JPWO2013157222A1 - High-strength hot-dip galvanized steel sheet and manufacturing method thereof - Google Patents

High-strength hot-dip galvanized steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JPWO2013157222A1
JPWO2013157222A1 JP2013539068A JP2013539068A JPWO2013157222A1 JP WO2013157222 A1 JPWO2013157222 A1 JP WO2013157222A1 JP 2013539068 A JP2013539068 A JP 2013539068A JP 2013539068 A JP2013539068 A JP 2013539068A JP WO2013157222 A1 JPWO2013157222 A1 JP WO2013157222A1
Authority
JP
Japan
Prior art keywords
steel sheet
less
hot
dip galvanized
plating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013539068A
Other languages
Japanese (ja)
Other versions
JP5630588B2 (en
Inventor
善継 鈴木
善継 鈴木
大輔 原子
大輔 原子
長滝 康伸
康伸 長滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013539068A priority Critical patent/JP5630588B2/en
Application granted granted Critical
Publication of JP5630588B2 publication Critical patent/JP5630588B2/en
Publication of JPWO2013157222A1 publication Critical patent/JPWO2013157222A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

質量%で、C:0.02%以上0.30%以下、Si:0.01%以上2.5%以下、Mn:0.1%以上3.0%以下、P:0.003%以上0.08%以下、S:0.01%以下、Al:0.001%以上0.20%以下、Ti:0.03%以上0.40%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼板表面に、片面あたりのめっき付着量が20〜120g/m2の亜鉛めっき層を有し、該めっき層内に平均粒径10nm以下の炭化物が1区画あたり5個以上、50個以下、平均粒径50nm以上の酸化物が1区画あたり5個以上、50個以下の割合で存在する合金化溶融亜鉛めっき鋼板。なお、前記1区画とは、めっき層厚さ(t1μm)と、めっき層断面を厚さ方向と直交する方向に1μm間隔で区切ることで得られる面積(t1?1(μm2))である。In mass%, C: 0.02% to 0.30%, Si: 0.01% to 2.5%, Mn: 0.1% to 3.0%, P: 0.003% or more 0.08% or less, S: 0.01% or less, Al: 0.001% or more and 0.20% or less, Ti: 0.03% or more and 0.40% or less, with the balance being Fe and inevitable impurities On the surface of the steel sheet having a component composition consisting of: a zinc coating layer having a plating adhesion amount of 20 to 120 g / m 2 per one surface, and 5 or more carbides per partition with an average particle size of 10 nm or less in the plating layer; An alloyed hot-dip galvanized steel sheet in which 50 or less oxides having an average particle diameter of 50 nm or more are present at a ratio of 5 or more and 50 or less per section. The one section is a plating layer thickness (t1 μm) and an area (t1 to 1 (μm2)) obtained by dividing the plating layer cross section at a 1 μm interval in a direction orthogonal to the thickness direction.

Description

本発明は、自動車防錆表面処理鋼板として好適な合金化溶融亜鉛めっき鋼板およびその製造方法に関するものである。   The present invention relates to an alloyed hot-dip galvanized steel sheet suitable as an automotive rust-proof surface-treated steel sheet and a method for producing the same.

自動車やトラックのフレームや足回りといった部材には従来TS440MPa級以下の熱延鋼板が使用されてきた。しかし、最近では、自動車の耐衝突特性向上及び地球環境保全を目的として、自動車用鋼板の高強度化、薄肉化が推進され、TS590MPa級、TS780MPa級、さらにはTS980MPa級以上の高強度熱延鋼板の使用が検討され始めている。   Conventionally, hot rolled steel sheets of TS440 MPa class or lower have been used for members such as automobile and truck frames and undercarriages. However, recently, for the purpose of improving the anti-collision characteristics of automobiles and preserving the global environment, high strength and thinning of steel sheets for automobiles has been promoted. The use of is beginning to be considered.

自動車用部材はプレス成型により得られる複雑な形状のものが多く、高強度でありながら加工性に優れた材料が必要である。一方で、鋼板の薄肉化に伴う車体の防錆力確保の観点から、素材鋼板に防錆性を付与した表面処理鋼板、中でも塗装後耐食性や溶接性に優れ、安価に製造できる合金化溶融亜鉛めっき鋼板が要望されている。   Many members for automobiles have complicated shapes obtained by press molding, and a material having high strength and excellent workability is required. On the other hand, from the viewpoint of securing the rust prevention power of the car body due to the thinning of the steel sheet, the surface treated steel sheet provided with rust resistance to the material steel sheet, especially alloyed molten zinc that is excellent in corrosion resistance and weldability after painting and can be manufactured at low cost. There is a need for plated steel sheets.

従来より、加工性に優れた高強度熱延鋼板、または溶融亜鉛系めっき高強度鋼板及びその製造方法がいくつか提案されている。例えば、特許文献1では、質量%で、C:0.02〜0.06%、Si≦0.3%、Mn:0.5〜2.0%、P≦0.06%、S≦0.005%、Al≦0.06%、N≦0.006%、Mo:0.05〜0.5%、Ti:0.03〜0.14%を含み、残部が実質的にFeからなる鋼を溶製し、仕上げ圧延終了温度880℃以上、巻取温度570℃以上の条件で熱間圧延を行うことで、実質的にフェライト単相組織であり、平均粒径10nm未満のTi及びMoを含む炭化物が分散析出していることを特徴とする、引張強度が590MPa以上の加工性に優れた高強度鋼板及びその製造方法が開示されている。   Conventionally, several high-strength hot-rolled steel sheets excellent in workability or hot-dip galvanized high-strength steel sheets and methods for producing the same have been proposed. For example, in Patent Document 1, C: 0.02 to 0.06%, Si ≦ 0.3%, Mn: 0.5 to 2.0%, P ≦ 0.06%, S ≦ 0 by mass%. 0.005%, Al ≦ 0.06%, N ≦ 0.006%, Mo: 0.05 to 0.5%, Ti: 0.03 to 0.14%, the balance being substantially made of Fe By melting steel and performing hot rolling under conditions of finish rolling finish temperature of 880 ° C. or higher and coiling temperature of 570 ° C. or higher, Ti and Mo having substantially a ferrite single phase structure and an average particle size of less than 10 nm are obtained. There is disclosed a high-strength steel sheet excellent in workability having a tensile strength of 590 MPa or more, and a method for producing the same, characterized in that a carbide containing is dispersed and precipitated.

また、特許文献2では、質量%で、C:0.01〜0.1%、Si≦0.3%、Mn:0.2〜2.0%、P≦0.04%、S≦0.02%、Al≦0.1%、N≦0.006%、Ti:0.03〜0.2%を含み、かつMo≦0.5%及びW≦1.0%のうち1種以上を含み、残部がFeおよび不可避的不純物からなる鋼を溶製し、オーステナイト単相域で熱間圧延し、550℃以上で巻取り、フェライト単相の熱延鋼板を製造後、さらにスケール除去し、そのまま溶融亜鉛系めっきを施すことで、質量%で、4.8C+4.2Si+0.4Mn+2Ti≦2.5を満たし、組織が面積比率で98%以上のフェライトであり、原子比で、(Mo+W)/(Ti+Mo+W)≧0.2を満たす範囲で、Tiと、MoおよびWのうち1種以上とを含む10nm未満の析出物が分散して存在することを特徴とする、溶融亜鉛系めっき高強度熱延鋼板の製造方法が開示されている。   Moreover, in patent document 2, C: 0.01-0.1%, Si <= 0.3%, Mn: 0.2-2.0%, P <= 0.04%, S <= 0 in mass%. 0.02%, Al ≦ 0.1%, N ≦ 0.006%, Ti: 0.03 to 0.2%, and one or more of Mo ≦ 0.5% and W ≦ 1.0% Steel, the balance being Fe and inevitable impurities are melted, hot-rolled in the austenite single-phase region, wound at 550 ° C. or more, and after producing a single-phase ferrite hot-rolled steel sheet, the scale is further removed. By applying the hot dip galvanizing as it is, it is 4.8C + 4.2Si + 0.4Mn + 2Ti ≦ 2.5 in mass%, and the structure is ferrite with an area ratio of 98% or more, and in atomic ratio, (Mo + W) / Within a range satisfying (Ti + Mo + W) ≧ 0.2, Ti and one or more of Mo and W Wherein the precipitates of less than 10nm, including the presence dispersed manufacturing method of hot-dip galvanized high-strength hot-rolled steel sheet is disclosed.

しかしながら、特許文献1、2では、Tiと、Moなどを含む微細な炭化物をフェライト中に析出させるため、仕上げ圧延終了後、550℃以上の巻取温度(以下、CTと称することもある。)で巻取りを行う必要がある。Si、Mnなど、Feよりも酸化しやすい元素(以下、易酸化性元素と称することもある。)を含有する熱延母材に対し、このような高CT条件下で巻取り処理を行う場合、鋼板母材表層部に易酸化性元素を含む内部酸化物が生成されることで、その後の溶融亜鉛めっき処理、合金化処理において、過度にZn−Fe合金化反応が促進され、めっき密着性が劣化するという問題がある。さらに、母材鋼板表層部に内部酸化物が多量に存在する場合、伸びフランジ加工時に内部酸化物が起点となり、鋼板表層部及びめっき層に微細なクラックが生じ、伸びフランジ加工部の塗装後耐食性が劣化するという問題がある。   However, in Patent Documents 1 and 2, since fine carbides containing Ti and Mo are precipitated in ferrite, a coiling temperature of 550 ° C. or higher (hereinafter sometimes referred to as CT) after finishing rolling is finished. It is necessary to wind up with. When performing a winding process under such high CT conditions on a hot-rolled base material containing an element that is easier to oxidize than Fe, such as Si and Mn (hereinafter also referred to as an easily oxidizable element). In the subsequent hot-dip galvanizing treatment and alloying treatment, the Zn-Fe alloying reaction is excessively promoted by the formation of an internal oxide containing an easily oxidizable element in the surface layer of the steel plate base material, and the plating adhesion There is a problem of deterioration. Furthermore, if there is a large amount of internal oxide in the base steel plate surface layer, the internal oxide becomes the starting point during stretch flange processing, and fine cracks are generated in the steel plate surface layer and plating layer, resulting in corrosion resistance after painting the stretch flange processed portion. There is a problem of deterioration.

