. This is a mode for stopping power consumption and reducing power consumption. Here, the OLT 1 requests the ONUs 2-1 to 2-4 to transition to the sleep (power saving) mode, and the ONUs 2-1 to 2-4 transmit a response to the request, and then transition to the sleep mode. The procedure will be described as an example.

なお、ONU2−1〜2−4のスリープモードへの遷移の手順は、これに限らず、ONU2−1〜2−4からスリープモードへの遷移要求を送信してOLT1が当該要求に対して許可を送信する手順、OLT1からONU2−1〜2−4へスリープモードへの遷移を要求して、ONU2−1〜2−4が当該要求に対する応答を送信せずに、スリープモードに遷移する手順、等多様な手順を適用することができる。   In addition, the procedure of the transition to the sleep mode of the ONUs 2-1 to 2-4 is not limited to this, and the OLT 1 permits the request for the transition from the ONUs 2-1 to 2-4 to the sleep mode. Requesting the OLT 1 to transition to the sleep mode from the OLT 1 to the ONUs 2-1 to 2-4, and the ONUs 2-1 to 2-4 transitioning to the sleep mode without transmitting a response to the request, Various procedures can be applied.

バッファ監視部36は、送信バッファ23の蓄積量を監視し、監視結果を信号処理部35へ通知する。信号処理部35は、光受信器26経由でOLT1から受信したGATEフレームにより自装置に割り当てられた上り送信時間帯を把握する。また、信号処理部35は、バッファ監視部36からの通知に基づいて、送信バッファ23に一定以上、送信データが蓄積した場合に、REPORTメッセージにより送信バッファ23の蓄積量を格納して帯域割当てを要求する。   The buffer monitoring unit 36 monitors the accumulation amount in the transmission buffer 23 and notifies the signal processing unit 35 of the monitoring result. The signal processing unit 35 grasps the upstream transmission time zone assigned to the own device by the GATE frame received from the OLT 1 via the optical receiver 26. Further, the signal processing unit 35 stores the accumulated amount of the transmission buffer 23 by the REPORT message when the transmission data is accumulated in the transmission buffer 23 based on the notification from the buffer monitoring unit 36 and allocates the bandwidth. Request.

物理層処理部21の送信部29より上り送信データを受けた際、信号処理部35は、当該送信データを一時的に送信バッファ23へ格納する。信号処理部35は、OLT1から割当てられた上り送信時間帯で送信バッファ23から送信データを読み出して光送信器27より上り光信号として送信する。   When receiving upstream transmission data from the transmission unit 29 of the physical layer processing unit 21, the signal processing unit 35 temporarily stores the transmission data in the transmission buffer 23. The signal processing unit 35 reads the transmission data from the transmission buffer 23 in the upstream transmission time zone assigned from the OLT 1 and transmits it as an upstream optical signal from the optical transmitter 27.

ONU2−1のPON制御部20では、信号処理部35によりOLT1より送信されるスリープ許可応答(Sleep_Allow)を受信すると、スリープ制御部39がバッファ監視部36を参照し、非通信(送信バッファ、および受信バッファにデータが格納されていない)状態であれば信号処理部35を介してスリープ許可応答(Sleep_Ack)を返信する。スリープ制御部39がスリープ(省電力)モードを識別、および選択肢し、自身の状態をスリープ(省電力)モードへと遷移させる。また、ONU2−1は自装置の省電力の状態を示す状態テーブル38を持ち、その時々の状態遷移に応じて、状態テーブル38を更新する。また、ONU2−1は、スリープモードにおいても、OLT1からの制御信号(MPCPフレーム)に応答するために、一時的かつ周期的に通常状態へと遷移する。一時的に通常状態に戻ることで、OLT1から送信されるGATEメッセージに対してREPORTメッセージを返すことができる。   In the PON control unit 20 of the ONU 2-1, when the sleep processing response (Sleep_Allow) transmitted from the OLT 1 is received by the signal processing unit 35, the sleep control unit 39 refers to the buffer monitoring unit 36 and performs non-communication (transmission buffer, and If no data is stored in the reception buffer), a sleep permission response (Sleep_Ack) is returned via the signal processing unit 35. The sleep control unit 39 identifies and selects a sleep (power saving) mode, and transitions its own state to the sleep (power saving) mode. Further, the ONU 2-1 has a state table 38 indicating the power saving state of its own device, and updates the state table 38 according to the state transition at that time. Further, even in the sleep mode, the ONU 2-1 transits to the normal state temporarily and periodically in order to respond to the control signal (MPCP frame) from the OLT 1. By temporarily returning to the normal state, a REPORT message can be returned in response to the GATE message transmitted from the OLT 1.

光受信器26がOLT1からスリープ許可(Sleep_Allow)を受信した場合、信号処理部35を介して、スリープ制御部39は光送受信器25の光送信器27と光受信器26(または光送信器27のみ)を、スリープ状態と一時起動状態を周期的に繰り返すスリープモードへと遷移させる制御を行う。また、スリープ制御部39は、信号処理部35を介してスリープ許可応答(Sleep_Ack)を光送信器27より送信し、状態テーブル38を更新する。同時に内部のタイムカウンタ40を用いてスリープ(省電力)時間を監視する。   When the optical receiver 26 receives a sleep permission (Sleep_Allow) from the OLT 1, the sleep control unit 39 passes through the signal processing unit 35 and the optical transmitter 27 and the optical receiver 26 (or the optical transmitter 27) of the optical transmitter / receiver 25. Only) is controlled to transit to the sleep mode in which the sleep state and the temporary activation state are periodically repeated. In addition, the sleep control unit 39 transmits a sleep permission response (Sleep_Ack) from the optical transmitter 27 via the signal processing unit 35 and updates the state table 38. At the same time, the sleep (power saving) time is monitored using the internal time counter 40.

また、光受信器26がOLT1から復帰許可応答(WakeUp_Ack)受信した場合、信号処理部35を介して、スリープ制御部39は光送受信器25の光送信器27と光受信器26(または光送信器27のみ)をスリープモードから通常状態へと遷移させる制御を行い、信号処理部35を介して復帰許可応答(WakeUp_Ack)メッセージを光送信器27より送信し、状態テーブル38を更新する。   When the optical receiver 26 receives a return permission response (WakeUp_Ack) from the OLT 1, the sleep control unit 39 passes through the signal processing unit 35 and the optical transmitter 27 and the optical receiver 26 (or optical transmission) of the optical transmitter / receiver 25. (Only the device 27) is shifted from the sleep mode to the normal state, a return permission response (WakeUp_Ack) message is transmitted from the optical transmitter 27 via the signal processing unit 35, and the state table 38 is updated.

次に、OLT1における現用系幹線光ファイバ7−1から予備系幹線光ファイバ7−2への冗長切替の例について説明する。ここでは、冗長切替の条件となる幹線障害検出信号として、現用系wOLT1−1が、接続されたONU2−1〜ONU2−4のいずれからも一定期間(障害監視時間)の間光信号を受信しないときに送出される光LoS警報を用いる例を説明する。   Next, an example of redundant switching from the active trunk optical fiber 7-1 to the standby trunk optical fiber 7-2 in the OLT 1 will be described. Here, the active wOLT 1-1 does not receive an optical signal from any of the connected ONU 2-1 to ONU 2-4 for a certain period (failure monitoring time) as a trunk failure detection signal that is a condition for redundant switching. An example using an optical LoS alarm that is sometimes transmitted will be described.

図5は、ディスカバリ処理の通信動作シーケンス例を示す図である。OLT1とONU2−1〜2−4との通信を開始するためには、OLT1がディスカバリ処理を行うことで論理リンクを設定し、送信許可のタイミングを合わせるために必要な同期とONU2の保持している制御機能情報を設定することにより通信を行うことができる。未接続のONU2−1〜2−4が新たに支線光ファイバに接続された場合、或いは電源が切られた状態のONU2−1〜2−4の電源が投入された場合、ONU2−1〜2−4はOLT1との通信に必要な光回線の設定がされていない。また、OLT1にはONU2の制御機能情報が登録されていないため通信を行うことができない。この状態を未登録(Unregistered)状態という。未登録状態のONU2−1〜2−4は、OLT1に登録(Registered)されるまで受信のみを行い、OLT1から通信が許可されるまで待機状態となる。   FIG. 5 is a diagram illustrating a communication operation sequence example of discovery processing. In order to start communication between the OLT 1 and the ONUs 2-1 to 2-4, the OLT 1 performs a discovery process to set a logical link, and holds the synchronization required for matching the transmission permission timing and the ONU 2 Communication can be performed by setting control function information. When unconnected ONUs 2-1 to 2-4 are newly connected to branch optical fibers, or when ONUs 2-1 to 2-4 are turned off, ONUs 2-1 to 2 are turned on. -4 indicates that an optical line necessary for communication with the OLT 1 is not set. Further, since the control function information of the ONU 2 is not registered in the OLT 1, communication cannot be performed. This state is called an unregistered state. The unregistered ONUs 2-1 to 2-4 perform only reception until they are registered (Registered) in the OLT 1, and are in a standby state until communication is permitted from the OLT 1.

図5では、新しくONU2−1が接続されたとした例を示している。ONU2−1は、OLT1から新規登録を受け付けるGATEメッセージ(Discovery Gate)を受信する(ステップS1)。GATEメッセージには、送信許可時刻(送信許可時間帯の開始時刻)と送信量(いつの時点からどれだけの上り信号を送信してよいかという情報)が格納されている。ただし、ディスカバリ処理中のGATEメッセージ(Discovery Gate)の場合には、複数のONUが同時に発見される可能性があるため、各ONUは、ランダム時間待機した後に、送信を行う。ONU2−1は、GATEメッセージ(Discovery Gate)を受信すると、初期設定を行う状態(ディスカバリ状態)に遷移する。この状態に遷移すると、ONU2−1は自装置の時刻をGATEメッセージに格納されたOLT1の時刻T1に同期させ(ステップS2)、送信時刻T2(GATEメッセージで指示された送信許可時刻にランダム時間足した時刻)となるまでランダム時間待機する(ステップS3)。この待機の後、ONU2−1は自装置の識別情報等OLT1との通信に必要な情報(必要な場合においては保持している機能情報)を格納したREGISTER_REQメッセージに格納して送信する(ステップS4)。   FIG. 5 shows an example in which the ONU 2-1 is newly connected. The ONU 2-1 receives a GATE message (Discovery Gate) that accepts new registration from the OLT 1 (step S1). The GATE message stores a transmission permission time (start time of the transmission permission time zone) and a transmission amount (information on how many uplink signals can be transmitted from when). However, in the case of a GATE message (Discovery Gate) during the discovery process, there is a possibility that a plurality of ONUs may be discovered at the same time, so each ONU performs transmission after waiting for a random time. When the ONU 2-1 receives the GATE message (Discovery Gate), the ONU 2-1 transitions to a state for performing initial settings (discovery state). When transitioning to this state, the ONU 2-1 synchronizes its own time with the time T1 of the OLT 1 stored in the GATE message (step S2), and the transmission time T2 (the transmission time specified by the GATE message is added to the random time). Wait for a random time (step S3). After this standby, the ONU 2-1 stores and transmits it in a REGISTER_REQ message that stores information necessary for communication with the OLT 1 such as its own identification information (function information held when necessary) (step S4). ).

OLT1は、REGISTER_REQメッセージ情報を基にONU2−1を通信端末として登録し、ONU2−1との間のRTT(Round Trip Time)を計算する(ステップS5)。OLT1はONU2−1を登録した場合に、登録を知らせる制御メッセージ(REGISTERメッセージ)をONU2−1へ送信する(ステップS6)。このREGISTERメッセージは通信リンクの設定情報を含んでおり、このREGISTERメッセージを受信した場合ONU2−1は設定情報を記憶し、必要な通信設定を自装置に行うことによって通信可能状態となる。REGISTERメッセ―ジ登録状態に遷移したONU2−1は、以後記憶した設定情報を用いてOLT1とデータの送受信を行う。なお、この設定情報に、スリープモードに関する情報を含んでいてもよい。   The OLT 1 registers the ONU 2-1 as a communication terminal based on the REGISTER_REQ message information, and calculates an RTT (Round Trip Time) with the ONU 2-1 (step S5). When the OLT 1 registers the ONU 2-1, the OLT 1 transmits a control message (REGISTER message) informing the registration to the ONU 2-1 (step S 6). The REGISTER message includes communication link setting information. When this REGISTER message is received, the ONU 2-1 stores the setting information and becomes in a communicable state by performing necessary communication settings on the own apparatus. The ONU 2-1 that has transitioned to the REGISTER message registration state transmits and receives data to and from the OLT 1 using the stored setting information. The setting information may include information regarding the sleep mode.

