JPWO2013154185A1 - Cooling device for high temperature superconducting equipment and method for operating the same - Google Patents

Cooling device for high temperature superconducting equipment and method for operating the same Download PDF

Info

Publication number
JPWO2013154185A1
JPWO2013154185A1 JP2014510212A JP2014510212A JPWO2013154185A1 JP WO2013154185 A1 JPWO2013154185 A1 JP WO2013154185A1 JP 2014510212 A JP2014510212 A JP 2014510212A JP 2014510212 A JP2014510212 A JP 2014510212A JP WO2013154185 A1 JPWO2013154185 A1 JP WO2013154185A1
Authority
JP
Japan
Prior art keywords
temperature
refrigerant gas
coolant
heat exchanger
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014510212A
Other languages
Japanese (ja)
Other versions
JP5705375B2 (en
Inventor
俊輔 池上
俊輔 池上
吉田 茂
茂 吉田
範久 奈良
範久 奈良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2014510212A priority Critical patent/JP5705375B2/en
Application granted granted Critical
Publication of JP5705375B2 publication Critical patent/JP5705375B2/en
Publication of JPWO2013154185A1 publication Critical patent/JPWO2013154185A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator

Abstract

本発明の高温超電導機器の冷却装置(1)は、ターボ圧縮機(2)と、主熱交換器(3)と、膨張タービン(4)と、冷媒ガスと冷却液とを熱交換させる副熱交換器(5)と、循環ポンプ(7)と、前記冷却液の温度を測定する温度測定手段(10)と、第1の閉流路(L1)と、前記冷却液を循環させる第2の閉流路(L2)と、を備え、副熱交換器(5)は、前記冷媒ガスが並行に流れる経路を有し、前記冷媒ガスが相互に熱交換する第1熱交換部(5a)と、冷媒ガスと冷却液とが対向するように熱交換する第2熱交換部(5b)と、を有する。The cooling device (1) for high-temperature superconducting equipment according to the present invention has a secondary heat for exchanging heat between the turbo compressor (2), the main heat exchanger (3), the expansion turbine (4), and the refrigerant gas and the coolant. An exchanger (5), a circulation pump (7), a temperature measuring means (10) for measuring the temperature of the coolant, a first closed channel (L1), and a second for circulating the coolant. A sub-heat exchanger (5) having a path through which the refrigerant gas flows in parallel, and a first heat exchange section (5a) that exchanges heat between the refrigerant gases. And a second heat exchanging part (5b) for exchanging heat so that the refrigerant gas and the cooling liquid face each other.

Description

本発明は、高温超電導機器の冷却装置及びその運転方法に関する。
本願は、2012年4月13日に、日本に出願された特願2012−092079号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a cooling apparatus for high-temperature superconducting equipment and an operation method thereof.
This application claims priority on April 13, 2012 based on Japanese Patent Application No. 2012-092079 for which it applied to Japan, and uses the content here.

高温超電導(High Temperature Superconducting、以下「HTS」と記載する)を利用した変圧器、送電ケーブル、モーター等のHTS機器は、超電導状態を維持するために60〜80K程度に冷却される必要がある。超電導状態を維持するためには冷却システム(冷凍機)が必要不可欠であり、最近では2〜10kW程度の冷凍能力を備える冷凍機が必要とされている。HTS機器は例えば液体窒素によって冷却され、この液体窒素はサブクール状態で液体窒素循環装置によって循環される。液体窒素循環装置の液体窒素は冷凍機によって冷却される。   HTS equipment such as a transformer, a power transmission cable, and a motor using high temperature superconducting (hereinafter referred to as “HTS”) needs to be cooled to about 60 to 80 K in order to maintain a superconducting state. In order to maintain the superconducting state, a cooling system (refrigerator) is indispensable, and recently, a refrigerator having a refrigerating capacity of about 2 to 10 kW is required. The HTS device is cooled by, for example, liquid nitrogen, and this liquid nitrogen is circulated by the liquid nitrogen circulation device in a subcooled state. The liquid nitrogen in the liquid nitrogen circulation device is cooled by a refrigerator.