一方、熱延時に生成する内部酸化物を抑制させるため、CTを低下させて巻取り処理を行う場合、炭化物の析出が不十分であること、また、パーライトなどの組織が成長することで強度や加工性の低下を招くばかりでなく、その後の連続式溶融亜鉛めっき設備において鋼板を焼鈍する際に水素を吸蔵し、耐水素脆性が劣化するという問題が起こる。   On the other hand, in order to suppress internal oxides generated during hot rolling, when performing a winding process with a reduced CT, the precipitation of carbides is insufficient, and a structure such as pearlite grows to increase strength and In addition to causing a decrease in workability, there is a problem in that hydrogen is occluded and the hydrogen embrittlement resistance deteriorates when the steel sheet is annealed in the subsequent continuous galvanizing equipment.

特開2002−322543号公報JP 2002-322543 A 特開2003−321736号公報JP 2003-321736 A

本発明は、かかる事情に鑑みてなされたものであって、良好な加工性を確保しながら、曲げ加工部のめっき密着性及び伸びフランジ加工部の塗装後耐食性に優れ、さらに耐水素脆性に優れる高強度溶融亜鉛めっき鋼板を提供することを目的とする。   The present invention has been made in view of such circumstances, and while ensuring good workability, the plating adhesion of the bent portion and the corrosion resistance after painting of the stretch flange portion are excellent, and further, the hydrogen embrittlement resistance is excellent. An object is to provide a high-strength hot-dip galvanized steel sheet.

本発明者らは、高強度鋼板のめっき処理について鋭意研究を重ねた結果、以下の知見を得た。   As a result of intensive studies on the plating treatment of high-strength steel sheets, the present inventors have obtained the following knowledge.

まず、耐水素脆性に優れるめっき鋼板を得るためには、めっき層内の成分、特に酸化物と炭化物の平均粒径が極めて重要であることを、本発明者らは見出した。この理由として、鋼板表層部に平均粒径10nm以下の炭化物と平均粒径50nm以上の酸化物が存在した場合、水素侵入のトラップサイトとして作用し、鋼板への拡散性水素濃度を抑制させることで、遅れ破壊の感受性を抑制させていると考えられる。さらに、プレス成型時の圧縮歪みを受けた時、めっき層内にクラックが発生し伝播していく。本発明では、微細な炭化物、酸化物を存在させることにより、クラック発生部で微細な炭化物、酸化物がピン止め効果を有する。このピン止め効果によりクラックの伝播がとまり、大きな剥離に至らず曲げ加工時のめっき密着性が向上すると推測される。その結果、塗装後耐食性が向上する。   First, the present inventors have found that in order to obtain a plated steel sheet having excellent hydrogen embrittlement resistance, the average particle size of components in the plating layer, particularly oxides and carbides, is extremely important. The reason for this is that when a carbide having an average particle diameter of 10 nm or less and an oxide having an average particle diameter of 50 nm or more exist in the surface layer portion of the steel sheet, it acts as a hydrogen intrusion trap site and suppresses the concentration of diffusible hydrogen into the steel sheet. It is thought that the sensitivity of delayed fracture is suppressed. Furthermore, cracks are generated and propagated in the plating layer when subjected to compressive strain during press molding. In the present invention, the presence of fine carbides and oxides allows the fine carbides and oxides to have a pinning effect at the crack generation portion. It is presumed that this pinning effect stops the propagation of cracks and does not lead to large peeling, but improves the plating adhesion during bending. As a result, the corrosion resistance after painting is improved.

次に、その製造方法について、熱延時に生成する内部酸化物を抑制させるためCTを制御するとともに、その後鋼板を焼鈍する際に加熱温度を規定することで鋼板表層部に存在する固溶Tiを炭化物として析出させることが重要であることを、本発明者らは見出した。また、焼鈍時にTi酸化物を安定的に析出させるため、加熱帯で鋼板表層を酸化させることにより得られる酸化物層を、均熱帯での還元焼鈍時にTiを内部酸化させる酸素の供給源として活用することが必須であることを、本発明者らは見いだした。また、均熱帯での還元焼鈍時にTi炭化物を安定的に析出させるため、炉内雰囲気中の水蒸気分圧(PH2O)と水素分圧(PH2)とを制御することが極めて重要であることを、本発明者らは見出した。その結果、これらの炭化物や酸化物は、溶融亜鉛めっき処理及び合金化処理時にめっき層に取り込まれてめっき層内に存在して、塗装後耐食性、めっき密着性、耐水素脆性を向上させる。Next, regarding the manufacturing method, while controlling the CT to suppress the internal oxide generated during hot rolling, the solid solution Ti present in the steel sheet surface layer portion is defined by prescribing the heating temperature when annealing the steel sheet thereafter. The present inventors have found that it is important to precipitate as carbide. In addition, in order to stably precipitate Ti oxide during annealing, the oxide layer obtained by oxidizing the steel sheet surface layer in the heating zone is used as a source of oxygen that internally oxidizes Ti during reductive annealing in the soaking zone. The inventors have found that this is essential. In addition, it is extremely important to control the water vapor partial pressure (P H2O ) and the hydrogen partial pressure (P H2 ) in the furnace atmosphere in order to stably precipitate Ti carbide during reductive annealing in the soaking zone. The present inventors have found. As a result, these carbides and oxides are taken into the plating layer during the hot dip galvanizing treatment and alloying treatment and are present in the plating layer, thereby improving post-coating corrosion resistance, plating adhesion, and hydrogen embrittlement resistance.

本発明は上記知見に基づくものであり、その特徴は以下の通りである。
[1]質量%で、C:0.02%以上0.30%以下、Si:0.01%以上2.5%以下、Mn:0.1%以上3.0%以下、P:0.003%以上0.08%以下、S:0.01%以下、Al:0.001%以上0.20%以下、Ti:0.03%以上0.40%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼板表面に、片面あたりのめっき付着量が20〜120g/mの亜鉛めっき層を有し、該めっき層内に平均粒径10nm以下の炭化物が1区画あたり5個以上、50個以下、平均粒径50nm以上の酸化物が1区画あたり5個以上、50個以下の割合で存在することを特徴とする合金化溶融亜鉛めっき鋼板。なお、前記1区画とは、めっき層厚さ(tμm)と、めっき層断面を厚さ方向と直交する方向に1μm間隔で区切ることで得られる面積(t×1(μm))である。
[2]前記炭化物はTiを含み、かつ、前記酸化物はTiO、MnO、MnO、SiO、Al、MnSiO、MnSiOから選ばれる1種以上の酸化物を含むことを特徴とする[1]に記載の高強度溶融亜鉛めっき鋼板。
[3]前記鋼板は、成分組成として、さらに、質量%で、Nb:0.001%以上0.2%以下、V:0.001%以上0.5%以下、Mo:0.01%以上0.5%以下、W:0.001%以上0.2%以下のうちの1種または2種以上を含有することを特徴とする[1]または[2]に記載の高強度溶融亜鉛めっき鋼板。
[4]前記鋼板は、成分組成として、さらに、質量%で、B:0.0005%以上0.005%以下を含有することを特徴とする[1]〜[3]のいずれか1項に記載の高強度溶融亜鉛めっき鋼板。
[5]前記鋼板が熱延鋼板であることを特徴とする[1]〜[4]のいずれか1項に記載の高強度溶融亜鉛めっき鋼板。
[6][1]、[3]、[4]のいずれかに記載の成分組成を有する鋼に熱間圧延を施し、仕上げ圧延終了後、冷却、巻取り処理を行い、次いで、連続焼鈍及び溶融亜鉛めっき処理を行うに際し、仕上げ圧延終了温度を850℃以上、巻取温度を540℃以下とし、連続焼鈍を以下の条件にて行うことを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。
(a)焼鈍炉の加熱帯の燃焼ガスの成分組成をH≧40vol%以上、CH≧20vol%、CO≧1vol%、残部CO、N、C(x≧2、y≧4)とし、加熱帯の炉温500℃以上1000℃以下で鋼板を520℃以上650℃以下まで加熱し、鋼板表層に厚さ6〜60nmの酸化物層を形成する酸化処理を行い、
(b)次いで、均熱帯雰囲気が水素5vol%以上50vol%以下を含み残部Nであり、かつ水蒸気分圧(PH2O)と水素分圧(PH2)が下記の式(1)を満足し、前記均熱帯での鋼板の到達温度を630℃以上780℃以下で還元焼鈍する。
10−3≦PH2O/PH2≦10−1 (1)
ただし、PH2Oは水蒸気分圧(Pa)、PH2は水素分圧(Pa)を示す。
[7]前記溶融めっき処理後、さらに450℃以上510℃以下の温度に鋼板を加熱して合金化処理を施し、400℃まで20℃/s以下で冷却し、めっき層中のFe含有率を7〜15%の範囲にすることを特徴とする[6]に記載の高強度溶融亜鉛めっき鋼板の製造方法。
The present invention is based on the above findings, and the features thereof are as follows.
[1] By mass%, C: 0.02% to 0.30%, Si: 0.01% to 2.5%, Mn: 0.1% to 3.0%, P: 0.00. 00% or more and 0.08% or less, S: 0.01% or less, Al: 0.001% or more and 0.20% or less, Ti: 0.03% or more and 0.40% or less, with the balance being Fe and A steel plate surface having a component composition consisting of inevitable impurities has a zinc plating layer with a plating adhesion amount of 20 to 120 g / m 2 on one side, and carbides having an average particle size of 10 nm or less per section in the plating layer 5. An alloyed hot-dip galvanized steel sheet characterized in that 5 or more and 50 or less oxides having an average particle diameter of 50 nm or more are present in a ratio of 5 or more and 50 or less per section. The one section is the plating layer thickness (t 1 μm) and the area (t 1 × 1 (μm 2 )) obtained by dividing the plating layer cross section at intervals of 1 μm in the direction orthogonal to the thickness direction. It is.
[2] The carbide includes Ti, and the oxide includes one or more oxides selected from TiO 2 , MnO, MnO 2 , SiO 2 , Al 2 O 3 , Mn 2 SiO 4 , and MnSiO 3. The high-strength hot-dip galvanized steel sheet according to [1].
[3] The steel sheet further has a component composition of mass%, Nb: 0.001% to 0.2%, V: 0.001% to 0.5%, Mo: 0.01% or more. The high-strength hot-dip galvanized coating according to [1] or [2], containing 0.5% or less, W: one or more of 0.001% or more and 0.2% or less steel sheet.
[4] In any one of [1] to [3], the steel sheet further contains B: 0.0005% or more and 0.005% or less as a component composition by mass%. The high-strength hot-dip galvanized steel sheet as described.
[5] The high-strength hot-dip galvanized steel sheet according to any one of [1] to [4], wherein the steel sheet is a hot-rolled steel sheet.
[6] The steel having the component composition according to any one of [1], [3], and [4] is hot-rolled, and after finishing rolling, cooling and winding are performed, and then continuous annealing and A method for producing a high-strength hot-dip galvanized steel sheet, characterized in that when performing hot-dip galvanizing treatment, the finish rolling finish temperature is 850 ° C. or higher, the coiling temperature is 540 ° C. or lower, and continuous annealing is performed under the following conditions.
(A) The composition of the combustion gas in the heating zone of the annealing furnace is H 2 ≧ 40 vol% or more, CH 4 ≧ 20 vol%, CO 2 ≧ 1 vol%, the balance CO, N 2 , C x H y (x ≧ 2, y ≧ 4), the steel plate is heated to 520 ° C. or higher and 650 ° C. or lower at a furnace temperature of 500 ° C. or higher and 1000 ° C. or lower, and an oxidation treatment is performed to form an oxide layer having a thickness of 6 to 60 nm on the steel plate surface layer.
(B) Then, soaking zone atmosphere is balance N 2 include: hydrogen 5 vol% or more 50 vol%, and water vapor partial pressure (P H2 O) and hydrogen partial pressure (P H2) satisfies the equation (1) below Then, reduction annealing is performed at a temperature reached from 630 ° C. to 780 ° C. in the soaking zone.
10 −3 ≦ P H2O / P H2 ≦ 10 −1 (1)
However, PH2O shows water vapor partial pressure (Pa), and PH2 shows hydrogen partial pressure (Pa).
[7] After the hot dipping treatment, the steel plate is further heated to a temperature of 450 ° C. or higher and 510 ° C. or lower to be alloyed, and cooled to 400 ° C. at a rate of 20 ° C./s or less. The method for producing a high-strength hot-dip galvanized steel sheet according to [6], characterized by being in the range of 7 to 15%.