ONU2−1は、GATEメッセージにより送信が許可されると(ステップS7)、時刻を、受信したメッセージに含まれるOLT1の時刻T3に自装置の時刻を同期させ(ステップS8)、ランダム時間待機(ステップS9)の後、通信設定を完了したことを通知するREGISTER_ACKメッセ―ジ送信する(ステップS10)。以上により、OLT1とONU2−1との間のディスカバリ処理が完了し、以降OLT1とONU2−1の通信が可能となる(ステップS11)。   When transmission is permitted by the GATE message (step S7), the ONU 2-1 synchronizes its time with the time T3 of the OLT 1 included in the received message (step S8), and waits for a random time (step S7). After S9), a REGISTER_ACK message notifying that the communication setting has been completed is transmitted (step S10). As described above, the discovery process between the OLT 1 and the ONU 2-1 is completed, and the communication between the OLT 1 and the ONU 2-1 becomes possible thereafter (step S11).

図6は、現用系幹線光ファイバ7−1に障害が発生した場合のシーケンスの一例を示す図である。図5で説明したディスカバリ処理完了(ステップS11)の後、OLT1は、一定のGATE周期Tsごとに、接続するONU2−1に対して帯域割当てを行いGATEメッセージにより帯域割当て結果を通知する(ステップS12、S16、S20)。図6では、ONU2−1のみがOLT1に接続されているとしている。ONU2−1は、GATEメッセージに含まれるOLT1の時刻に自装置の時刻を同期させる(ステップS13、S17、S21)。そして、GATEメッセージで通知された送信許可時刻まで待機し(ステップS14、S18)、待機の後にREPORTメッセージを送信する(ステップS15、S19)。   FIG. 6 is a diagram illustrating an example of a sequence when a failure occurs in the active trunk optical fiber 7-1. After completion of the discovery process described with reference to FIG. 5 (step S11), the OLT 1 performs bandwidth allocation to the connected ONU 2-1 for each fixed GATE cycle Ts and notifies the bandwidth allocation result by a GATE message (step S12). , S16, S20). In FIG. 6, it is assumed that only the ONU 2-1 is connected to the OLT 1. The ONU 2-1 synchronizes its own time with the time of the OLT 1 included in the GATE message (steps S13, S17, S21). And it waits until the transmission permission time notified by the GATE message (steps S14 and S18), and transmits the REPORT message after waiting (steps S15 and S19).

OLT1は、REPORTメッセージを光信号として受信するたびに、タイムカウンタ34を用いて障害監視時間を計測するためのタイマ(障害監視タイマ)のカウントを開始し、次のREPORTメッセージを受信すると、カウントリセットを実施するとともに次の計測のカウントを開始することを繰り返している。   Each time the OLT 1 receives a REPORT message as an optical signal, it starts counting a timer (fault monitoring timer) for measuring the fault monitoring time by using the time counter 34, and resets the count when receiving the next REPORT message. And the start of the next measurement is repeated.

ここで、図6に示したように、ディスカバリ処理完了後の3回目のGATEフレームをONU2−1が受信し(ステップS20)、時刻同期を行った(ステップS21)後に現用系幹線光ファイバ7−1に障害が発生したとする(ステップS22)。すると、OLT1からGATEフレームが送信されても(ステップS23)、OLT1はONU2−1からのREPORTメッセージを受信できず、障害監視タイマはタイムアウトとなり、光LoS警報が生成される(ステップS24)。   Here, as shown in FIG. 6, the ONU 2-1 receives the third GATE frame after the completion of the discovery process (step S20), and after performing time synchronization (step S21), the active trunk optical fiber 7- It is assumed that a failure has occurred in 1 (step S22). Then, even if a GATE frame is transmitted from the OLT 1 (step S23), the OLT 1 cannot receive the REPORT message from the ONU 2-1, the failure monitoring timer times out, and an optical LoS alarm is generated (step S24).

図7は、現用系幹線光ファイバ7−1に障害が発生した場合の幹線光ファイバ切替えシーケンスの一例を示す図である。図7の例では、はじめは、現用系幹線光ファイバ7−1に障害は発生しておらず、OLT1では、wOLT1−1が稼動しているとする。まず、OLT1にONU2−1〜ONU2−4が接続され、ONU2−1〜ONU2−4についてディスカバリ処理を完了する(ステップS11)。OLT1は、接続するONU2−1〜2−4に対してそれぞれ帯域割当てを行いGATEメッセージにより帯域割当て結果を通知する(ステップS31)。ONU2−1〜2−4は、それぞれGATEメッセージで通知された送信許可時刻でREPORTメッセージを送信する(ステップS32)。   FIG. 7 is a diagram illustrating an example of a trunk optical fiber switching sequence when a failure occurs in the active trunk optical fiber 7-1. In the example of FIG. 7, initially, it is assumed that no failure has occurred in the active trunk optical fiber 7-1 and that the OLT 1 is operating the wOLT 1-1. First, the ONU 2-1 to ONU 2-4 are connected to the OLT 1, and the discovery process for the ONU 2-1 to ONU 2-4 is completed (step S11). The OLT 1 performs bandwidth allocation for each of the connected ONUs 2-1 to 2-4, and notifies the bandwidth allocation result by a GATE message (step S31). Each of the ONUs 2-1 to 2-4 transmits a REPORT message at the transmission permission time notified by the GATE message (step S32).

OLT1は、図6の例で説明したように、光信号の受信ごとに障害監視タイマのカウントを開始している(ステップS34)。現用系幹線光ファイバ7−1に障害が発生する(ステップS35)と、OLT1がGATEメッセージを送信しても、全てのONU2−1〜2−4からREPORTメッセージが返信されなくなり、障害監視タイマがタイムアウトとなり、wOLT1−1内のPON制御部10により光LoS警報が生成される(ステップS36)。   As described in the example of FIG. 6, the OLT 1 starts counting of the failure monitoring timer every time an optical signal is received (step S34). When a failure occurs in the active trunk optical fiber 7-1 (step S35), even if the OLT 1 transmits a GATE message, the REPORT message is not returned from all the ONUs 2-1 to 2-4, and the failure monitoring timer is activated. A time-out occurs, and an optical LoS alarm is generated by the PON control unit 10 in the wOLT 1-1 (step S36).

光LoS警報を受信した制御部9は、稼動させるOLTをwOLT1−1からsOLT1−2へ切替、L2SW8との主信号の経路をこれに応じて変更する。これにより、現用系幹線光ファイバ7−1から予備系幹線光ファイバ7−2への切替処理が実施される。これらの切替処理を実施する切替時間(ステップS37)の後、sOLT1−2は、接続されているONU2−1〜ONU2−4へそれぞれGATEメッセージを送信する(ステップS38)。ONU2−1〜ONU2−4は、それぞれ受信したGATEメッセージに対して、REPORTメッセージを返信する(ステップS39)。sOLT1−2は、ONU2−1〜ONU2−4との間のうちいずれかのONUについてRTTを更新する(ステップS40)。このようにして、予備系幹線光ファイバ7−2を用いて再び通信回線を維持する。   Upon receiving the optical LoS alarm, the control unit 9 switches the OLT to be operated from wOLT1-1 to sOLT1-2, and changes the route of the main signal with the L2SW8 accordingly. Thereby, the switching process from the active trunk optical fiber 7-1 to the standby trunk optical fiber 7-2 is performed. After the switching time for performing these switching processes (step S37), the sOLT 1-2 transmits a GATE message to each of the connected ONUs 2-1 to 2-4 (step S38). The ONU 2-1 to ONU 2-4 return a REPORT message in response to the received GATE message (step S39). The sOLT 1-2 updates the RTT for any one of the ONUs 2-1 to 2-4 (step S40). In this way, the communication line is maintained again using the standby trunk optical fiber 7-2.

なお、図7の例では、sOLT1−2、予備系幹線光ファイバ7−2、光スプリッタ3、支線光ファイバ6−1〜6−4を介して接続された通信経路に切替わる際、sOLT1−2は、wOLT1−1がディスカバリ処理時に取得したONU2−1〜ONU2−4の設定情報を元に通信を開始している。これらの設定情報は、OLT1内の共通の記憶部に保持しておき、wOLT1−1、sOLT1−2の両方が参照できるようにしてもよいし、切替時に、wOLT1−1から制御部9を介してsOLT1−2へ送信してもよい。また、RTTについては、通信経路の切替により変わる可能性があるため、予備系sOLT1−2側のPON制御部10は、切替後に、ONU2−1〜ONU2−4のうちいずれかのONUとのRTTの計算を再度行う。この再計算した値と再計算前の値との差分に基づいて他のONUとのRTTを更新する。このように、wOLT1−1が取得した設定情報をsOLT1−2へ反映させることにより、現用系から予備系へと通信経路を切り替えた際のディスカバリ処理を省略することができる。   In the example of FIG. 7, when switching to a communication path connected via the sOLT 1-2, the standby trunk optical fiber 7-2, the optical splitter 3, and the branch optical fibers 6-1 to 6-4, the sOLT1- 2 starts communication based on the setting information of the ONUs 2-1 to 2-4 acquired by the wOLT 1-1 during the discovery process. The setting information may be stored in a common storage unit in the OLT 1 so that both the wOLT 1-1 and the sOLT 1-2 can be referred to. May be transmitted to sOLT1-2. Further, since there is a possibility that the RTT may change due to the switching of the communication path, the PON control unit 10 on the standby sOLT 1-2 side switches the RTT with any ONU among the ONUs 2-1 to 2-4 after the switching. Calculate again. RTTs with other ONUs are updated based on the difference between the recalculated value and the value before recalculation. In this way, by reflecting the setting information acquired by wOLT 1-1 in sOLT 1-2, the discovery process when the communication path is switched from the active system to the standby system can be omitted.

以上、図5、6、7で述べた、ディスカバリ処理、幹線障害検出処理、通信経路の切替処理については、通常のPONシステムと同様である。なお、図6、7の例では、幹線障害検出信号として光LoS警報を用いる例を示したが、切替条件となる幹線障害検出信号はこれに限ったものではなく、MAC LoS警報を用いてもよいし、LOBi警報、LOS警報等であってもよい。ただし、ONUごとに警報の送出されるLOBi警報等の場合は、全てのONUについてLOBi警報が送出された場合に、通信経路の切替が実施されることになる。   As described above, the discovery processing, trunk failure detection processing, and communication path switching processing described in FIGS. 5, 6, and 7 are the same as those in the normal PON system. 6 and 7 show an example in which the optical LoS alarm is used as the main line failure detection signal. However, the main line failure detection signal as a switching condition is not limited to this, and the MAC LoS alarm may be used. It may be a LOBi alarm, a LOS alarm, or the like. However, in the case of a LOBi alarm or the like in which an alarm is transmitted for each ONU, the communication path is switched when the LOBi alarm is transmitted for all ONUs.

次に、ONU2−1〜2−4の省電力制御と障害検出の両方を実施する場合の課題を説明する。図8は、従来の通信経路切替方法により、通常運用に支障が生じる場合の通信動作シーケンスの一例を示す図である。主に夜間など比較的ユーザが通信サービスを利用しない時間帯において、OLT1に接続された全ONU2−1〜2−4が一時的にスリープ(省電力)モードに移行してしまう場合がある。図8では、OLT1が、従来と同様の通信経路切替方法に従って動作した例を示している。   Next, problems when both the power saving control and failure detection of the ONUs 2-1 to 2-4 are performed will be described. FIG. 8 is a diagram illustrating an example of a communication operation sequence in a case where a normal operation is hindered by the conventional communication path switching method. There are cases where all the ONUs 2-1 to 2-4 connected to the OLT 1 temporarily shift to a sleep (power saving) mode mainly during a time period when the user does not use a communication service, such as at night. FIG. 8 shows an example in which the OLT 1 operates in accordance with a communication path switching method similar to the conventional one.

図7の例と同様に、ディスカバリ処理(ステップS11)の後、OLT1は、接続するONU2−1〜2−4に対してそれぞれ帯域割当てを行いGATEメッセージにより帯域割当て結果を通知する(ステップS31)。ONU2−1〜2−4は、それぞれGATEメッセージで通知された送信許可時刻でREPORTメッセージを送信する(ステップS32)。   As in the example of FIG. 7, after the discovery process (step S11), the OLT 1 performs bandwidth allocation for each of the connected ONUs 2-1 to 2-4 and notifies the bandwidth allocation result by a GATE message (step S31). . Each of the ONUs 2-1 to 2-4 transmits a REPORT message at the transmission permission time notified by the GATE message (step S32).

OLT1は、ONU2−1〜2−4との間に送受信データが無くONU2−1〜2−4をスリープモードへ遷移させると決定すると、スリープ(省電力状態)移行許可(Sleep_Allow)をONU2−1〜2−4へそれぞれ送信する(ステップS42)。ONU2−1〜2−4は、Sleep_Allowに対して、それぞれスリープモードへ移行することを示す応答信号(Sleep_Ack)を返信し(ステップS43)、スリープモードへ遷移する。   When the OLT 1 determines that there is no transmission / reception data between the ONUs 2-1 to 2-4 and the ONUs 2-1 to 2-4 are to be shifted to the sleep mode, the sleep (power saving state) transition permission (Sleep_Allow) is set to the ONU 2-1. To 2-4 (step S42). Each of the ONUs 2-1 to 2-4 returns a response signal (Sleep_Ack) indicating transition to the sleep mode to Sleep_Allow (step S43), and transitions to the sleep mode.

