JPWO2013179335A1 - Surveillance camera control device and video surveillance system - Google Patents

Surveillance camera control device and video surveillance system Download PDF

Info

Publication number
JPWO2013179335A1
JPWO2013179335A1 JP2014518081A JP2014518081A JPWO2013179335A1 JP WO2013179335 A1 JPWO2013179335 A1 JP WO2013179335A1 JP 2014518081 A JP2014518081 A JP 2014518081A JP 2014518081 A JP2014518081 A JP 2014518081A JP WO2013179335 A1 JPWO2013179335 A1 JP WO2013179335A1
Authority
JP
Japan
Prior art keywords
camera
video
cameras
monitoring
recognition result
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014518081A
Other languages
Japanese (ja)
Other versions
JP6055823B2 (en
Inventor
誠也 伊藤
誠也 伊藤
竜 弓場
竜 弓場
媛 李
媛 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2013179335A1 publication Critical patent/JPWO2013179335A1/en
Application granted granted Critical
Publication of JP6055823B2 publication Critical patent/JP6055823B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/181Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/40Scenes; Scene-specific elements in video content
    • G06V20/41Higher-level, semantic clustering, classification or understanding of video scenes, e.g. detection, labelling or Markovian modelling of sport events or news items
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/194Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
    • G08B13/196Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
    • G08B13/19639Details of the system layout
    • G08B13/19641Multiple cameras having overlapping views on a single scene
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/194Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
    • G08B13/196Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
    • G08B13/19678User interface
    • G08B13/19691Signalling events for better perception by user, e.g. indicating alarms by making display brighter, adding text, creating a sound
    • G08B13/19693Signalling events for better perception by user, e.g. indicating alarms by making display brighter, adding text, creating a sound using multiple video sources viewed on a single or compound screen
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/40Scenes; Scene-specific elements in video content
    • G06V20/44Event detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Computational Linguistics (AREA)
  • Software Systems (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Image Analysis (AREA)
  • Studio Devices (AREA)
  • Image Processing (AREA)

Abstract

複数の領域を撮像する複数の監視カメラにおいて、同一の物体が重複して検出される場合に、各カメラ毎の映像から適切な映像を選択するための監視カメラ制御装置及び映像監視システムであって、監視エリア内を撮像する複数のカメラ100〜102と、複数のカメラにおいて取得した映像から物体を検出する認識部104と、複数のカメラで重複して撮像される監視エリアにおいて物体が検出される場合に、カメラ毎に物体の特徴量である認識結果を認識部において取得し、認識結果と認識結果の優先度とに基づいて、カメラ毎の映像に優先度に応じた優先順位をつける表示選択部106を備える構成とする。A monitoring camera control device and a video monitoring system for selecting an appropriate video from video for each camera when the same object is detected redundantly in a plurality of monitoring cameras that capture a plurality of areas. An object is detected in a plurality of cameras 100 to 102 that image the inside of the monitoring area, a recognition unit 104 that detects an object from images acquired by the plurality of cameras, and a monitoring area that is imaged redundantly by the plurality of cameras. In this case, a recognition result that is a feature amount of an object for each camera is acquired in the recognition unit, and a display selection that gives priority to the video for each camera according to the priority based on the recognition result and the priority of the recognition result. The unit 106 is provided.

Description

本発明は、カメラなどの撮像機器から取得する映像から人物や移動体を検出する認識装置を持ち、侵入者検知や、移動ロボットなどに搭載する接近者検知などの機能を実現する映像監視システムであって、特に、映像監視システムの映像取得及び映像表示の制御機能を持つ映像監視システムに関する。  The present invention is a video surveillance system that has a recognition device for detecting a person or a moving body from video acquired from an imaging device such as a camera, and realizes functions such as intruder detection and approaching person detection installed in a mobile robot. In particular, the present invention relates to a video surveillance system having video acquisition and video display control functions of the video surveillance system.

カメラなどの撮像機器から取得した映像に対して認識処理を施し、監視エリアに現れる人や車両などの移動物体を検出する機能を有する映像監視システムがある。この映像監視システムは、検出結果を利用することで移動物体の出現した映像のみ記録する機能、表示装置に警告アイコンを提示する機能、ブザー等を鳴らして監視員に注意を促す機能などを有する。このため、以前は常時確認作業が必要であった監視業務の負担低減に役立っている。また、この映像監視システムでは、窃盗などの犯罪行為や不正行為が発生した場合、記録した映像を事後の犯罪捜査などに役立てることも可能である。  There is a video monitoring system having a function of performing recognition processing on video acquired from an imaging device such as a camera and detecting a moving object such as a person or a vehicle appearing in a monitoring area. This video monitoring system has a function of recording only a video in which a moving object appears by using a detection result, a function of presenting a warning icon on a display device, a function of sounding a buzzer or the like to alert a monitor. For this reason, it has helped to reduce the burden of monitoring work that previously required constant confirmation work. In addition, in this video surveillance system, when a criminal act such as theft or an illegal act occurs, the recorded video can be used for a subsequent criminal investigation.

近年、犯罪の多様化、犯罪件数の増加、検挙率の低下などにより量販店や金融機関、ビル・オフィス等での防犯意識が高まり、映像監視システムの導入が進んでいる。映像記録装置も大容量化し、ネットワークカメラなどの普及により様々な場所にカメラが設置されることで、カメラ台数も増加している。先に述べたように犯罪行為等を監視員の目視作業により記録映像から洗い出すことは非常に負担が大きいため、監視業務を支援する機能への要望が高まっている。  In recent years, crime diversification, an increase in the number of crimes, and a decrease in the clearance rate have heightened awareness of crime prevention at mass retailers, financial institutions, buildings and offices, and video surveillance systems have been introduced. Video recording devices are also increasing in capacity, and the number of cameras is increasing as cameras are installed in various locations due to the spread of network cameras and the like. As described above, since it is extremely burdensome to identify criminal acts from recorded images by visual observation by the observer, there is an increasing demand for a function that supports monitoring work.

そこで問題となるのが、カメラ台数の増大により、監視員が所望の映像、例えば特定の人物を観察する業務等が大変複雑になるということである。監視エリアと監視カメラの状況を熟知した熟練者でなければ、映像を効率的に見逃し無く観察することは困難である。  Therefore, the problem is that the increase in the number of cameras makes the task of observing a desired image, for example, a specific person, very complicated by a monitor. Unless it is an expert who knows the situation of a surveillance area and a surveillance camera, it is difficult to observe an image efficiently without overlooking it.

従来、雲台制御機能を持つカメラの移動位置を予め登録し、センサの検知結果に連動して、カメラの雲台を所定の位置に旋回させながら監視エリアの映像を取得する監視システムが知られている(特許文献1)。また、複数のカメラの位置関係を登録しておき、ユーザによる指示や移動物体の移動方向からモニタ上に表示する映像を切り替える監視システムが知られている(特許文献2)。  Conventionally, a monitoring system has been known in which a moving position of a camera having a pan head control function is registered in advance, and an image of a monitoring area is acquired while turning the camera pan head to a predetermined position in conjunction with a detection result of the sensor. (Patent Document 1). There is also known a monitoring system in which positional relationships among a plurality of cameras are registered, and an image displayed on a monitor is switched based on a user instruction or a moving direction of a moving object (Patent Document 2).

特開2001−275104号公報JP 2001-275104 A 特開2011−217320号公報JP 2011-217320 A

しかしながら、特許文献1に記載の監視システムでは、システムにて稼働させるカメラ台数が増加するに従って、センサ検知に応じて旋回するカメラ台数も増大するため、事前の設定とシステム内での調整を詳細に行う必要があり、監視員負担が増大する傾向がある。  However, in the monitoring system described in Patent Document 1, as the number of cameras operated in the system increases, the number of cameras turning in response to sensor detection also increases, so detailed settings and adjustments in advance in the system There is a tendency to increase the burden on observers.

また、運台制御機能を監視員が操作しながら動作させる場合にタイムラグ等が生じるため、侵入者や所定の人物を追尾するには見逃しを生じる可能性が高い。  In addition, a time lag or the like occurs when the monitor control function is operated while being operated by a monitor, so that there is a high possibility that an intruder or a predetermined person will be overlooked.

そこで、従来より、認識機能を具備し、自動的に追尾するシステムが存在する。例えば、特許文献2が知られており、この発明の監視システムのように、監視エリアに設置された複数のカメラを固定カメラとして、位置関係を予め登録しておき、その位置関係を用いるものである。具体的には、各カメラの画面上で移動物体が画角から外れた場合に、その移動方向に設置しているカメラを監視員に提示するものである。これは、監視員の入力手段による方向の指定でも実現可能である。  Therefore, there is a conventional system that has a recognition function and automatically tracks. For example, Patent Document 2 is known, and a positional relationship is registered in advance using a plurality of cameras installed in a monitoring area as fixed cameras, and the positional relationship is used as in the monitoring system of the present invention. is there. Specifically, when a moving object deviates from the angle of view on the screen of each camera, the camera installed in the moving direction is presented to the monitor. This can also be realized by designating the direction by the input means of the monitor.

しかしながら、カメラの位置関係により、移動物体の移動を鑑みて次に撮像されるカメラの映像を提示することは可能であるが、カメラの設置状況によっては、そのままの映像を表示させたほうが良い場合がある。なぜならば、被写体となる移動物体の動き等により追尾するため、被写体を特定する情報を得るのに適さない方向(例えば、人物であれば顔や車両であればナンバープレートや運転手の撮像されない領域)からの撮像となる場合には、可動物体の重要な情報が得られない方向からの撮像となるため、状況証拠等に活用することが困難となる可能性が生じるからである。  However, depending on the positional relationship of the cameras, it is possible to present the next camera image to be taken in consideration of the movement of the moving object, but depending on the installation status of the camera, it is better to display the image as it is There is. This is because tracking is performed based on the movement of a moving object as a subject, and is not suitable for obtaining information for identifying the subject (for example, a face for a person or a license plate for a vehicle or an area where a driver is not imaged) This is because it may be difficult to utilize for the situation evidence because the image is taken from the direction in which important information of the movable object cannot be obtained.