なお、本発明において、高強度とは、引張強度TSが590MPa以上である。また、本発明の合金化溶融亜鉛めっき鋼板は、冷延鋼板、熱延鋼板のいずれも含み、特に熱延鋼板が伸びフランジ性、穴広げ性などの観点から好ましい。   In the present invention, the high strength means that the tensile strength TS is 590 MPa or more. The alloyed hot-dip galvanized steel sheet of the present invention includes both cold-rolled steel sheets and hot-rolled steel sheets, and hot-rolled steel sheets are particularly preferable from the viewpoints of stretch flangeability and hole-expandability.

本発明によれば、良好な加工性を確保しながら、曲げ加工部のめっき密着性及び伸びフランジ加工部の塗装後耐食性に優れ、さらに耐水素脆性に優れる高強度溶融亜鉛めっき鋼板が得られる。   According to the present invention, it is possible to obtain a high-strength hot-dip galvanized steel sheet that is excellent in plating adhesion at a bent portion and post-coating corrosion resistance at an elongated flange portion, and further excellent in hydrogen brittleness resistance while ensuring good workability.

以下、本発明について具体的に説明する。なお、以下の説明において、鋼成分組成の各元素の含有量の単位は「質量%」であり、以下、特に断らない限り単に「%」で示す。   Hereinafter, the present invention will be specifically described. In the following description, the unit of the content of each element of the steel component composition is “mass%”, and hereinafter, simply indicated by “%” unless otherwise specified.

以下、本発明を詳細に説明する。
(1)鋼板の成分組成
C:0.02%以上0.30%以下
Cは鋼板中に炭化物を析出させるために必要な元素であり、そのためには0.02%以上必要である。一方、0.30%を超えると溶接性が劣化するため、上限は0.30%とする。
Hereinafter, the present invention will be described in detail.
(1) Component composition C of steel sheet: 0.02% or more and 0.30% or less C is an element necessary for precipitating carbide in the steel sheet, and for that purpose, 0.02% or more is necessary. On the other hand, if it exceeds 0.30%, the weldability deteriorates, so the upper limit is made 0.30%.

Si:0.01%以上2.5%以下
Siは固溶強化元素として有効であり、強化効果が現れるためには0.01%以上含有させる必要がある。一方、2.5%を超えて多量に含有させると焼鈍過程においてSiの酸化物が鋼板表面に濃化し、不めっき欠陥発生やめっき密着性劣化の原因となるため、上限は2.5%とする。
Si: 0.01% or more and 2.5% or less Si is effective as a solid solution strengthening element. For the strengthening effect to appear, it is necessary to contain 0.01% or more. On the other hand, if the content exceeds 2.5%, Si oxide concentrates on the surface of the steel sheet during the annealing process, causing non-plating defects and plating adhesion deterioration, so the upper limit is 2.5%. To do.

Mn:0.1%以上3.0%以下
Mnは強度上昇のために添加し、強化効果が現れるためには0.1%以上含有させる必要がある。一方、3.0%を超えて含有させると焼鈍過程においてMnの酸化物が鋼板表面に濃化し、不めっき欠陥発生やめっき密着性劣化の原因となるため、上限は3.0%とする。
Mn: 0.1% or more and 3.0% or less Mn is added for increasing the strength, and it is necessary to contain 0.1% or more for the strengthening effect to appear. On the other hand, if the content exceeds 3.0%, the Mn oxide is concentrated on the surface of the steel sheet during the annealing process, causing non-plating defects and plating adhesion deterioration, so the upper limit is made 3.0%.

P:0.003%以上0.08%以下
Pは不可避的に含有される元素のひとつであり、0.003%未満とするためには、コストの増大が懸念されるため、0.003%以上とする。一方、Pが0.08%を超えて含有させると溶接性が劣化する。さらに、表面品質が劣化する。また、合金化処理時には合金化処理温度を上昇させないと所望の合金化度とすることができない。所望の合金化度とするために合金化処理温度を上昇させると、延性が劣化すると同時に合金化めっき皮膜の密着性が劣化する。Pの添加量が高すぎると、合金化温度が過剰に上昇する。以上より、所望の合金化度と、良好な延性と、合金化めっき皮膜の密着性とを両立させるため、0.08%以下とする。
P: 0.003% or more and 0.08% or less P is one of the elements inevitably contained, and in order to make it less than 0.003%, there is a concern about an increase in cost, so 0.003% That's it. On the other hand, when P exceeds 0.08%, weldability deteriorates. Furthermore, the surface quality deteriorates. In addition, a desired degree of alloying cannot be achieved unless the alloying treatment temperature is raised during the alloying treatment. When the alloying treatment temperature is raised to obtain a desired degree of alloying, the ductility deteriorates and at the same time the adhesion of the alloyed plating film deteriorates. If the amount of P added is too high, the alloying temperature rises excessively. From the above, in order to achieve a desired degree of alloying, good ductility, and adhesion of the alloyed plating film, the content is made 0.08% or less.

S:0.01%以下
Sは粒界に偏析する。もしくはMnSが多量に生成した場合、靭性を低下させる。以上より、0.01%以下とする必要がある。Sの含有量の下限は特に限定するものではなく、不純物程度であってもよい。
S: 0.01% or less S segregates at grain boundaries. Or when MnS produces | generates abundantly, toughness will be reduced. From the above, it is necessary to be 0.01% or less. The lower limit of the S content is not particularly limited, and may be about the impurity level.

Al:0.001%以上0.20%以下
Alは溶鋼の脱酸を目的に添加される。しかし、その含有量が0.001%未満の場合、その目的が達成されない。一方、0.20%を超えて含有させると、介在物が多量に発生し、鋼板の疵の原因となる。以上より、Alは0.001%以上0.20%以下とする。
Al: 0.001% to 0.20% Al is added for the purpose of deoxidizing molten steel. However, when the content is less than 0.001%, the object is not achieved. On the other hand, if the content exceeds 0.20%, a large amount of inclusions are generated, which causes wrinkling of the steel sheet. From the above, Al is made 0.001% or more and 0.20% or less.