この場合、OLT1側からみると、一時的に全てのONU2−1〜2−4からの光信号、および制御信号応答を受信しない状態となる。最後のREPORTメッセージ受信によりカウントを開始した(ステップS41)障害監視タイマは、タイムアウトとなり、光LoS警報が生成される(ステップS44)。そして、図7と同様に、通信経路の切替が実施される(ステップS45)。   In this case, when viewed from the OLT 1 side, the optical signals and control signal responses from all the ONUs 2-1 to 2-4 are temporarily not received. The fault monitoring timer that has started counting upon reception of the last REPORT message (step S41) times out, and an optical LoS alarm is generated (step S44). Then, similarly to FIG. 7, the communication path is switched (step S45).

このように、従来の通信路切替方法では、全てのONU2−1〜2−4がスリープモードに移行すると、光伝送路の障害発生でない場合であっても、現用系幹線光ファイバ7−1に障害が発生したと誤判断してしまい、現用系幹線光ファイバ7−1から予備系幹線光ファイバ7−2へ切替てしまう。   As described above, in the conventional communication path switching method, when all the ONUs 2-1 to 2-4 shift to the sleep mode, the active trunk optical fiber 7-1 is used even if no failure occurs in the optical transmission path. It is erroneously determined that a failure has occurred, and the active trunk optical fiber 7-1 is switched to the standby trunk optical fiber 7-2.

また、OLT1は、幹線障害の場合には、上述のように通信路の切替を実施する必要があるが、支線障害の場合は通信路の切替を実施しなくてよい。接続するONU2−1〜ONU2−4が複数であれば、1つのONUだけから応答がない、全てのONUから応答がない(光信号を受信しない)、のどちらであるかにより、幹線障害か否かを判断することができる。しかし、スリープモードでない通常状態のONU2−1〜2−4が1台しかない場合、当該ONUまたは当該ONUに接続する支線に障害が発生した場合、OLT1では、全てのONU2−1〜2−4から光信号を受信しないことになる。OLT1では、この場合、幹線障害と支線障害の区別がつかず、本来、通信路の切替の必要のない支線障害の場合にも通信路の切替を実施してしまい、不要な通信中断が生じるという問題もある。   Further, the OLT 1 needs to switch the communication path as described above in the case of a trunk line failure, but does not have to switch the communication path in the case of a branch line failure. If there are a plurality of ONUs 2-1 to 2-4 to be connected, there is no response from only one ONU, or there is no response from all ONUs (no optical signal is received). Can be determined. However, if there is only one ONU 2-1 to 2-4 in a normal state that is not in the sleep mode, and a failure occurs in the ONU or a branch line connected to the ONU, the OLT 1 has all the ONUs 2-1 to 2-4. No optical signal will be received from. In this case, the OLT 1 cannot distinguish between a main line failure and a branch line failure, and the communication line is switched even in the case of a branch line failure that does not need to switch the communication path, resulting in unnecessary communication interruption. There is also a problem.

そこで、本実施の形態では、以下に述べるように、OLT1では、状態管理テーブル33を用いて各ONU2−1〜2−4の状態(スリープモードであるか否か)を管理し、ONU2−1〜2−4の全てがスリープモードである場合には、通信路切替の条件となるLoS警報等を送出しないようにする、またはLoS警報が発せられても通信路切替を実施しないようにする。また、スリープモードでないONU2−1〜2−4の台数が1台以上となるようスリープモードの時間を制御すると、幹線障害の誤検出を防ぐことができる。さらに、スリープモードでないONU2−1〜2−4の台数を2台以上となるようスリープモードの時間を制御することにより、幹線障害と支線障害の区別ができるようにする。なお、以下では、ONU2−1〜2−4の全てがスリープモードである場合には、通信路切替が行われないようにする制御と、同時にスリープモードとなるONU2−1〜2−4の台数を2台以上(または1台以上)とする制御と、の両方を実施する例について説明するが、いずれか一方のみを実施してもよい。   Therefore, in the present embodiment, as described below, the OLT 1 manages the state (whether or not it is in the sleep mode) of each ONU 2-1 to 2-4 using the state management table 33, and the ONU 2-1. When all of ˜2-4 are in the sleep mode, a LoS alarm or the like that is a condition for switching the communication path is not transmitted, or the communication path is not switched even if a LoS alarm is issued. Further, if the sleep mode time is controlled so that the number of ONUs 2-1 to 2-4 that are not in the sleep mode is one or more, erroneous detection of a trunk line failure can be prevented. Further, by controlling the time of the sleep mode so that the number of ONUs 2-1 to 2-4 that are not in the sleep mode becomes two or more, it becomes possible to distinguish between a trunk line failure and a branch line failure. In the following, when all of the ONUs 2-1 to 2-4 are in the sleep mode, the number of ONUs 2-1 to 2-4 that are in the sleep mode at the same time as the control for preventing the communication path switching is performed. Although an example in which both of the control to set two or more (or one or more) is performed will be described, only one of them may be performed.

なお、幹線障害と支線障害の区別をするためには、同時にスリープモードとなるONU2−1〜2−4の台数を2台以上とする必要があるが、幹線障害の誤検出を防ぐには、同時にスリープモードとなるONU2−1〜2−4の台数は1台以上であればよい。したがって、幹線障害の誤検出を防ぐことを目的とする場合は、同時にスリープモードとなるONU2−1〜2−4を1台以上とすればよい。   In order to distinguish between a main line failure and a branch line failure, it is necessary to set the number of ONUs 2-1 to 2-4 in the sleep mode at the same time to two or more. To prevent erroneous detection of a main line failure, The number of ONUs 2-1 to 2-4 that simultaneously enter the sleep mode may be one or more. Therefore, when aiming at preventing erroneous detection of a trunk line failure, it is sufficient to set one or more ONUs 2-1 to 2-4 that simultaneously enter the sleep mode.

以下、状態管理テーブル33を用いたOLT1の動作について詳細に説明する。図9は、OLT1の基本制御の一例を示すフローチャートであり、図10は、OLT1の省電力制御の一例を示すフローチャートである。   Hereinafter, the operation of the OLT 1 using the state management table 33 will be described in detail. FIG. 9 is a flowchart illustrating an example of the basic control of the OLT 1, and FIG. 10 is a flowchart illustrating an example of the power saving control of the OLT 1.

図9に示すように、OLT1では、信号処理部30が、初期設定としてディスカバリ処理を実施し(ステップS51)、ディスカバリ処理が完了すると、ディスカバリ処理が完了しているONU2−1〜2−4に対して帯域割当てを実施し、GATEメッセージ(Gate Frame)によりONU2−1〜2−4に通知する(ステップS52)。また、信号処理部30は、ONU2−1〜2−4から信号を受信すると受信信号処理に対するデータ処理を実施する(ステップS53)。また、OLT1のスリープ制御信号処理部32は、ONU2−1〜2−4に対して省電力制御を実施する(ステップS54)。さらに、OLT1のPON制御部10は、上述の光LoS検出等、障害監視を実施する(ステップS55)。そして、ステップS52〜S55を繰り返す。なお、ステップS52〜S55内の順は、これに限定されず、処理の順序が異なっていてもよいし、これらのうちの2つ以上の処理が同時に実施されてもよい。   As shown in FIG. 9, in the OLT 1, the signal processing unit 30 performs a discovery process as an initial setting (step S51), and when the discovery process is completed, the ONUs 2-1 to 2-4 that have completed the discovery process. Bandwidth allocation is performed for the ONUs 2-1 to 2-4 by a GATE message (Gate Frame) (step S52). Further, when the signal processing unit 30 receives signals from the ONUs 2-1 to 2-4, the signal processing unit 30 performs data processing for the received signal processing (step S53). In addition, the sleep control signal processing unit 32 of the OLT 1 performs power saving control on the ONUs 2-1 to 2-4 (step S54). Further, the PON control unit 10 of the OLT 1 performs fault monitoring such as the above-described optical LoS detection (step S55). Then, steps S52 to S55 are repeated. In addition, the order in step S52-S55 is not limited to this, The order of a process may differ, and two or more of these processes may be implemented simultaneously.

図10は、上記のステップS52の帯域割当てとステップS54の省電力制御の詳細を示しており、初期設定(ステップS61)の後、OLT1は、帯域割当てを実施し、GATEメッセージによりONU2−1〜2−4に通知する(ステップS62)。OLT1は、ONU2−1〜2−4からREPORTメッセージ(Report Frame)を受信し(ステップS63)、REPORTメッセージに格納されたONU2−1〜2−4における送信バッファ量(送信バッファ23の蓄積量)があるか(一定量以上であるか)否かを判断する(ステップS64)。送信バッファ量がある場合(ステップS64 Yes)、ステップS62へ戻る。   FIG. 10 shows the details of the bandwidth allocation in step S52 and the power saving control in step S54. After the initial setting (step S61), the OLT 1 performs bandwidth allocation, and the ONU 2-1 to ONU 2-1 through the GATE message. 2-4 is notified (step S62). The OLT 1 receives the REPORT message (Report Frame) from the ONUs 2-1 to 2-4 (step S63), and the transmission buffer amount (accumulated amount of the transmission buffer 23) in the ONUs 2-1 to 2-4 stored in the REPORT message. It is determined whether or not there is (a certain amount or more) (step S64). If there is a transmission buffer amount (Yes in step S64), the process returns to step S62.

OLT1は、送信バッファ量がない場合(ステップS64 No)、状態管理テーブル33を参照する(ステップS65)。図11は、状態管理テーブル33の一例を示す図である。図11に示すように、状態管理テーブル33は、ONU2−1〜2−4ごとに、ONU2−1〜2−4の識別番号(ここでは、ONU2−i(i=1,2,3,4)の識別番号をONU#iとする)と、ONU2−1〜2−4がスリープモードであるか通常状態(アクティブ:Active)であるかを示す情報である状態(State)と、ONUごとの警報をマスクするか否かを示す情報である警報(Alarm)と、切替トリガと、開始時刻(スリープモードである場合のスリープモードの開始時刻)と、復帰時刻(スリープモードである場合のスリープモードからの復帰時刻)とが格納される。切替トリガは、警報がマスクされていない場合に、通信経路を切替えるためのトリガを示しており、図11の例の監視は、警報の監視を意味しており、警報が生成された場合、ただちに切替処理を実施することを意味している。   When there is no transmission buffer amount (No in step S64), the OLT 1 refers to the state management table 33 (step S65). FIG. 11 is a diagram illustrating an example of the state management table 33. As shown in FIG. 11, the state management table 33 stores the identification numbers of ONUs 2-1 to 2-4 (here, ONUs 2-i (i = 1, 2, 3, 4) for each of the ONUs 2-1 to 2-4. ) Is set to ONU # i), a state (State) that is information indicating whether the ONUs 2-1 to 2-4 are in a sleep mode or a normal state (active), and for each ONU Alarm (Alarm) that is information indicating whether to mask the alarm, switching trigger, start time (start time of sleep mode when in sleep mode), return time (sleep mode when in sleep mode) (Return time from) is stored. The switching trigger indicates a trigger for switching the communication path when the alarm is not masked, and the monitoring in the example of FIG. 11 means monitoring of the alarm. When the alarm is generated, immediately This means that the switching process is performed.

ディスカバリ処理の直後は、接続される各ONU2−1〜2−4の状態は、全て通常状態であり、警報はマスクされない。そして、OLT1は、ONU2−1〜2−4ごとに、ONU2−1〜2−4からスリープモードへ移行することを示す応答であるSleep_Ackを受信した場合に、Sleep_Ackを受信したONU2−1〜2−4について、状態管理テーブル33を、状態をスリープモード(Sleep)へ更新し、開始時刻と復帰時刻を更新する。なお、開始時刻と復帰時刻については、OLT1がONU2−1〜2−4に対して、Sleep_Requestメッセージを把握しているため、この情報に基づいて更新する。また、OLT1が、スリープモードから復帰させることをOLT2−1〜2−4へ指示し、その応答を受信した場合には、状態管理テーブル33をディスカバリ処理の直後と同様の状態となるよう更新する。スリープモード中のONU2−1〜―4から、送信データが発生したことにより通常状態への復帰要求が送信された場合も、当該復帰要求を受信した場合には、状態管理テーブル33をディスカバリ処理の直後と同様の状態となるよう更新する。なお、図11は状態管理テーブル33の一例を示しており、状態管理テーブル33の項目はこれらに限定されない。最低限ONU2−1〜2−4がスリープモードであるか否かの情報が含まれていればよい。   Immediately after the discovery process, the connected ONUs 2-1 to 2-4 are all in the normal state, and the alarm is not masked. When the OLT 1 receives Sleep_Ack that is a response indicating that the ONU 2-1 to 2-4 shifts to the sleep mode for each of the ONUs 2-1 to 2-4, the ONUs 2-1 to 2 that have received the Sleep_Ack are received. -4, the state management table 33 is updated to the sleep mode (Sleep), and the start time and return time are updated. Note that the start time and the return time are updated based on this information because the OLT 1 knows the Sleep_Request message for the ONUs 2-1 to 2-4. Further, when the OLT 1 instructs the OLTs 2-1 to 2-4 to return from the sleep mode and receives a response, the state management table 33 is updated to be in the same state as immediately after the discovery process. . Even when a return request to the normal state is transmitted from the ONUs 2-1 to -4 in the sleep mode due to the generation of transmission data, when the return request is received, the state management table 33 is used for the discovery process. Update to the same state as immediately after. FIG. 11 shows an example of the state management table 33, and the items of the state management table 33 are not limited to these. Information on whether or not the ONUs 2-1 to 2-4 are in the sleep mode at least should be included.