また、カメラの重複がある場合や、廊下などの可動領域が限定された監視エリアではなく、オフィスや小売店などのオープンな監視エリアのように移動物体の可動領域の自由度がある場合には、特許文献2に記載のように、単純にカメラの配置関係を事前に登録しておくのみでは困難である。これは、例えば、画角の右側に移動物体が移動したため、右側に設置したカメラの映像を提示するという単純な構造にならないため、映像提示するカメラの選択条件が非常に複雑になることが考えられる。  In addition, when there are overlapping cameras, or when there is a degree of freedom in the movable area of the moving object, such as in an open surveillance area such as an office or retail store, rather than a surveillance area with a limited movable area such as a corridor As described in Patent Document 2, it is difficult to simply register the camera arrangement relationship in advance. This is because, for example, since the moving object moves to the right side of the angle of view, it does not have a simple structure of presenting the video of the camera installed on the right side, so the selection conditions for the camera that presents the video may be very complicated. It is done.

そこで、本発明は、複数の領域を撮像する複数の監視カメラにおいて、同一の物体が重複して検出される場合に、各カメラ毎の映像から適切な映像を選択する監視カメラ制御装置及び映像監視システムを提供する。  Therefore, the present invention provides a monitoring camera control device and a video monitoring device that select an appropriate video from video for each camera when the same object is detected in duplicate in a plurality of monitoring cameras that capture a plurality of areas. Provide a system.

上記目的を解決するために、例えば特許請求の範囲に記載の構成を採用する。その一例を挙げるならば、監視エリア内を撮像する複数のカメラと、複数のカメラにおいて取得した映像から物体を検出する認識部と、を備え、複数のカメラで重複して撮像される監視エリアにおいて物体が検出される場合に、カメラ毎に物体の特徴量である認識結果を認識部において取得し、認識結果と認識結果の優先度とに基づいて、カメラ毎の映像に優先度に応じた優先順位をつける表示選択部を備えることを特徴とする。  In order to solve the above-described object, for example, the configuration described in the claims is adopted. For example, in a monitoring area that includes a plurality of cameras that capture images in a monitoring area and a recognition unit that detects objects from images acquired by the plurality of cameras, When an object is detected, a recognition result that is a feature amount of the object for each camera is acquired in the recognition unit, and priority is given to the video for each camera based on the recognition result and the priority of the recognition result. A display selection unit for ranking is provided.

本発明によれば、複数の領域を撮像する複数の監視カメラにおいて、同一の物体が重複して検出される場合に、各カメラ毎の映像から物体などの識別に有用な情報を提示することができる。  According to the present invention, in a plurality of surveillance cameras that capture a plurality of areas, when the same object is detected in duplicate, information useful for identifying an object or the like can be presented from a video for each camera. it can.

本発明による一実施形態の映像監視システムを示すブロック図である。1 is a block diagram illustrating a video surveillance system according to an embodiment of the present invention. 本発明の監視エリア及びカメラの配置について示した図である。It is the figure shown about the arrangement | positioning of the monitoring area and camera of this invention. 本発明の監視エリア及びカメラ配置の鳥瞰図である。It is a bird's-eye view of a surveillance area and camera arrangement of the present invention. 本発明の取得した映像の出力例である。It is an example of an output of a picture acquired by the present invention. 本発明のカメラ画像と監視エリアの対応について示した図である。It is the figure shown about the correspondence of the camera image of this invention, and a monitoring area. 本発明の認識部における処理フローを示した図である。It is the figure which showed the processing flow in the recognition part of this invention. 本発明の認識結果のデータ構造を示した図である。It is the figure which showed the data structure of the recognition result of this invention. 本発明のカメラ配置情報のデータ構造を示した図である。It is the figure which showed the data structure of the camera arrangement | positioning information of this invention. 本発明で監視エリア上でカメラ及び移動物体の情報を示した鳥瞰図である。It is the bird's-eye view which showed the information of the camera and the moving object on the monitoring area by this invention. 本発明の認識部で取得した結果とカメラ配置情報から算出した情報テーブルを示す図である。It is a figure which shows the information table calculated from the result acquired in the recognition part of this invention, and camera arrangement | positioning information. 本発明の優先度設定手段について示した図である。It is the figure shown about the priority setting means of this invention. 本発明の映像表示方法について示した図である。It is the figure shown about the video display method of this invention. 本発明の映像表示方法について示した図である。It is the figure shown about the video display method of this invention. 本発明の映像表示の切り替え方法について示した図である。It is the figure shown about the switching method of the video display of this invention. 本発明の一実施形態について示したブロック図である。It is the block diagram shown about one Embodiment of this invention. 本発明の一実施形態について示したブロック図である。It is the block diagram shown about one Embodiment of this invention.

以下、本発明の一実施形態について、添付図面を参照し詳細に説明する。  Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明による一実施形態の監視カメラ制御装置及び映像監視システムを示すブロック図である。本実施例では、監視カメラ制御装置及び映像監視システムについては単に映像監視システムもしくは監視システムと記述する場合もある。  FIG. 1 is a block diagram showing a surveillance camera control device and a video surveillance system according to an embodiment of the present invention. In this embodiment, the monitoring camera control device and the video monitoring system may be simply described as a video monitoring system or a monitoring system.

この映像監視システムは、カメラ100〜102と、映像取得部103と、認識部104と、認識結果105と、表示選択部106と、カメラ配置情報107と、入力手段108と、映像表示部109と、表示手段110を備えている。  This video surveillance system includes cameras 100 to 102, a video acquisition unit 103, a recognition unit 104, a recognition result 105, a display selection unit 106, camera arrangement information 107, an input unit 108, and a video display unit 109. The display means 110 is provided.

この映像監視システムは電子計算機システムを適用した構成となる。この電子計算機システムのハードウェアは、CPU、メモリ、I/Oなどを含み、所定のソフトウェアが実行可能にインストールされることによって、各図にブロックで表現される各機能部が実現されている。  This video surveillance system has a configuration to which an electronic computer system is applied. The hardware of this electronic computer system includes a CPU, a memory, an I / O, and the like, and each functional unit represented by a block in each figure is realized by installing predetermined software in an executable manner.

カメラ100〜102は実施形態を簡便に表現するために、3台のカメラとして本実施例では述べているが、この構成に依存せず、カメラが2台以上設置される構成を想定している。カメラ100〜102は、ズーム機能を有するカメラレンズ、およびCMOS(Complementary Metal Oxide Semiconductor)やCCD(Charge Coupled Device)などの撮像素子(いずれも図示せず)を含む撮像機器である。このカメラ100〜102は、映像取得部103により映像信号を取得し、後述する認識部104と映像表示部109へ出力する。  In this example, the cameras 100 to 102 are described as three cameras in order to easily represent the embodiment, but the configuration is assumed to be independent of this configuration and two or more cameras are installed. . Each of the cameras 100 to 102 is an imaging device including a camera lens having a zoom function and an imaging element (none of which is shown) such as a complementary metal oxide semiconductor (CMOS) or a charge coupled device (CCD). The cameras 100 to 102 acquire a video signal by the video acquisition unit 103 and output the video signal to a recognition unit 104 and a video display unit 109 described later.

また、このカメラ100〜102は、雲台に載置され俯仰および旋回が可能なパンチルトズームカメラである。本実施例では記載していないが、カメラ100〜102の映像を記録装置や表示装置に転送し、映像を記録したり、監視員の目視確認に利用することは自明である。  The cameras 100 to 102 are pan / tilt / zoom cameras that are placed on a pan / tilt head and can be turned up and down. Although not described in the present embodiment, it is obvious that the images of the cameras 100 to 102 are transferred to a recording device or a display device, and the images are recorded or used for visual confirmation by a monitor.

表示手段110は、液晶表示装置やCRT(Cathode Ray Tube)表示装置などの表示装置である。表示手段110を備える代わりに、RGB(Red-Green-Blue)モニタ出力、または、ネットワーク経由でのデータ出力や、携帯やタブレット等の端末を用いる構成としてもよい。  The display means 110 is a display device such as a liquid crystal display device or a CRT (Cathode Ray Tube) display device. Instead of providing the display unit 110, a configuration using RGB (Red-Green-Blue) monitor output, data output via a network, or a terminal such as a mobile phone or a tablet may be used.

様々なパラメータ設定はユーザインターフェースより実行される。映像取得部103や、認識部104、映像表示部109などに備えるユーザインターフェースは、マウスやキーボードなどの入力装置(図示せず)を含み、ユーザによるパラメータなどの入力を受け付ける。本発明の根幹部分の説明のため、表示選択部106にパラメータ等を入力する手段として入力手段108のみを記載しておく。  Various parameter settings are performed from the user interface. The user interface provided in the video acquisition unit 103, the recognition unit 104, the video display unit 109, and the like includes an input device (not shown) such as a mouse and a keyboard, and accepts input of parameters and the like by the user. For the description of the basic part of the present invention, only the input means 108 is described as means for inputting parameters and the like to the display selection unit 106.

次に、本発明の構成ブロックの詳細を説明する前に、本発明の監視システムにおいてカメラと移動物体との関係について図2等を用いて説明する。  Next, before describing the details of the constituent blocks of the present invention, the relationship between the camera and the moving object in the monitoring system of the present invention will be described with reference to FIG.

図2は、本実施例の監視エリア205とそこに設置されたカメラ及び物体等の関係を図示したものである。監視エリア205には、カメラ200〜202(図1のカメラ100〜102と同様)が設置され、物体203が存在する。また、棚などの調度品や壁や廊下などの建築構造物も監視エリア205には存在することが多く、構造物204として図示する。本実施例では物体203が人物である場合として、移動方向206の方向に移動しており、顔方向207を向いている。  FIG. 2 shows the relationship between the monitoring area 205 of this embodiment and the cameras and objects installed there. In the monitoring area 205, cameras 200 to 202 (similar to the cameras 100 to 102 in FIG. 1) are installed, and an object 203 is present. In addition, furniture such as shelves and building structures such as walls and hallways often exist in the monitoring area 205 and are illustrated as structures 204. In this embodiment, assuming that the object 203 is a person, the object 203 is moving in the moving direction 206 and facing the face direction 207.