サブクール状態とは、液体温度がその飽和温度よりも低い状態のことをいい、例えば、大気圧下の液体窒素の場合では、沸点(約77K)から凝固点(約63K)までの温度である液体窒素の状態をいう。なお、飽和温度とは、ある液体の圧力がその飽和蒸気圧と等しくなる温度をいう。   The subcooled state refers to a state in which the liquid temperature is lower than its saturation temperature. For example, in the case of liquid nitrogen at atmospheric pressure, liquid nitrogen having a temperature from the boiling point (about 77 K) to the freezing point (about 63 K). The state of. The saturation temperature refers to a temperature at which the pressure of a certain liquid becomes equal to the saturation vapor pressure.

HTS機器に求められる冷凍機としては、その大きさはもとより、冷却温度、冷凍能力、冷凍効率などの冷却性能が重要である。GM冷凍機又はスターリング冷凍機の冷凍能力(60〜80K、0.1〜0.6kW)では対応ができない。また、数kW程度の冷凍能力を具備するGM冷凍機、スターリング冷凍機を開発することは、冷凍機内部に設けられる熱交換器が問題になり開発が困難である。   As a refrigerator required for HTS equipment, not only its size but also cooling performance such as cooling temperature, refrigeration capacity, and refrigeration efficiency are important. The GM refrigerating machine or Stirling refrigerating machine (60-80K, 0.1-0.6 kW) cannot be used. In addition, it is difficult to develop a GM refrigerator and a Stirling refrigerator having a refrigeration capacity of about several kW because a heat exchanger provided in the refrigerator becomes a problem.

HTS機器に求められる冷凍機としては、GM冷凍機及びスターリング冷凍機の他に、ブレイトンサイクル冷凍機(Brayton Cycle Refrigerator)がある。
例えば、特許文献1にあるように、冷媒ガス(動作流体、作動流体)としてネオンガスを用い、冷却液として液体窒素を用いたブレイトンサイクル冷凍機が開発されている。ブレイトンサイクル冷凍機内を循環するネオンガスと、液体窒素循環装置内を循環する液体窒素と、が副熱交換器で熱交換することで、液体窒素をサブクール状態まで冷却している。
As a refrigerator required for HTS equipment, there is a Brayton cycle refrigerator (Brayton Cycle Refrigerator) in addition to a GM refrigerator and a Stirling refrigerator.
For example, as disclosed in Patent Document 1, a Brayton cycle refrigerator using neon gas as a refrigerant gas (working fluid, working fluid) and liquid nitrogen as a cooling liquid has been developed. The liquid nitrogen is cooled to the subcooled state by exchanging heat between the neon gas circulating in the Brayton cycle refrigerator and the liquid nitrogen circulating in the liquid nitrogen circulation device in the auxiliary heat exchanger.

また、液体窒素循環装置によって液体窒素を効率よくサブクール状態にするためには、副熱交換器としてプレートフィン熱交換器を用いたほうがよいとされる。プレートフィン熱交換機であれば小型化も可能である。   Moreover, in order to make liquid nitrogen into a subcooling state efficiently with a liquid nitrogen circulation apparatus, it is better to use a plate fin heat exchanger as an auxiliary heat exchanger. A plate fin heat exchanger can be downsized.

特開2011−106755号公報JP 2011-106755 A

しかしながら、ブレイトンサイクル冷凍機の冷媒であるネオンガスが、冷却液である液体窒素の凝固点(63K)よりも低くなると、液体窒素が副熱交換器内で凝固して、副熱交換器内の液体窒素流路を閉塞してしまう問題があった。   However, when the neon gas that is the refrigerant of the Brayton cycle refrigerator becomes lower than the freezing point (63K) of the liquid nitrogen that is the cooling liquid, the liquid nitrogen is solidified in the sub heat exchanger, and the liquid nitrogen in the sub heat exchanger is There was a problem of blocking the flow path.