図10の説明に戻る。OLT1は、状態管理テーブル33に基づいて、アクティブ状態のONU2−1〜2−4が3台以上であるか否かを判断し(ステップS66)、3台以上でない場合(ステップS66 No)、ステップS62へ戻る。アクティブ状態のONU2−1〜2−4が2台以下である場合は、ステップS64で送信バッファ量が無いと判断されたONU2−1〜2−4をスリープモードへ移行させてしまうとアクティブなONU2−1〜2−4が1台以下となってしまう。このため、アクティブ状態のONU2−1〜2−4が2台以下である場合は、送信バッファ量がないONU2−1〜2−4をスリープモードへ遷移させない。   Returning to the description of FIG. The OLT 1 determines whether there are three or more active ONUs 2-1 to 2-4 based on the state management table 33 (step S66), and if not three or more (step S66 No), step Return to S62. When the number of active ONUs 2-1 to 2-4 is two or less, if the ONUs 2-1 to 2-4 determined to have no transmission buffer capacity in step S64 are shifted to the sleep mode, the active ONU 2 -1 to 2-4 will be 1 or less. For this reason, when the number of active ONUs 2-1 to 2-4 is two or less, the ONUs 2-1 to 2-4 having no transmission buffer amount are not shifted to the sleep mode.

アクティブ状態のONU2−1〜2−4が3台以上の場合(ステップS66 Yes)、OLT1は、送信バッファ量がないONU2−1〜2−4をスリープモードへ移行させる省電力制御を実施して当該ONUに対するスリープモードの開始および終了時刻を決定し(ステップS67)、当該ONUへSleep_Allowを送信する(ステップS68)。その後、当該ONUからSleep_Ackを受信したか否かを判断し(ステップS69)、受信した場合(ステップS69 Yes)は、状態管理テーブル33を更新し(ステップS70)、ステップS62へ戻る。Sleep_Ackを受信しない場合(ステップS69 No)は、そのままステップS62へ戻る。   When there are three or more active ONUs 2-1 to 2-4 (step S66 Yes), the OLT 1 performs power saving control for shifting the ONUs 2-1 to 2-4 having no transmission buffer amount to the sleep mode. The start and end times of the sleep mode for the ONU are determined (step S67), and Sleep_Allow is transmitted to the ONU (step S68). Thereafter, it is determined whether or not Sleep_Ack has been received from the ONU (step S69). If received (step S69 Yes), the state management table 33 is updated (step S70), and the process returns to step S62. If Sleep_Ack is not received (No in step S69), the process directly returns to step S62.

なお、ほぼ同時に、複数のONU2−1〜2−4について送信バッファ量がないと判断した場合は、当該ONU(休止候補ONU)を全てスリープモードへ移行させないのではなく、休止候補ONUと既にスリープモードとなっているONU2−1〜2−4とでスリープモードとなる時間をずらすことにより、常に2台以上がアクティブになるような制御を行ってもよい。   If it is determined that there is no transmission buffer capacity for a plurality of ONUs 2-1 to 2-4 almost simultaneously, not all of the ONUs (pause candidate ONUs) are shifted to the sleep mode, but the sleep candidate ONU and the sleep candidate already have a sleep. Control may be performed such that two or more units are always active by shifting the time of entering the sleep mode between the ONUs 2-1 to 2-4 in the mode.

また、本実施の形態では、スリープモードであるか否かをONUの状態として管理し、全てのONUが同時にスリープモードにならないように制御したが、スリープモード内の周期的な省電力状態と一時起動状態も考慮し、省電力状態であるか一時起動状態であるかについても管理し、省電力状態が全てのONUで重ならないように制御するようにしてもよい。   In this embodiment, whether or not the sleep mode is set is managed as an ONU state, and control is performed so that all the ONUs do not enter the sleep mode at the same time. In consideration of the start state, it is also possible to manage whether the power saving state or the temporary start state, and control the power saving state so that it does not overlap in all ONUs.

次に、本実施の形態のOLT1における通信経路切替処理について詳細に説明する。なお、本実施の形態では、幹線障害の誤検出を防ぐため、全てのONUがスリープモードである場合に通信経路切替を実施しない制御を実施するが、この制御方法には様々なバリエーションが考えられる。例えば、全てのONUがスリープモードである場合には、障害監視時間以上の間ONU2−1〜2−4から信号を受信しなくても、光LoS警報等の幹線障害検出信号を発生させない方法もある。また、光LoS警報等の幹線障害検出信号を発生させない代わりに、全てのONUがスリープモードである場合には、障害監視タイマのカウントを定期的(満了する前に)リセットする等して、障害監視タイマを満了させない方法もある。さらに、光LoS警報等の幹線障害検出信号を発生しても、全てのONUがスリープモードである場合には、通信経路切替処理を実施しないようにするという方法もある。これらの方法やこれら以外の方法のうち、どの方法を実施してもよいが、ここでは、光LoS警報等の幹線障害検出信号を発生しても、全てのONUがスリープモードである場合には、通信経路切替処理を実施しないようにする方法を採用する例を説明する。すなわち、本実施の形態では、制御部9は、光LoS警報を受信してもすぐには通信路切替(冗長切替)を実施せず、切替を指示するHoldover信号を受信してから通信路切替を実施する。   Next, communication path switching processing in the OLT 1 of the present embodiment will be described in detail. In this embodiment, in order to prevent erroneous detection of a trunk line failure, control is performed that does not perform communication path switching when all ONUs are in the sleep mode. However, there are various variations in this control method. . For example, when all the ONUs are in the sleep mode, there is a method that does not generate a main line fault detection signal such as an optical LoS alarm even if no signal is received from the ONUs 2-1 to 2-4 for the fault monitoring time or longer. is there. In addition, if all ONUs are in sleep mode instead of generating main line fault detection signals such as optical LoS alarms, the fault monitoring timer count is reset periodically (before expiration), etc. There is also a method that does not expire the monitoring timer. Further, there is a method in which the communication path switching process is not performed when all the ONUs are in the sleep mode even when a trunk line failure detection signal such as an optical LoS alarm is generated. Any of these methods and methods other than these may be implemented. However, here, when all the ONUs are in the sleep mode even if a trunk failure detection signal such as an optical LoS alarm is generated. An example of adopting a method for preventing the communication path switching process from being performed will be described. That is, in this embodiment, the control unit 9 does not immediately switch the communication path (redundant switching) even after receiving the optical LoS alarm, but switches the communication path after receiving the Holdover signal instructing the switching. To implement.

図12は、本実施の形態の通信経路切替手順の一例を示すフローチャートである。OLT1のPON制御部10は、帯域割当てを実施し、GATEメッセージによりONU2−1〜2−4に通知する(ステップS71)。そして、障害監視タイマのカウントを開始する(ステップS72)。そして、GATEメッセージに対する応答としてREPORTメッセージを受信したか否かを判断し(ステップS73)、受信した場合(ステップS73 Yes)、ステップS71へ戻り、GATEメッセージを送信した後再度障害監視タイマのカウントを開始する。   FIG. 12 is a flowchart illustrating an example of a communication path switching procedure according to the present embodiment. The PON control unit 10 of the OLT 1 performs bandwidth allocation and notifies the ONUs 2-1 to 2-4 with a GATE message (step S71). Then, the failure monitoring timer starts counting (step S72). Then, it is determined whether or not a REPORT message has been received as a response to the GATE message (step S73). If received (step S73 Yes), the process returns to step S71, and after transmitting the GATE message, the fault monitoring timer is counted again. Start.

なお、ここでは、GATEメッセージを送信した際に障害監視タイマのカウントを開始する例を説明している。障害監視タイマによる障害時間の監視は、本来受信するべき応答信号が一定時間内に受信できたか否かを監視できればよいため、図12の例のように応答信号を要求する信号(この場合GATEメッセージ)の送信をカウントの開始としてもよいし、図6等で示したように、一定周期内に受信することが予定されている応答信号を受信した時点で、カウントを開始してもよい。応答信号を受信した時点で、カウントを開始する場合は、ステップS72をREPORTメッセージを受信した場合(ステップS73 Yes)の後に移動させ、ステップS72を経由してステップS71へ戻る処理となる。   Here, an example is described in which the failure monitoring timer starts counting when a GATE message is transmitted. The failure time monitoring by the failure monitoring timer only needs to be able to monitor whether or not the response signal that should be received within a predetermined time can be received. Therefore, a signal that requests a response signal as in the example of FIG. ) May be started as a count, or as shown in FIG. 6 and the like, the count may be started when a response signal scheduled to be received within a certain period is received. When counting is started when the response signal is received, step S72 is moved after the REPORT message is received (step S73 Yes), and the process returns to step S71 via step S72.

REPORTメッセージを受信しない場合(ステップS73 No)、PON制御部10は、障害監視タイマのカウントが満了したか否かを判断し(ステップS74)、満了していない場合は、ステップS73へ戻る(ステップS74 No)。なお、ここでは、幹線障害検出としてMAC LoSを検出する例を説明するが、光LoSを検出する場合は、REPORTメッセージを受信したか否かではなく有効な光信号を受信したか否かの判断となる。   When the REPORT message is not received (No at Step S73), the PON control unit 10 determines whether or not the failure monitoring timer count has expired (Step S74), and when it has not expired, the process returns to Step S73 (Step S73). S74 No). Here, an example in which MAC LoS is detected as trunk failure detection will be described. However, in the case of detecting optical LoS, it is determined whether a valid optical signal is received instead of whether a REPORT message is received. It becomes.

障害監視タイマのカウントが満了した場合(ステップS74 Yes)、PON制御部10は、光LoS等の幹線障害を検出したことを示す警報(Report Alarm)を発行し(ステップS75)、状態管理テーブル33を更新する(ステップS76)。具体的には、状態管理テーブル33の警報の欄に警報が発生していることを示す情報に更新する。そして、PON制御部10は、状態管理テーブル33を参照し(ステップS77)、1台以上のONUがアクティブであるか否かを判断し(ステップS78)、1台以上のONUがアクティブである場合(ステップS78 Yes)、Holdover信号を制御部9へ送信する(ステップS79)。なお、制御部9を備えない構成の場合は、Holdover信号をsOLT1−2のPON制御部10へ送信する。   When the count of the fault monitoring timer expires (step S74 Yes), the PON control unit 10 issues an alarm (Report Alarm) indicating that a trunk line fault such as optical LoS has been detected (step S75), and the state management table 33 Is updated (step S76). Specifically, the information is updated in the alarm column of the state management table 33 to information indicating that an alarm has occurred. Then, the PON control unit 10 refers to the state management table 33 (step S77) and determines whether or not one or more ONUs are active (step S78). When one or more ONUs are active (Step S78 Yes), a Holdover signal is transmitted to the control unit 9 (Step S79). In the case of a configuration that does not include the control unit 9, a Holdover signal is transmitted to the PON control unit 10 of the sOLT1-2.

Holdover信号を受信した制御部9は、通信路切替を予備系に切替えることを指示する冗長切替通知をsOLT1−2へ送信する(ステップS80)。これによりOLT1は、冗長切替が実施し、sOLT1−2によりRTTの再計算が実施され(ステップS81)、ステップS71へ戻る。   The control unit 9 that has received the Holdover signal transmits a redundancy switching notification instructing to switch the communication path switching to the standby system to the sOLT 1-2 (step S80). As a result, the OLT 1 performs redundancy switching, and the RTT is recalculated by the sOLT 1-2 (step S81), and the process returns to the step S71.

ステップS78で、全てのONUがアクティブでないと判断した場合(ステップS78 No)、スリープモードのONU2−1〜2−4についてONU毎の警報(LOBi等)をマスクすると決定し(ステップS82)、スリープモードのONU2−1〜2−4の警報をMaskとするよう状態管理テーブル33を更新し(ステップS83)、ステップS71へ戻る。ONU毎の警報をマスクするとは、例えば、ONU毎に障害検出されても、当該検出結果に対応した処理を実施しないことを意味する。なお、この状態管理テーブル33においてONU毎の警報をMaskとする処理は、各ONUをスリープモードへ移行させたときに行ってもよい。   If it is determined in step S78 that all the ONUs are not active (No in step S78), it is determined that the ONUs 2-1 to 2-4 in the sleep mode are to be masked with alarms (LOBi, etc.) for each ONU (step S82). The state management table 33 is updated so that the alarms of the mode ONUs 2-1 to 2-4 are set to Mask (step S83), and the process returns to step S71. Masking an alarm for each ONU means, for example, that even if a failure is detected for each ONU, processing corresponding to the detection result is not performed. Note that the process of setting the alarm for each ONU as Mask in the state management table 33 may be performed when each ONU is shifted to the sleep mode.