ここで、物体には、可動物体および静止物体が含まれる。可動物体とは、移動、変動し得る物体を指す。本実施例では、可動物体として人物を例に挙げているが、人物は、顔手足や人物全体として移動や変動をし得る物体であるためである。他にも、可動物体として、車両や、人が所持する鞄、パソコンの画面や、金庫の扉等が挙げられる。例えば、パソコンの画面や金庫の扉等は、人などによって画面の向きや画面表示、また金庫の扉が開く等変動し得る物体である。また、移動、変動することのない静止物体にも本発明は適用可能である。  Here, the object includes a movable object and a stationary object. A movable object refers to an object that can move and fluctuate. In the present embodiment, a person is taken as an example of a movable object, but a person is an object that can move and fluctuate as a face, limbs or the whole person. In addition, examples of the movable object include a vehicle, a bag carried by a person, a personal computer screen, a safe door, and the like. For example, the screen of a personal computer, the door of a safe, and the like are objects that can change depending on the person, such as the orientation of the screen, the screen display, and the opening of the safe door. The present invention can also be applied to a stationary object that does not move or fluctuate.

監視エリア205は、実空間等と同義で用いており、予めその座標系を(Xw、Yw、Zw)を定義する。  The monitoring area 205 is used synonymously with real space and the like, and its coordinate system is defined in advance as (Xw, Yw, Zw).

次に、この監視エリア205を上から観察した場合について鳥瞰図として図3に示す。  Next, FIG. 3 shows a bird's eye view when the monitoring area 205 is observed from above.

ここでは新たに、各カメラに対応する撮像領域300〜302(画角と同義で用いる)を示す。その他については、図2と同様であり、監視エリア205上に、物体203が存在し、移動方向206で移動し、顔方向207を向く形で図示される。  Here, imaging regions 300 to 302 (used synonymously with angle of view) corresponding to each camera are newly shown. Others are the same as in FIG. 2, and the object 203 is present on the monitoring area 205, moves in the moving direction 206, and faces the face direction 207.

図4は、各カメラ200〜202で撮像した映像を図示したものである。カメラ画像400〜402は、それぞれカメラ200〜202で撮像した映像を示し、これは、図1の映像取得部103を通して取得され、映像表示部109を介して表示手段110に表示される。それぞれのカメラの設置状況や撮像領域300〜302により、物体203や構造物204を含んだ形で撮像される。カメラ200〜202との位置関係により、物体203や構造物204の見え方や、物体203の大きさ、移動方向206や顔方向207の見え方が異なる。  FIG. 4 illustrates images captured by the cameras 200 to 202. Camera images 400 to 402 represent videos captured by the cameras 200 to 202, respectively, which are acquired through the video acquisition unit 103 in FIG. 1 and displayed on the display unit 110 through the video display unit 109. Images are captured including the object 203 and the structure 204 depending on the installation status of each camera and the imaging regions 300 to 302. Depending on the positional relationship with the cameras 200 to 202, the appearance of the object 203 and the structure 204, the size of the object 203, and the appearance of the moving direction 206 and the face direction 207 are different.

図2〜図4に記述した監視エリア205と物体203等を示すこれらの図では、物体203はカメラ200の方向に移動しており、顔方向207はカメラ201の方向を向いているものとする。また、物体203は、監視エリア205のXw−Yw空間の中心から右下に位置しており、カメラ202が最も近いカメラである。  In these drawings showing the monitoring area 205 and the object 203 described in FIGS. 2 to 4, the object 203 is moving in the direction of the camera 200, and the face direction 207 is facing the direction of the camera 201. . The object 203 is located on the lower right side from the center of the Xw-Yw space of the monitoring area 205, and the camera 202 is the closest camera.

ここで、カメラと監視エリアとの対応関係を算出する一例について述べる。  Here, an example of calculating the correspondence between the camera and the monitoring area will be described.

本実施例に限らずカメラと監視エリアの対応関係すなわちカメラパラメータを算出するために、簡易的に近似的に求める方法から詳細に求める方法まで存在する。この対応関係は、図1に示すカメラ配置情報107を取得するために用いる。  In order to calculate the correspondence between the camera and the monitoring area, that is, the camera parameter, the present invention is not limited to this embodiment, and there are a method for obtaining the parameter in a simple manner and a method for obtaining it in detail. This correspondence is used for acquiring the camera arrangement information 107 shown in FIG.

図5は、監視エリアとカメラで取得するカメラ画像上での対応点を示す図である。  FIG. 5 is a diagram illustrating corresponding points on the camera image acquired by the monitoring area and the camera.

具体的には図5に示すように、監視エリア501(監視エリア205、実空間と同義)とカメラ500で取得するカメラ画像502上での対応点を取る方法が考えられる。カメラ500は、監視エリア501上のある位置(Xc、Yc、Zc)に存在している。  Specifically, as shown in FIG. 5, a method of taking corresponding points on the monitoring area 501 (monitoring area 205, synonymous with real space) and the camera image 502 acquired by the camera 500 can be considered. The camera 500 exists at a certain position (Xc, Yc, Zc) on the monitoring area 501.

カメラ画像502上の任意のカメラ画像位置504と監視エリア501上の監視エリア位置505の対応は、画像上の位置と実空間での実測値から求めることができる。この対応点を取得したのちに、カメラパラメータを取得する方法として、例えば、「R. Y. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision
metrology using off-the-shelf TV camera and lenses”IEEE Journal of Robotics and Automation, Vol.RA-3,No.4, pp. 323-344, 1987」等のカメラキャリブレーション技術について既存技術として知られているが、ここでは詳細の説明については省略する。この対応点によりカメラパラメータを求める方法では、4点以上を取得すればカメラパラメータを取得できることが知られている。
The correspondence between the arbitrary camera image position 504 on the camera image 502 and the monitoring area position 505 on the monitoring area 501 can be obtained from the position on the image and the actual measurement value in the real space. After acquiring the corresponding points, as a method of acquiring camera parameters, for example, “RY Tsai,“ A versatile camera calibration technique for high-accuracy 3D machine vision
It is known as an existing technology for camera calibration technology such as "metrology using off-the-shelf TV camera and lenses" IEEE Journal of Robotics and Automation, Vol.RA-3, No.4, pp.323-344, 1987 ". However, detailed description is omitted here. It is known that the camera parameter can be obtained by obtaining four or more points in the method for obtaining the camera parameter from the corresponding points.

この手続きにより、図5に示すようにカメラ500の俯角θや、監視エリア501上での設置角度φ、カメラの高さHcを求めることができる。  By this procedure, the depression angle θ of the camera 500, the installation angle φ on the monitoring area 501 and the camera height Hc can be obtained as shown in FIG.

次に、図1に示す認識部104から順に説明する。認識部104は映像取得部103で取得した複数の映像のうち任意の映像に対して認識処理を実行する。  Next, description will be made in order from the recognition unit 104 shown in FIG. The recognizing unit 104 executes recognition processing on an arbitrary video among the plurality of videos acquired by the video acquiring unit 103.

図6は、認識部104の処理を説明するフローチャートの例であり、本実施例における人物の顔及び顔方向の検出について示したものである。  FIG. 6 is an example of a flowchart for explaining processing of the recognition unit 104, and illustrates detection of a human face and a face direction in the present embodiment.

人物の顔を検出する手法は、広く提案されており、例えば「Paul. Viola, M. Jones:“Robust Real-Time Face Detection”,International Journal of Computer Vision (2004), Volume: 57, Issue:2, Publisher: Springer, Pages:137-154」等の既存技術が知られている。これらは、顔の画像特徴を学習サンプルから取得し、識別器を構築する。この識別器により画像上のどこに顔があるかを判断する。また前述の学習サンプルを正面や横向き等の様々な部分サンプルに分けた上で、それぞれの識別器を構築することで、顔方向を認識することも可能となる。以降、図6に沿って述べる。  A method for detecting a human face has been widely proposed. For example, “Paul. Viola, M. Jones:“ Robust Real-Time Face Detection ”, International Journal of Computer Vision (2004), Volume: 57, Issue: 2 , Publisher: Springer, Pages: 137-154. They obtain facial image features from learning samples and construct a classifier. This discriminator determines where the face is on the image. In addition, it is possible to recognize the face direction by constructing each classifier after dividing the learning sample into various partial samples such as front and side. Hereinafter, it will be described with reference to FIG.

S60は、画像全体を任意のウィンドウ(検知窓)で操作する手続きである。その後、ある任意の位置において、上述した識別器を用いて顔が検出されたかどうかを出力する(S61)。顔が検出されなかった場合、次の位置にウィンドウを移動し同様の処理を繰り返す。顔が検出された場合、顔の向きを検出する(S62)。この結果を所定のメモリ領域に出力する(S63)。以上の処理を全画像内で繰り返すことで、顔の位置及び顔方向を検出することができる。顔の位置を検出することで、人物の存在する位置も同時に検出することができる。最後に、画像全体の処理を確認する(S64)。  S60 is a procedure for operating the entire image in an arbitrary window (detection window). Thereafter, whether or not a face has been detected using the above-described discriminator is output at a certain arbitrary position (S61). If no face is detected, the window is moved to the next position and the same process is repeated. If a face is detected, the face orientation is detected (S62). The result is output to a predetermined memory area (S63). By repeating the above processing in all images, the face position and face direction can be detected. By detecting the position of the face, the position where the person exists can be detected simultaneously. Finally, the processing of the entire image is confirmed (S64).

ここでは、顔の検出を例に認識部104の詳細について述べたが、他にも画像上から情報を取得する方法が様々に存在する。例えば、顔検出ではなく、識別器を人物の全体を検出する形とすれば、人検出を実現することが可能であり、体の向きも同様に求めることができる。また、人物の画像上での位置が検出されれば、自ずとその大きさ(画像上での面積)を求めることも可能である。また、検出された領域を時刻の連続した複数フレーム(画像)に渡って移動した位置を求めることで、人物の追跡処理を実行することが可能である。  Here, the details of the recognition unit 104 have been described using face detection as an example, but there are various other methods for acquiring information from an image. For example, if the discriminator is configured to detect the entire person instead of detecting the face, it is possible to realize human detection and the body orientation can be obtained in the same manner. Further, if the position of a person on the image is detected, the size (area on the image) can be obtained naturally. Further, it is possible to execute a person tracking process by obtaining a position where the detected area is moved over a plurality of frames (images) with continuous time.