液体窒素循環装置において、被冷却体であるHTS機器を冷却する前に、液体窒素流路が凍結しないように加熱手段(例えば、ヒーター等)を設けて、液体窒素温度を凝固点よりも高い温度に制御することもできる。しかしながら、ヒーター等の余計な設備を必要とする問題が発生する。そもそも、ヒーター等の余計な設備を必要とすることは液体窒素を冷却しすぎていることであり、つまり、ブレイトンサイクル冷凍機が効率よく運転できていない。   In the liquid nitrogen circulation device, before cooling the HTS device as the object to be cooled, a heating means (for example, a heater or the like) is provided so that the liquid nitrogen channel is not frozen, so that the liquid nitrogen temperature is higher than the freezing point. It can also be controlled. However, a problem that requires extra equipment such as a heater occurs. In the first place, the need for extra equipment such as a heater means that liquid nitrogen is cooled too much, that is, the Brayton cycle refrigerator cannot be operated efficiently.

さらに、このように液体窒素が固化してしまう状態が生じると、HTS機器の運転状態が急激に変化した場合に対応して、ブレイトンサイクル冷凍機の運転変更が適切に実行することができず、その結果、HTS機器を一定温度に冷却するための液体窒素温度を適切な温度に維持できない問題があった。   Furthermore, when the state where liquid nitrogen solidifies in this way occurs, the operation change of the Brayton cycle refrigerator cannot be appropriately executed in response to a sudden change in the operating state of the HTS device, As a result, there is a problem that the liquid nitrogen temperature for cooling the HTS device to a constant temperature cannot be maintained at an appropriate temperature.

本発明は、かかる課題を解決するためになされたものであり、冷却液を凝固させることなくサブクール状態にすることが可能であり、被冷却体の運転状態が急激に変化した場合であっても冷却液を適切な温度に維持することが可能な高温超電導機器の冷却装置およびその運転方法を提供することを目的としている。   The present invention has been made to solve such a problem, and can be brought into a subcooling state without solidifying the cooling liquid, and even when the operating state of the object to be cooled changes suddenly. It is an object of the present invention to provide a cooling apparatus for a high-temperature superconducting device capable of maintaining a coolant at an appropriate temperature and an operation method thereof.

かかる課題を解決するため、
本発明の第1の態様は、冷媒ガスを圧縮・循環させるターボ圧縮機と、
圧縮した冷媒ガスを戻りの冷媒ガス(圧縮する前の冷媒ガス)との熱交換により冷却する主熱交換器と、
冷却した冷媒ガスを断熱膨張させる膨張タービンと、
前記膨張タービンを出た極低温の冷媒ガスと冷却液とを熱交換させる副熱交換器と、
前記冷却液を前記副熱交換器と被冷却体の間で循環させる循環ポンプと、
前記冷却液の温度を測定する温度測定手段と、
前記副熱交換器で熱交換した後の冷媒ガスを、前記主熱交換器を介して前記ターボ圧縮機に循環させる循環経路を構成する第1の閉流路と、
前記副熱交換器で熱交換した後の冷却液を、前記循環ポンプで循環させる循環経路を構成する第2の閉流路と、を備え、
前記副熱交換器は、
前記冷媒ガスが並行に流れる経路を有し、前記冷媒ガスが相互に熱交換する第1熱交換部と、
前記第1熱交換部で熱交換された冷媒ガスと前記冷却液とが対向するように熱交換する第2熱交換部と、を有する高温超電導機器の冷却装置を提供する。
To solve this problem,
A first aspect of the present invention includes a turbo compressor that compresses and circulates refrigerant gas;
A main heat exchanger that cools the compressed refrigerant gas by heat exchange with the returned refrigerant gas (refrigerant gas before compression);
An expansion turbine for adiabatically expanding the cooled refrigerant gas;
A sub heat exchanger for exchanging heat between the cryogenic refrigerant gas exiting the expansion turbine and the coolant;
A circulation pump for circulating the cooling liquid between the auxiliary heat exchanger and a body to be cooled;
Temperature measuring means for measuring the temperature of the coolant;
A first closed flow path constituting a circulation path for circulating the refrigerant gas after heat exchange in the auxiliary heat exchanger to the turbo compressor via the main heat exchanger;
A second closed flow path that constitutes a circulation path for circulating the coolant after the heat exchange with the auxiliary heat exchanger with the circulation pump;
The auxiliary heat exchanger is
A first heat exchanging unit having a path through which the refrigerant gas flows in parallel, and wherein the refrigerant gas exchanges heat with each other;
There is provided a cooling device for a high-temperature superconducting device, comprising: a second heat exchanging portion that exchanges heat so that the refrigerant gas heat-exchanged in the first heat exchanging portion and the cooling liquid face each other.