なお、LOBiやLOS等、予想される受信フレームが未受信となった回数を計数して障害検出する方法の場合は、上記の障害監視タイマにより障害監視時間が経過したか否かの判断の替わりに、予想される受信フレームが未受信となった回数が一定数となったか否かの判断を用いれば、同様の通信経路切替処理を実施できる。   In the case of a method for detecting a failure by counting the number of times that an expected received frame has not been received, such as LOBi or LOS, instead of determining whether the failure monitoring time has elapsed by the failure monitoring timer. In addition, the same communication path switching process can be performed by using the determination of whether or not the number of times the expected received frame has not been received has become a certain number.

また、図11を用いて説明したように、本実施の形態では、2台以上のONU2−1〜2−4がアクティブになるよう制御しているため、支線(またはONU)障害が誤って幹線障害として検出される可能性を大幅に低減させることができる。   In addition, as described with reference to FIG. 11, in this embodiment, since two or more ONUs 2-1 to 2-4 are controlled to be active, a branch line (or ONU) failure is erroneously caused by a trunk line. The possibility of being detected as a failure can be greatly reduced.

図13は、本発明にかかるOLT1における通信路切替方法を実施した場合のシーケンスの一例を示す図である。図13の例では、同時にアクティブとなるONU2−1〜2−4を2台以上となる制御は行わず、省電力制御については従来と同様の制御を行った例を示している。OLT1のwOLT1−1とONU2−1〜2−4は、図8の例と同様に、GATEメッセージ送信(ステップS31)、REPORTメッセージ送信(ステップS32)、Sleep_Allow送信(ステップS42)、Sleep_Ack送信(ステップS43)を実施する。そして、wOLT1−1のPON制御部10は、Sleep_Ackを受信すると上述のように、状態管理テーブル33を更新する(ステップS85)。   FIG. 13 is a diagram showing an example of a sequence when the communication path switching method in the OLT 1 according to the present invention is implemented. In the example of FIG. 13, an example is shown in which the same control as the conventional control is performed for power saving control without performing control to turn on two or more ONUs 2-1 to 2-4 that are simultaneously active. As in the example of FIG. 8, wOLT 1-1 and ONUs 2-1 to 2-4 of OLT 1 transmit GATE message (step S31), REPORT message transmission (step S32), Sleep_Allow transmission (step S42), and Sleep_Ack transmission (step S43) is performed. Then, when receiving the Sleep_Ack, the PON control unit 10 of the wOLT 1-1 updates the state management table 33 as described above (step S85).

wOLT1−1のPON制御部10は、REPORTフレームを受信すると障害監視タイマのカウントを開始し(ステップS41)、ONU2−1〜2−4が全てスリープモードへ移行したため、障害監視タイマが満了し、幹線障害検出の警報が生成される(ステップS44)。本実施の形態では、図12で説明した通り、幹線障害検出の警報が生成されても、wOLT1−1のPON制御部10は、状態管理テーブル33を参照して、全てのONU2−1〜2−4がスリープモードであることがわかるため、冗長切替は実施されない。この結果、スリープモードから復帰したONU2−1〜2−4には、警報の発生前と同じく、wOLT1−1からGATEフレームが送信される(ステップS31a)。このように、本実施の形態では、幹線障害の誤検出による不要な冗長切替を防ぐことができる。   When receiving the REPORT frame, the PON control unit 10 of the wOLT 1-1 starts counting the failure monitoring timer (step S41). Since all of the ONUs 2-1 to 2-4 have shifted to the sleep mode, the failure monitoring timer expires, An alarm for detecting a trunk line failure is generated (step S44). In the present embodiment, as described with reference to FIG. 12, even if a main line failure detection alarm is generated, the PON control unit 10 of the wOLT 1-1 refers to the state management table 33 and sets all the ONUs 2-1 and 2. Since it is understood that -4 is the sleep mode, redundant switching is not performed. As a result, the GATE frame is transmitted from the wOLT 1-1 to the ONUs 2-1 to 2-4 that have returned from the sleep mode, as before the occurrence of the alarm (step S31a). Thus, in this embodiment, unnecessary redundant switching due to erroneous detection of a trunk line failure can be prevented.

図14は、本実施の形態のOLT1における省電力制御を実施した場合のシーケンスの一例を示す図である。図14は、ONU2−1〜2−4の全てについて送信バッファ量がなく、ONU2−1〜2−4の全てをスリープモードに移行させることが可能な例を示している。このような例の場合、従来では、ほぼ同時にONU2−1〜2−4をスリープモードへ移行させるため、ONU2−1〜2−4の全てがスリープモードとなる時間帯があったが、本実施の形態では、同時にアクティブとなるONU2−1〜2−4を2台以上とするSleep_Allow送信(ステップS42)を送信している。そして、OLT1は、Sleep_Ackを受信(ステップS43)すると、状態管理テーブル33を更新する(ステップS85)。具体的には、図14の例では、省電力効果の公平性を考慮してラウンドロビン方式により、スリープモードへ移行させる時刻をONU2−1〜2−4によりずらすことにより、同時にアクティブとなるONU2−1〜2−4を2台以上とするよう制御している。なお、同時にアクティブとなるONU2−1〜2−4を2台以上とする、具体的な各ONU2−1〜2−4のスリープモードの開始時間の決定方法は、図14の例に限定されない。   FIG. 14 is a diagram illustrating an example of a sequence when power saving control is performed in the OLT 1 of the present embodiment. FIG. 14 shows an example in which there is no transmission buffer amount for all of the ONUs 2-1 to 2-4, and all of the ONUs 2-1 to 2-4 can be shifted to the sleep mode. In the case of such an example, in the past, since the ONUs 2-1 to 2-4 are shifted to the sleep mode almost simultaneously, there is a time zone in which all of the ONUs 2-1 to 2-4 are in the sleep mode. In this form, Sleep_Allow transmission (step S42) is performed in which two or more ONUs 2-1 to 2-4 that are simultaneously active. And OLT1 will update the state management table 33, if Sleep_Ack is received (step S43) (step S85). Specifically, in the example of FIG. 14, the ONU 2 that is simultaneously active by shifting the time to shift to the sleep mode by the ONU 2-1 to 2-4 by the round robin method in consideration of the fairness of the power saving effect. −1 to 2-4 are controlled to be two or more. A specific method for determining the start time of the sleep mode of each ONU 2-1 to 2-4, in which two or more ONUs 2-1 to 2-4 are simultaneously active, is not limited to the example of FIG.

また、図10の例では、アクティブなONU2−1〜2−4が3台以下の場合は、新たなONU2−1〜2−4をスリープモードへ移行させないようにしていたが、新たなONU2−1〜2−4をスリープモードへ移行させる場合に、スリープモードへ移行中のONU2−1〜2−4を一旦通常状態に復帰させるまたはスリープモードの終了時間をずらして、図14のような制御を行ってもよい。すなわち、既にスリープモードとなっているONU2−1〜2−4と新たにスリープモードへ移行させるONU2−1〜2−4とに対して図14のようなスリープ時間をずらして2台以上をアクティブとする制御を行ってもよい。   In the example of FIG. 10, when there are three or less active ONUs 2-1 to 2-4, the new ONUs 2-1 to 2-4 are not shifted to the sleep mode. When shifting 1 to 2-4 to the sleep mode, the ONUs 2-1 to 2-4 that are shifting to the sleep mode are temporarily returned to the normal state or the end time of the sleep mode is shifted to control as shown in FIG. May be performed. That is, two or more units are activated by shifting the sleep time as shown in FIG. 14 for the ONUs 2-1 to 2-4 that are already in the sleep mode and the ONUs 2-1 to 2-4 that are newly shifted to the sleep mode. Control may be performed as follows.

次に、ONU2−1〜2−4における省電力制御について説明する。図15−1,15−2は、ONU2−1〜2−4における省電力制御手順の一例を示す図である。ONU2−1〜2−4のPON制御部20は、まず、初期設定(ディスカバリ)処理を実施する(ステップS91)。OLT1からフレームを受信すると(ステップS92)、受信したフレームがGATEメッセージ(Gate Frame)であるか否かを判断し(ステップS93)、GATEメッセージでない(すなわち、データフレーム(Data Frame)である)場合(ステップS93 No)、データフレームを受信し(ステップS94)、データの種類を判別する(ステップS95)。   Next, power saving control in the ONUs 2-1 to 2-4 will be described. 15A and 15B are diagrams illustrating an example of the power saving control procedure in the ONUs 2-1 to 2-4. The PON control unit 20 of the ONUs 2-1 to 2-4 first performs an initial setting (discovery) process (step S91). When a frame is received from the OLT 1 (step S92), it is determined whether or not the received frame is a GATE message (Gate Frame) (step S93), and if it is not a GATE message (that is, a data frame (Data Frame)) (No in step S93), the data frame is received (step S94), and the type of data is determined (step S95).

そして、受信したフレームがSleep_Allowであるか否かを判断し(ステップS96)、Sleep_Allowである場合(ステップS96 Yes)、PON制御部20は、送信バッファ量(送信バッファ23の蓄積量)を参照し(ステップS97)、送信バッファ量があるか否かを判断する(ステップS98)。送信バッファ量がない場合(ステップS98 No)、Sleep_Ackを返信する(ステップS99)。そして、PON制御部20は、スリープモードにおける1回の省電力状態の継続時間であるスリープ時間を計測するためのタイマ(Sleep_Timer)のカウントを開始し(ステップS100)、光送信器27(または光送信器27および光受信器26)を省電力状態(Sleep_Duration)へ移行させる(ステップS101)。PON制御部20は、Sleep_Timerのカウントが満了したか否かを判断し(ステップS102)、満了した場合(ステップS102 Yes)、光送信器27(または光送信器27および光受信器26)を一時起動状態へ移行させる(ステップS103)。   Then, it is determined whether or not the received frame is Sleep_Allow (Step S96). If it is Sleep_Allow (Yes in Step S96), the PON control unit 20 refers to the transmission buffer amount (accumulated amount of the transmission buffer 23). (Step S97), it is determined whether there is a transmission buffer amount (Step S98). If there is no transmission buffer amount (No in step S98), Sleep_Ack is returned (step S99). Then, the PON control unit 20 starts counting a timer (Sleep_Timer) for measuring the sleep time, which is the duration of one power saving state in the sleep mode (step S100), and the optical transmitter 27 (or optical The transmitter 27 and the optical receiver 26) are shifted to the power saving state (Sleep_Duration) (step S101). The PON control unit 20 determines whether or not the Sleep_Timer count has expired (step S102), and if it has expired (step S102 Yes), the optical transmitter 27 (or the optical transmitter 27 and the optical receiver 26) is temporarily suspended. Transition to the activated state (step S103).

そして、PON制御部20は、GATEメッセージを受信し(ステップS104)、送信バッファ量を参照して(ステップS105)、送信バッファ量があるか否かを判断する(ステップS106)。送信バッファ量がない場合(ステップS106 No)、送信バファ量(この場合は送信バッファ量がないことを示す値)をREPORTメッセージに入力し(ステップS107)、REPORTメッセージを送信し(ステップS108)、ステップS101へ戻る。   The PON control unit 20 receives the GATE message (step S104), refers to the transmission buffer amount (step S105), and determines whether there is a transmission buffer amount (step S106). If there is no transmission buffer amount (No in step S106), the transmission buffer amount (in this case, a value indicating that there is no transmission buffer amount) is input to the REPORT message (step S107), and the REPORT message is transmitted (step S108). Return to step S101.

ステップS96で、Sleep_Allowでないと判断した場合(ステップS96 No)、受信データに対して所定のデータ処理を実施し(ステップS109)、ステップS92へ戻る。ステップS98で、送信バッファ量があると判断した場合(ステップS98 Yes)、Sleep_Ack(Wakeup)を返信する(ステップS110)。Sleep_Ack(Wakeup)は、スリープモードへの移行を承諾する上述のSleep_Ackとは異なり、通常状態への復帰を要求するフレームである。そして、REPORTメッセージ、データフレームを送信し(ステップS111)、ステップS92へ戻る。   If it is determined in step S96 that it is not Sleep_Allow (No in step S96), predetermined data processing is performed on the received data (step S109), and the process returns to step S92. If it is determined in step S98 that there is a transmission buffer amount (step S98 Yes), Sleep_Ack (Wakeup) is returned (step S110). Sleep_Ack (Wakeup) is a frame that requests a return to the normal state, unlike the above-described Sleep_Ack that accepts the transition to the sleep mode. Then, a REPORT message and a data frame are transmitted (step S111), and the process returns to step S92.

ステップS93でGATEメッセージであった場合(ステップS93 Yes)、GATEメッセージを受信し(ステップS112)、送信バッファ量を参照し(ステップS113)、送信バッファ量をREPORTメッセージに入力する(ステップS114)。そして、送信許可時刻まで待機した後(ステップS115)、REPORTメッセージを送信し(ステップS116)、ステップS92へ戻る。   If it is a GATE message in step S93 (step S93 Yes), the GATE message is received (step S112), the transmission buffer amount is referred to (step S113), and the transmission buffer amount is input to the REPORT message (step S114). Then, after waiting until the transmission permission time (step S115), a REPORT message is transmitted (step S116), and the process returns to step S92.