また、車両であれば、ナンバープレートや運転手の顔など、任意の画像上の情報を取得することができる。  Moreover, if it is a vehicle, information on arbitrary images, such as a license plate and a driver | operator's face, can be acquired.

さらに、上述の処理で検出された位置と図5で述べた監視エリア501とカメラ画像502との対応関係を取ることで、監視エリア501上(図2〜図4の監視エリア205上も同様)の位置や可動方向(図2〜図4の移動方向206)、顔方向(図2〜図4の顔方向207)等について求めることができる。本構成を有することにより、監視エリア501とカメラ画像502との対応関係から、カメラ画像502内で右を向いている人が、監視エリアでどちらを向いているのかという方向が分かる。つまり、位置だけではなく方向も取得できる。  Further, by taking a correspondence relationship between the position detected by the above-described processing and the monitoring area 501 and the camera image 502 described in FIG. 5, on the monitoring area 501 (the same applies to the monitoring area 205 in FIGS. 2 to 4). Position, movable direction (movement direction 206 in FIGS. 2 to 4), face direction (face direction 207 in FIGS. 2 to 4), and the like. By having this configuration, the correspondence between the monitoring area 501 and the camera image 502 indicates the direction in which the person facing right in the camera image 502 is facing in the monitoring area. That is, not only the position but also the direction can be acquired.

図7は、認識部104で求めた結果を認識結果105に格納する際のデータ構造の例である。このデータは、物体ID(D70)、物体の実空間での位置(D71)、画像上での面積(D72)、顔方向(D73)、移動ベクトル(D74)、その他の情報(D75)から構成されている。  FIG. 7 is an example of a data structure when the result obtained by the recognition unit 104 is stored in the recognition result 105. This data is composed of the object ID (D70), the position of the object in real space (D71), the area on the image (D72), the face direction (D73), the movement vector (D74), and other information (D75). Has been.

面積(D72)は、物体を撮像するそれぞれのカメラによって異なるため、さらに面積・カメラ1(D76)、面積・カメラ2(D77)のように、物体が撮像されるカメラ毎に格納される。  Since the area (D72) differs depending on each camera that captures an object, the area (D72) is stored for each camera that captures an object, such as area / camera 1 (D76) and area / camera 2 (D77).

また、移動ベクトル74は、現時刻tから一定期間過去に遡った情報まで持ち、位置(t)(D79)のように格納され、それらの情報から移動方向(D78)も格納されている。移動方向(D78)は、位置(t)(D79)の情報の平均値などにより算出することができる。これらの情報も顔方向と同様に、図5のように対応関係を求めることで、カメラ画像上の方向に対して、監視エリア上での移動方向を求めることができる。  Further, the movement vector 74 has information from the current time t to the information traced back for a certain period of time, and is stored as the position (t) (D79), and the movement direction (D78) is also stored from the information. The moving direction (D78) can be calculated from the average value of the information of the position (t) (D79). Similarly to the face direction, these pieces of information can also determine the moving direction on the monitoring area with respect to the direction on the camera image by determining the correspondence as shown in FIG.

その他の情報(D75)についても、認識部104の処理を加えることにより、データに含めることができる。  Other information (D75) can also be included in the data by adding processing of the recognition unit 104.

次に、図1に示す表示選択部106について述べる。まず表示選択部106で用いるカメラ配置情報107について説明する。  Next, the display selection unit 106 shown in FIG. 1 will be described. First, the camera arrangement information 107 used in the display selection unit 106 will be described.

カメラ配置情報107は、カメラの位置関係を示す情報と、移動物体及びカメラ画像との関係を示すものが存在する。前者は上述したカメラと監視エリアの対応関係を求めることで取得することができ、当然ながら詳細に実測することでも求めることが可能である。後者は、カメラキャリブレーションによって取得することができる。  The camera arrangement information 107 includes information indicating the positional relationship between the cameras and the relationship between the moving object and the camera image. The former can be obtained by obtaining the correspondence relationship between the camera and the monitoring area described above, and can be obtained by actually measuring in detail. The latter can be obtained by camera calibration.

図8は、本実施例におけるカメラの位置関係の情報の例を示したものである。  FIG. 8 shows an example of the positional relationship information of the camera in this embodiment.

カメラの位置関係は、任意に割り振られたカメラIDである(D80)、カメラの俯角(D81)、カメラの水平角(D82)、画角(D83)、設置位置(D84)で構成される。それぞれ角度及び絶対位置が格納されている。これによって、カメラの向く方向や撮像される映像について規定することができ、また、それぞれのカメラとの位置関係を把握することが可能となる。  The camera positional relationship is an arbitrarily assigned camera ID (D80), a camera depression angle (D81), a camera horizontal angle (D82), a field angle (D83), and an installation position (D84). Each stores an angle and an absolute position. This makes it possible to define the direction in which the camera is facing and the video to be captured, and to grasp the positional relationship with each camera.

上述したようなカメラキャリブレーション技術によって求めた場合には、図5に示す監視エリア501とカメラ画像502との透視投影変換のマトリクスが取得でき、実施形態によっては、この情報がカメラ配置情報107に格納されても良い。なお、カメラの位置関係においては、焦点距離、光軸方向の回転、撮像素子のサイズも関連するため、情報として加えることが可能である。  When obtained by the camera calibration technique as described above, a perspective projection transformation matrix between the monitoring area 501 and the camera image 502 shown in FIG. 5 can be obtained, and this information may be obtained as the camera arrangement information 107 in some embodiments. It may be stored. Note that the positional relationship of the cameras can be added as information because the focal length, the rotation in the optical axis direction, and the size of the image sensor are also related.

図9は、図2〜図4に示した実施例における監視エリア205を上部から観察した鳥瞰図である。  FIG. 9 is a bird's-eye view of the monitoring area 205 in the embodiment shown in FIGS.

図9には、図2〜図4と同様に、カメラ200〜202、物体203、構造物204が示されている。ここで、認識部104を経て、移動方向206及び顔方向207も含むデータを取得したものとする。また、カメラ配置情報107から各カメラの位置関係も同様に取得している。  FIG. 9 shows cameras 200 to 202, an object 203, and a structure 204, as in FIGS. Here, it is assumed that data including the movement direction 206 and the face direction 207 is acquired through the recognition unit 104. In addition, the positional relationship of each camera is acquired from the camera arrangement information 107 in the same manner.

カメラ200〜202は、監視エリア205のXw−Yw空間において、それぞれの位置で、φ0〜φ2の角度で設置されている。また、物体203は移動方向206の方向(角度θv)に移動しており、物体203の顔方向207はθfで定義される。The cameras 200 to 202 are installed at angles of φ 0 to φ 2 at respective positions in the Xw-Yw space of the monitoring area 205. The object 203 is moving in the direction of movement 206 (angle θv), and the face direction 207 of the object 203 is defined by θf.

これらの情報を用いて、表示選択部106によって表示する映像を判断するための処理を実行する。  Using these pieces of information, the display selection unit 106 executes a process for determining an image to be displayed.

図10は、カメラ配置情報107のうち、物体203やカメラ位置等により求めた情報テーブルの例である。情報テーブルのカメラ評価項目(D1000)は、検出された物体とカメラとの距離(D1002)、検出された物体のカメラ画像上の面積(D1003)、顔方向(D1004)、移動方向(D1005)で構成される。評価値(D1001)は、各カメラ毎の評価値である。カメラ評価値(D1000)は、具体的には、上述した認識部104で求めた物体203のデータとカメラ位置等に基づいて算出され、これを各カメラ毎に算出、取得し、取得値(D1001)として示される。  FIG. 10 is an example of an information table obtained from the object 203, the camera position, etc. in the camera arrangement information 107. The camera evaluation items (D1000) of the information table are the distance (D1002) between the detected object and the camera, the area (D1003) on the camera image of the detected object, the face direction (D1004), and the moving direction (D1005). Composed. The evaluation value (D1001) is an evaluation value for each camera. Specifically, the camera evaluation value (D1000) is calculated based on the data of the object 203 obtained by the recognition unit 104 described above, the camera position, and the like, and is calculated and acquired for each camera, and the acquired value (D1001). ).

カメラとの距離(D1002)は、顔検出や人物検出により検出された画像上の位置と監視エリア205との関係により求められる。面積(D1003)も、同様に検出した領域から求める。顔方向(D1004)は、カメラ画像上の顔方向から監視エリア205上での顔方向θfを求めることができ、カメラ200〜202の方向φ0〜φ2との角度の差分によって算出することができる。例えばカメラ201(図10中のカメラ2)における計算式を数1に示す。The distance to the camera (D1002) is obtained from the relationship between the position on the image detected by face detection or person detection and the monitoring area 205. The area (D1003) is also obtained from the similarly detected area. As the face direction (D1004), the face direction θf on the monitoring area 205 can be obtained from the face direction on the camera image, and can be calculated by the difference in angle with the directions φ 0 to φ 2 of the cameras 200 to 202. it can. For example, the calculation formula for the camera 201 (camera 2 in FIG. 10) is shown in Equation 1.

〔数1〕
カメラ2顔方向=(φ1−θf) (1)
ここで、数1で求めた顔方向は、180degに近づくほど、カメラの撮像方向と顔方向が正対する、即ち顔方向がカメラ方向を向いているということになる。厳密にはカメラの俯角に対して顔の垂直方向の角度についても求めることも可能であるが、本実施例では簡単のため水平方向についてのみ記述する。
[Equation 1]
Camera 2 face direction = (φ 1 −θf) (1)
Here, as the face direction obtained by Equation 1 approaches 180 degrees, the imaging direction of the camera and the face direction face each other, that is, the face direction faces the camera direction. Strictly speaking, the angle in the vertical direction of the face with respect to the depression angle of the camera can be obtained, but in this embodiment, only the horizontal direction is described for simplicity.