Ti:0.03%以上0.40%以下
Tiは鋼板中に炭化物を析出させ強度を増加させるために必要な元素であり、コストの観点からも有効な元素である。しかしながら、添加量が0.03%未満では強度を増加させるために必要な析出物量が不十分であり、0.40%を超えるとその効果は飽和し、コストアップとなる。以上より、Tiは0.03%以上0.40%以下とする。
Ti: 0.03% or more and 0.40% or less Ti is an element necessary for increasing the strength by precipitating carbide in the steel sheet, and is also an effective element from the viewpoint of cost. However, if the addition amount is less than 0.03%, the amount of precipitates necessary for increasing the strength is insufficient, and if it exceeds 0.40%, the effect is saturated and the cost increases. Accordingly, Ti is set to 0.03% or more and 0.40% or less.

また、強度と加工性を制御するため、上記元素の他に以下の元素を添加してもよい。   In addition to the above elements, the following elements may be added to control the strength and workability.

Nb:0.001%以上0.2%以下、V:0.001%以上0.5%以下、Mo:0.01%以上0.5%以下、W:0.001%以上0.2%以下のうちの1種または2種以上
Nb、V、Mo、Wは鋼板中にTiを含む複合炭化物として析出し、微細な炭化物を安定的に析出させるために有効な元素であり、これらの元素のうちの1種または2種以上を添加する。しかしながら、添加量が規定の範囲未満では析出による強度増加効果が不十分であり、規定の範囲を超えるとその効果は飽和し、コストアップとなる。よって、含有する場合、Nbは0.001%以上0.2%以下、Vは0.001%以上0.5%以下、Moは0.01%以上0.5%以下、Wは、0.001%以上0.2%以下とする。
Nb: 0.001% to 0.2%, V: 0.001% to 0.5%, Mo: 0.01% to 0.5%, W: 0.001% to 0.2% One or more of the following, Nb, V, Mo, W are elements that are effective for precipitating fine carbides in a stable manner by precipitating as a composite carbide containing Ti in the steel sheet. 1 type (s) or 2 or more types are added. However, if the addition amount is less than the specified range, the effect of increasing the strength due to precipitation is insufficient, and if it exceeds the specified range, the effect is saturated and the cost is increased. Therefore, when contained, Nb is 0.001% to 0.2%, V is 0.001% to 0.5%, Mo is 0.01% to 0.5%, and W is 0.001%. 001% to 0.2%.

B:0.0005%以上0.005%以下
Bは焼き入れ性向上のために効果的な元素である。しかし、0.0005%未満では焼き入れ促進効果が得られにくい。一方、0.005%を超えて添加するとその効果は飽和し、コストアップとなる。よって、含有する場合、Bは0.0005%以上0.005%以下とする。
B: 0.0005% to 0.005% B is an effective element for improving the hardenability. However, if it is less than 0.0005%, it is difficult to obtain the quenching promoting effect. On the other hand, when it exceeds 0.005%, the effect is saturated and the cost is increased. Therefore, when B is contained, the content of B is 0.0005% or more and 0.005% or less.

残部はFeおよび不可避的不純物である。   The balance is Fe and inevitable impurities.

(2)めっき層内に存在する炭化物および酸化物
本発明の高強度溶融亜鉛めっき鋼板は、めっき層内に存在する炭化物の平均粒径が10nm以下、及び、酸化物の平均粒径が50nm以上であることを特徴とする。炭化物の平均粒径が10nm超えではクラック伝播抑制効果が少なく加工時のめっき密着性が劣化し、かつ水素トラップ効果が小さく耐水素脆性が劣化する。酸化物の平均粒径が50nm未満では水素トラップ効果が小さく耐水素脆性が劣化する。同時にクラックが発生することで加工部の塗装後耐食性が劣化する。炭化物は1区画あたり5個以上、50個以下の割合で存在する。1区画あたり5個未満では水素トラップ効果が小さく耐水素脆性が劣化する。1区画あたり50個を超えるとめっき皮膜の加工性が劣化してめっき密着性が低下する。
酸化物は1区画あたり5個以上、50個以下の割合で存在する。1区画あたり5個未満では水素トラップ効果が小さく耐水素脆性が劣化する。1区画あたり50個を超えるとめっき皮膜の加工性が劣化してめっき密着性が低下する。
なお、前記1区画とは、めっき断面の一定面積のことであり、めっき層厚さ(tμm)と、めっき層断面を厚さ方向と直交する方向に1μm間隔で区切ることで得られる面積(t×1(μm))である。
(2) Carbides and oxides present in the plating layer In the high-strength hot-dip galvanized steel sheet of the present invention, the average particle size of carbides present in the plating layer is 10 nm or less, and the average particle size of oxides is 50 nm or more. It is characterized by being. If the average particle size of the carbide exceeds 10 nm, the effect of suppressing crack propagation is small and the adhesion of plating during processing is deteriorated, and the hydrogen trap effect is small and the hydrogen embrittlement resistance is deteriorated. When the average particle size of the oxide is less than 50 nm, the hydrogen trap effect is small and the hydrogen embrittlement resistance deteriorates. At the same time, cracks occur and the corrosion resistance after painting of the processed parts deteriorates. The carbide is present at a rate of 5 or more and 50 or less per section. If it is less than 5 per section, the hydrogen trap effect is small and the hydrogen embrittlement resistance deteriorates. When it exceeds 50 per section, the workability of the plating film is deteriorated and the plating adhesion is lowered.
Oxides are present at a rate of 5 or more and 50 or less per section. If it is less than 5 per section, the hydrogen trap effect is small and the hydrogen embrittlement resistance deteriorates. When it exceeds 50 per section, the workability of the plating film is deteriorated and the plating adhesion is lowered.
In addition, said 1 division is a fixed area of a plating cross section, and is an area obtained by dividing a plating layer thickness (t 1 μm) and a plating layer cross section at a 1 μm interval in a direction perpendicular to the thickness direction. (T 1 × 1 (μm 2 )).

本発明において、炭化物はTiを含むことが好ましい。また、酸化物はTiをはじめSi、Mn、Al含有が効果的であり、具体的にはTiO、MnO、MnO、SiO、Al、MnSiO、MnSiOの中から選ばれる1種以上の酸化物であることが好ましい。これは、鋼中に添加された強化元素ができるだけ酸化物として析出することでめっき層直下の鋼板表層部を軟質化し、加工時の応力緩和を助長するからである。In the present invention, the carbide preferably contains Ti. In addition, it is effective that the oxide contains Ti, Si, Mn, and Al. Specifically, from among TiO 2 , MnO, MnO 2 , SiO 2 , Al 2 O 3 , Mn 2 SiO 4 , and MnSiO 3 One or more selected oxides are preferred. This is because the strengthening element added in the steel is precipitated as an oxide as much as possible to soften the surface layer portion of the steel plate immediately below the plating layer and promote stress relaxation during processing.

なお、めっき層内の炭化物、酸化物の組成は、以下の方法で確認することができる。例えば、集束イオンビーム加工装置(FIB)により、めっき層を含むように鋼板断面を薄片に加工した後、透過型電子顕微鏡(TEM)による観察と、エネルギー分散型X線検出器(EDX)による組成分析、電子線解析を行う方法が挙げられる。また、めっき層内の炭化物、酸化物の平均粒径の測定方法としては、上記観察方法での写真から、最大直径と最小直径とを測定し平均する方法を用いた。   In addition, the composition of the carbide | carbonized_material and oxide in a plating layer can be confirmed with the following method. For example, after processing a cross section of a steel sheet into a thin piece so as to include a plating layer with a focused ion beam processing apparatus (FIB), observation with a transmission electron microscope (TEM) and composition with an energy dispersive X-ray detector (EDX) Examples of methods include analysis and electron beam analysis. Moreover, as a measuring method of the average particle diameter of the carbide | carbonized_material and oxide in a plating layer, the method of measuring and averaging the maximum diameter and the minimum diameter from the photograph by the said observation method was used.

さらに、本発明の高強度溶融亜鉛めっき鋼板は、鋼板の表面に、片面あたりのめっき付着量が20〜120g/mの亜鉛めっき層を有することとする。20g/m未満では塗装後耐食性の確保が困難となり、120g/mを上回るとめっき密着性が低下する。Furthermore, the high-strength hot-dip galvanized steel sheet of the present invention has a galvanized layer having a plating adhesion amount of 20 to 120 g / m 2 on one surface of the steel sheet. If it is less than 20 g / m 2, it will be difficult to ensure corrosion resistance after coating, and if it exceeds 120 g / m 2 , plating adhesion will be reduced.

また、本発明の高強度溶融亜鉛めっき鋼板は、伸びフランジ性、穴広げ性の理由から熱延鋼板であることが好ましい。   The high-strength hot-dip galvanized steel sheet of the present invention is preferably a hot-rolled steel sheet for reasons of stretch flangeability and hole expandability.

(3)高強度溶融亜鉛めっき鋼板の製造方法
次に、本発明の高強度溶融亜鉛めっき鋼板の製造方法とその限定理由について説明する。
まず、熱間圧延条件について説明する。
(3) Manufacturing method of high-strength hot-dip galvanized steel sheet Next, the manufacturing method of the high-strength hot-dip galvanized steel sheet according to the present invention and the reason for limitation will be described.
First, hot rolling conditions will be described.

仕上げ圧延終了温度850℃以上
仕上げ圧延終了温度が850℃未満の場合、未再結晶で圧延が進行するために起こる歪みの累積量が増大し、圧延荷重の増加を招く。よって、仕上げ圧延終了温度は850℃以上とする。上限については特に限定しない。本発明において、1100℃以下が好ましい。
When the finish rolling finish temperature is 850 ° C. or more and the finish rolling finish temperature is less than 850 ° C., the cumulative amount of distortion that occurs due to the progress of rolling with non-recrystallization increases, leading to an increase in rolling load. Therefore, the finish rolling end temperature is set to 850 ° C. or higher. The upper limit is not particularly limited. In this invention, 1100 degrees C or less is preferable.