また、ステップS106で送信バッファ量がある場合(ステップS106 Yes)、PON制御部20は、Sleep_Ack(Wakeup)を返信し(ステップS117)、REPORTメッセージ、データフレームを送信し(ステップS118)、ステップS92へ戻る。   If there is a transmission buffer amount in step S106 (Yes in step S106), the PON control unit 20 returns a Sleep_Ack (Wakeup) (step S117), transmits a REPORT message and a data frame (step S118), and step S92. Return to.

また、以上の説明では、光スプリッタが1台であり、支線が一段階であったが、光スプリッタが多段階に設定され、支線が多段階となるような構成も考えられる。図16は、支線が多段階となる構成例を示す図である。OLT1および現用系幹線光ファイバ7−1、予備系幹線光ファイバ7−2は、図2の例と同様であるが、図16の例では、1段目の光スプリッタ3−1と2段目の光スプリッタ3−2,3−3の2段階の構成となっている。光スプリッタ3−1は、現用系幹線光ファイバ7−1、予備系幹線光ファイバ7−2と接続されるとともに、光スプリッタ3−2,3−3に支線光ファイバ6−1,6−2でそれぞれ接続される。光スプリッタ3−2は、支線光ファイバ6−1により光スプリッタ3−1と接続されるとともに、各支線によりONU2−1〜2−4と接続され、光スプリッタ3−3は、支線光ファイバ6−2により光スプリッタ3−1と接続されるとともに、各支線によりONU2−5〜2−8と接続される。ここで、1段階目の支線である支線光ファイバ6−1,6−2を支線#1とし、光スプリッタ3−2,3−3とONU2−1〜2−8を接続する支線を支線#2とする。   In the above description, there is one optical splitter and one branch line. However, a configuration in which the optical splitter is set in multiple stages and the branch lines have multiple stages is also conceivable. FIG. 16 is a diagram illustrating a configuration example in which branch lines have multiple stages. The OLT 1, the active trunk optical fiber 7-1, and the standby trunk optical fiber 7-2 are the same as in the example of FIG. 2, but in the example of FIG. 16, the first stage optical splitter 3-1 and the second stage optical fiber 7-1. The optical splitters 3-2 and 3-3 have a two-stage configuration. The optical splitter 3-1 is connected to the active trunk optical fiber 7-1 and the standby trunk optical fiber 7-2, and branch optical fibers 6-1 and 6-2 to the optical splitters 3-2 and 3-3. Are connected to each other. The optical splitter 3-2 is connected to the optical splitter 3-1 by the branch optical fiber 6-1, and is connected to the ONUs 2-1 to 2-4 by the respective branch lines, and the optical splitter 3-3 is connected to the branch optical fiber 6. -2 is connected to the optical splitter 3-1 and is connected to the ONUs 2-5 to 2-8 through the branch lines. Here, branch optical fibers 6-1 and 6-2 which are branch lines in the first stage are defined as branch line # 1, and branch lines connecting optical splitters 3-2 and 3-3 and ONUs 2-1 to 2-8 are defined as branch line # 1. 2.

図16に示すような、多段階の構成の場合、同時にアクティブとする2台以上のONUが同一の支線#1に接続するONUであった場合(例えば、ONU2−1とONU2−2がアクティブの場合)、支線#1の障害であるか、幹線障害であるかの区別ができない。従って、このような場合には、OLT1は、ONU毎に、どの支線#1に接続するONUであるかという情報を保持しておき、同時にアクティブとするONUを異なる支線#1に接続するONUとなるよう制御することが望ましい。例えば、図16のように、支線光ファイバ6−1に接続するONU2−1と支線光ファイバ6−2に接続するONU2−5とをアクティブとする。   In the case of a multi-stage configuration as shown in FIG. 16, when two or more ONUs that are simultaneously active are ONUs connected to the same branch line # 1 (for example, ONU2-1 and ONU2-2 are active) ), It is not possible to distinguish between the failure of branch line # 1 or the failure of the trunk line. Therefore, in such a case, the OLT 1 holds information about which branch line # 1 is connected to each ONU, and at the same time, an ONU that connects an active ONU to a different branch line # 1. It is desirable to control so that For example, as shown in FIG. 16, the ONU 2-1 connected to the branch optical fiber 6-1 and the ONU 2-5 connected to the branch optical fiber 6-2 are activated.

以上のように、本実施の形態では、OLT1が、ONU2−1〜2−4の省電力の状態を状態管理テーブル33を用いて管理し、状態管理テーブル33を用いて冗長切替を実施するか否かを判断するようにした。このため、幹線障害の誤検出による不要な冗長切替を防ぐことができる。また、同時にアクティブとするONU2−1〜2−4の台数を2台以上とするよう省電力制御を実施することで、支線障害と幹線障害の判別を実施することができる。   As described above, in this embodiment, the OLT 1 manages the power saving state of the ONUs 2-1 to 2-4 using the state management table 33, and performs redundancy switching using the state management table 33. Judged whether or not. For this reason, unnecessary redundant switching due to erroneous detection of a trunk line failure can be prevented. Further, by performing power saving control so that the number of ONUs 2-1 to 2-4 that are simultaneously active is set to two or more, it is possible to determine a branch line failure and a trunk line failure.

実施の形態2.
図17は、本発明にかかるPONシステムの実施の形態2の構成例を示す図である。本実施の形態のPONシステムは、図17に示すように、多段構成であり、OLT1と幹線ファイバ7により接続される光スプリッタ3は、支線光ファイバ50−1〜50−4(1段目の支線光ファイバ)に接続される。実施の形態1と同様の機能を有する構成要素は、実施の形態1と同一の符号を付して重複する説明を省略する。支線光ファイバ50−1,50−2,50−3,50−4は、それぞれ支線スプリッタ51−1,51−2,51−3,51−4に接続される。支線スプリッタ51−1は、支線光ファイバ61−1〜61−8(2段目の支線光ファイバ)を介してONU71−1〜71−8に接続される。同様に、支線スプリッタ51−2,51−3,51−4は支線光ファイバ52−2,52−3,52−4にそれぞれ接続されるとともに支線光ファイバ62−1〜62−8,63−1〜63−8,64−1〜64−8にそれぞれ接続される。ONU71−1〜71−8,72−1〜72−8,73−1〜73−8,74−1〜74−8の構成は、実施の形態1で説明したONU2−1と同様である。なお、図17では、図の簡略化のため、支線光ファイバ50−2,50−3に接続される支線光ファイバ62−1〜62−8,63−1〜63−8およびONU72−1〜72−8,73−1〜73−8の図示を省略している。また、支線スプリッタの数および各支線スプリッタに2段目の支線光ファイバを介して接続されるONUの数は、図17の例に限定されない。
Embodiment 2. FIG.
FIG. 17 is a diagram showing a configuration example of the second embodiment of the PON system according to the present invention. As shown in FIG. 17, the PON system of the present embodiment has a multi-stage configuration, and the optical splitter 3 connected by the OLT 1 and the trunk fiber 7 includes branch optical fibers 50-1 to 50-4 (first stage). Branch optical fiber). Components having the same functions as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description is omitted. The branch line optical fibers 50-1, 50-2, 50-3, and 50-4 are connected to branch line splitters 51-1, 51-2, 51-3, and 51-4, respectively. The branch line splitter 51-1 is connected to the ONUs 71-1 to 71-8 via branch line optical fibers 61-1 to 61-8 (second-stage branch line optical fibers). Similarly, the branch line splitters 51-2, 51-3, and 51-4 are connected to the branch line optical fibers 52-2, 52-3, and 52-4, respectively, and the branch line optical fibers 62-1 to 62-8, and 63-. 1 to 63-8 and 64-1 to 64-8, respectively. The configurations of the ONUs 71-1 to 71-8, 72-1 to 72-8, 73-1 to 73-8, and 74-1 to 74-8 are the same as those of the ONU 2-1 described in the first embodiment. In FIG. 17, for simplification of the drawing, the branch optical fibers 62-1 to 62-8, 63-1 to 63-8 connected to the branch optical fibers 50-2 and 50-3, and the ONUs 72-1 to 72-1. Illustrations of 72-8 and 73-1 to 73-8 are omitted. Further, the number of branch splitters and the number of ONUs connected to each branch splitter via the second branch optical fiber are not limited to the example of FIG.

OLT1は、管理者装置(EMS(Element Management System))80およびデータセンター90に接続される。なお、図17では、OLT1が管理者装置80とデータセンター90の両方に接続される例を示しているがいずれか一方のみと接続されていてもよい。管理者装置80、データセンター90の少なくともいずれか一方は、図17に示した接続関係を把握しているとする。そして、各ONUが、どのスプリッタの配下に位置するか、またONUの接続するスプリッタが何段目のスプリッタであるか等のONU位置情報をデータベースとして保持しているとする。   The OLT 1 is connected to an administrator device (EMS (Element Management System)) 80 and a data center 90. Although FIG. 17 shows an example in which the OLT 1 is connected to both the administrator device 80 and the data center 90, the OLT 1 may be connected to only one of them. It is assumed that at least one of the administrator device 80 and the data center 90 grasps the connection relationship illustrated in FIG. It is assumed that ONU position information such as which splitter each ONU is located under and which splitter stage the ONU is connected to is stored as a database.

本実施の形態では、多段構成の場合に、OLT1が、管理者装置80またはデータセンター90が有するデータベースからONUの位置情報を取得し、PON制御部10は、自身が管理する各ONUの個体識別情報に基づいて、実施の形態1で述べた状態管理テーブル33に位置情報を追加する。図18は、本実施の形態の状態管理テーブル33の構成例を示す図である。図18の状態情報の欄には、実施の形態1の状態管理テーブル33と同様の情報が格納され、本実施の形態ではさらにONUごとの位置情報が格納される。OLT1は、状態管理テーブル33の状態情報については、実施の形態1と同様の手順で更新する。   In the present embodiment, in the case of a multi-stage configuration, the OLT 1 acquires ONU position information from the database held by the administrator device 80 or the data center 90, and the PON control unit 10 identifies individual ONUs managed by itself. Based on the information, position information is added to the state management table 33 described in the first embodiment. FIG. 18 is a diagram illustrating a configuration example of the state management table 33 according to the present embodiment. The status information column of FIG. 18 stores the same information as the status management table 33 of the first embodiment, and further stores location information for each ONU in this embodiment. The OLT 1 updates the state information in the state management table 33 in the same procedure as in the first embodiment.

図17に示す多段構成において、実施の形態1で述べたようにONUの省電力制御を実施する際、1段目の支線光ファイバ(支線光ファイバ50−1〜50−4)の障害と幹線ファイバ7の障害とを区別するには、異なる支線スプリッタ51−1〜51−4に接続するONUが同時に複数アクティブとなるようにONUの省電力制御を実施すればよい。   In the multistage configuration shown in FIG. 17, when the power saving control of the ONU is performed as described in the first embodiment, the failure of the first branch optical fiber (branch optical fibers 50-1 to 50-4) and the trunk line In order to distinguish the failure of the fiber 7, power saving control of the ONU may be performed so that a plurality of ONUs connected to different branch line splitters 51-1 to 51-4 are simultaneously active.

図19は、本実施の形態の省電力制御方法の一例を示す図である。図19では、スリープモードの期間を点線で示し、アクティブの期間を実線で示している。図19に示すように、異なる支線スプリッタ51−1〜51−4の配下の(異なる支線スプリッタ51−1〜51−4に接続する)ONUが、2つ以上同時にアクティブとなるように、ONUの省電力制御を実施する。異なる支線スプリッタ51−1〜51−4に接続するONUが、2つ以上同時にアクティブとなるようにしておけば、支線光ファイバ50−1〜50−4(または支線スプリッタ51−1〜51−4)に障害が発生した場合、OLT1は、障害が発生していない支線光ファイバ50−1〜50−4に接続するONUから応答を受信することができる。なお、図19では、図の簡略化のため、各支線スプリッタの配下のONUを1つずつ示しているが、支線スプリッタの配下に2つ以上のONUが存在する場合も同様で、異なる支線スプリッタ51−1〜51−4の配下のONUが、2つ以上同時にアクティブとなっていればよい。   FIG. 19 is a diagram illustrating an example of the power saving control method according to the present embodiment. In FIG. 19, the sleep mode period is indicated by a dotted line, and the active period is indicated by a solid line. As shown in FIG. 19, two or more ONUs connected to different branch line splitters 51-1 to 51-4 (connected to different branch line splitters 51-1 to 51-4) are activated at the same time. Implement power saving control. If two or more ONUs connected to different branch line splitters 51-1 to 51-4 are activated simultaneously, branch line optical fibers 50-1 to 50-4 (or branch line splitters 51-1 to 51-4). ), The OLT 1 can receive a response from the ONU connected to the branch optical fibers 50-1 to 50-4 in which no failure has occurred. In FIG. 19, for simplification of the drawing, one ONU under each branch splitter is shown one by one, but the same applies when there are two or more ONUs under the branch splitter. It is sufficient that two or more ONUs under the control of 51-1 to 51-4 are simultaneously active.