また、移動方向(D1005)についても、同様の考え方で求めることができるため、ここでの説明は省略する。  Further, since the moving direction (D1005) can also be obtained based on the same concept, description thereof is omitted here.

さらに、別の実施形態においては、物体の特定部位を検出した方向、例えば鞄などの所有物を持つ方向、手などの部位が撮像される方向など、所望の部位について定義することも可能である。また物体が車両の場合は、ナンバープレートや運転手の顔などを基準に情報テーブルを作成することもできる。また、ある特定の行動(イベント)が観察できる方向としても良い。例えば、人物がボタンを押す動作が撮像できる方向、商品を手に取る行動などがあげられる。  Furthermore, in another embodiment, it is also possible to define a desired part such as a direction in which a specific part of an object is detected, for example, a direction having a possession such as a bag, a direction in which a part such as a hand is imaged. . When the object is a vehicle, an information table can be created based on the license plate, the driver's face, or the like. Moreover, it is good also as a direction which can observe a certain specific action (event). For example, a direction in which a person presses a button can capture an image, an action of picking up a product, and the like.

この情報テーブルは、カメラ配置情報107に格納される。このように、予め取得したカメラ配置情報と認識結果を併せて用いることでより詳細に映像選択を決定するようにしたものである。また、カメラとの位置関係や認識処理の結果を、認識処理にフィードバックさせることで、認識処理に適切なカメラや映像上の位置を選択することができるため、認識処理をさらに精度よく実行することが可能である。  This information table is stored in the camera arrangement information 107. As described above, the camera selection information and the recognition result acquired in advance are used together to determine the video selection in more detail. In addition, by feeding back the positional relationship with the camera and the result of the recognition process to the recognition process, it is possible to select a camera and a position on the video that are appropriate for the recognition process. Is possible.

次に表示選択部106について、図10に示した情報テーブルを用いて映像表示を切り替える方法について述べる。  Next, the display selection unit 106 will be described with respect to a method for switching video display using the information table shown in FIG.

図11は、同一物体を重複して検出した、各カメラから取得した映像情報を用いる際に、上述したカメラ評価項目のうち、優先的に取得したいカメラ評価項目の優先度を設定する、優先度設定画面1100の例である。これらの優先度は、例えば、図1の入力手段108を介して設定される。画面にはそれぞれの優先度が設定でき、本実施例では0〜5までの優先度を設定することができる。0の場合は、情報を用いないことを示しており、5の場合は最も優先的に該当情報を利用することができる。ここでは、一つの情報のみを用いて出力する映像を選択することもでき、いくつかの情報を統合した評価値を求めることで映像選択の基準を作成することができる。図11に示す例では、優先度は、距離dp=0、面積sp=1、顔方向θfp=3、移動方向θvp=1と設定されている。  FIG. 11 shows the priority setting of the camera evaluation items to be preferentially acquired among the camera evaluation items described above when using video information acquired from each camera in which the same object is detected in duplicate. It is an example of a setting screen 1100. These priorities are set, for example, via the input unit 108 in FIG. Respective priorities can be set on the screen, and in the present embodiment, priorities from 0 to 5 can be set. The case of 0 indicates that no information is used, and the case of 5 can use the corresponding information most preferentially. Here, a video to be output can be selected using only one piece of information, and a reference for video selection can be created by obtaining an evaluation value obtained by integrating several pieces of information. In the example shown in FIG. 11, the priorities are set as distance dp = 0, area sp = 1, face direction θfp = 3, and moving direction θvp = 1.

ここで、各カメラの距離をd、面積をs、顔方向をθf、移動方向をθvと定義し、図1に示すカメラ配置情報107から各値に対して全カメラの順位付けを行う。カメラ1を例に全カメラに対するカメラ1の順位を定義すると、距離D1=3、面積S1=1、顔方向Θf1=1、移動方向Θv1=3となる。カメラ内の順位を表すものであるので、最小値は1、最大値はカメラ台数となる。  Here, the distance of each camera is defined as d, the area is defined as s, the face direction is defined as θf, and the moving direction is defined as θv, and all the cameras are ranked with respect to each value from the camera arrangement information 107 shown in FIG. Taking the camera 1 as an example and defining the order of the camera 1 with respect to all cameras, the distance D1 = 3, the area S1 = 1, the face direction Θf1 = 1, and the moving direction Θv1 = 3. Since it represents the order in the camera, the minimum value is 1, and the maximum value is the number of cameras.

各カメラのこれらの順位及びカメラ評価項目の優先度を元に、任意の物体毎に各カメラ毎の評価値を演算する方法について、数2に示す。評価値の演算は、図1に示す表示選択部106において行われる。  A method for calculating the evaluation value for each camera for each arbitrary object based on the priority of each camera and the priority of the camera evaluation items is shown in Equation 2. The calculation of the evaluation value is performed in the display selection unit 106 shown in FIG.

〔数2〕
評価値(カメラ1)
=(D1*dp+S1*sp+Θf1*θfp+Θv1*θvp)
(2)
数2によって、もっとも評価値が小さいものが、物体203を観察するのに適したカメラであると表示選択部106において決定することができる。
[Equation 2]
Evaluation value (Camera 1)
= (D1 * dp + S1 * sp + Θf1 * θfp + Θv1 * θvp)
(2)
According to Equation 2, the display selection unit 106 can determine that the camera with the smallest evaluation value is a camera suitable for observing the object 203.

例えば、図4に示す映像に対して、図10及び図11に示す各カメラ毎のカメラ評価項目の情報テーブルやカメラ評価項目の優先度により算出した結果、図4のカメラ画像401に示す映像が物体203を観察するのに最も適した映像であると算出される。  For example, as a result of calculation based on the camera evaluation item information table and the camera evaluation item priority for each camera shown in FIGS. 10 and 11 with respect to the video shown in FIG. 4, the video shown in the camera image 401 of FIG. It is calculated that the video is most suitable for observing the object 203.

なお、この各カメラ毎の評価値は物体毎に算出されるため、それぞれの移動物体に適したカメラの映像が評価値により定義される。複数の物体がある場合は、最も大きく撮像された人物に対して制御することや、入力画面などで選択した人に対してのみ、本発明の処理をするなどの対処方法がある。  Since the evaluation value for each camera is calculated for each object, a video image of the camera suitable for each moving object is defined by the evaluation value. In the case where there are a plurality of objects, there are coping methods such as controlling the person who is imaged the most, or performing the processing of the present invention only for the person selected on the input screen or the like.

次に、図12を用いて、図1に示す映像表示部109について説明する。ここでは、表示選択部106によって、映像取得部103から得られる映像のうち優先的に表示すべきカメラ及びカメラから取得した映像が算出されているものとする。図12に示す一部の映像例は、図4に示した例と同様であり、カメラ2の映像で撮像される移動人物の顔方向がカメラ方向となっており、観察し易い映像となっている。  Next, the video display unit 109 shown in FIG. 1 will be described with reference to FIG. Here, it is assumed that the display selection unit 106 calculates a camera to be preferentially displayed among videos obtained from the video acquisition unit 103 and a video obtained from the camera. A part of the video example shown in FIG. 12 is the same as the example shown in FIG. 4, and the face direction of the moving person imaged by the video of the camera 2 is the camera direction, and the video is easy to observe. Yes.

図12は、監視システムのモニタリング画面の一部を示す。ここでは、監視エリアを撮像する各カメラの映像を小窓領域1200で表示したものであり、映像記録機器やマトリクススイッチャ等を通じて取得した映像が表示される。表示選択部106で選択された映像をさらに大窓領域1201で表示する。これらのマルチ画面出力の設定等についての詳細は記述しないが、利用するカメラ台数によって画面配置は任意に設定できる。  FIG. 12 shows a part of the monitoring screen of the monitoring system. Here, the video of each camera that images the monitoring area is displayed in the small window area 1200, and the video acquired through a video recording device, a matrix switcher, or the like is displayed. The video selected by the display selection unit 106 is further displayed in the large window area 1201. Although details about the setting of the multi-screen output and the like will not be described, the screen layout can be arbitrarily set depending on the number of cameras used.

物体を検出した検出枠1202を大窓領域1201に重畳して出力することで、監視員の注意を向かせることも可能である。また、顔検出の結果を用いて、付加情報1203を画面上に出力することも可能である。  By superimposing the detection frame 1202 that detects the object on the large window area 1201 and outputting it, it is possible to draw the attention of the supervisor. Further, it is possible to output additional information 1203 on the screen using the result of face detection.

図12に示す画面例では、記録映像等を制御する再生制御部1204も持っており、記録映像の再生にも活用することが可能である。記録映像とともに、図10に示す情報テーブルや認識結果105を保存しておけば、記録映像に対しても同様に人物を観察し易い映像を提示することを実現できる。また、優先度設定は設定ボタン1205などから設定することが可能である。  The screen example shown in FIG. 12 also has a playback control unit 1204 that controls recorded video and the like, and can also be used for playback of recorded video. If the information table and the recognition result 105 shown in FIG. 10 are stored together with the recorded video, it is possible to realize a video that makes it easy to observe a person in the recorded video. The priority setting can be set from a setting button 1205 or the like.

図13に示す画面例は、カメラ配置情報107を用いて、視覚的にカメラと移動物体との位置関係を理解し易く表示する一例について示した図である。監視エリアやカメラの位置をCG等によって作成したデータを描画した画面に対して、カメラ画像1300〜1302をカメラ位置に近接した形で表示する。それぞれのカメラ画像は画面上での位置に従って、一定係数で大きさを変化させて表示させることも可能である。  The screen example illustrated in FIG. 13 is a diagram illustrating an example in which the positional relationship between the camera and the moving object is visually easily displayed using the camera arrangement information 107. Camera images 1300 to 1302 are displayed close to the camera position on a screen on which data created by CG or the like for the monitoring area and the camera position is drawn. Each camera image can be displayed with its size changed by a constant coefficient according to the position on the screen.