巻取温度540℃以下
巻取温度が540℃を超えると易酸化性元素による内部酸化物が形成され、その後の溶融亜鉛めっき処理、合金化処理時にZn−Fe合金化反応が過度に促進されることで、合金化ムラの発生による外観性の劣化、曲げ加工部のめっき密着性の低下、及び伸びフランジ部の塗装後耐食性劣化を招く。また、内部酸化が進行するため、炭化物生成に必要なTiが消費されてしまうために、Ti等の炭化物形成元素が内部酸化によって消費されTi欠乏層が形成する。したがって、十分なTi炭化物をめっき層内に存在させることが困難である。よって巻取温度は540℃以下とする。
When the coiling temperature exceeds 540 ° C, an internal oxide is formed by an easily oxidizable element, and the Zn-Fe alloying reaction is excessively promoted during subsequent hot dip galvanizing and alloying processes. As a result, the appearance deterioration due to the occurrence of alloying unevenness, the plating adhesion of the bent portion is lowered, and the corrosion resistance after painting of the stretch flange portion is caused. Further, since internal oxidation proceeds, Ti necessary for carbide generation is consumed, so that a carbide forming element such as Ti is consumed by internal oxidation, and a Ti-deficient layer is formed. Therefore, it is difficult for sufficient Ti carbide to be present in the plating layer. Therefore, the coiling temperature is 540 ° C. or lower.

次に、連続焼鈍及び溶融亜鉛めっき処理について説明する。   Next, continuous annealing and hot dip galvanizing will be described.

焼鈍炉の加熱帯のガスの成分組成がH≧40vol%以上、CH≧20vol%、CO≧1vol%、残部CO、N、C(x≧2、y≧4)
、CH、COが少ないと酸化還元後の表面活性化効果が少なく、還元焼鈍時のめっき層直下に形成された炭化物、酸化物がめっき層に取り込まれにくい。そのため、本発明で最も重要なめっき層内への炭化物および酸化物供給効果が得られなくなる。上限については特に問わない。残部ガスについてはこれらのガスがごく微量でも混入すれば同様な効果が得られる。燃焼ガスは天然ガスや工業用メタン、エタン、プロパンガスなどに水素ガスを混入して形成しても良いし、所謂水性ガス反応で生成したコークスガスを使用しても構わない。但し原料となる石炭を産出する山元やコークス炉の稼働率によりコークスガスの燃焼カロリーが変化する。したがって、水素ガス等の添加による成分調整が必要になる場合があるため、かならずしもコークスガスがそのまま使用出来るわけではない。
The component composition of the gas in the heating zone of the annealing furnace is H 2 ≧ 40 vol% or more, CH 4 ≧ 20 vol%, CO 2 ≧ 1 vol%, the balance CO, N 2 , C x H y (x ≧ 2, y ≧ 4)
If the amount of H 2 , CH 4 , and CO 2 is small, the surface activation effect after redox is small, and carbides and oxides formed immediately below the plating layer during the reduction annealing are difficult to be taken into the plating layer. Therefore, the carbide and oxide supply effect into the plating layer which is the most important in the present invention cannot be obtained. There is no particular limitation on the upper limit. For the remaining gas, the same effect can be obtained if these gases are mixed even in a very small amount. The combustion gas may be formed by mixing hydrogen gas into natural gas, industrial methane, ethane, propane gas, or the like, or coke gas generated by so-called water gas reaction may be used. However, the calorie of the coke gas changes depending on the operating rate of the mountain base and the coke oven that produce the raw material coal. Therefore, since it may be necessary to adjust components by adding hydrogen gas or the like, coke gas cannot always be used as it is.

加熱帯の炉温500℃以上1000℃以下
炉温が500℃未満だと鋼板表面が十分に酸化せずに酸化ムラが発生するため、めっき層内への炭化物酸化物取り込み効果が均一に進行しない。1000℃超えだと鋼板表面が過剰に酸化し、めっき層と鋼板の界面が荒れて加工時のめっき密着性が劣化する。
Furnace temperature in the heating zone of 500 ° C or higher and 1000 ° C or lower If the furnace temperature is lower than 500 ° C, the steel plate surface is not sufficiently oxidized and uneven oxidation occurs, so the effect of incorporating carbide oxide into the plating layer does not progress uniformly. . If it exceeds 1000 ° C., the surface of the steel sheet is excessively oxidized, the interface between the plating layer and the steel sheet is roughened, and the plating adhesion during processing deteriorates.

加熱帯での鋼板の加熱温度が520℃以上650℃以下
520℃未満だと鋼板表面が十分に酸化しないために、めっき層内への炭化物や酸化物の取り込み効果が少ない。650℃超えだと過剰に酸化し、めっき層と鋼板との界面が荒れて加工時のめっき密着性が劣化する。
If the heating temperature of the steel sheet in the heating zone is 520 ° C. or more and 650 ° C. or less and less than 520 ° C., the steel plate surface is not sufficiently oxidized, so that the effect of incorporating carbides and oxides into the plating layer is small. If it exceeds 650 ° C., it will be excessively oxidized, and the interface between the plating layer and the steel sheet will be roughened and the plating adhesion during processing will deteriorate.

鋼板表層に厚さ6〜60nmの酸化物層を形成する酸化処理
本発明において、6nm未満だと鋼板表面の酸化量が十分でないため、めっき層内への炭化物および酸化物取り込み効果が少ない。60nm超えだと過剰に酸化し、めっき層と鋼板の界面が荒れて加工時のめっき密着性が劣化する。なお、本発明における酸化物層とは、Fe酸化物層を主体とし、Tiが実質的に含まれない酸化物層である(Tiが0.001%以下の酸化物層をいう)。鋼板の加熱温度が650℃超えになるとTiが酸化物として酸化鉄中に取り込まれる。これは還元焼鈍時に界面に残存してめっき層と鋼板との界面を荒らすため、加工時のめっき密着性が劣化するため好ましくない。
Oxidation treatment for forming an oxide layer having a thickness of 6 to 60 nm on the surface layer of the steel sheet In the present invention, if the thickness is less than 6 nm, the oxidation amount on the surface of the steel sheet is not sufficient, so that the effect of incorporating carbides and oxides into the plating layer is small. If it exceeds 60 nm, excessive oxidation occurs, the interface between the plating layer and the steel sheet becomes rough, and the plating adhesion during processing deteriorates. Note that the oxide layer in the present invention is an oxide layer mainly composed of an Fe oxide layer and substantially free of Ti (refers to an oxide layer having Ti of 0.001% or less). When the heating temperature of the steel plate exceeds 650 ° C., Ti is taken into the iron oxide as an oxide. This is not preferable because it remains at the interface during the reduction annealing and roughens the interface between the plating layer and the steel sheet, and the plating adhesion during processing deteriorates.

均熱帯雰囲気が、水素5vol%以上50vol%以下を含み残部Nであり、かつ水蒸気分圧(PH2O)と水素分圧(PH2)が式(1)を満足する。
が5vol%未満だと鋼板表面が十分に還元しないため界面に酸化物が残存し塗装後耐食性が劣化する。50vol%超えは鋼板が多量の水素を吸蔵するため、めっき皮膜のブリスターなどが発生し表面品質を劣化させる。残部はNとする。かつ、水蒸気分圧(PH2O)と水素分圧(PH2)比が下記の式(1)を満足することを必要とする。
10−3≦PH2O/PH2≦10−1 (1)
H2O/PH2が10−3(0.0010)未満だとTiが窒化して炭化物にならない。一方、PH2O/PH2が10−1(0.1000)超えだとTiが焼鈍時に内部酸化して消費され炭化物が形成できなくなる。
Soaking zone atmosphere, a balance N 2 include: hydrogen 5 vol% or more 50 vol%, and water vapor partial pressure (P H2 O) and hydrogen partial pressure (P H2) satisfies the equation (1).
If H 2 is less than 5 vol%, the steel sheet surface is not sufficiently reduced, so that oxide remains at the interface and the corrosion resistance after coating deteriorates. If it exceeds 50 vol%, the steel sheet occludes a large amount of hydrogen, so that blisters of the plating film are generated and the surface quality is deteriorated. The balance and N 2. In addition, the water vapor partial pressure (P H2O ) and hydrogen partial pressure (P H2 ) ratio needs to satisfy the following formula (1).
10 −3 ≦ P H2O / P H2 ≦ 10 −1 (1)
P H2O / P H2 is the less than 10 -3 (0.0010) Ti is not nitrided carbide. On the other hand, if P H2O / P H2 exceeds 10 −1 (0.1000), Ti is internally oxidized and consumed during annealing, and carbide cannot be formed.

還元焼鈍時の均熱帯での鋼板の到達温度が630℃以上780℃以下
630℃未満だと表面が活性化せずにめっき層内への炭化物および酸化物導入効果が得られないため好ましくない。780℃超えだとTiが選択的に外部酸化して消費され炭化物が形成出来なくなる。HO組成の制御は、焼鈍炉外にバブリング装置を設置し、所定流量のNガスを室温に保持した水槽にくぐらせて予め加湿しないNガスと混合し炉内に導入することで実施する。なお、このとき焼鈍炉の下部からガスを流入させる必要がある。これはHOの比重が軽いため、炉内上部にHOが滞留するためである。ここで炉体下部とは、炉体高さ全体に対して1/10の高さまでを示す。
If the ultimate temperature of the steel sheet in the soaking zone during reduction annealing is not less than 630 ° C. and not more than 780 ° C. and less than 630 ° C., the surface is not activated and the effect of introducing carbides and oxides into the plating layer is not preferable. If it exceeds 780 ° C, Ti is selectively oxidized externally and consumed, and carbide cannot be formed. Control of H 2 O composition is performed by installing a bubbling device outside the annealing furnace, passing N 2 gas at a predetermined flow rate through a water tank maintained at room temperature, mixing it with N 2 gas not previously humidified, and introducing it into the furnace. carry out. At this time, it is necessary to flow gas from the lower part of the annealing furnace. This is because H 2 O stays in the upper part of the furnace because the specific gravity of H 2 O is light. Here, the furnace body lower part indicates a height of 1/10 of the entire furnace body height.

露点からのHOとH分圧との測定方法は特に限定しない。例えば、所定量のガスをサンプリングし、それをDew Cupなどの露点計測装置により露点を測定し、HO分圧を求める。同様に、市販のH分圧計によりH分圧を測定する。または、雰囲気内の圧力を測定すれば、濃度比からHO、Hの分圧が算出される。Measurement method of H 2 O and H 2 partial pressure from the dew point are not particularly limited. For example, a predetermined amount of gas is sampled, and the dew point is measured by using a dew point measuring device such as Dew Cup to determine the H 2 O partial pressure. Similarly, the H 2 partial pressure is measured with a commercially available H 2 partial pressure gauge. Alternatively, if the pressure in the atmosphere is measured, the partial pressures of H 2 O and H 2 are calculated from the concentration ratio.

また、本発明の溶融亜鉛めっき鋼板は、溶融めっき処理後、合金化処理を施し合金化溶融亜鉛めっき鋼板とすることができる。この場合、450℃以上510℃以下の温度に鋼板を加熱して合金化処理を施し、400℃まで20℃/s以下で冷却する。こうして得られるめっき層内のFe含有率は7〜15%となる。Fe含有率が7%未満では合金化ムラの発生により均一な表面外観が得られないばかりでなく、Zn−Fe合金化反応が不十分なため、めっき表層に軟質なζ相が厚く生成し、曲げ加工時にめっき層が燐片状に剥離するフレーキングの発生を招く。一方、15%を超えるとZn−Fe合金化反応が過剰に進行し、めっき層と鋼板の界面付近に脆いΓ相が厚く生成し、めっき密着性が劣化する。
合金化温度は450℃未満だと合金化反応が十分に進行しない。510℃超えだとΓ相が厚く形成して加工部のめっき密着性を劣化させる。合金化後は400℃まで20℃/s以下で冷却する。冷却速度が遅いとΓ相が厚く生成し、めっき密着性が劣化する。
Moreover, the hot dip galvanized steel sheet of the present invention can be made into an alloyed hot dip galvanized steel sheet by subjecting it to an alloying treatment after the hot dip plating process. In this case, the steel sheet is heated to a temperature of 450 ° C. or more and 510 ° C. or less to be alloyed, and cooled to 400 ° C. at 20 ° C./s or less. The Fe content in the plating layer thus obtained is 7 to 15%. When the Fe content is less than 7%, not only a uniform surface appearance cannot be obtained due to the occurrence of unevenness in alloying, but also the Zn-Fe alloying reaction is insufficient, so a soft ζ phase is generated thick on the plating surface layer, The flaking that causes the plating layer to flake off during bending is caused. On the other hand, if it exceeds 15%, the Zn—Fe alloying reaction proceeds excessively, a brittle Γ phase is formed in the vicinity of the interface between the plating layer and the steel sheet, and the plating adhesion deteriorates.
If the alloying temperature is less than 450 ° C., the alloying reaction does not proceed sufficiently. If it exceeds 510 ° C., the Γ phase is formed thick and the plating adhesion of the processed part is deteriorated. After alloying, it is cooled to 400 ° C. at 20 ° C./s or less. If the cooling rate is slow, the Γ phase is formed thick and the plating adhesion deteriorates.

表1に示す成分組成を有するスラブを1250℃で加熱した後、表2に示す条件で熱間圧延を行い、さらに酸洗による黒皮スケール除去を施し、厚さ2.3mmの熱延鋼板とした。   After heating the slab having the composition shown in Table 1 at 1250 ° C., hot rolling is performed under the conditions shown in Table 2, and further black scale removal is performed by pickling, and a hot-rolled steel sheet having a thickness of 2.3 mm is obtained. did.

次いで、CGLラインにて連続焼鈍処理、溶融亜鉛めっき処理を行った。CGLでは、加熱帯で所定の成分に組成を調整したコークスガスを燃焼して酸化処理を実施し、その後均熱帯で炉内雰囲気、水蒸気分圧、水素分圧、及び鋼板最高到達温度を表2に示す条件にて制御して鋼板に還元処理を施した。なお、雰囲気中の露点の制御については、Nガスライン中に設置した水タンクを加熱して、加湿したNガスが流れる配管を予め別途設置し、加湿したNガス中にHガスを導入して混合し、これを炉内へ導入することで雰囲気ガスの露点を制御した。また、雰囲気中のH濃度の制御は、Nガス中へ導入するHガス量をガスバルブで調整することで行った。Next, continuous annealing treatment and hot dip galvanizing treatment were performed on the CGL line. In CGL, coke gas whose composition is adjusted to a predetermined component in the heating zone is burned and oxidized, and then the furnace atmosphere, water vapor partial pressure, hydrogen partial pressure, and maximum steel plate temperature in the soaking zone are shown in Table 2. The steel sheet was subjected to reduction treatment under the conditions shown in FIG. Note that the control of the dew point in the atmosphere, N 2 by heating water tank installed in the gas line, wet N 2 gas flows in advance separately installed piping was, wet N H 2 gas into two gas Were mixed and introduced into the furnace to control the dew point of the atmospheric gas. The H 2 concentration in the atmosphere was controlled by adjusting the amount of H 2 gas introduced into the N 2 gas with a gas valve.

その後、浴温460℃のAl含有Zn浴に浸漬し、溶融亜鉛めっき処理を施した。このときのめっき付着量はガスワイピングにより片面あたり45g/m(めっき層厚さt:6μm)、70g/m(めっき層厚さt:10μm)、140g/m(めっき層厚さt:20μm)、に調節した。合金化溶融亜鉛めっき鋼板については溶融亜鉛めっき処理後、合金化処理を施した。Thereafter, it was immersed in an Al-containing Zn bath having a bath temperature of 460 ° C. and subjected to hot dip galvanizing treatment. The plating adhesion amount at this time is 45 g / m 2 (plating layer thickness t 1 : 6 μm), 70 g / m 2 (plating layer thickness t 1 : 10 μm), 140 g / m 2 (plating layer thickness) by gas wiping. (T 1 : 20 μm). The alloyed hot dip galvanized steel sheet was subjected to an alloying treatment after the hot dip galvanizing treatment.

Figure 2013157222
Figure 2013157222

以上により得られた溶融亜鉛めっき鋼板(GI)、及び合金化溶融亜鉛めっき鋼板(GA)について、外観性(めっき表面外観)、加工性、曲げ加工部のめっき密着性、耐水素脆性、伸びフランジ加工部の塗装後耐食性を調査した。測定方法及び評価基準を以下に示す。また、めっき層内の炭化物および酸化物の大きさと組成とは、FIB加工しためっき薄膜サンプルをTEM−EDX、EELSで観察分析することで測定した。また、加熱後の鋼板表層については、X線回折法で酸化物種を同定して分析した。   About the hot-dip galvanized steel sheet (GI) and alloyed hot-dip galvanized steel sheet (GA) obtained as described above, appearance (plated surface appearance), workability, plating adhesion of bent parts, hydrogen embrittlement resistance, stretch flange The corrosion resistance after painting of the processed part was investigated. The measurement method and evaluation criteria are shown below. The size and composition of carbides and oxides in the plating layer were measured by observing and analyzing the FIB-processed plated thin film sample with TEM-EDX and EELS. Moreover, about the steel plate surface layer after a heating, the oxide seed | species was identified and analyzed by the X ray diffraction method.

<外観性>
外観性は、不めっきや合金化ムラなどのめっき表面外観不良がない場合は外観良好(○)、ある場合は外観不良(×)と判定した。
<Appearance>
Appearance was determined as good appearance (◯) when there was no plating surface appearance defect such as non-plating or alloying unevenness, and when it was present, it was judged as poor appearance (×).

<加工性>
試料から圧延方向に対して90°方向にJIS5号引張試験片を採取し、JIS Z 2241の規定に準拠してクロスヘッド速度10mm/min一定で引張試験を行い、引張り強度(TS(MPa))と伸び(El(%))を測定し、TS×El≧15000のものを良好、TS×El<15000のものを不良とした。
また、130mm角に切り出した鋼板の中央に10mmφのポンチによりクリアランス12.5%で打ち抜いた穴を有する試験片を準備し、60°円錐ポンチにより打ち抜き穴のバリ側の反対方向から押し上げ、割れが鋼板を貫通した時点での穴径d(mm)を測定し、穴拡げ率λを次式より算出した。
λ(%)=[(d−10)/10]×100
<曲げ加工部のめっき密着性>
合金化処理を施さない溶融亜鉛めっき鋼板のめっき密着性は、鋼板を180°に曲げた後、曲げ加工部の外側をテープ剥離し、めっき層の剥離有無を目視判定し以下により評価した。
○:めっき層の剥離なし
×:めっき層が剥離
また、合金化溶融亜鉛めっき鋼板のめっき密着性は、以下に示すパウダリング試験により評価した。
めっき鋼板に粘着テープを貼り、テープ貼り付け面を内側にして曲げ半径5mmで90°曲げ戻しを行い、剥がしたテープを蛍光X線にて分析した。このときの単位長さ当たりのZnカウント数をめっき剥離量として求めた。耐パウダリング性は、先に述べたパウダリング試験で求めためっき剥離量を下記の基準に照らしてランク1のものを良好(◎)、2のものを概ね良好(○)、3のものを不良(×)として評価した。◎、○が合格である。
めっき剥離量:ランク
0−3000未満 :1(良好(◎))
3000以上−6000未満 :2(良好(○))
6000以上:3(不良(×))
<耐水素脆性>
150mm×30mmの短冊試験片を曲げ半径5mmで曲げ加工し、表面に耐水性の歪みゲージを取り付け、0.5mol/Lの硫酸中に浸漬し、この試験片に電流密度0.1mA/cmで通電することで電解を行い、試験片に水素を進入させ、通電2時間後における割れの発生を下記基準で評価した。
良好(○):割れ発生なし
不良(×):割れ発生
<塗装後耐食性>
130mm角に切り出した鋼板の中央に10mmφのポンチによりクリアランス12.5%で打ち抜いた穴を有する試験片を準備し、60°円錐ポンチにより打ち抜き穴のバリ側の反対方向から押し上げ、穴拡げ加工を施した。このとき、穴拡げ率が割れの発生する80%の値となるまで押し上げを行った。このようにして加工した試験片について、化成処理、電着塗装を実施し、JIS Z 2371(2000年)に基づく塩水噴霧試験を10日間行い、加工部における膨れ有無を評価した。
良好(○):膨れ無し
不良(×):膨れ有り
以上により得られた結果を、製造条件と併せて表2−1、表2−2、表3−1、表3−2に示す。
<Processability>
A JIS No. 5 tensile test piece is taken from the sample in the direction of 90 ° with respect to the rolling direction, a tensile test is performed at a constant crosshead speed of 10 mm / min in accordance with the provisions of JIS Z 2241, and the tensile strength (TS (MPa)). Elongation (El (%)) was measured, and TS × El ≧ 15000 was judged good, and TS × El <15000 was judged bad.
In addition, a test piece having a hole punched out with a clearance of 12.5% by a punch of 10 mmφ at the center of a steel plate cut into a 130 mm square is pushed up by a 60 ° conical punch from the opposite direction on the burr side of the punched hole, and cracks are generated. The hole diameter d (mm) at the time of penetrating the steel plate was measured, and the hole expansion rate λ was calculated from the following equation.
λ (%) = [(d−10) / 10] × 100
<Plating adhesion of bent part>
The plating adhesion of the hot dip galvanized steel sheet not subjected to the alloying treatment was evaluated by the following evaluation after the steel sheet was bent at 180 °, the outside of the bent portion was peeled off with tape, the presence or absence of peeling of the plated layer was visually determined.
○: Plating layer is not peeled ×: Plating layer is peeled Also, the plating adhesion of the galvannealed steel sheet was evaluated by the following powdering test.
An adhesive tape was affixed to the plated steel sheet, the tape was applied to the inside, and the tape was bent back 90 ° with a bending radius of 5 mm, and the peeled tape was analyzed with fluorescent X-rays. The Zn count number per unit length at this time was determined as the amount of plating peeling. In terms of anti-powdering property, the amount of plating peeling obtained in the above-mentioned powdering test is good (◎) for rank 1 in light of the following criteria (◎), 2 is generally good (○), and 3 Evaluated as defective (x). ◎ and ○ are acceptable.
Plating peeling amount: rank 0 to less than 3000: 1 (good (◎))
3000 or more and less than −6000: 2 (good (◯))
6000 or more: 3 (defect (x))
<Hydrogen embrittlement resistance>
A strip test piece of 150 mm × 30 mm is bent at a bending radius of 5 mm, a water-resistant strain gauge is attached to the surface, and immersed in 0.5 mol / L sulfuric acid. A current density of 0.1 mA / cm 2 is applied to the test piece. The electrolysis was performed by energizing the test piece, hydrogen was allowed to enter the test piece, and the occurrence of cracks after 2 hours of energization was evaluated according to the following criteria.
Good (○): No cracking defect (×): Cracking <corrosion resistance after painting>
Prepare a test piece with a hole punched at a clearance of 12.5% with a 10mmφ punch at the center of a steel plate cut into a 130mm square, and push it up from the opposite side of the burr side of the punched hole with a 60 ° conical punch to expand the hole. gave. At this time, it was pushed up until the hole expansion rate reached 80% at which cracking occurred. The test piece thus processed was subjected to chemical conversion treatment and electrodeposition coating, and a salt spray test based on JIS Z 2371 (2000) was conducted for 10 days to evaluate the presence or absence of swelling in the processed part.
Good (O): No swelling failure (x): Swelling The results obtained above are shown in Table 2-1, Table 2-2, Table 3-1, and Table 3-2 together with the manufacturing conditions.

Figure 2013157222
Figure 2013157222

Figure 2013157222
Figure 2013157222

Figure 2013157222
Figure 2013157222

Figure 2013157222
Figure 2013157222

表2−1、表2−2、表3−1、表3−2より、本発明例は、外観性、加工性、曲げ加工部のめっき密着性、耐水素脆性及び伸びフランジ加工部の塗装後耐食性が全て良好(○)である。一方、本発明の範囲を満たさない比較例は、いずれかの評価が低い。   From Table 2-1, Table 2-2, Table 3-1, and Table 3-2, the examples of the present invention are the appearance, workability, plating adhesion of the bent portion, hydrogen embrittlement resistance, and coating of the stretch flange processed portion. Good post-corrosion resistance (◯). On the other hand, the comparative example which does not satisfy the scope of the present invention has a low evaluation.

Figure 2013157222
Figure 2013157222

Figure 2013157222
Figure 2013157222

Figure 2013157222
Figure 2013157222

Figure 2013157222
Figure 2013157222

Claims (7)

質量%で、C:0.02%以上0.30%以下、Si:0.01%以上2.5%以下、Mn:0.1%以上3.0%以下、P:0.003%以上0.08%以下、S:0.01%以下、Al:0.001%以上0.20%以下、Ti:0.03%以上0.40%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼板表面に、片面あたりのめっき付着量が20〜120g/mの亜鉛めっき層を有し、該めっき層内に平均粒径10nm以下の炭化物が1区画あたり5個以上、50個以下、平均粒径50nm以上の酸化物が1区画あたり5個以上、50個以下の割合で存在することを特徴とする合金化溶融亜鉛めっき鋼板。なお、前記1区画とは、めっき層厚さ(tμm)と、めっき層断面を厚さ方向と直交する方向に1μm間隔で区切ることで得られる面積(t×1(μm))である。In mass%, C: 0.02% to 0.30%, Si: 0.01% to 2.5%, Mn: 0.1% to 3.0%, P: 0.003% or more 0.08% or less, S: 0.01% or less, Al: 0.001% or more and 0.20% or less, Ti: 0.03% or more and 0.40% or less, with the balance being Fe and inevitable impurities On the surface of the steel sheet having a component composition consisting of: a zinc plating layer having a plating adhesion amount of 20 to 120 g / m 2 per one surface, and 5 or more carbides per partition with an average particle size of 10 nm or less in the plating layer An alloyed hot-dip galvanized steel sheet, wherein 50 or less oxides having an average particle diameter of 50 nm or more are present in a proportion of 5 or more and 50 or less per section. The one section is the plating layer thickness (t 1 μm) and the area (t 1 × 1 (μm 2 )) obtained by dividing the plating layer cross section at intervals of 1 μm in the direction orthogonal to the thickness direction. It is. 前記炭化物はTiを含み、かつ、前記酸化物はTiO、MnO、MnO、SiO、Al、MnSiO、MnSiOから選ばれる1種以上の酸化物を含むことを特徴とする請求項1に記載の高強度溶融亜鉛めっき鋼板。The carbide includes Ti, and the oxide includes one or more oxides selected from TiO 2 , MnO, MnO 2 , SiO 2 , Al 2 O 3 , Mn 2 SiO 4 , and MnSiO 3. The high-strength hot-dip galvanized steel sheet according to claim 1. 前記鋼板は、成分組成として、さらに、質量%で、Nb:0.001%以上0.2%以下、V:0.001%以上0.5%以下、Mo:0.01%以上0.5%以下、W:0.001%以上0.2%以下のうちの1種または2種以上を含有することを特徴とする請求項1または2に記載の高強度溶融亜鉛めっき鋼板。   The steel sheet further has a component composition of mass%, Nb: 0.001% to 0.2%, V: 0.001% to 0.5%, Mo: 0.01% to 0.5%. % Or less, W: 1 type or 2 types or more of 0.001% or more and 0.2% or less are contained, The high intensity | strength hot-dip galvanized steel sheet of Claim 1 or 2 characterized by the above-mentioned. 前記鋼板は、成分組成として、さらに、質量%で、B:0.0005%以上0.005%以下を含有することを特徴とする請求項1〜3のいずれか1項に記載の高強度溶融亜鉛めっき鋼板。   The high-strength melt according to any one of claims 1 to 3, wherein the steel sheet further contains B: 0.0005% or more and 0.005% or less as a component composition by mass%. Galvanized steel sheet. 前記鋼板が熱延鋼板であることを特徴とする請求項1〜4のいずれか1項に記載の高強度溶融亜鉛めっき鋼板。   The high-strength hot-dip galvanized steel sheet according to any one of claims 1 to 4, wherein the steel sheet is a hot-rolled steel sheet. 請求項1、3、4のいずれかに記載の成分組成を有する鋼に熱間圧延を施し、仕上げ圧延終了後、冷却、巻取り処理を行い、次いで、連続焼鈍及び溶融亜鉛めっき処理を行うに際し、仕上げ圧延終了温度を850℃以上、巻取温度を540℃以下とし、前記連続焼鈍を以下の条件にて行うことを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。
(a)焼鈍炉の加熱帯のガスの成分組成をH≧40vol%以上、CH≧20vol%、CO≧1vol%、残部CO、N、C(x≧2、y≧4)とし、加熱帯の炉温500℃以上1000℃以下で鋼板を520℃以上650℃以下まで加熱し、鋼板表層に厚さ6〜60nmの酸化物層を形成する酸化処理を行い、
(b)次いで、均熱帯雰囲気が水素5vol%以上50vol%以下を含み残部Nであり、かつ水蒸気分圧(PH2O)と水素分圧(PH2)が下記の式(1)を満足し、前記均熱帯での鋼板の到達温度を630℃以上780℃以下として還元焼鈍する。
10−3≦PH2O/PH2≦10−1 (1)
ただし、PH2Oは水蒸気分圧(Pa)、PH2は水素分圧(Pa)を示す。
When hot rolling is performed on the steel having the component composition according to any one of claims 1, 3, and 4, and after finishing rolling, cooling and winding are performed, and then continuous annealing and hot dip galvanizing are performed. A method for producing a high-strength hot-dip galvanized steel sheet, characterized in that the finish rolling finish temperature is 850 ° C. or higher, the coiling temperature is 540 ° C. or lower, and the continuous annealing is performed under the following conditions.
(A) The composition of the gas in the heating zone of the annealing furnace is H 2 ≧ 40 vol% or more, CH 4 ≧ 20 vol%, CO 2 ≧ 1 vol%, the balance CO, N 2 , C x H y (x ≧ 2, y ≧ 4), heating the steel plate to 520 ° C. or more and 650 ° C. or less at a furnace temperature of 500 ° C. or more and 1000 ° C. or less in the heating zone, and performing an oxidation treatment to form an oxide layer having a thickness of 6 to 60 nm on the steel plate surface layer,
(B) Then, soaking zone atmosphere is balance N 2 include: hydrogen 5 vol% or more 50 vol%, and water vapor partial pressure (P H2 O) and hydrogen partial pressure (P H2) satisfies the equation (1) below Then, reduction annealing is performed by setting the reached temperature of the steel plate in the soaking zone to 630 ° C. or higher and 780 ° C. or lower.
10 −3 ≦ P H2O / P H2 ≦ 10 −1 (1)
However, PH2O shows water vapor partial pressure (Pa), and PH2 shows hydrogen partial pressure (Pa).
前記溶融めっき処理後、さらに450℃以上510℃以下の温度に鋼板を加熱して合金化処理を施し、400℃まで20℃/s以下で冷却し、めっき層中のFe含有率を7〜15%の範囲にすることを特徴とする請求項6に記載の高強度溶融亜鉛めっき鋼板の製造方法。   After the hot dipping treatment, the steel sheet is further heated to a temperature of 450 ° C. or higher and 510 ° C. or lower to be alloyed, cooled to 400 ° C. at 20 ° C./s or lower, and the Fe content in the plating layer is 7-15. %. The method for producing a high-strength hot-dip galvanized steel sheet according to claim 6, wherein
JP2013539068A 2012-04-18 2013-04-09 High-strength hot-dip galvanized steel sheet and manufacturing method thereof Active JP5630588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013539068A JP5630588B2 (en) 2012-04-18 2013-04-09 High-strength hot-dip galvanized steel sheet and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012094320 2012-04-18
JP2012094320 2012-04-18
JP2013539068A JP5630588B2 (en) 2012-04-18 2013-04-09 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
PCT/JP2013/002420 WO2013157222A1 (en) 2012-04-18 2013-04-09 High-strength hot-dip galvanized steel sheet and process for producing same

Publications (2)

Publication Number Publication Date
JP5630588B2 JP5630588B2 (en) 2014-11-26
JPWO2013157222A1 true JPWO2013157222A1 (en) 2015-12-21

Family

ID=49383195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013539068A Active JP5630588B2 (en) 2012-04-18 2013-04-09 High-strength hot-dip galvanized steel sheet and manufacturing method thereof

Country Status (4)

Country Link
JP (1) JP5630588B2 (en)
KR (1) KR101657866B1 (en)
CN (1) CN104245999B (en)
WO (1) WO2013157222A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5842942B2 (en) * 2014-02-03 2016-01-13 Jfeスチール株式会社 Alloyed hot-dip galvanized steel sheet with excellent plating adhesion and method for producing the same
JP6137002B2 (en) * 2014-03-17 2017-05-31 Jfeスチール株式会社 Method for producing hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet, hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
WO2016152135A1 (en) * 2015-03-25 2016-09-29 Jfeスチール株式会社 High-strength steel sheet and method for manufacturing same
CN105331884A (en) * 2015-09-30 2016-02-17 唐山钢铁集团有限责任公司 Production method for low-temperature-impact-resistant hot-radical structural level galvanized steel strip
JP6164280B2 (en) * 2015-12-22 2017-07-19 Jfeスチール株式会社 Mn-containing alloyed hot-dip galvanized steel sheet excellent in surface appearance and bendability and method for producing the same
JP6072952B1 (en) * 2016-03-01 2017-02-01 日新製鋼株式会社 Method for producing black-plated steel sheet, apparatus for producing black-plated steel sheet, and system for producing black-plated steel sheet
KR101899688B1 (en) * 2016-12-23 2018-09-17 주식회사 포스코 High strength hot-rolled steel sheet having excellent continuously producing property, high strength gavanized steel sheet having excellent surface property and plating adhesion and method for manufacturing thereof
EP3564400B1 (en) * 2016-12-27 2021-03-24 JFE Steel Corporation High-strength galvanized steel sheet and method for manufacturing same
WO2019130713A1 (en) * 2017-12-27 2019-07-04 Jfeスチール株式会社 High strength steel sheet and method for producing same
EP4339319A4 (en) 2021-05-10 2024-06-19 Nippon Steel Corporation Galvanized steel sheet
WO2023106411A1 (en) 2021-12-09 2023-06-15 日本製鉄株式会社 Steel sheet and plated steel sheet

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663119B2 (en) * 1987-02-19 1994-08-17 新日本製鐵株式会社 Double-layer plated steel sheet with excellent resistance weldability
JPS6417843A (en) * 1987-07-13 1989-01-20 Nippon Steel Corp Hot dip alloyed galvanized steel sheet
EP1041167B1 (en) * 1998-09-29 2011-06-29 JFE Steel Corporation High strength thin steel sheet and high strength alloyed hot-dip zinc-coated steel sheet.
US6537394B1 (en) * 1999-10-22 2003-03-25 Kawasaki Steel Corporation Method for producing hot-dip galvanized steel sheet having high strength and also being excellent in formability and galvanizing property
JP3951552B2 (en) * 2000-05-02 2007-08-01 住友金属工業株式会社 Hot rolled steel sheet with excellent surface properties and method for producing the same
JP3591502B2 (en) 2001-02-20 2004-11-24 Jfeスチール株式会社 High-tensile steel sheet excellent in workability, and its manufacturing method and processing method
JP3821043B2 (en) 2002-04-30 2006-09-13 Jfeスチール株式会社 Hot-dip galvanized high-strength hot-rolled steel sheet with excellent weldability, manufacturing method and processing method thereof
US8592049B2 (en) * 2006-01-30 2013-11-26 Nippon Steel & Sumitomo Metal Corporation High strength hot dip galvanized steel sheet and high strength galvannealed steel sheet excellent in shapeability and plateability
JP5162836B2 (en) * 2006-03-01 2013-03-13 新日鐵住金株式会社 High-strength cold-rolled steel sheet excellent in hydrogen embrittlement resistance of welds and method for producing the same
JP5044976B2 (en) * 2006-05-02 2012-10-10 Jfeスチール株式会社 Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
KR101138042B1 (en) * 2006-05-02 2012-04-24 제이에프이 스틸 가부시키가이샤 Method of manufacturing hot dip galvannealed steel sheet and hot dip galvannealed steel sheet

Also Published As

Publication number Publication date
JP5630588B2 (en) 2014-11-26
CN104245999B (en) 2016-06-22
KR20150008112A (en) 2015-01-21
CN104245999A (en) 2014-12-24
KR101657866B1 (en) 2016-09-19
WO2013157222A1 (en) 2013-10-24

Similar Documents

Publication Publication Date Title
JP5630588B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5663833B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP6525114B1 (en) High strength galvanized steel sheet and method of manufacturing the same
JP5223360B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP5206705B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5370244B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5982906B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP6111522B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP2015193907A (en) Alloyed high-strength hot-dip galvanized steel sheet having excellent workability and delayed fracture resistance, and method for producing the same
JP2010126757A (en) High-strength hot-dip galvanized steel sheet and method for producing the same
JP5982905B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP6093411B2 (en) High strength plated steel sheet excellent in plating property, workability and delayed fracture resistance, and method for producing the same
JP6093412B2 (en) High strength plated steel sheet excellent in plating property, workability and delayed fracture resistance, and method for producing the same
US10023933B2 (en) Galvannealed steel sheet and method for producing the same
JP2008024980A (en) High-strength galvannealed steel sheet and producing method therefor
JP2017133102A (en) High yield ratio type high strength galvanized steel sheet and manufacturing method therefor
JP5672747B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5906753B2 (en) Alloy hot-dip galvanized steel sheet
JP5672743B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP2014009399A (en) High strength galvanized steel sheet and method for manufacturing the same
JP5971155B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet
JP2011219782A (en) High-strength hot-dip galvanized steel plate and method for manufacturing the same
JP2011219781A (en) High-strength hot-dip galvanized steel plate and method for manufacturing the same
JP5962544B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet
JP2010255107A (en) High-strength hot-dip galvanized steel plate and method for producing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140922

R150 Certificate of patent or registration of utility model

Ref document number: 5630588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250