OLT1は、図18に例示した位置情報を含む状態管理テーブル33を用いて、実施の形態1と同様のONUの省電力制御を実施する。省電力制御の方法は、上記のように異なる支線スプリッタ51−1〜51−4に接続するONUが、2つ以上同時にアクティブとなるようにする以外は、実施の形態1と同様である。   The OLT 1 uses the state management table 33 including the position information illustrated in FIG. 18 to perform the power saving control of the ONU as in the first embodiment. The power saving control method is the same as that of the first embodiment except that two or more ONUs connected to different branch line splitters 51-1 to 51-4 are simultaneously activated.

なお、以上説明した例では、支線が2段となった例を示したが、支線の段数は3段以上であってもよい。3段以上の場合、幹線障害と区別したい支線の直下に接続する支線スプリッタについて、異なる光スプリッタの配下のONUが、2つ以上同時にアクティブとなるように制御する。   In the example described above, an example in which the branch line has two stages is shown, but the number of branch lines may be three or more. In the case of three or more stages, control is performed so that two or more ONUs under different optical splitters are active at the same time for the branch splitter connected directly below the branch to be distinguished from the trunk failure.

また、本実施の形態においても、現用系OLTが管理している状態管理テーブル33の各種情報は、制御部9を介して予備系OLTに転送され、幹線切り替え後に、予備系OLTはこれらの情報を用いてONUの省電力制御を実施する。   Also in the present embodiment, various types of information in the state management table 33 managed by the active OLT are transferred to the standby OLT via the control unit 9, and after the main line switching, the standby OLT stores these information. The power saving control of the ONU is performed using

また、本実施の形態では、管理者装置80、データセンター90からONUの位置情報を取得するようにしたが、ONUごとのサービス利用状況等についても管理者装置80、データセンター90から取得するようにしてもよい。   In this embodiment, the ONU location information is acquired from the administrator device 80 and the data center 90. However, the service usage status for each ONU is also acquired from the administrator device 80 and the data center 90. It may be.

以上のように、本実施の形態では、多段の構成を有する場合に、OLT1は、管理者装置80、データセンター90のうち少なくとも一方から各ONUの位置情報を取得し、状態管理テーブル33に位置情報も格納して管理する。そして、OLT1は、状態管理テーブル33に基づいて、異なる支線スプリッタ51−1〜51−4に接続するONUが、2つ以上同時にアクティブとなるようにONUの省電力制御を実施するようにした。このため、幹線障害の誤検出による不要な冗長切替を防ぐことができる。   As described above, in this embodiment, when the OLT 1 has a multi-stage configuration, the OLT 1 acquires the position information of each ONU from at least one of the administrator device 80 and the data center 90 and stores the position information in the state management table 33. Information is also stored and managed. Based on the state management table 33, the OLT 1 performs power saving control of the ONUs so that two or more ONUs connected to different branch line splitters 51-1 to 51-4 are simultaneously active. For this reason, unnecessary redundant switching due to erroneous detection of a trunk line failure can be prevented.

以上のように、本発明にかかる光伝送システム、局側光終端装置および通信回線切替方法は、OLTを冗長化したPONシステムに有用であり、特に、省電力制御を行うPONシステムに適している。   As described above, the optical transmission system, the station-side optical terminal device, and the communication line switching method according to the present invention are useful for a PON system with redundant OLT, and are particularly suitable for a PON system that performs power saving control. .

1 OLT、1−1 wOLT、1−2 sOLT、2−1〜2−N,71−1〜71−8,74−1〜74−8 ONU、3 光スプリッタ、4 上位ネットワーク、5−1,5−2 ユーザ端末、6−1〜6−N,50−1〜50−4,61−1〜61−8,64−1〜64−8 支線光ファイバ、7 幹線光ファイバ、7−1 現用系幹線光ファイバ、7−2 予備系幹線光ファイバ、8 L2SW、9 制御部、10,20 PON制御部、11,21 物理層処理部、12,22 WDMカプラ、13,23 送信バッファ、14,24 受信バッファ、15,25 光送受信器、16,26 光受信器、17,27 光送信器、18,28 受信部、19,29 送信部、30,35 信号処理部、31,36 バッファ監視部、32 スリープ制御信号処理部、33 状態管理テーブル、34,40 タイムカウンタ、37 リンク監視部、38 状態テーブル、39 スリープ制御部、51−1〜51−4 支線スプリッタ。   1 OLT, 1-1 wOLT, 1-2 sOLT, 2-1 to 2-N, 71-1 to 71-8, 74-1 to 74-8 ONU, 3 optical splitter, 4 upper network, 5-1, 5-2 User terminal, 6-1 to 6-N, 50-1 to 50-4, 61-1 to 61-8, 64-1 to 64-8 Branch optical fiber, 7 trunk optical fiber, 7-1 System trunk optical fiber, 7-2 Standby system trunk optical fiber, 8 L2SW, 9 control unit, 10, 20 PON control unit, 11, 21 physical layer processing unit, 12, 22 WDM coupler, 13, 23 transmission buffer, 14, 24 reception buffer, 15, 25 optical transceiver, 16, 26 optical receiver, 17, 27 optical transmitter, 18, 28 reception unit, 19, 29 transmission unit, 30, 35 signal processing unit, 31, 36 buffer monitoring unit , 32 sleep system Control signal processing unit, 33 status management table, 34, 40 time counter, 37 link monitoring unit, 38 status table, 39 sleep control unit, 51-1 to 51-4 branch splitter.

上述した課題を解決し、目的を達成するために、本発明は、省電力モードに遷移可能な加入者側光終端装置と、局側光終端装置と、前記局側光終端装置と冗長化された幹線により接続されるとともに前記加入者側光終端装置とそれぞれ支線により接続される光スプリッタとを備える光伝送システムであって、前記局側光終端装置は、前記加入者側光終端装置の省電力モードに関する情報である省電力情報を管理し、前記省電力情報に基づいて前記幹線の冗長切替を制御し、前記加入者側光終端装置ごとに前記加入者側光終端装置における省電力モードの開始および終了時間を制御し、前記開始および終了時間を前記省電力情報として管理し、省電力モードでない前記加入者側光終端装置が1台以上存在するよう前記加入者側光終端装置ごとの前記開始および終了時間を決定し、省電力モードでない前記加入者側光終端装置からの応答信号に基づいて前記幹線の冗長切替を実施するか否かの判断を行うことを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention is made redundant with a subscriber-side optical termination device, a station-side optical termination device, and the station-side optical termination device that can be shifted to a power saving mode. And an optical splitter connected to each of the subscriber-side optical terminators and each of the branch lines, wherein the station-side optical terminator is a saving of the subscriber-side optical terminator. It manages power save information which is information about the power mode, the power saving mode in the power saving controlling the redundancy switching before Symbol mains based on information, the subscriber-side optical termination unit for each of the subscriber-side optical termination unit For each subscriber-side optical termination device so that there is at least one subscriber-side optical termination device that is not in the power-saving mode. Determine the serial start and end times, and performing a determination of whether to implement the redundancy switching of the main line based on a response signal from the subscriber-side optical termination unit not in the power saving mode.

そこで、本実施の形態では、以下に述べるように、OLT1では、状態管理テーブル33を用いて各ONU2−1〜2−4の状態(スリープモードであるか否か)を管理し、ONU2−1〜2−4の全てがスリープモードである場合には、通信路切替の条件となるLoS警報等を送出しないようにする、またはLoS警報が発せられても通信路切替を実施しないようにする。また、スリープモードでないONU2−1〜2−4の台数が1台以上となるようスリープモードの時間を制御すると、幹線障害の誤検出を防ぐことができる。さらに、スリープモードでないONU2−1〜2−4の台数を2台以上となるようスリープモードの時間を制御することにより、幹線障害と支線障害の区別ができるようにする。なお、以下では、ONU2−1〜2−4の全てがスリープモードである場合には、通信路切替が行われないようにする制御と、スリープモードでないONU2−1〜2−4の台数を2台以上(または1台以上)とする制御と、の両方を実施する例について説明するが、いずれか一方のみを実施してもよい。 Therefore, in the present embodiment, as described below, the OLT 1 manages the state (whether or not it is in the sleep mode) of each ONU 2-1 to 2-4 using the state management table 33, and the ONU 2-1. When all of ˜2-4 are in the sleep mode, a LoS alarm or the like that is a condition for switching the communication path is not transmitted, or the communication path is not switched even if a LoS alarm is issued. Further, if the sleep mode time is controlled so that the number of ONUs 2-1 to 2-4 that are not in the sleep mode is one or more, erroneous detection of a trunk line failure can be prevented. Further, by controlling the time of the sleep mode so that the number of ONUs 2-1 to 2-4 that are not in the sleep mode becomes two or more, it becomes possible to distinguish between a trunk line failure and a branch line failure. In the following, when all ONU2-1~2-4 is in the sleep mode, a control to make the communication path switching is not performed, the number of ONU2-1~2-4 not sleep mode Although an example in which both of two or more (or one or more) controls are implemented will be described, only one of them may be implemented.

なお、幹線障害と支線障害の区別をするためには、スリープモードでないONU2−1〜2−4の台数を2台以上とする必要があるが、幹線障害の誤検出を防ぐには、スリープモードでないONU2−1〜2−4の台数は1台以上であればよい。したがって、幹線障害の誤検出を防ぐことを目的とする場合は、スリープモードでないONU2−1〜2−4を1台以上とすればよい。
In order to distinguish between mains failure and the branch failure, although the number of ONU2-1~2-4 not sleep mode it needs to be two or more, to prevent erroneous detection of mains failure, the scan The number of ONUs 2-1 to 2-4 that are not in the reap mode may be one or more. Therefore, for the purpose of preventing erroneous detection of mains failure, ONU2-1~2-4 not sleep mode may be set to more than one.

Claims (17)