画面上には観察された物体1303が、認識部104で算出した位置に基づいて描画されている。この物体1303は、CG等で作成した人物のモデルではなく表示選択部106で算出されたカメラの映像に存在する移動人物を抽出して作成したデータを画面上に重畳させることで位置関係と物体1303の状況を同時に観察することが可能である。また、顔などの付加情報1304も併せて表示することで、より詳細に観察することも可能である。  An observed object 1303 is drawn on the screen based on the position calculated by the recognition unit 104. This object 1303 is obtained by superimposing data created by extracting a moving person existing in the camera image calculated by the display selection unit 106 instead of a person model created by CG or the like on the screen. It is possible to observe the situation of 1303 at the same time. Further, by displaying additional information 1304 such as a face together, it is possible to observe in more detail.

図14は、複数の物体が存在する場合について示した図である。図14(a)は、カメラ画像1400a〜1402aまで図13と同様に表示されている。また画面上には物体1403aと物体1404aが描画されている。  FIG. 14 is a diagram showing a case where a plurality of objects exist. In FIG. 14A, camera images 1400a to 1402a are displayed in the same manner as in FIG. An object 1403a and an object 1404a are drawn on the screen.

この映像に対して、例えばカメラ2画像1400a及び移動物体1404aを中心に観察したい場合、ユーザによる指示によって視点を変換することができる。ユーザは観察したいカメラ画像か画面上に描画された移動物体の位置をマウス等の入力機器から指定すると、図14(b)に示すように、カメラ1画像1400bを中心とした視点に切り替わる。視点の切り替えによって、移動物体1403b、移動物体1404bの位置も変更されるが、最も観察しやすい画像が重畳されている。また、各カメラの映像も視点からの距離に応じて画像サイズ等も変更させることが可能である。  For example, when it is desired to observe the image centered on the camera 2 image 1400a and the moving object 1404a, the viewpoint can be converted by an instruction from the user. When the user designates the camera image to be observed or the position of the moving object drawn on the screen from an input device such as a mouse, the viewpoint is switched to the viewpoint centered on the camera 1 image 1400b as shown in FIG. Although the positions of the moving object 1403b and the moving object 1404b are also changed by switching the viewpoint, images that are most easily observed are superimposed. In addition, the image size and the like of the video of each camera can be changed according to the distance from the viewpoint.

このように、映像の重要度や注目度などに応じて、表示する大きさや、重要な情報を付加した形で提示することや、カメラ配置と連動させた形式で映像を提示する表示方法により、監視エリア内の配置関係を視覚的にも認識することが可能である。このことによって、映像の重要性や監視エリアの対応関係を同時に把握することが可能であるため、監視員の負担低減に繋がり結果としてより頑健な監視システムを提供することが可能となる。また、優先順位に基づいて、映像表示の優先順位をつけることで、物体の観察に適した映像の提示や、記録、さらには記録した映像のうち観察したい映像を再生することも可能となる。  In this way, depending on the importance or attention level of the video, the display size, the presentation with important information added, or the display method that presents the video in a format linked with the camera arrangement, It is possible to visually recognize the arrangement relationship in the monitoring area. As a result, it is possible to simultaneously grasp the importance of the video and the correspondence relationship between the monitoring areas, which leads to a reduction in the burden on the monitoring staff, and as a result, a more robust monitoring system can be provided. In addition, by giving priority to video display based on the priority order, it is possible to present and record a video suitable for observing an object, and to reproduce a video to be observed among recorded videos.

本発明を適用できる検出物体としては、上述のように人物が挙げられ、認識処理により顔検出を実行し、複数カメラの映像から例えば顔が撮像された映像を選択して提示することが可能である。また、人物以外であっても、車両や、人が所持する鞄、パソコンの画面や、金庫の扉等に対しても本発明を適用することができる。車両であれば運転者の顔を監視する場合、鞄であれば鞄を所持している人物の顔や鞄自体を監視する場合など、観察したい部分を監視するのに適したカメラの映像を決定することができる。さらに、向きや画面表示が変更したパソコンの画面を監視する場合や、金庫の扉が開けられた場合など、動きや変化が生じた部分を観察するのに適したカメラを選択することもでき、常にパソコン画面を監視したり、金庫の扉が開けられたときだけ扉を監視するようにすることもできる。また、本発明は、可動物体に限らず、静止物体にも適用させることは可能である。例えば、固定設置されている金庫の監視で、扉側から側面に監視領域を切り替えたい場合、本発明の構成を採用すれば、側面を監視するのに適したカメラを選択し、監視画面を切り替えることができる。  The detection object to which the present invention can be applied includes a person as described above, and it is possible to perform face detection by recognition processing and select and present, for example, an image of a face captured from images from a plurality of cameras. is there. Moreover, even if it is not a person, this invention is applicable also to a vehicle, the bag which a person possesses, the screen of a personal computer, the door of a safe, etc. Determine the camera image suitable for monitoring the part you want to observe, such as monitoring the driver's face if it is a vehicle, or monitoring the face of a person carrying the bag or the bag itself. can do. In addition, you can select a camera that is suitable for observing parts that have moved or changed, such as when monitoring the screen of a computer whose orientation or screen display has changed, or when the safe door is opened, You can always monitor the computer screen or monitor the door only when the safe door is opened. The present invention can be applied not only to a movable object but also to a stationary object. For example, if you want to switch the monitoring area from the door side to the side when monitoring a fixed safe, use the configuration of the present invention to select a camera suitable for monitoring the side and switch the monitoring screen. be able to.

図15は、上述の実施例を映像データの検索に用いた構成図の例である。図15に示した各機能ブロックは、図1に示したものと多くは同様であるため、本実施例に関連する部分についてのみ説明する。  FIG. 15 is an example of a configuration diagram in which the above-described embodiment is used for searching video data. Since the functional blocks shown in FIG. 15 are mostly the same as those shown in FIG. 1, only the portions related to this embodiment will be described.

映像取得部103により取得した映像は、映像データ1500に格納される。監視システムにおける検索機能は、この映像データ1500データを取得する手段の一つである。映像データ1500から取得したい映像の検索条件を入力手段1502を通じて、検索部1501に入力される。検索条件は例えば時間帯や対象となるカメラ、特定の人物など様々にあるが、ここでの検索部1501は、図1の認識部104と同様に認識機能を備えることも可能である。この認識機能により取得される情報も同様に、図7に示す認識結果と同様に取得することができる。  The video acquired by the video acquisition unit 103 is stored in the video data 1500. The search function in the monitoring system is one of means for acquiring the video data 1500 data. Video search conditions to be acquired from the video data 1500 are input to the search unit 1501 through the input unit 1502. There are various search conditions such as a time zone, a target camera, a specific person, and the like. The search unit 1501 here can also have a recognition function, like the recognition unit 104 in FIG. Similarly, the information acquired by this recognition function can be acquired in the same manner as the recognition result shown in FIG.

ここで取得した認識結果は、前述の実施例と同様に、表示選択部106において前記カメラ毎の映像に優先順位をつけるために用い、観察し易い映像を選択し映像表示部109を通して、表示手段110にて表示することができる。  The recognition result acquired here is used to prioritize the images for each camera in the display selection unit 106 as in the above-described embodiment. 110 can be displayed.

なお、映像データ1500に映像データを格納する際に、同時に認識結果105を格納する形としても良い。この場合、検索部1501で認識処理を実行しなくて良いため、検索時間を短縮することが可能である。  Note that when the video data is stored in the video data 1500, the recognition result 105 may be stored at the same time. In this case, since it is not necessary to perform recognition processing in the search unit 1501, the search time can be shortened.

さらに、上述の実施例に基づき、認識性能の向上に用いた実施例について図16を用いて説明する。各機能ブロックの一部は図1に示すものと同様であるため、ここでの説明は省略する。映像取得部103で取得した映像は、複数カメラ認識部1600に送られる。本実施例では、複数カメラの映像を同時に処理する場合もあるため、認識部104と区別している。この複数カメラ認識部1600で処理した結果は映像選択部1601に送られる。ここでの映像選択部1601は、前述の表示選択部106と同様の構成である。すなわち、認識結果を取得した上で、認識処理に適した映像を選択することに利用するものである。  Furthermore, based on the above-described embodiment, an embodiment used for improving recognition performance will be described with reference to FIG. Since some of the functional blocks are the same as those shown in FIG. 1, description thereof is omitted here. The video acquired by the video acquisition unit 103 is sent to the multiple camera recognition unit 1600. In this embodiment, since the images from a plurality of cameras may be processed at the same time, they are distinguished from the recognition unit 104. The result processed by the multi-camera recognition unit 1600 is sent to the video selection unit 1601. The video selection unit 1601 here has the same configuration as the display selection unit 106 described above. That is, after obtaining the recognition result, it is used to select a video suitable for recognition processing.

複数カメラ認識部1600で処理した認識結果は、カメラ100〜102の設置状態によって高い性能が期待できるものとそうでないものが存在する。複数カメラ認識部1600で出力した結果により、映像選択部1601において、数2に示す方法と同様の評価値を算出して認識処理に適した映像を出力し、再び複数カメラ認識部1600にフィードバックすることで認識性能を向上させることが可能である。  The recognition results processed by the multiple camera recognition unit 1600 include those that can be expected to have high performance depending on the installation state of the cameras 100 to 102 and those that are not. Based on the result output by the multi-camera recognition unit 1600, the video selection unit 1601 calculates an evaluation value similar to the method shown in Equation 2, outputs a video suitable for recognition processing, and feeds back to the multi-camera recognition unit 1600 again. It is possible to improve recognition performance.

例えば顔検出を例にした場合、どのカメラが最も顔検出に適したものであるか、認識結果(認識率)によって決定することができる。更に、一つのカメラ画像上であっても、顔検出の良好な結果が期待できる領域とそうでない領域についても算出できる。そのため、本実施例では、複数カメラ認識部1600において、認識に適したカメラ及びカメラ画像内で認識に適した領域を定義することができ、より検出精度の高い監視システムを実現することが期待できる。  For example, when face detection is taken as an example, which camera is most suitable for face detection can be determined by the recognition result (recognition rate). Furthermore, even on a single camera image, it is possible to calculate an area where a good result of face detection can be expected and an area where it is not. Therefore, in this embodiment, the multi-camera recognition unit 1600 can define a camera suitable for recognition and a region suitable for recognition in the camera image, and can be expected to realize a monitoring system with higher detection accuracy. .

また人物の検出位置についての精度について考慮する場合、図4のカメラ画像400では縦方向の位置精度が高く、カメラ画像401では横方向の位置精度が高い。監視エリア上において、複数カメラに跨って観察される移動物体の位置を決定する場合、これらの情報に基づいて出力する結果を選択することもできる。これによって、精度の高い位置検出を行うことが可能である。  Further, when considering the accuracy of the person detection position, the camera image 400 in FIG. 4 has high vertical position accuracy, and the camera image 401 has high horizontal position accuracy. When determining the position of a moving object observed across a plurality of cameras on the monitoring area, it is also possible to select a result to be output based on such information. This makes it possible to perform highly accurate position detection.

100〜102 カメラ
103 映像取得部
104 認識部
105 認識結果
106 表示選択部
107 カメラ配置情報
108 入力手段
109 映像表示部
110 表示手段
200〜202、500 カメラ
203、1303、1403、1404 物体
204 構造物
205、501 監視エリア
206 移動方向
207 顔方向
300〜302 撮像領域
400〜402、502、1300〜1302、1400〜1402 カメラ画像
504 カメラ画像位置
505 監視エリア位置
1100 優先度設定画面
1200 小窓領域
1201 大窓領域
1202 検出枠
1203、1304 付加情報
1204 再生制御部
1205 設定ボタン
1500 映像データ
1501 検索部
1502 入力手段
1600 複数カメラ認識部
1601 映像選択部
100 to 102 Camera 103 Video acquisition unit 104 Recognition unit 105 Recognition result 106 Display selection unit 107 Camera arrangement information 108 Input unit 109 Video display unit 110 Display unit 200 to 202, 500 Camera 203, 1303, 1403, 1404 Object 204 Structure 205 , 501 Monitoring area 206 Moving direction 207 Face direction 300 to 302 Imaging area 400 to 402, 502, 1300 to 1302, 1400 to 1402 Camera image 504 Camera image position 505 Monitoring area position 1100 Priority setting screen 1200 Small window area 1201 Large window Area 1202 Detection frame 1203, 1304 Additional information 1204 Playback control unit 1205 Setting button 1500 Video data 1501 Search unit 1502 Input means 1600 Multiple camera recognition unit 1601 Video selection unit

Claims (13)

監視エリア内を撮像する複数のカメラと、
前記複数のカメラにおいて取得した映像から物体を検出する認識部と、を備え、
前記複数のカメラで重複して撮像される監視エリアにおいて物体が検出される場合に、カメラ毎に前記物体の特徴量である認識結果を前記認識部において取得し、前記認識結果と前記認識結果の優先度とに基づいて、前記カメラ毎の映像に前記優先度に応じた優先順位をつける表示選択部を備えることを特徴とする映像監視システム。
A plurality of cameras for imaging the surveillance area;
A recognition unit for detecting an object from images acquired by the plurality of cameras,
When an object is detected in a monitoring area that is imaged redundantly by the plurality of cameras, a recognition result that is a feature amount of the object is acquired by the recognition unit for each camera, and the recognition result and the recognition result A video monitoring system, comprising: a display selection unit that assigns a priority according to the priority to the video for each camera based on the priority.
請求項1に記載の映像監視システムにおいて、
前記表示選択部は、前記認識結果と前記認識結果の優先度とに基づいて、前記カメラ毎に前記物体に関する評価値を算出し、前記評価値に基づいて前記カメラ毎の映像に優先順位をつけることを特徴とする映像監視システム。
The video surveillance system according to claim 1,
The display selection unit calculates an evaluation value related to the object for each camera based on the recognition result and the priority of the recognition result, and prioritizes the video for each camera based on the evaluation value. A video surveillance system characterized by that.
請求項2に記載の映像監視システムにおいて、
前記複数のカメラ毎のカメラ設置情報を用いて、前記複数のカメラに対する前記物体に関するカメラ配置情報を取得し、前記カメラ配置情報のうち少なくとも一つ以上を用いて前記評価値を算出することを特徴とする映像監視システム。
The video surveillance system according to claim 2,
Using camera installation information for each of the plurality of cameras to obtain camera arrangement information related to the object with respect to the plurality of cameras, and calculating the evaluation value using at least one of the camera arrangement information. A video surveillance system.
請求項3に記載の映像監視システムにおいて、
前記カメラ設置情報は、カメラ位置、俯角、水平角、画角、回転の情報を含み、前記複数のカメラと前記監視エリアとの対応関係を取得することで算出することを特徴とする映像監視システム。
In the video surveillance system according to claim 3,
The camera installation information includes information on camera position, depression angle, horizontal angle, angle of view, and rotation, and is calculated by acquiring a correspondence relationship between the plurality of cameras and the monitoring area. .
請求項1〜4のいずれかに記載の映像監視システムにおいて、
前記認識結果は、前記物体の移動方向、大きさ、所定領域であることを特徴とする映像監視システム。
In the video surveillance system according to any one of claims 1 to 4,
The recognition result is a moving direction, a size, and a predetermined area of the object.
請求項1〜5のいずれかに記載の映像監視システムにおいて、
前記複数のカメラ毎のカメラ設置情報を用いて前記複数のカメラに対する前記物体の距離、前記物体の前記所定領域の方向および前記移動方向とからなるカメラ配置情報を取得し、前記カメラ配置情報のうち少なくとも一つ以上を用いて前記評価値を算出することを特徴とする映像監視システム。
In the video surveillance system according to any one of claims 1 to 5,
Using the camera installation information for each of the plurality of cameras, obtain camera arrangement information including the distance of the object with respect to the plurality of cameras, the direction of the predetermined area of the object, and the moving direction, and out of the camera arrangement information A video surveillance system, wherein the evaluation value is calculated using at least one or more.
請求項1〜6のいずれかに記載の映像監視システムにおいて、
前記優先順位に応じて、前記カメラ毎の出力映像の出力形態を変化させる表示部を有することを特徴とする映像監視システム。
In the video surveillance system according to any one of claims 1 to 6,
An image monitoring system comprising: a display unit configured to change an output form of an output image for each camera according to the priority order.
請求項7に記載の映像監視システムにおいて、
前記表示部に出力する前記出力映像は、前記監視エリアと前記複数のカメラの位置を表示し、前記複数のカメラ毎で取得した前記映像を出力映像に合成し表示することを特徴とする映像監視システム。
The video monitoring system according to claim 7,
The output video output to the display unit displays the position of the monitoring area and the plurality of cameras, and combines the video acquired for each of the plurality of cameras with the output video for display. system.
請求項7または8に記載の映像監視システムにおいて、
前記表示部に出力する前記出力映像は、前記認識結果から取得した前記移動物体、前記所定領域を付加情報として合成し出力することを特徴とする映像監視システム。
The video surveillance system according to claim 7 or 8,
The video monitoring system characterized in that the output video output to the display unit combines and outputs the moving object acquired from the recognition result and the predetermined area as additional information.
請求項7〜9のいずれかに記載の映像監視システムにおいて、
前記表示部に出力する前記出力映像において、監視対象の前記移動物体もしくは前記映像を選択することで、前記監視対象を中心とした配置に前記出力映像を再構成し出力することを特徴とする映像監視システム。
In the video surveillance system according to any one of claims 7 to 9,
In the output video output to the display unit, the output video is reconstructed and output in an arrangement centered on the monitoring target by selecting the moving object or the video to be monitored. Monitoring system.
請求項1〜10のいずれかに記載の映像監視システムにおいて、
前記優先順位に応じて、前記カメラ毎の出力映像を記録媒体に記録することを特徴とする映像監視システム。
In the video surveillance system according to any one of claims 1 to 10,
An image monitoring system for recording an output image for each camera on a recording medium according to the priority order.
請求項1〜11のいずれかに記載の映像監視システムにおいて、
前記認識結果の精度に応じて、前記認識部で処理する前記複数のカメラもしくは前記各カメラの監視エリアを選択することを特徴とする映像監視システム。
In the video surveillance system according to any one of claims 1 to 11,
The video monitoring system, wherein the plurality of cameras or the monitoring area of each camera to be processed by the recognition unit is selected according to the accuracy of the recognition result.
監視エリア内を撮像する複数のカメラにおいて取得した映像から物体を検出する認識部と、
前記複数のカメラで重複して撮像される監視エリアにおいて物体が検出される場合に、カメラ毎に前記物体の特徴量である認識結果を前記認識部において取得し、前記認識結果と前記認識結果の優先度とに基づいて、前記カメラ毎の映像に前記優先度に応じた優先順位をつける表示選択部と、を備えることを特徴とする監視カメラ制御装置。
A recognition unit that detects an object from images acquired by a plurality of cameras that capture an image within the monitoring area;
When an object is detected in a monitoring area that is imaged redundantly by the plurality of cameras, a recognition result that is a feature amount of the object is acquired by the recognition unit for each camera, and the recognition result and the recognition result A monitoring camera control device comprising: a display selection unit that assigns a priority according to the priority to the video for each camera based on the priority.
JP2014518081A 2012-05-30 2012-05-30 Surveillance camera control device and video surveillance system Active JP6055823B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/003516 WO2013179335A1 (en) 2012-05-30 2012-05-30 Monitoring camera control device and visual monitoring system

Publications (2)

Publication Number Publication Date
JPWO2013179335A1 true JPWO2013179335A1 (en) 2016-01-14
JP6055823B2 JP6055823B2 (en) 2016-12-27

Family

ID=49672594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014518081A Active JP6055823B2 (en) 2012-05-30 2012-05-30 Surveillance camera control device and video surveillance system

Country Status (4)

Country Link
US (1) US9805265B2 (en)
JP (1) JP6055823B2 (en)
CN (1) CN104509097B (en)
WO (1) WO2013179335A1 (en)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10289917B1 (en) * 2013-11-12 2019-05-14 Kuna Systems Corporation Sensor to characterize the behavior of a visitor or a notable event
US9414153B2 (en) 2014-05-08 2016-08-09 Panasonic Intellectual Property Management Co., Ltd. Directivity control apparatus, directivity control method, storage medium and directivity control system
CN105474667B (en) * 2014-05-09 2018-11-27 松下知识产权经营株式会社 Directivity control method and directive property control system
US20180032829A1 (en) * 2014-12-12 2018-02-01 Snu R&Db Foundation System for collecting event data, method for collecting event data, service server for collecting event data, and camera
JP6436823B2 (en) * 2015-03-20 2018-12-12 キヤノン株式会社 Imaging device control method, management device control method, imaging device, and management device
JP2017054100A (en) * 2015-09-11 2017-03-16 株式会社東芝 Display control device and display control system
US20160063728A1 (en) * 2015-11-10 2016-03-03 Mediatek Inc. Intelligent Nanny Assistance
US11494579B2 (en) * 2016-01-29 2022-11-08 Nec Corporation Information processing apparatus, information processing method, and program
JP6742739B2 (en) * 2016-01-29 2020-08-19 キヤノン株式会社 Control device, control method, and program
US10997422B2 (en) * 2016-01-29 2021-05-04 Nec Corporation Information processing apparatus, information processing method, and program
EP3435665A4 (en) * 2016-03-25 2019-03-20 Panasonic Intellectual Property Management Co., Ltd. Monitoring device and monitoring system
JP6701018B2 (en) * 2016-07-19 2020-05-27 キヤノン株式会社 Information processing apparatus, information processing method, and program
CN108073859A (en) * 2016-11-16 2018-05-25 天津市远卓自动化设备制造有限公司 The monitoring device and method of a kind of specific region
JP6980379B2 (en) * 2016-12-20 2021-12-15 キヤノン株式会社 Information processing equipment, information processing methods and programs
US10205909B2 (en) 2017-01-16 2019-02-12 Amazon Technologies, Inc. Audio/video recording and communication devices in network communication with additional cameras
JP6469745B2 (en) * 2017-03-23 2019-02-13 セコム株式会社 Monitoring system
WO2018191648A1 (en) 2017-04-14 2018-10-18 Yang Liu System and apparatus for co-registration and correlation between multi-modal imagery and method for same
US10687119B2 (en) 2017-06-27 2020-06-16 Samsung Electronics Co., Ltd System for providing multiple virtual reality views
JP6388144B2 (en) * 2017-09-12 2018-09-12 パナソニックIpマネジメント株式会社 Directivity control device, directivity control method, storage medium, and directivity control system
JP6409929B1 (en) * 2017-09-19 2018-10-24 日本電気株式会社 Verification system
US11023707B2 (en) * 2017-10-27 2021-06-01 Avigilon Corporation System and method for selecting a part of a video image for a face detection operation
NL2020067B1 (en) * 2017-12-12 2019-06-21 Rolloos Holding B V System for detecting persons in an area of interest
GB2569573A (en) * 2017-12-20 2019-06-26 Canon Kk Video surveillance method and system
JP7045445B2 (en) * 2018-03-26 2022-03-31 株式会社日立国際電気 Image processing system
JP6959444B2 (en) * 2018-06-22 2021-11-02 株式会社日立製作所 Measurement information processing device
WO2020039992A1 (en) * 2018-08-20 2020-02-27 ソニーセミコンダクタソリューションズ株式会社 Image processing device, and image processing system
US11721187B2 (en) * 2018-11-06 2023-08-08 Motorola Solutions, Inc. Method and system for displaying video streams
JP7208051B2 (en) * 2019-02-14 2023-01-18 株式会社日立製作所 State recognition device
CN113490970A (en) * 2019-02-27 2021-10-08 株式会社技术未来 Precision digital security system, method and program
CN110505397B (en) * 2019-07-12 2021-08-31 北京旷视科技有限公司 Camera selection method, device and computer storage medium
CN111429489B (en) * 2019-07-30 2021-07-30 杭州海康威视数字技术股份有限公司 Target tracking monitoring display method and device
EP4035353A1 (en) * 2019-09-27 2022-08-03 Ricoh Company, Ltd. Apparatus, image processing system, communication system, method for setting, image processing method, and recording medium
CN111131902B (en) * 2019-12-13 2021-12-31 华为技术有限公司 Method for determining target object information and video playing equipment
EP3839910B1 (en) * 2019-12-19 2023-01-25 Axis AB Prioritization among cameras of a multi-camera arrangement
US11503381B2 (en) 2020-06-29 2022-11-15 Seagate Technology Llc Distributed surveillance system with abstracted functional layers
US11463739B2 (en) 2020-06-29 2022-10-04 Seagate Technology Llc Parameter based load balancing in a distributed surveillance system
US11343544B2 (en) 2020-06-29 2022-05-24 Seagate Technology Llc Selective use of cameras in a distributed surveillance system
KR102339002B1 (en) * 2020-07-30 2021-12-14 네이버랩스 주식회사 Control method and system for robot
CN112291534A (en) * 2020-12-15 2021-01-29 成都运达科技股份有限公司 Automatic pushing function simulation method for CCTV monitoring scene of urban rail full-automatic operation system
CN113824901A (en) * 2021-09-28 2021-12-21 北京七维视觉科技有限公司 Video signal switching method and device
US20230230379A1 (en) * 2022-01-19 2023-07-20 Target Brands, Inc. Safety compliance system and method
CN114554093B (en) * 2022-02-25 2023-06-30 重庆紫光华山智安科技有限公司 Image acquisition system and target tracking method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002522980A (en) * 1998-08-07 2002-07-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Image tracking in multiple camera systems
JP2005142683A (en) * 2003-11-04 2005-06-02 Matsushita Electric Ind Co Ltd Apparatus and method for camera control
JP2010103782A (en) * 2008-10-23 2010-05-06 Toshiba Corp Monitoring camera system
WO2012096166A1 (en) * 2011-01-11 2012-07-19 パナソニック株式会社 Image capturing system, camera control device for use therein, image capturing method, camera control method, and computer program

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001275104A (en) 2000-03-27 2001-10-05 Hitachi Kokusai Electric Inc Cctv system
JP4568009B2 (en) * 2003-04-22 2010-10-27 パナソニック株式会社 Monitoring device with camera cooperation
WO2005076621A1 (en) * 2004-02-03 2005-08-18 Matsushita Electric Industrial Co., Ltd. Monitoring system and camera terminal
JP4847165B2 (en) * 2006-03-09 2011-12-28 株式会社日立製作所 Video recording / reproducing method and video recording / reproducing apparatus
WO2008035745A1 (en) * 2006-09-20 2008-03-27 Panasonic Corporation Monitor system, camera and video image coding method
US8189962B2 (en) * 2006-12-19 2012-05-29 Hitachi Kokusai Electric Inc. Image processing apparatus
DE102007054819A1 (en) * 2007-11-16 2009-05-20 Robert Bosch Gmbh Monitoring system with state detection module, self-monitoring method of an observer and computer program
DE102007058959A1 (en) * 2007-12-07 2009-06-10 Robert Bosch Gmbh Configuration module for a monitoring system, monitoring system, method for configuring the monitoring system and computer program
AT506928B1 (en) * 2008-05-28 2012-07-15 Kiwisecurity Software Gmbh METHOD OF VIDEO ANALYSIS
CN101340563B (en) * 2008-08-13 2010-08-04 北京佳讯飞鸿电气股份有限公司 Method for integrating video monitoring systems of different manufacturers in command scheduling system
JP5495625B2 (en) * 2009-06-01 2014-05-21 キヤノン株式会社 Surveillance camera system, surveillance camera, and surveillance camera control device
KR20110079164A (en) * 2009-12-31 2011-07-07 삼성테크윈 주식회사 Method for photograph apparatus handoff and surveillance apparatus using the same
JP2011217320A (en) 2010-04-02 2011-10-27 Mitsubishi Electric Corp Image monitoring system and method of controlling the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002522980A (en) * 1998-08-07 2002-07-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Image tracking in multiple camera systems
JP2005142683A (en) * 2003-11-04 2005-06-02 Matsushita Electric Ind Co Ltd Apparatus and method for camera control
JP2010103782A (en) * 2008-10-23 2010-05-06 Toshiba Corp Monitoring camera system
WO2012096166A1 (en) * 2011-01-11 2012-07-19 パナソニック株式会社 Image capturing system, camera control device for use therein, image capturing method, camera control method, and computer program

Also Published As

Publication number Publication date
CN104509097A (en) 2015-04-08
WO2013179335A1 (en) 2013-12-05
JP6055823B2 (en) 2016-12-27
US20150103178A1 (en) 2015-04-16
US9805265B2 (en) 2017-10-31
CN104509097B (en) 2019-06-14

Similar Documents

Publication Publication Date Title
JP6055823B2 (en) Surveillance camera control device and video surveillance system
US10810438B2 (en) Setting apparatus, output method, and non-transitory computer-readable storage medium
CN104902246B (en) Video monitoring method and device
US8289392B2 (en) Automatic multiscale image acquisition from a steerable camera
Senior et al. Acquiring multi-scale images by pan-tilt-zoom control and automatic multi-camera calibration
JP2020184795A (en) Video monitoring system, video monitoring method, and program
US9832447B2 (en) Image processing system and image processing program
CN107766788B (en) Information processing apparatus, method thereof, and computer-readable storage medium
JP6562437B1 (en) Monitoring device and monitoring method
CN104954747B (en) Video monitoring method and device
JP4722537B2 (en) Monitoring device
WO2014182898A1 (en) User interface for effective video surveillance
JP2017059945A (en) Device and method for image analysis
US20130050483A1 (en) Apparatus, method, and program for video surveillance system
JP2016092693A (en) Imaging apparatus, imaging apparatus control method, and program
JP4464902B2 (en) Camera control apparatus and camera control program
JP2020194493A (en) Monitoring system for nursing-care apparatus or hospital and monitoring method
Ghidoni et al. A distributed perception infrastructure for robot assisted living
JP2011145730A (en) Monitoring screen display control apparatus
JP3875199B2 (en) Imaging device
WO2020241034A1 (en) Monitoring system and monitoring method
JP2006033188A (en) Supervisory apparatus and supervisory method
JP3858018B2 (en) Video surveillance system
JP2018170575A (en) Monitoring system
WO2022022809A1 (en) Masking device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161205

R151 Written notification of patent or utility model registration

Ref document number: 6055823

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151