また、本発明の第1の態様においては、前記温度測定手段が、前記副熱交換器で熱交換された後の前記冷却液の温度を測定することが好ましい。   Moreover, in the 1st aspect of this invention, it is preferable that the said temperature measurement means measures the temperature of the said cooling liquid after heat-exchanged with the said auxiliary heat exchanger.

また、本発明の第1の態様においては、前記冷媒ガスが、ネオンガス、ヘリウムガス及びネオンガスの混合ガス、水素及びネオンガスの混合ガス、水素及びヘリウムガスとの混合ガス、又はネオンガス、ヘリウムガス若しくは前記混合ガスに不活性ガスを混合させた混合ガスのいずれかであることが好ましい。   Further, in the first aspect of the present invention, the refrigerant gas is neon gas, a mixed gas of helium gas and neon gas, a mixed gas of hydrogen and neon gas, a mixed gas of hydrogen and helium gas, or neon gas, helium gas or the above-mentioned It is preferably one of mixed gases obtained by mixing an inert gas with a mixed gas.

また、本発明の第1の態様においては、前記冷却液が、液体窒素であることが好ましい。   Moreover, in the 1st aspect of this invention, it is preferable that the said cooling liquid is liquid nitrogen.

また、本発明の第2の態様は、本発明の第1の態様の高温超電導機器の冷却装置の運転方法であって、
第2の閉流路内の冷却液がサブクール状態となる温度範囲になるように、冷媒ガスの温度をターボ圧縮機の回転数により制御する高温超電導機器の冷却装置の運転方法を提供する。
The second aspect of the present invention is a method of operating the cooling device for the high-temperature superconducting equipment according to the first aspect of the present invention,
Provided is a method of operating a cooling device for a high-temperature superconducting device, in which the temperature of refrigerant gas is controlled by the number of revolutions of a turbo compressor so that the coolant in the second closed flow path is in a temperature range in which the coolant is in a subcooled state.

また、本発明の第2の態様においては、前記第2の閉流路内の冷却液の温度が低くなった場合には、前記ターボ圧縮機の回転数を下げることが好ましい。   In the second aspect of the present invention, it is preferable to reduce the rotational speed of the turbo compressor when the temperature of the coolant in the second closed flow path becomes low.

また、本発明の第2の態様においては、前記第2の閉流路内の冷却液の温度が高くなった場合には、前記ターボ圧縮機の回転数を上げることが好ましい。
また、本発明の第2の態様においては、第2の閉流路内の冷却液がサブクール状態となる温度範囲になるように、前記冷却液の循環流量を前記循環ポンプの回転数により制御し、前記循環ポンプの回転数をインバータ制御によって制御することが好ましい。
In the second aspect of the present invention, it is preferable to increase the rotational speed of the turbo compressor when the temperature of the coolant in the second closed flow path becomes high.
Further, in the second aspect of the present invention, the circulating flow rate of the cooling liquid is controlled by the number of rotations of the circulating pump so that the cooling liquid in the second closed flow path is in a temperature range where the cooling liquid enters a subcooled state. The rotation speed of the circulation pump is preferably controlled by inverter control.

本発明の高温超電導機器の冷却装置によれば、当該冷却装置内に第2の閉流路内の冷却液をサブクール状態にするための副熱交換器を設け、当該副熱交換器内の第1熱交換部で第1の閉流路内の冷媒ガスを自身で熱交換させるとともに第2熱交換部で第2の閉流路内の冷却液を冷却するようにしたので、副熱交換器内で冷却液を凝固させることがない。   According to the cooling apparatus for high-temperature superconducting equipment of the present invention, a sub heat exchanger is provided in the cooling apparatus for bringing the coolant in the second closed flow path into a subcooled state, and the second heat exchanger in the sub heat exchanger is provided. Since the refrigerant gas in the first closed flow path is heat-exchanged by itself in the first heat exchange section and the coolant in the second closed flow path is cooled in the second heat exchange section, the sub heat exchanger The cooling liquid is not solidified inside.