省電力モードに遷移可能な加入者側光終端装置と、局側光終端装置と、前記局側光終端装置と冗長化された幹線により接続されるとともに前記加入者側光終端装置とそれぞれ支線により接続される光スプリッタとを備える光伝送システムであって、
前記局側光終端装置は、前記加入者側光終端装置の省電力モードに関する情報である省電力情報を管理し、前記省電力情報に基づいて、前記幹線の冗長切替を制御することを特徴とする光伝送システム。
It is connected to the subscriber-side optical termination device, the station-side optical termination device, and the station-side optical termination device that are made redundant to the power-saving mode. An optical transmission system comprising a connected optical splitter,
The station-side optical terminal device manages power-saving information that is information related to a power-saving mode of the subscriber-side optical terminal device, and controls redundancy switching of the trunk line based on the power-saving information. Optical transmission system.
前記局側光終端装置は、
前記省電力情報として、前記加入者側光終端装置ごとに前記加入者側光終端装置が省電力モードであるか否かを示す状態情報を含み、
前記状態情報に基づいて前記加入者側光終端装置が省電力モードであるか否かを判断し、省電力モードでない前記加入者側光終端装置からの応答信号に基づいて前記幹線の冗長切替を実施するか否かを判断し、省電力モードの前記加入者側光終端装置からの応答信号を前記幹線の冗長切替の実施の判断に用いないことを特徴とする請求項1に記載の光伝送システム。
The station side optical terminator is:
The power saving information includes status information indicating whether or not the subscriber side optical termination device is in a power saving mode for each subscriber side optical termination device,
Based on the status information, it is determined whether the subscriber-side optical termination device is in a power saving mode, and redundant switching of the trunk line is performed based on a response signal from the subscriber-side optical termination device that is not in the power saving mode. 2. The optical transmission according to claim 1, wherein it is determined whether or not to execute, and the response signal from the subscriber-side optical terminal device in the power saving mode is not used for determining whether to perform redundancy switching of the trunk line. system.
前記局側光終端装置は、
前記加入者側光終端装置から当該加入者側光終端装置が省電力モードへの移行をすることを示す通知を受信した場合に当該通知に基づいて前記状態情報を更新し、
前記加入者側光終端装置から、当該加入者側光終端装置が省電力モードから通常モードに復帰することを示す通知を受信した場合に当該通知に基づいて前記状態情報を更新する、ことを特徴とする請求項2に記載の光伝送システム。
The station side optical terminator is:
When the notification indicating that the subscriber-side optical termination device shifts to the power saving mode is received from the subscriber-side optical termination device, the state information is updated based on the notification,
When the subscriber-side optical termination device receives a notification indicating that the subscriber-side optical termination device returns from the power saving mode to the normal mode, the state information is updated based on the notification. The optical transmission system according to claim 2.
前記局側光終端装置は、
前記加入者側光終端装置から電源断通知を受信した場合、前記電源断通知の送信元の前記加入者側光終端装置に対応する前記状態情報を省電力モードであることを示す値に更新することを特徴とする請求項2または3に記載の光伝送システム。
The station side optical terminator is:
When a power-off notification is received from the subscriber-side optical termination device, the status information corresponding to the subscriber-side optical termination device that is the transmission source of the power-off notification is updated to a value indicating that it is in a power saving mode. The optical transmission system according to claim 2 or 3,
前記局側光終端装置は、前記加入者側光終端装置ごとに前記応答信号を所定の障害検出時間内に受信しなかった場合に障害として検出する障害検出処理を行うとし、省電力モードの前記加入者側光終端装置については前記応答信号を前記所定の障害検出時間内に受信しなかった場合に前記障害として検出しないことを特徴とする請求項1〜4のいずれか1つに記載の光伝送システム。   The station-side optical termination device performs failure detection processing for detecting a failure when the response signal is not received within a predetermined failure detection time for each subscriber-side optical termination device, and the power-saving mode 5. The light according to claim 1, wherein the subscriber-side optical termination device does not detect the failure when the response signal is not received within the predetermined failure detection time. Transmission system. 前記局側光終端装置は、いずれの前記加入者側光終端装置からも前記応答信号を所定の障害検出時間内に受信しなかった場合に幹線障害として検出する幹線障害検出処理を行うとし、全ての前記加入者側光終端装置が省電力モードであった場合は前記応答信号を前記所定の障害検出時間内に受信しなかった場合に前記幹線障害として検出しないことを特徴とする請求項1〜5のいずれか1つに記載の光伝送システム。   The station side optical termination device performs trunk failure detection processing for detecting as a trunk failure when the response signal is not received within a predetermined failure detection time from any of the subscriber side optical termination devices. When the subscriber-side optical terminating device is in a power saving mode, the response signal is not detected as the main line failure when not received within the predetermined failure detection time. 5. The optical transmission system according to claim 5. 前記局側光終端装置は、いずれの前記加入者側光終端装置からも前記応答信号を所定の障害検出時間内に受信しなかった場合に幹線障害として検出する幹線障害検出処理を行うとし、全ての前記加入者側光終端装置が省電力モードであった場合は前記幹線障害を検出しても前記幹線の冗長切替を実施しないことを特徴とする請求項1〜5のいずれか1つに記載の光伝送システム。   The station side optical termination device performs trunk failure detection processing for detecting as a trunk failure when the response signal is not received within a predetermined failure detection time from any of the subscriber side optical termination devices. The redundant switching of the trunk line is not performed even if the trunk line failure is detected when the subscriber-side optical terminal device is in a power saving mode. Optical transmission system. 前記局側光終端装置は、
前記加入者側光終端装置ごとに前記加入者側光終端装置における省電力モードの開始および終了時間を制御し、前記開始および終了時間を前記省電力情報として管理し、省電力モードでない前記加入者側光終端装置が1台以上存在するよう前記加入者側光終端装置ごとの前記開始および終了時間を決定し、省電力モードでない前記加入者側光終端装置からの応答信号に基づいて前記幹線の冗長切替を実施するか否かの判断を行うことを特徴とする請求項1〜7のいずれか1つに記載の光伝送システム。
The station side optical terminator is:
Controls start and end times of power saving modes in the subscriber side optical termination devices for each of the subscriber side optical termination devices, manages the start and end times as the power saving information, and is not in the power saving mode. The start and end times for each of the subscriber-side optical termination devices are determined so that one or more side-side optical termination devices exist, and based on response signals from the subscriber-side optical termination devices that are not in the power saving mode, The optical transmission system according to claim 1, wherein it is determined whether or not to perform redundancy switching.
省電力モードでない前記加入者側光終端装置が2台以上存在するよう前記加入者側光終端装置ごとの前記開始および終了時間を決定することを特徴とする請求項8に記載の光伝送システム。   9. The optical transmission system according to claim 8, wherein the start and end times for each of the subscriber-side optical termination devices are determined so that there are two or more of the subscriber-side optical termination devices that are not in the power saving mode. 前記応答信号を帯域割当通知に対する応答信号とすることを特徴とする請求項2〜9のいずれか1つに記載の光伝送システム。   The optical transmission system according to any one of claims 2 to 9, wherein the response signal is a response signal to a band allocation notification. 省電力モードに遷移可能な加入者側光終端装置と光スプリッタ経由で接続される局側光終端装置であって、
前記光スプリッタとの間の幹線が冗長化され、前記光スプリッタとそれぞれ支線により接続され、
前記加入者側光終端装置の省電力モードに関する情報である省電力情報を管理し、前記省電力情報に基づいて、前記幹線の冗長切替を制御するPON制御部、
を備えることを特徴とする局側光終端装置。
A station-side optical termination device connected via an optical splitter to a subscriber-side optical termination device capable of transitioning to a power saving mode,
The trunk line between the optical splitter is made redundant and connected to the optical splitter by a branch line,
A PON control unit that manages power saving information that is information related to a power saving mode of the subscriber-side optical termination device, and controls redundancy switching of the trunk line based on the power saving information;
A station-side optical termination device comprising:
省電力モードに遷移可能な加入者側光終端装置と、局側光終端装置と、前記局側光終端装置と冗長化された幹線により接続されるとともに前記加入者側光終端装置とそれぞれ支線により接続される光スプリッタとを備える光伝送システムにおける通信回線切替方法であって、
前記局側光終端装置が、
前記加入者側光終端装置の省電力モードに関する省電力情報を管理する管理ステップと、
前記省電力情報に基づいて、前記幹線の冗長切替を制御する切替ステップと、
を含むことを特徴とする通信回線切替方法。
It is connected to the subscriber-side optical termination device, the station-side optical termination device, and the station-side optical termination device that are made redundant to the power-saving mode. A communication line switching method in an optical transmission system comprising an optical splitter to be connected,
The station side optical terminator is
A management step of managing power saving information related to a power saving mode of the subscriber side optical termination device;
A switching step for controlling redundancy switching of the trunk line based on the power saving information;
A communication line switching method comprising:
前記支線および前記光スプリッタが多段に接続され、
前記局側光終端装置は、前記加入者側光終端装置ごとに当該加入者側光終端装置が接続する前記光スプリッタを示す情報を含む位置情報を保持し、前記位置情報と前記省電力情報とに基づいて、前記加入者側光終端装置ごとの前記開始および終了時間を決定することを特徴とする請求項8に記載の光伝送システム。
The branch line and the optical splitter are connected in multiple stages,
The station side optical terminator holds position information including information indicating the optical splitter connected to the subscriber side optical terminator for each subscriber side optical terminator, and the position information, the power saving information, 9. The optical transmission system according to claim 8, wherein the start time and the end time for each of the subscriber-side optical terminal devices are determined based on the following.
前記局側光終端装置は、前記位置情報と前記省電力情報とに基づいて、同一段の異なる前記光スプリッタに接続する前記加入者側光終端装置が2台以上省電力モードでない状態となるよう前記加入者側光終端装置ごとの前記開始および終了時間を決定することを特徴とする請求項13に記載の光伝送システム。   Based on the position information and the power-saving information, the station-side optical terminal device is in a state where two or more subscriber-side optical terminal devices connected to the different optical splitters in the same stage are not in the power-saving mode. The optical transmission system according to claim 13, wherein the start and end times for each of the subscriber-side optical termination devices are determined. 前記局側光終端装置は、前記位置情報を管理者装置またはデータセンターから取得することを特徴とする請求項13または14に記載の光伝送システム。   The optical transmission system according to claim 13 or 14, wherein the station side optical termination device acquires the position information from an administrator device or a data center. 前記支線および前記光スプリッタが多段に接続され、
前記PON制御部は、前記加入者側光終端装置ごとに当該加入者側光終端装置が接続する前記光スプリッタを示す情報を含む位置情報を保持し、前記加入者側光終端装置ごとに前記加入者側光終端装置における省電力モードの開始および終了時間を制御し、前記開始および終了時間を前記省電力情報として管理し、前記位置情報と前記省電力情報とに基づいて、前記加入者側光終端装置ごとの前記開始および終了時間を決定し、省電力モードでない前記加入者側光終端装置からの応答信号に基づいて前記幹線の冗長切替を実施するか否かの判断を行うことを特徴とする請求項11に記載の局側光終端装置。
The branch line and the optical splitter are connected in multiple stages,
The PON control unit holds position information including information indicating the optical splitter connected to the subscriber-side optical termination device for each subscriber-side optical termination device, and Controlling the start and end times of the power saving mode in the subscriber side optical termination device, managing the start and end times as the power saving information, and based on the position information and the power saving information, the subscriber side light Determining the start and end times for each terminating device, and determining whether to perform redundant switching of the trunk line based on a response signal from the subscriber side optical terminating device that is not in a power saving mode, The station side optical termination device according to claim 11.
前記支線および前記光スプリッタが多段に接続され、
前記局側光終端装置が、前記加入者側光終端装置ごとに当該加入者側光終端装置が接続する前記光スプリッタを示す情報を含む位置情報を保持し、前記加入者側光終端装置ごとに前記加入者側光終端装置における省電力モードの開始および終了時間を制御し、前記開始および終了時間を前記省電力情報として管理し、前記位置情報と前記省電力情報とに基づいて、前記加入者側光終端装置ごとの前記開始および終了時間を決定する省電力制御ステップ、
をさらに含み、
前記切替ステップでは、省電力モードでない前記加入者側光終端装置からの応答信号に基づいて前記幹線の冗長切替を実施するか否かの判断を行うことを特徴とする請求項12に記載の通信回線切替方法。
The branch line and the optical splitter are connected in multiple stages,
The station side optical termination device holds position information including information indicating the optical splitter to which the subscriber side optical termination device is connected for each subscriber side optical termination device, and for each subscriber side optical termination device. Controls start and end times of a power saving mode in the subscriber side optical termination device, manages the start and end times as the power saving information, and based on the location information and the power saving information, the subscriber A power saving control step for determining the start and end times for each side optical termination device;
Further including
13. The communication according to claim 12, wherein in the switching step, it is determined whether or not to perform redundant switching of the trunk line based on a response signal from the subscriber-side optical terminal device that is not in a power saving mode. Line switching method.
JP2014520974A 2012-06-14 2013-03-13 Optical transmission system, station side optical termination device, and communication line switching method Expired - Fee Related JP5730443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014520974A JP5730443B2 (en) 2012-06-14 2013-03-13 Optical transmission system, station side optical termination device, and communication line switching method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPPCT/JP2012/065257 2012-06-14
PCT/JP2012/065257 WO2013186900A1 (en) 2012-06-14 2012-06-14 Optical transmission system, station-side optical terminal apparatus, and communication line switching method
PCT/JP2013/057091 WO2013187098A1 (en) 2012-06-14 2013-03-13 Optical transmission system, office-side optical terminal device and communication circuit switching method
JP2014520974A JP5730443B2 (en) 2012-06-14 2013-03-13 Optical transmission system, station side optical termination device, and communication line switching method

Publications (2)

Publication Number Publication Date
JP5730443B2 JP5730443B2 (en) 2015-06-10
JPWO2013187098A1 true JPWO2013187098A1 (en) 2016-02-04

Family

ID=53486916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014520974A Expired - Fee Related JP5730443B2 (en) 2012-06-14 2013-03-13 Optical transmission system, station side optical termination device, and communication line switching method

Country Status (1)

Country Link
JP (1) JP5730443B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5578023B2 (en) * 2010-10-27 2014-08-27 住友電気工業株式会社 Station side device, home side device, optical communication system, and control method of optical communication system
JP2012176531A (en) * 2011-02-25 2012-09-13 Brother Industries Ltd Droplet injection device

Also Published As

Publication number Publication date
JP5730443B2 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
JP5106683B2 (en) COMMUNICATION METHOD, OPTICAL COMMUNICATION SYSTEM, USER-SIDE OPTICAL LINE TERMINAL DEVICE, STATION-SIDE OPTICAL LINE TERMINAL DEVICE, AND CONTROL DEVICE
JP5259021B2 (en) Communication system, station side communication device, user side communication device, communication method, and control device
JP5908051B2 (en) Communication system, master station device, slave station device, control device, and communication control method
JP5226901B2 (en) Communication method for optical communication system, optical communication system, slave station apparatus, control apparatus, and program
JP5226900B2 (en) Communication line switching method, communication apparatus, station side communication apparatus, communication system, and control apparatus
US9179204B2 (en) Optical network system
EP2451123A1 (en) Communication system, station-side optical circuit terminating apparatus, user-side optical circuit terminating apparatus, control apparatus, and communication method
JP5426782B2 (en) Communication system, communication line switching method, and master station apparatus
JP5546663B2 (en) Slave station device, master station device, communication line switching method, communication system and control device
JP5546662B2 (en) Slave station apparatus, communication method of optical communication system, optical communication system, and control apparatus
JP2012213121A (en) Optical line terminal and communication control method in communication system
JP5579133B2 (en) COMMUNICATION SYSTEM, STATION-SIDE OPTICAL LINE TERMINATION DEVICE, USER-SIDE OPTICAL LINE TERMINATION DEVICE, CONTROL DEVICE, AND COMMUNICATION METHOD
WO2013187098A1 (en) Optical transmission system, office-side optical terminal device and communication circuit switching method
JP2014049775A (en) Optical communication system, master station device, path switching control device, and communication control method
JP5730443B2 (en) Optical transmission system, station side optical termination device, and communication line switching method
JP5456131B2 (en) Communication method, optical communication system, user side optical line terminator, station side optical line terminator
JP2013207555A (en) Pon system, station side device and operation method therefor, and access control device
JP2013247583A (en) Power-saving control system, master station device, slave station device, and power-saving control program
WO2012119490A1 (en) Method and system for protecting passive optical network
JP2012222767A (en) Communication system, master station device, and communication circuit changeover method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150407

R150 Certificate of patent or registration of utility model

Ref document number: 5730443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees