JP2014009399A - High strength galvanized steel sheet and method for manufacturing the same - Google Patents

High strength galvanized steel sheet and method for manufacturing the same Download PDF

Info

Publication number
JP2014009399A
JP2014009399A JP2012149123A JP2012149123A JP2014009399A JP 2014009399 A JP2014009399 A JP 2014009399A JP 2012149123 A JP2012149123 A JP 2012149123A JP 2012149123 A JP2012149123 A JP 2012149123A JP 2014009399 A JP2014009399 A JP 2014009399A
Authority
JP
Japan
Prior art keywords
steel sheet
less
hot
dip galvanized
galvanized steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012149123A
Other languages
Japanese (ja)
Inventor
Daisuke Harako
大輔 原子
Yoshitsugu Suzuki
善継 鈴木
Yasunobu Nagataki
康伸 長滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012149123A priority Critical patent/JP2014009399A/en
Publication of JP2014009399A publication Critical patent/JP2014009399A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high strength galvanized steel sheet having excellent bending formability and excellent plating adhesiveness in a formed portion and a method for manufacturing the steel sheet.SOLUTION: The galvanized steel sheet has a chemical composition containing, by mass%, C: 0.02% or more and 0.30% or less, Si: 0.01% or more and 2.50% or less, Mn: 0.1% or more and 3.0% or less, P: 0.003% or more and 0.080% or less, S: 0.010% or less, Al: 0.001% or more and 0.200% or less, Ti: 0.03% or more and 0.40% or less and the balance being Fe and inevitable impurities, and the surface of the steel sheet is coated with a zinc plating layer, in which the coating weight is 20 to 120 g/mper side, and in which the depth of a crack, which is present at grain boundaries in the surface layer of the base steel directly under the coating layer, is 2 μm or less.

Description

本発明は、自動車防錆表面処理鋼板として好適な高強度溶融亜鉛めっき鋼板およびその製造方法に関するものである。   The present invention relates to a high-strength hot-dip galvanized steel sheet suitable as an automotive rust-proof surface-treated steel sheet and a method for producing the same.

自動車やトラックのフレームや足回りといった部材には従来TS440MPa級以下の熱延鋼板が使用されてきた。しかし、最近では、自動車の耐衝突特性向上及び地球環境保全を目的として、自動車用鋼板の高強度化、薄肉化が推進され、TS590MPa級、TS780MPa級、さらにはTS980MPa級以上の高強度熱延鋼板の使用が検討され始めている。   Conventionally, hot rolled steel sheets of TS440 MPa class or lower have been used for members such as automobile and truck frames and undercarriages. However, recently, for the purpose of improving the anti-collision properties of automobiles and preserving the global environment, high strength and thinning of steel sheets for automobiles has been promoted, and high strength hot rolled steel sheets of TS590MPa class, TS780MPa class, and more than TS980MPa class. The use of is beginning to be considered.

自動車用部材はプレス成型により得られる複雑な形状のものが多く、高強度でありながら加工性に優れた材料が必要である。一方で、鋼板の薄肉化に伴う車体の防錆力確保の観点から、鋼板に防錆性を付与した表面処理鋼板、中でも耐食性に優れる溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板が要望されている。   Many members for automobiles have complicated shapes obtained by press molding, and a material having high strength and excellent workability is required. On the other hand, from the viewpoint of securing the rust prevention power of the vehicle body due to the thinning of the steel sheet, there is a demand for a surface-treated steel sheet imparted with rust resistance to the steel sheet, particularly a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet with excellent corrosion resistance Yes.

従来より、加工性に優れた高張力熱延鋼板や、溶融亜鉛系めっき高張力鋼板、およびその製造方法がいくつか提案されている。例えば、特許文献1では、質量%で、C:0.02〜0.06%、Si≦0.3%、Mn:0.5〜2.0%、P≦0.06%、S≦0.005%、Al≦0.06%、N≦0.006%、Mo:0.05〜0.5%、Ti:0.03〜0.14%を含み、残部が実質的にFeからなる鋼を溶製し、仕上圧延終了温度880℃以上、巻取温度570℃以上の条件で熱間圧延を行うことで、実質的にフェライト単相組織であり、平均粒径10nm未満のTi及びMoを含む炭化物が分散析出していることを特徴とする、引張強度が590MPa以上の加工性に優れた高張力鋼板及びその製造方法が開示されている。   Conventionally, several high-tensile hot-rolled steel sheets excellent in workability, hot-dip galvanized high-tensile steel sheets, and methods for producing the same have been proposed. For example, in Patent Document 1, C: 0.02 to 0.06%, Si ≦ 0.3%, Mn: 0.5 to 2.0%, P ≦ 0.06%, S ≦ 0 by mass%. 0.005%, Al ≦ 0.06%, N ≦ 0.006%, Mo: 0.05 to 0.5%, Ti: 0.03 to 0.14%, the balance being substantially made of Fe By melting steel and performing hot rolling under conditions where the finish rolling finish temperature is 880 ° C. or higher and the coiling temperature is 570 ° C. or higher, Ti and Mo having a substantially single-phase ferrite structure and an average grain size of less than 10 nm are obtained. There is disclosed a high-tensile steel sheet excellent in workability having a tensile strength of 590 MPa or more, and a method for producing the same, characterized in that a carbide containing is dispersed and precipitated.

また、特許文献2では、質量%で、C:0.01〜0.1%、Si≦0.3%、Mn:0.2〜2.0%、P≦0.04%、S≦0.02%、Al≦0.1%、N≦0.006%、Ti:0.03〜0.2%を含み、かつMo≦0.5%及びW≦1.0%のうち1種以上を含み、残部がFeおよび不可避的不純物からなる鋼を溶製し、オーステナイト単相域で熱間圧延し、550℃以上で巻取り、フェライト単相の熱延鋼板を製造後、さらにスケール除去し、そのまま溶融亜鉛系めっきを施すことで、質量%で、4.8C+4.2Si+0.4Mn+2Ti≦2.5を満たし、組織が面積比率で98%以上のフェライトであり、原子比で、(Mo+W)/(Ti+Mo+W)≧0.2を満たす範囲で、Tiと、MoおよびWのうち1種以上とを含む10nm未満の析出物が分散して存在することを特徴とする、溶融亜鉛系めっき高張力熱延鋼板の製造方法が開示されている。   Moreover, in patent document 2, C: 0.01-0.1%, Si <= 0.3%, Mn: 0.2-2.0%, P <= 0.04%, S <= 0 in mass%. 0.02%, Al ≦ 0.1%, N ≦ 0.006%, Ti: 0.03 to 0.2%, and one or more of Mo ≦ 0.5% and W ≦ 1.0% Steel, the balance being Fe and inevitable impurities are melted, hot-rolled in the austenite single-phase region, wound at 550 ° C. or more, and after producing a single-phase ferrite hot-rolled steel sheet, the scale is further removed. By applying the hot dip galvanizing as it is, it is 2.8C + 4.2Si + 0.4Mn + 2Ti ≦ 2.5 by mass%, the structure is ferrite with an area ratio of 98% or more, and the atomic ratio is (Mo + W) / Within a range satisfying (Ti + Mo + W) ≧ 0.2, Ti and one or more of Mo and W Wherein the precipitates of less than 10nm, including the presence dispersed manufacturing method of hot-dip galvanized high-strength hot-rolled steel sheet is disclosed.

しかしながら、特許文献1、2では、Tiと、Moなどを含む微細な炭化物をフェライト中に析出させるため、仕上げ圧延終了後、550℃以上の巻取温度(以下、CTと称することもある)で巻取りを行う必要がある。Si、Mnなど、Feよりも酸化しやすい元素(以下、易酸化性元素と称することもある)を含有する熱延母材に対し、このような高CT条件下で巻取り処理を行った場合、鋼板表層の粒界部に易酸化性元素を含む内部酸化物が生成されることで、その後の熱延スケール除去を目的とした酸洗処理において、鋼板表層の粒界部に生成された内部酸化物が選択的に除去され空隙部が生じる。これにより、その後の溶融亜鉛めっき処理において粒界の空隙部に溶融亜鉛が入り込むことで、粒界部の脆化が生じ、曲げ加工性が著しく劣化するという問題がある。さらに、溶融亜鉛めっき処理後の合金化処理過程において、粒界部から過度にZn−Fe合金化反応が促進されることで、加工部のめっき密着性が劣化するという問題がある。   However, in Patent Documents 1 and 2, in order to precipitate fine carbides including Ti and Mo in the ferrite, the coiling temperature is 550 ° C. or higher after finishing rolling (hereinafter sometimes referred to as CT). It is necessary to perform winding. When a hot-rolling base material containing an element that is easier to oxidize than Fe, such as Si and Mn (hereinafter sometimes referred to as an easily oxidizable element), is subjected to a winding process under such a high CT condition In addition, an internal oxide containing an easily oxidizable element is generated in the grain boundary part of the steel sheet surface layer. Oxides are selectively removed to form voids. Thereby, in the subsequent hot dip galvanizing process, molten zinc enters into the voids of the grain boundaries, thereby causing embrittlement of the grain boundary parts and a problem that bending workability is remarkably deteriorated. Further, in the alloying process after the hot dip galvanizing process, there is a problem that the plating adhesion of the processed part deteriorates due to excessive acceleration of the Zn—Fe alloying reaction from the grain boundary part.

特開2002−322543号公報JP 2002-322543 A 特開2003−321736号公報JP 2003-321736 A

本発明は、かかる事情に鑑みてなされたものであって、良好な曲げ加工性を確保しながら、加工部のめっき密着性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a high-strength hot-dip galvanized steel sheet excellent in plating adhesion of a processed part and a method for producing the same while ensuring good bending workability. And

本発明者らは、高強度鋼板のめっき処理について鋭意研究を重ねた結果、以下の知見を得た。   As a result of intensive studies on the plating treatment of high-strength steel sheets, the present inventors have obtained the following knowledge.

めっき後の曲げ加工性の劣化要因としては前記のように、熱延後の酸洗処理時に鋼板表層の粒界部において過剰な酸洗が起こることで微細な亀裂が生じ、その後の溶融亜鉛めっき処理において粒界の亀裂に溶融亜鉛が入り込むことで、粒界部の脆化が生じるためと考えられる。このため、めっき層直下における、鋼板表面の粒界部の亀裂深さを制御することが極めて重要であることを見出した。   As described above, as a cause of deterioration of the bending workability after plating, a fine crack is caused by excessive pickling at the grain boundary portion of the steel sheet surface layer during pickling after hot rolling, and subsequent hot dip galvanizing. It is thought that the brittleness of the grain boundary portion occurs due to the molten zinc entering the cracks in the grain boundary during the treatment. For this reason, it discovered that it was very important to control the crack depth of the grain-boundary part of the steel plate surface just under a plating layer.

本発明は上記知見に基づくものであり、特徴は以下の通りである。
[1]質量%で、C:0.02%以上0.30%以下、Si:0.01%以上2.50%以下、Mn:0.1%以上3.0%以下、P:0.003%以上0.080%以下、S:0.010%以下、Al:0.001%以上0.200%以下、Ti:0.03%以上0.40%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成の鋼板表面に、片面あたりのめっき付着量が20〜120g/mの亜鉛めっき層を有し、前記めっき層直下の、母材鋼板表面の粒界部の亀裂深さが2μm以下であることを特徴とする高強度溶融亜鉛めっき鋼板。
[2]前記鋼板は、成分組成として、さらに、質量%で、Nb:0.001%以上0.200%以下、V:0.001%以上0.500%以下、Mo:0.01%以上0.50%以下、W:0.001%以上0.200%以下のうちの1種または2種以上を含有することを特徴とする[1]に記載の高強度溶融亜鉛めっき鋼板。
[3]前記鋼板は、成分組成として、さらに、質量%で、B:0.0002%以上0.0050%以下を含有することを特徴とする[1]または[2]に記載の高強度溶融亜鉛めっき鋼板。
[4]前記鋼板が熱延鋼板であることを特徴とする[1]〜[3]のいずれか1項に記載の高強度溶融亜鉛めっき鋼板。
[5][1]〜[3]のいずれか1項に記載の成分組成からなる鋼を熱間圧延後、冷却、巻取処理を行い、次いで酸洗して熱延鋼板とし、次いで連続焼鈍及び溶融亜鉛めっき処理を行う高強度溶融亜鉛めっき鋼板の製造方法において、前記熱間圧延における仕上げ圧延終了温度を850℃以上、巻取温度を540℃以下とし、酸洗時の鋼板と酸洗液の相対流速を1.2m/sec以下とし、連続焼鈍時の鋼板最高到達温度を600℃以上800℃以下とすることを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。
[6]溶融めっき処理後、さらに450℃以上550℃以下の温度に鋼板を加熱して合金化処理を施し、めっき層中のFe含有率を7〜15%の範囲にすることを特徴とする[5]に記載の高強度溶融亜鉛めっき鋼板の製造方法。
なお、本発明において、高強度とは、引張強度TSが590MPa以上をいう。
The present invention is based on the above findings, and features are as follows.
[1] By mass%, C: 0.02% to 0.30%, Si: 0.01% to 2.50%, Mn: 0.1% to 3.0%, P: 0.0. 003% or more and 0.080% or less, S: 0.010% or less, Al: 0.001% or more and 0.200% or less, Ti: 0.03% or more and 0.40% or less, with the balance being Fe and The steel sheet surface having an inevitable impurity composition has a galvanized layer with a plating adhesion amount of 20 to 120 g / m 2 on one surface, and the crack depth at the grain boundary portion on the surface of the base material steel plate immediately below the plated layer. A high-strength hot-dip galvanized steel sheet characterized by having a thickness of 2 μm or less.
[2] The steel sheet further has a component composition of mass%, Nb: 0.001% to 0.200%, V: 0.001% to 0.500%, Mo: 0.01% or more. The high-strength hot-dip galvanized steel sheet according to [1], containing 0.50% or less and W: one or more of 0.001% to 0.200%.
[3] The high-strength melt according to [1] or [2], wherein the steel sheet further contains B: 0.0002% or more and 0.0050% or less as a component composition by mass%. Galvanized steel sheet.
[4] The high-strength hot-dip galvanized steel sheet according to any one of [1] to [3], wherein the steel sheet is a hot-rolled steel sheet.
[5] After hot rolling the steel having the component composition described in any one of [1] to [3], cooling and winding are performed, and then pickling to obtain a hot rolled steel sheet, and then continuous annealing And a method of producing a high-strength hot-dip galvanized steel sheet that is subjected to hot dip galvanizing treatment, the finish rolling end temperature in the hot rolling is 850 ° C. or higher, the coiling temperature is 540 ° C. or lower, and the steel plate and pickling liquid during pickling The relative flow velocity of the steel sheet is set to 1.2 m / sec or less, and the maximum reached temperature of the steel sheet during continuous annealing is set to 600 ° C. or higher and 800 ° C. or lower.
[6] After the hot dip treatment, the steel sheet is further heated to a temperature of 450 ° C. or higher and 550 ° C. or lower to perform alloying treatment, and the Fe content in the plating layer is in the range of 7 to 15%. The method for producing a high-strength hot-dip galvanized steel sheet according to [5].
In the present invention, high strength means that the tensile strength TS is 590 MPa or more.

本発明によれば、良好な曲げ加工性を確保しながら、加工部のめっき密着性に優れる高強度溶融亜鉛めっき鋼板が得られる。   According to the present invention, it is possible to obtain a high-strength hot-dip galvanized steel sheet that is excellent in plating adhesion at a processed portion while ensuring good bending workability.

以下、本発明について具体的に説明する。なお、以下の説明において、鋼成分組成の各元素の含有量の単位は「質量%」であり、以下、特に断らない限り単に「%」で示す。   Hereinafter, the present invention will be specifically described. In the following description, the unit of the content of each element of the steel component composition is “mass%”, and hereinafter, simply indicated by “%” unless otherwise specified.

以下、本発明を詳細に説明する。
(1)鋼板の成分組成
C:0.02%以上0.30%以下
Cは鋼板中に炭化物を析出させるために必要な元素であり、そのためには0.02%以上必要である。一方、0.30%を超えると溶接性が劣化するため、上限は0.30%とする。
Hereinafter, the present invention will be described in detail.
(1) Component composition C of steel sheet: 0.02% or more and 0.30% or less C is an element necessary for precipitating carbide in the steel sheet, and for that purpose, 0.02% or more is necessary. On the other hand, if it exceeds 0.30%, the weldability deteriorates, so the upper limit is made 0.30%.

Si:0.01%以上2.50%以下
Siは固溶強化元素として有効であり、強化効果が現れるためには0.01%以上含有する必要がある。一方、2.50%を超えると焼鈍過程においてSiの酸化物が鋼板表面に濃化し、不めっき欠陥発生やめっき密着性劣化の原因となるため、上限は2.50%とする。
Si: 0.01% or more and 2.50% or less Si is effective as a solid solution strengthening element, and in order to exhibit the strengthening effect, it is necessary to contain 0.01% or more. On the other hand, if it exceeds 2.50%, the oxide of Si is concentrated on the surface of the steel sheet during the annealing process, causing non-plating defects and plating adhesion deterioration, so the upper limit is made 2.50%.

Mn:0.1%以上3.0%以下
Mnは強度上昇のために添加し、強化効果が現れるためには0.1%以上含有する必要がある。一方、3.0%を超えると焼鈍過程においてMnの酸化物が鋼板表面に濃化し、不めっき欠陥発生やめっき密着性劣化の原因となるため、上限は3.0%とする。
Mn: 0.1% or more and 3.0% or less Mn is added to increase the strength, and it is necessary to contain 0.1% or more for the strengthening effect to appear. On the other hand, if it exceeds 3.0%, the Mn oxide is concentrated on the surface of the steel sheet in the annealing process, causing non-plating defects and plating adhesion deterioration, so the upper limit is made 3.0%.

P:0.003%以上0.080%以下
Pは不可避的に含有される元素のひとつである。0.003%未満とするにはコストの増大が懸念されるため、0.003%以上とする。一方、Pが0.080%を超えると溶接性が劣化する。さらに、Pは合金化処理温度を上昇させるため表面品質が劣化する。具体的には、合金化処理時には合金化処理温度を上昇させないと所望の合金化度とすることができない。所望の合金化度とするために合金化処理温度を上昇させると延性が劣化すると同時に合金化めっき皮膜の密着性が劣化する。以上より、所望の合金化度と、良好な延性、合金化めっき皮膜を両立させるため、0.080%以下とする。
P: 0.003% to 0.080% P is one of the elements inevitably contained. If it is less than 0.003%, there is a concern about an increase in cost. On the other hand, when P exceeds 0.080%, weldability deteriorates. Furthermore, since P raises the alloying temperature, the surface quality deteriorates. Specifically, a desired degree of alloying cannot be achieved unless the alloying temperature is increased during the alloying process. When the alloying treatment temperature is raised to obtain a desired degree of alloying, the ductility deteriorates and at the same time the adhesion of the alloyed plating film deteriorates. From the above, in order to achieve a desired degree of alloying, good ductility, and an alloyed plating film, the content is made 0.080% or less.

S:0.010%以下
Sは粒界に偏析するため、靭性が低下する。またMnSが多量に生成した場合、靭性が低下する。以上より、0.010%以下とする必要がある。Sの含有量の下限は特に限定するものではなく、不純物程度であってもよい。
S: 0.010% or less Since S segregates at the grain boundaries, the toughness decreases. Moreover, when MnS produces | generates abundantly, toughness will fall. From the above, it is necessary to make it 0.010% or less. The lower limit of the S content is not particularly limited, and may be about the impurity level.

Al:0.001%以上0.200%以下
Alは溶鋼の脱酸を目的に添加されるが、その含有量が0.001%未満の場合、その目的が達成されない。一方、0.200%を超えると、介在物が多量に発生し、鋼板の疵の原因となる。以上より、Alは0.001%以上0.200%以下とする。
Al: 0.001% or more and 0.200% or less Al is added for the purpose of deoxidation of molten steel, but when the content is less than 0.001%, the purpose is not achieved. On the other hand, if it exceeds 0.200%, a large amount of inclusions are generated, which causes wrinkling of the steel sheet. From the above, Al is made 0.001% or more and 0.200% or less.

Ti:0.03%以上0.40%以下
Tiは鋼板中に炭化物を析出させ強度を増加させるために必要な元素であり、コストの観点からも有効な元素である。しかしながら、0.03%未満では強度を増加させるために必要な析出物量が不十分である。一方、0.40%を超えるとその効果は飽和し、コストアップとなる。以上より、Tiは、0.03%以上0.40%以下とする。
Ti: 0.03% or more and 0.40% or less Ti is an element necessary for increasing the strength by precipitating carbide in the steel sheet, and is also an effective element from the viewpoint of cost. However, if it is less than 0.03%, the amount of precipitates necessary for increasing the strength is insufficient. On the other hand, if it exceeds 0.40%, the effect is saturated and the cost is increased. Accordingly, Ti is set to 0.03% or more and 0.40% or less.

また、強度を制御するため、上記元素の他に以下の元素を含有してもよい。
Nb:0.001%以上0.200%以下、V:0.001%以上0.500%以下、Mo:0.01%以上0.50%以下、W:0.001%以上0.200%以下のうちの1種または2種以上
Nb、V、Mo、Wは鋼板中にTiを含む複合炭化物として析出し、微細な炭化物を安定的に析出させるために有効な元素であり、これらの元素のうちの1種または2種以上を含有してもよい。しかしながら、含有量が規定値未満では析出による強度増加効果が不十分であり、規定値を超えるとその効果は飽和し、コストアップとなる。
Moreover, in order to control intensity | strength, you may contain the following elements other than the said element.
Nb: 0.001% to 0.200%, V: 0.001% to 0.500%, Mo: 0.01% to 0.50%, W: 0.001% to 0.200% One or more of the following, Nb, V, Mo, W are elements that are effective for precipitating fine carbides in a stable manner by precipitating as a composite carbide containing Ti in the steel sheet. 1 type or 2 types or more may be contained. However, if the content is less than the specified value, the effect of increasing the strength by precipitation is insufficient, and if the content exceeds the specified value, the effect is saturated and the cost is increased.

さらにまた、上記元素の他に以下の元素を含有してもよい。
B:0.0002%以上0.0050%以下
Bは焼き入れ性向上のために効果的な元素であるが、0.0002%未満では焼き入れ促進効果が得られにくい。一方、0.0050%を超えて添加するとその効果は飽和し、コストアップとなる。よって、含有する場合、Bは0.0002%以上0.0050%以下とする。
Furthermore, in addition to the above elements, the following elements may be contained.
B: 0.0002% or more and 0.0050% or less B is an effective element for improving the hardenability, but if it is less than 0.0002%, it is difficult to obtain the quenching promoting effect. On the other hand, if it exceeds 0.0050%, the effect is saturated and the cost is increased. Therefore, when contained, B is made 0.0002% or more and 0.0050% or less.

上記以外の残部はFeおよび不可避的不純物である。   The balance other than the above is Fe and inevitable impurities.

(2)めっき層直下の母材鋼板表面
本発明の高強度溶融亜鉛めっき鋼板は、母材鋼板表面の粒界部の亀裂深さが2μm以下とする必要がある。粒界部の亀裂深さをこの範囲に制御することで、粒界部への溶融亜鉛めっきの浸入が抑制され、粒界強度の上昇により良好な曲げ加工性が得られる。また、合金化処理後の過剰なZn−Fe合金化反応が抑制され、加工部のめっき密着性が向上する。より好ましくは、1.2μm以下である。
(2) Surface of the base steel plate immediately below the plating layer In the high-strength hot-dip galvanized steel plate of the present invention, the crack depth of the grain boundary portion on the base steel plate surface needs to be 2 μm or less. By controlling the crack depth of the grain boundary part within this range, penetration of hot dip galvanizing into the grain boundary part is suppressed, and good bending workability is obtained due to an increase in grain boundary strength. Moreover, the excessive Zn-Fe alloying reaction after an alloying process is suppressed, and the plating adhesiveness of a process part improves. More preferably, it is 1.2 μm or less.

なお、めっき層直下の、鋼板表層部の亀裂深さは、以下の方法で確認することができる。例えば、めっき層を溶解除去後、鋼板を樹脂に埋め込み研磨をすることで鋼板断面を出し、鋼板表層部のSEM観察を行うことにより、粒界部の亀裂の有無及び深さを確認することができる。   In addition, the crack depth of the steel plate surface layer part just under a plating layer can be confirmed with the following method. For example, after dissolving and removing the plating layer, embedding and polishing the steel sheet in a resin to obtain a cross section of the steel sheet and performing SEM observation of the steel sheet surface layer part can confirm the presence and depth of cracks in the grain boundary part. it can.

(3)高強度溶融亜鉛めっき鋼板の製造方法
次に、本発明の高強度溶融亜鉛めっき鋼板の製造方法とその限定理由について説明する。
(3) Manufacturing method of high-strength hot-dip galvanized steel sheet Next, the manufacturing method of the high-strength hot-dip galvanized steel sheet according to the present invention and the reason for limitation will be described.

本発明において、上記の成分組成からなる鋼を熱間圧延し、仕上げ圧延終了後、冷却、巻取処理を行い、次いで酸洗して熱延鋼板とし、次いで連続焼鈍及び溶融亜鉛めっき処理を行うに際し、前記熱間圧延における仕上げ圧延終了温度を850℃以上、巻取温度を540℃以下とし、酸洗時の鋼板と酸洗液の相対流速を1.2m/sec以下とし、連続焼鈍時の鋼板最高到達温度を600℃以上800℃以下とすることを特徴とする。
まず、熱間圧延条件について説明する。
In the present invention, the steel having the above component composition is hot-rolled, and after finishing rolling, cooling and winding are performed, then pickling is performed to obtain a hot-rolled steel sheet, and then continuous annealing and hot-dip galvanizing are performed. In this case, the finish rolling finish temperature in the hot rolling is 850 ° C. or more, the coiling temperature is 540 ° C. or less, the relative flow rate of the steel plate and pickling solution during pickling is 1.2 m / sec or less, and during continuous annealing. The steel sheet maximum temperature is 600 ° C. or higher and 800 ° C. or lower.
First, hot rolling conditions will be described.

仕上げ圧延終了温度850℃以上
仕上げ圧延終了温度が850℃未満では、未再結晶で圧延が進行するために起こる歪みの累積量が増大し、圧延荷重の増加を招く。よって、仕上げ圧延終了温度は850℃以上とする。上限については特に限定しないが、1100℃以下が好ましい。
If the finish rolling finish temperature is 850 ° C. or higher and the finish rolling finish temperature is less than 850 ° C., the cumulative amount of strain that occurs due to the progress of rolling without recrystallization increases, leading to an increase in rolling load. Therefore, the finish rolling end temperature is set to 850 ° C. or higher. Although it does not specifically limit about an upper limit, 1100 degrees C or less is preferable.

巻取温度540℃以下
巻取温度が540℃を超えると、易酸化性元素による内部酸化物が鋼板表層の粒界部に形成され、その後の酸洗処理時に選択的に酸化物が溶解されることで、粒界部に微細な亀裂が生じる。これにより、その後の溶融亜鉛めっき処理時に粒界部へ溶融亜鉛が浸入し、粒界強度の低下を起こし、曲げ加工部の劣化を招く。さらに、合金化処理時にZn−Fe合金化反応が過度に促進されることで、加工部のめっき密着性の低下を招く。よって巻取温度は540℃以下とする。
When the coiling temperature is 540 ° C. or less, when the coiling temperature exceeds 540 ° C., an internal oxide due to an easily oxidizable element is formed at the grain boundary portion of the steel sheet surface layer, and the oxide is selectively dissolved during the subsequent pickling treatment. Thereby, a fine crack arises in a grain boundary part. Thereby, molten zinc permeates into the grain boundary during the subsequent hot dip galvanizing treatment, causing a decrease in grain boundary strength, leading to deterioration of the bent portion. Furthermore, the Zn—Fe alloying reaction is excessively promoted during the alloying treatment, thereby causing a decrease in the plating adhesion of the processed part. Therefore, the coiling temperature is 540 ° C. or lower.

次に、熱間圧延後の酸洗時の条件について説明する。   Next, conditions for pickling after hot rolling will be described.

鋼板と酸洗液の相対流速1.2m/sec以下
本発明では、熱間圧延後の酸洗時において、鋼板と酸洗液の相対流速を1.2m/sec以下とすることで、粒界部における過剰な酸洗が抑制され、曲げ加工性や加工部のめっき密着性が向上する。より好ましくは、1.0mm/sec以下である。
In the present invention, at the time of pickling after hot rolling, the relative flow rate of the steel plate and the pickling solution is set to 1.2 m / sec or less, so that the grain boundary Excess pickling in the part is suppressed, and bending workability and plating adhesion of the processed part are improved. More preferably, it is 1.0 mm / sec or less.

鋼板と酸洗液の相対流速を制御する方法としては、酸洗処理設備での鋼板の走行速度(以下、LSと称することもある)を制御する方法が挙げられる。例えば、LSを72m/min以下として酸洗処理を施すと、相対流速は1.2m/sec以下となる。しかしながら、通常の酸洗ラインにおけるLSは100〜200m/minの範囲で操業される。すなわち、相対流速を低下させるためにLSを下げることは、生産性の低下を招く。このため、鋼板と酸洗液の相対流速を制御する方法としては、酸洗液中で鋼板の進行方向と同一方向に噴流を与え、相対流速を小さくすることが有効である。このとき、鋼板の全幅に対して均一な流速が与えられるように、一定幅のスリットノズルを用いるのが望ましい。   Examples of the method for controlling the relative flow rate of the steel plate and the pickling solution include a method for controlling the traveling speed of the steel plate in the pickling treatment facility (hereinafter also referred to as LS). For example, when the pickling process is performed with LS being 72 m / min or less, the relative flow velocity is 1.2 m / sec or less. However, LS in a normal pickling line is operated in the range of 100 to 200 m / min. That is, lowering the LS to reduce the relative flow velocity causes a reduction in productivity. For this reason, as a method for controlling the relative flow rate of the steel plate and the pickling solution, it is effective to give a jet in the same direction as the traveling direction of the steel plate in the pickling solution to reduce the relative flow rate. At this time, it is desirable to use a slit nozzle having a constant width so that a uniform flow velocity is given to the entire width of the steel plate.

次に、連続焼鈍条件および溶融亜鉛めっき処理条件について説明する。   Next, continuous annealing conditions and hot dip galvanizing conditions will be described.

鋼板最高到達温度600℃以上800℃以下
本発明の高強度溶融亜鉛めっき鋼板の製造方法では、熱延時の内部酸化物の生成を抑制させるため、熱延巻取りCTを低く制御する必要がある。しかしながら、CTが低い場合、巻取時に鋼板組織中の微細な炭化物が十分に析出されず、所望の強度、加工性を得ることが困難となる。このため、その後の連続式溶融亜鉛めっき設備における焼鈍温度を制御することにより、熱延時に未析出のまま固溶状態となっていたTiなどを炭化物として析出させる。これにより、鋼板の強度、加工性が向上する。
鋼板最高到達温度が600℃未満の場合、鋼板組織中に微細な炭化物が十分に析出せず、強度の低下を招くばかりでなく、鋼板表面に存在する自然酸化皮膜が還元されず、その後の溶融亜鉛めっき処理において、不めっきの発生を招く。一方、800℃を超えると鋼板組織中に析出する炭化物が粗大化し、強度や加工性の劣化を招くばかりでなく、Si、Mnなどの易酸化性元素が表面に濃化し酸化物を形成し、不めっき発生の原因となる。
In the method for producing a high-strength hot-dip galvanized steel sheet according to the present invention, it is necessary to control hot-rolling CT to be low in order to suppress the formation of internal oxides during hot rolling. However, when CT is low, fine carbides in the steel sheet structure are not sufficiently precipitated during winding, making it difficult to obtain desired strength and workability. For this reason, by controlling the annealing temperature in the subsequent continuous hot dip galvanizing equipment, Ti or the like that has not yet precipitated during hot rolling and is in a solid solution state is precipitated as carbide. Thereby, the intensity | strength of a steel plate and workability improve.
When the steel plate maximum temperature is less than 600 ° C, fine carbides are not sufficiently precipitated in the steel sheet structure, not only causing a decrease in strength but also reducing the natural oxide film present on the steel sheet surface, and subsequent melting. In the galvanizing process, non-plating occurs. On the other hand, when the temperature exceeds 800 ° C., carbides precipitated in the steel sheet structure are coarsened, leading to deterioration of strength and workability, and oxidizable elements such as Si and Mn are concentrated on the surface to form oxides. Causes non-plating.

本発明における溶融亜鉛めっき処理条件としては、常法であればよい。また、溶融亜鉛めっき処理後に合金化処理を施し合金化溶融亜鉛めっき鋼板とする場合、めっき層中のFe含有率は7〜15%とする。7%未満では合金化ムラの発生により均一な表面外観が得られないばかりでなく、Zn−Fe合金化反応が不十分なため、めっき表層に軟質なζ相が厚く生成し、曲げ加工時にめっき層が燐片状に剥離するフレーキングの発生を招く。一方、15%を超えるとZn−Fe合金化反応が過剰に進行し、めっき層と鋼板の界面付近に脆いΓ相が厚く生成され、めっき密着性が劣化する。   The hot dip galvanizing treatment conditions in the present invention may be conventional methods. Moreover, when alloying treatment is performed after the hot dip galvanizing treatment to obtain an alloyed hot dip galvanized steel sheet, the Fe content in the plating layer is set to 7 to 15%. If it is less than 7%, not only a uniform surface appearance cannot be obtained due to the occurrence of uneven alloying, but also the Zn-Fe alloying reaction is insufficient, so that a soft ζ phase is formed thick on the plating surface layer, and plating is performed during bending. The flaking that causes the layer to peel off in the form of flakes is caused. On the other hand, if it exceeds 15%, the Zn—Fe alloying reaction proceeds excessively, a brittle Γ phase is generated in the vicinity of the interface between the plating layer and the steel sheet, and the plating adhesion deteriorates.

以上により、本発明の高強度溶融亜鉛めっき鋼板が得られる。本発明の高強度溶融亜鉛めっき鋼板は、鋼板の表面に、片面あたりのめっき付着量が20〜120g/mの亜鉛めっき層を有することを特徴とする。20g/m未満では耐食性の確保が困難となる。一方で、120g/mを上回るとめっき密着性が低下する。 As described above, the high-strength hot-dip galvanized steel sheet of the present invention is obtained. The high-strength hot-dip galvanized steel sheet of the present invention is characterized by having a galvanized layer having a plating adhesion amount of 20 to 120 g / m 2 on one surface of the steel sheet. If it is less than 20 g / m 2 , it will be difficult to ensure corrosion resistance. On the other hand, when it exceeds 120 g / m < 2 >, plating adhesiveness will fall.

表1に示す成分組成を有するスラブを1250℃で加熱した後、表2に示す条件で熱間圧延を行い、さらに酸洗による黒皮スケール除去を施し、厚さ2.3mmの熱延鋼板とした。   After heating the slab having the composition shown in Table 1 at 1250 ° C., hot rolling is performed under the conditions shown in Table 2, and further black scale removal is performed by pickling, and a hot-rolled steel sheet having a thickness of 2.3 mm is obtained. did.

次いで、CGLラインにて連続焼鈍処理を施し、その後、浴温460℃のAl含有Zn浴に浸漬し、溶融亜鉛めっき処理を施した。このときのめっき付着量はガスワイピングにより片面あたり45g/m、70g/m、140g/mに調節した。合金化溶融亜鉛めっき鋼板については溶融亜鉛めっき処理後、合金化処理を施した。 Next, continuous annealing treatment was performed on the CGL line, and then immersed in an Al-containing Zn bath having a bath temperature of 460 ° C. to perform hot dip galvanizing treatment. Coating weight at this time was adjusted to per side 45g / m 2, 70g / m 2, 140g / m 2 by gas wiping. The alloyed hot dip galvanized steel sheet was subjected to an alloying treatment after the hot dip galvanizing treatment.

Figure 2014009399
Figure 2014009399

以上により得られた溶融亜鉛めっき鋼板(GI)、及び合金化溶融亜鉛めっき鋼板(GA)について、曲げ加工性及び加工部めっき密着性を評価した。また、めっき層直下の、母材鋼板表面の断面観察による粒界部の亀裂深さを測定した。測定方法及び評価基準を以下に示す。   With respect to the hot-dip galvanized steel sheet (GI) and the alloyed hot-dip galvanized steel sheet (GA) obtained as described above, bending workability and work part plating adhesion were evaluated. Moreover, the crack depth of the grain boundary part by the cross-sectional observation of the base-material steel plate surface just under a plating layer was measured. The measurement method and evaluation criteria are shown below.

<加工性>
曲げ加工性試験と引張試験を行い、加工性を評価した。
曲げ加工性試験はJIS Z 2248に基づき、圧延方向と垂直に短冊試験片を切り出し、曲げ半径を変化させて180°U曲げを行い、臨界曲げ半径で評価した。このとき、臨界曲げ半径が4.5mm以下であれば曲げ加工性良好(○)とし、4.5mmを超える場合を曲げ加工性不良(×)とした。
引張試験は試料から圧延方向に対して90°方向にJIS5号引張試験片を採取し、JIS Z 2241の規定に準拠してクロスヘッド速度10mm/min一定で引張試験を行い、引張強度(TS(MPa))と伸び(El(%))を測定した。TSが590MPa以上であり、かつTS×El≧15000のものを良好、TS×El<15000のものを不良とした。
<Processability>
A bending workability test and a tensile test were performed to evaluate workability.
Based on JIS Z 2248, the bending workability test cut out a strip test piece perpendicular to the rolling direction, changed the bending radius, bent 180 ° U, and evaluated the critical bending radius. At this time, when the critical bending radius was 4.5 mm or less, the bending workability was good (◯), and when it exceeded 4.5 mm, the bending workability was poor (x).
In the tensile test, a JIS No. 5 tensile test piece was sampled from the sample at a direction of 90 ° with respect to the rolling direction, and the tensile test was performed at a constant crosshead speed of 10 mm / min in accordance with JIS Z 2241. MPa)) and elongation (El (%)). TS having a TS of 590 MPa or more and TS × El ≧ 15000 was judged good, and TS × El <15000 was judged poor.

<溶融亜鉛めっき鋼板のめっき密着性>
合金化処理を施さない溶融亜鉛めっき鋼板について、曲げ加工部のめっき密着性を評価した。評価方法としては、鋼板を180°に曲げた後、曲げ加工部の外側をテープ剥離し、めっき層の剥離有無を目視判定した。評価基準は以下の通りである。
○:めっき層の剥離なし
×:めっき層が剥離
<合金化溶融亜鉛めっき鋼板のめっき密着性>
合金化溶融亜鉛めっき鋼板のめっき密着性は、以下に示すパウダリング試験により評価した。
めっき鋼板に粘着テープを貼り、テープ貼り付け面を内側にして曲げ半径5mmで90°曲げ戻しを行い、剥がしたテープを蛍光X線にて分析した。このときの単位長さ当たりのZnカウント数をめっき剥離量として求めた。耐パウダリング性は、先に述べたパウダリング試験で求めためっき剥離量を下記の基準に照らしてランク1のものを特に良好(◎)、2のものを良好(○)、3のものを不良(×)として評価した。◎、○が合格である。
めっき剥離量:ランク
0−3000未満:1(特に良好(◎))
3000以上−6000未満:2(良好(○))
6000以上:3(不良(×))
以上により得られた結果を製造条件と併せて表2に示す。
<Plating adhesion of hot-dip galvanized steel sheet>
About the hot dip galvanized steel sheet which does not give an alloying process, the plating adhesiveness of the bending process part was evaluated. As an evaluation method, after bending the steel plate to 180 °, the outside of the bent portion was peeled off with tape, and the presence or absence of peeling of the plating layer was visually determined. The evaluation criteria are as follows.
○: Plating layer is not peeled ×: Plating layer is peeled <Plating adhesion of galvannealed steel sheet>
The plating adhesion of the galvannealed steel sheet was evaluated by the powdering test shown below.
An adhesive tape was affixed to the plated steel sheet, the tape was applied to the inside, and the tape was bent back 90 ° with a bending radius of 5 mm, and the peeled tape was analyzed with fluorescent X-rays. The Zn count number per unit length at this time was determined as the amount of plating peeling. The anti-powdering resistance is particularly good for rank 1 (◎), 2 for good (O) and 3 for the amount of plating peeling obtained in the above-mentioned powdering test according to the following criteria. Evaluated as defective (x). ◎ and ○ are acceptable.
Plating separation amount: Rank 0 to less than 3000: 1 (particularly good (())
3000 or more and less than −6000: 2 (good (◯))
6000 or more: 3 (defect (x))
The results obtained as described above are shown in Table 2 together with the production conditions.

Figure 2014009399
Figure 2014009399

表2より、本発明例は、加工性、加工部の密着性が良好(○)である。一方、本発明の範囲を満たさない比較例は、いずれかの評価結果が劣っている。   From Table 2, the example of the present invention has good workability and good adhesion of the processed part (◯). On the other hand, the comparative example which does not satisfy the scope of the present invention is inferior in either evaluation result.

Claims (6)

質量%で、C:0.02%以上0.30%以下、Si:0.01%以上2.50%以下、Mn:0.1%以上3.0%以下、P:0.003%以上0.080%以下、S:0.010%以下、Al:0.001%以上0.200%以下、Ti:0.03%以上0.40%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成の鋼板表面に、片面あたりのめっき付着量が20〜120g/mの亜鉛めっき層を有し、前記めっき層直下の、母材鋼板表面の粒界部の亀裂深さが2μm以下であることを特徴とする高強度溶融亜鉛めっき鋼板。 In mass%, C: 0.02% to 0.30%, Si: 0.01% to 2.50%, Mn: 0.1% to 3.0%, P: 0.003% or more 0.080% or less, S: 0.010% or less, Al: 0.001% or more and 0.200% or less, Ti: 0.03% or more and 0.40% or less, with the balance being Fe and inevitable impurities The surface of the steel sheet having a component composition comprising a galvanized layer having a coating adhesion amount of 20 to 120 g / m 2 per one surface, and the crack depth of the grain boundary portion on the surface of the base steel sheet immediately below the plated layer is 2 μm. A high-strength hot-dip galvanized steel sheet characterized by: 前記鋼板は、成分組成として、さらに、質量%で、Nb:0.001%以上0.200%以下、V:0.001%以上0.500%以下、Mo:0.01%以上0.50%以下、W:0.001%以上0.200%以下のうちの1種または2種以上を含有することを特徴とする請求項1に記載の高強度溶融亜鉛めっき鋼板。   The steel sheet further has a component composition of mass%, Nb: 0.001% to 0.200%, V: 0.001% to 0.500%, Mo: 0.01% to 0.50. % Or less, W: 0.001% or more and 0.200% or less of 1 type or 2 types or more are contained, The high-strength hot-dip galvanized steel sheet of Claim 1 characterized by the above-mentioned. 前記鋼板は、成分組成として、さらに、質量%で、B:0.0002%以上0.0050%以下を含有することを特徴とする請求項1または2に記載の高強度溶融亜鉛めっき鋼板。   The high-strength hot-dip galvanized steel sheet according to claim 1 or 2, wherein the steel sheet further contains B: 0.0002% or more and 0.0050% or less in terms of component composition. 前記鋼板が熱延鋼板であることを特徴とする請求項1〜3のいずれか1項に記載の高強度溶融亜鉛めっき鋼板。   The high-strength hot-dip galvanized steel sheet according to any one of claims 1 to 3, wherein the steel sheet is a hot-rolled steel sheet. 請求項1〜3のいずれか1項に記載の成分組成からなる鋼を熱間圧延後、冷却、巻取処理を行い、次いで酸洗して熱延鋼板とし、次いで連続焼鈍及び溶融亜鉛めっき処理を行う高強度溶融亜鉛めっき鋼板の製造方法において、前記熱間圧延における仕上げ圧延終了温度を850℃以上、巻取温度を540℃以下とし、酸洗時の鋼板と酸洗液の相対流速を1.2m/sec以下とし、連続焼鈍時の鋼板最高到達温度を600℃以上800℃以下とすることを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。   After hot-rolling the steel comprising the component composition according to any one of claims 1 to 3, cooling and winding treatment are performed, and then pickling to obtain a hot-rolled steel plate, followed by continuous annealing and hot-dip galvanizing treatment In the method for producing a high-strength hot-dip galvanized steel sheet, the finish rolling finish temperature in the hot rolling is set to 850 ° C. or higher, the coiling temperature is set to 540 ° C. or lower, and the relative flow rate of the steel plate and pickling solution during pickling is 1 A method for producing a high-strength hot-dip galvanized steel sheet, characterized in that the maximum steel sheet temperature during continuous annealing is 600 ° C. or higher and 800 ° C. or lower. 溶融めっき処理後、さらに450℃以上550℃以下の温度に鋼板を加熱して合金化処理を施し、めっき層中のFe含有率を7〜15%の範囲にすることを特徴とする請求項5に記載の高強度溶融亜鉛めっき鋼板の製造方法。   6. The steel sheet is further heated to a temperature of 450 ° C. or higher and 550 ° C. or lower after the hot dip plating treatment to give an alloying treatment, and the Fe content in the plating layer is in the range of 7 to 15%. A method for producing a high-strength hot-dip galvanized steel sheet as described in 1.
JP2012149123A 2012-07-03 2012-07-03 High strength galvanized steel sheet and method for manufacturing the same Pending JP2014009399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012149123A JP2014009399A (en) 2012-07-03 2012-07-03 High strength galvanized steel sheet and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012149123A JP2014009399A (en) 2012-07-03 2012-07-03 High strength galvanized steel sheet and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2014009399A true JP2014009399A (en) 2014-01-20

Family

ID=50106362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012149123A Pending JP2014009399A (en) 2012-07-03 2012-07-03 High strength galvanized steel sheet and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2014009399A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104213017A (en) * 2014-08-29 2014-12-17 武汉钢铁(集团)公司 Galvanized steel sheet and production process thereof
US10406780B2 (en) 2013-04-26 2019-09-10 Kobe Steel, Ltd. Hot-dip galvannealed steel sheet for hot stamping and method for manufacturing steel part
JP2023505444A (en) * 2019-12-03 2023-02-09 ポスコホールディングス インコーポレーティッド Galvanized steel sheet with excellent surface quality and spot weldability, and its manufacturing method
JP2023505445A (en) * 2019-12-03 2023-02-09 ポスコホールディングス インコーポレーティッド Galvanized steel sheet excellent in fatigue strength of electric resistance spot welds, and manufacturing method thereof
JP2023507960A (en) * 2019-12-20 2023-02-28 ポスコホールディングス インコーポレーティッド High-strength hot-dip galvanized steel sheet with excellent surface quality and electric resistance spot weldability and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116590A (en) * 2008-11-12 2010-05-27 Sumitomo Metal Ind Ltd Hot dip galvanized steel sheet and method for producing the same
JP2012012655A (en) * 2010-06-30 2012-01-19 Sumitomo Metal Ind Ltd Hot-dip galvanized steel sheet and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116590A (en) * 2008-11-12 2010-05-27 Sumitomo Metal Ind Ltd Hot dip galvanized steel sheet and method for producing the same
JP2012012655A (en) * 2010-06-30 2012-01-19 Sumitomo Metal Ind Ltd Hot-dip galvanized steel sheet and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10406780B2 (en) 2013-04-26 2019-09-10 Kobe Steel, Ltd. Hot-dip galvannealed steel sheet for hot stamping and method for manufacturing steel part
CN104213017A (en) * 2014-08-29 2014-12-17 武汉钢铁(集团)公司 Galvanized steel sheet and production process thereof
JP2023505444A (en) * 2019-12-03 2023-02-09 ポスコホールディングス インコーポレーティッド Galvanized steel sheet with excellent surface quality and spot weldability, and its manufacturing method
JP2023505445A (en) * 2019-12-03 2023-02-09 ポスコホールディングス インコーポレーティッド Galvanized steel sheet excellent in fatigue strength of electric resistance spot welds, and manufacturing method thereof
JP2023507960A (en) * 2019-12-20 2023-02-28 ポスコホールディングス インコーポレーティッド High-strength hot-dip galvanized steel sheet with excellent surface quality and electric resistance spot weldability and its manufacturing method

Similar Documents

Publication Publication Date Title
JP5884210B1 (en) Method for producing high-strength hot-dip galvanized steel sheet
CN111433380B (en) High-strength galvanized steel sheet and method for producing same
JP5958659B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5839152B1 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet
CN111936650B (en) High-strength galvanized steel sheet, high-strength member, and method for producing same
KR102171029B1 (en) High-strength galvanized steel sheet with high yield ratio and manufacturing method thereof
JP5630588B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5783269B2 (en) Alloy hot-dip galvanized steel sheet
TWI479033B (en) Galvannealed steel sheet
JP6249140B1 (en) High yield ratio type high strength galvanized steel sheet and method for producing the same
WO2019189841A1 (en) High-strength galvanized steel sheet, high-strength member, and manufacturing methods therefor
JP6111522B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP6409916B2 (en) Manufacturing method of hot-rolled steel sheet and manufacturing method of cold-rolled full hard steel sheet
JP5391607B2 (en) High-strength hot-dip galvanized steel sheet with excellent appearance and method for producing the same
JP2014009399A (en) High strength galvanized steel sheet and method for manufacturing the same
JP2010236027A (en) High-strength hot dip galvanized steel sheet excellent in formability
CN111936649B (en) High-strength galvanized steel sheet, high-strength member, and method for producing same
JP2018080362A (en) High-strength steel sheet, manufacturing method thereof and high-strength galvanized steel sheet
JP3875958B2 (en) High strength and high ductility hot dip galvanized steel sheet with excellent workability and manufacturing method thereof
JP3921101B2 (en) Manufacturing method of high strength and high ductility hot dip galvanized steel sheet with excellent shape freezing property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160426