また、本発明の高温超電導機器の冷却装置の運転方法によれば、副熱交換器の出口側の冷却液の温度変化のみに応じて、第1の閉流路に設けられたターボ圧縮機の回転数を制御するので、被冷却体の急激な運転状態の変動があった場合でも、副熱交換器内で冷却液を凝固させることなく、被冷却体を適切に効率よく冷却することができる。   Further, according to the operation method of the cooling device for the high-temperature superconducting equipment of the present invention, the turbo compressor provided in the first closed flow path only in accordance with the temperature change of the coolant on the outlet side of the auxiliary heat exchanger. Since the number of rotations is controlled, the object to be cooled can be appropriately and efficiently cooled without solidifying the coolant in the sub heat exchanger even when there is a sudden change in the operating state of the object to be cooled. .

本発明の一実施形態である高温超電導機器の冷却装置を示す系統図である。It is a systematic diagram showing a cooling device for high-temperature superconducting equipment according to an embodiment of the present invention. 本発明の一実施形態である高温超電導機器の冷却装置に用いる副熱交換器を示す拡大系統図である。It is an expansion system diagram which shows the sub heat exchanger used for the cooling device of the high temperature superconducting apparatus which is one Embodiment of this invention. 本発明を適用したブレイトンサイクル冷凍機の冷凍能力と副熱交換器出口における液体窒素温度との関係を表すグラフである。It is a graph showing the relationship between the refrigerating capacity of the Brayton cycle refrigerator to which the present invention is applied and the liquid nitrogen temperature at the sub heat exchanger outlet.

以下、本発明の高温超電導機器の冷却装置を適用した一実施形態である冷凍機について、その運転方法とともに図面を用いて詳しく説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比等が実際の当該装置と同じであるとは限らない。また、本発明において、「冷凍機」と「冷却装置」は同じ内容を意味しており、同一の符号1が付されている。   Hereinafter, a refrigerator that is an embodiment to which a cooling device for high-temperature superconducting equipment according to the present invention is applied will be described in detail with reference to the drawings together with its operation method. In addition, in the drawings used in the following description, in order to make the characteristics easy to understand, there are cases where the characteristic features are enlarged for convenience, and the dimensional ratios of the respective components are the same as those of the actual device. Not necessarily. Further, in the present invention, “refrigerator” and “cooling device” mean the same content, and are given the same reference numeral 1.

先ず、本実施形態の冷凍機の構成について説明する。
図1に示すように、本実施形態の冷凍機1と被冷却体6の組合せは、ターボ圧縮機2、主熱交換器3、膨張タービン4、副熱交換器5が設けられた第1循環経路(第1の閉流路)L1と、副熱交換器5、被冷却体6、循環ポンプ7、温度測定手段10が設けられた第2循環経路(第2の閉流路)L2と、を備えて概略構成されており、第1循環経路L1内を循環する冷媒ガスと第2循環経路L2を循環する冷却液とが副熱交換器5で熱交換するようになっている。
First, the structure of the refrigerator of this embodiment is demonstrated.
As shown in FIG. 1, the combination of the refrigerator 1 and the body 6 to be cooled according to the present embodiment is a first circulation in which a turbo compressor 2, a main heat exchanger 3, an expansion turbine 4, and a sub heat exchanger 5 are provided. A path (first closed flow path) L1, a second circulation path (second closed flow path) L2 provided with the auxiliary heat exchanger 5, the cooled object 6, the circulation pump 7, and the temperature measuring means 10, and The refrigerant gas circulating in the first circulation path L1 and the coolant circulating in the second circulation path L2 exchange heat with the auxiliary heat exchanger 5.

より具体的には、冷凍機1は、ターボ圧縮機2、主熱交換器3、膨張タービン4、副熱交換器5、温度測定手段10、循環ポンプ7を備えて構成されており、冷凍機1の外部に設けられているのは被冷却体6のみとなっている。また、被冷却体6以外の冷凍機1の構成要素は、すべて同一の真空容器(コールドボックス)内に収納されている。   More specifically, the refrigerator 1 includes a turbo compressor 2, a main heat exchanger 3, an expansion turbine 4, an auxiliary heat exchanger 5, a temperature measuring means 10, and a circulation pump 7. It is only the to-be-cooled body 6 provided outside 1. Moreover, all the components of the refrigerator 1 other than the cooled object 6 are accommodated in the same vacuum container (cold box).

また、本実施形態の冷凍機1は、図1に示すように、ターボ圧縮機2でネオンガス等の冷媒ガスを断熱圧縮し、主熱交換器3で高圧側の冷媒ガスと低圧側の戻りの冷媒ガスとが熱交換することで高圧側の冷媒ガスが冷却され、この冷却された冷媒ガスが膨張タービン4で断熱膨張することで冷媒ガス自身が極低温になり、副熱交換器5で極低温の冷媒ガスと循環ポンプ7から送出された液体窒素等の冷却液とが熱交換することで冷却液を冷却し、この冷却液で例えばHTS機器等の被冷却体6を冷却するものである。   Further, as shown in FIG. 1, the refrigerator 1 of the present embodiment adiabatically compresses a refrigerant gas such as neon gas with a turbo compressor 2, and the main heat exchanger 3 returns a high-pressure side refrigerant gas and a low-pressure side return gas. The refrigerant gas on the high pressure side is cooled by heat exchange with the refrigerant gas, and the cooled refrigerant gas adiabatically expands in the expansion turbine 4, so that the refrigerant gas itself becomes a very low temperature, and the auxiliary heat exchanger 5 The coolant is cooled by exchanging heat between the low-temperature refrigerant gas and the coolant such as liquid nitrogen sent from the circulation pump 7, and the cooled object 6 such as an HTS device is cooled with this coolant. .

冷媒ガスとしては、窒素よりも沸点の低いヘリウム、ネオン又は水素及びそれらの混合ガス、或いは、これらガスに僅かに窒素やアルゴン等の不活性ガスを混合させた混合ガスを用いることができる。
また、冷却液としては、特に限定されないが、例えば液体窒素を用いることができる。
As the refrigerant gas, helium, neon or hydrogen having a lower boiling point than nitrogen and a mixed gas thereof, or a mixed gas in which an inert gas such as nitrogen or argon is slightly mixed with these gases can be used.
The coolant is not particularly limited, but for example, liquid nitrogen can be used.

第1循環経路L1は、冷媒ガスを圧縮して循環させるターボ圧縮機2と、断熱圧縮された冷媒ガスを戻りの冷媒ガスとの熱交換により冷却する主熱交換器3と、冷却した冷媒ガスを断熱膨張させる膨張タービン4と、膨張タービン4から導出された極低温の冷媒ガスと冷却液とを熱交換させる副熱交換器を介して、ターボ圧縮機2に循環させる循環経路である。   The first circulation path L1 includes a turbo compressor 2 that compresses and circulates the refrigerant gas, a main heat exchanger 3 that cools the adiabatic-compressed refrigerant gas by heat exchange with the returned refrigerant gas, and the cooled refrigerant gas. Is a circulation path that circulates to the turbo compressor 2 through an expansion turbine 4 that adiabatically expands and an auxiliary heat exchanger that exchanges heat between the cryogenic refrigerant gas derived from the expansion turbine 4 and the coolant.

ターボ圧縮機2は、冷媒ガスを断熱圧縮して循環させるために第1循環経路L1に設けられている。本実施形態では1段式ターボ圧縮機を例示しているが、これに限定されるものではない。ほかに、インタークーラー等を備えた2段式ターボ圧縮機としてもよい。   The turbo compressor 2 is provided in the first circulation path L1 in order to adiabatically compress and circulate the refrigerant gas. In the present embodiment, a single-stage turbo compressor is illustrated, but the present invention is not limited to this. In addition, a two-stage turbo compressor including an intercooler or the like may be used.

また、ターボ圧縮機2は、インバータによって駆動されるものを用いてもよい。ターボ圧縮機がインバータにより駆動される場合は、ターボ圧縮機2の出口側圧力が所定の値よりも高くなったときに、インバータの出力周波数を変更してターボ圧縮機2の回転数を小さくすることができる。よって、ターボ圧縮機2の出口側圧力を所定の値以下に保持することが可能である。このように、ターボ圧縮機2がインバータ制御できると、回転数を好適に制御することができる。なお、インバータの出力周波数を変更してターボ圧縮機2の回転数を大きくすれば、ターボ圧縮機2の出口側圧力を高くすることができる。   The turbo compressor 2 may be driven by an inverter. When the turbo compressor is driven by an inverter, when the outlet side pressure of the turbo compressor 2 becomes higher than a predetermined value, the output frequency of the inverter is changed to reduce the rotational speed of the turbo compressor 2. be able to. Therefore, the outlet side pressure of the turbo compressor 2 can be kept below a predetermined value. Thus, if the turbo compressor 2 can perform inverter control, the number of revolutions can be suitably controlled. In addition, if the rotation speed of the turbo compressor 2 is increased by changing the output frequency of the inverter, the outlet side pressure of the turbo compressor 2 can be increased.

また、ターボ圧縮機2の出口側後段に、熱交換器を設けてもよい。この熱交換器で、ターボ圧縮機2から出た高温の冷媒ガスを大気温度近くまで冷却することができる。例えば、水冷式のアフタークーラーがあげられる。   Further, a heat exchanger may be provided in the rear stage on the outlet side of the turbo compressor 2. With this heat exchanger, the high-temperature refrigerant gas emitted from the turbo compressor 2 can be cooled to near atmospheric temperature. An example is a water-cooled aftercooler.

主熱交換器3は、図1に示すように、第1循環経路L1において、ターボ圧縮機2と膨張タービン4との間に設置されており、ターボ圧縮機2によって断熱圧縮された冷媒ガスと副熱交換器5からの戻りの冷媒ガスとを熱交換することにより、ターボ圧縮機2から出た冷媒ガスを冷却するものである。   As shown in FIG. 1, the main heat exchanger 3 is installed between the turbo compressor 2 and the expansion turbine 4 in the first circulation path L1, and the refrigerant gas adiabatically compressed by the turbo compressor 2 and The refrigerant gas discharged from the turbo compressor 2 is cooled by exchanging heat with the refrigerant gas returned from the auxiliary heat exchanger 5.

膨張タービン4は、図1に示すように、第1循環経路L1において主熱交換器3の後段に設置されていて、主熱交換器3により冷却された冷媒ガスを断熱膨張させて極低温の冷媒ガスとするものである。また、膨張タービン4は、ターボ圧縮機2と同軸に設けるようにして一体構造としてもよい。一体構造とすることにより、膨張タービン4とターボ圧縮機2とを動作させる動力をまとめることができるので、冷凍機を小型化することができる。
なお、膨張タービン4の出口温度(図2における点1の温度に相当)は、冷媒ガスの種類に依存するが、主熱交換器と副熱交換器を組み合せた本願発明の冷却装置においては、55K〜65Kの範囲内であることが多い。
As shown in FIG. 1, the expansion turbine 4 is installed at the rear stage of the main heat exchanger 3 in the first circulation path L1, and a refrigerant gas cooled by the main heat exchanger 3 is adiabatically expanded to generate a cryogenic temperature. Refrigerant gas. Further, the expansion turbine 4 may be integrated with the turbo compressor 2 so as to be provided coaxially. Since the power for operating the expansion turbine 4 and the turbo compressor 2 can be integrated by adopting an integral structure, the refrigerator can be miniaturized.
Note that the outlet temperature of the expansion turbine 4 (corresponding to the temperature at point 1 in FIG. 2) depends on the type of refrigerant gas, but in the cooling device of the present invention in which a main heat exchanger and a sub heat exchanger are combined, Often within the range of 55K to 65K.

副熱交換器5は、図1に示すように、第1循環経路L1で膨張タービン4の出口側に設置されており、膨張タービン4によって極低温とされた冷媒ガスと被冷却体6を冷却する冷却液とが熱交換することにより、冷却液を冷却するものである。すなわち、冷媒ガスが冷却液を冷却することで、被冷却体が冷却される。   As shown in FIG. 1, the auxiliary heat exchanger 5 is installed on the outlet side of the expansion turbine 4 in the first circulation path L <b> 1, and cools the refrigerant gas and the object 6 to be cooled that have been extremely cooled by the expansion turbine 4. The cooling liquid is cooled by exchanging heat with the cooling liquid. That is, the object to be cooled is cooled by the coolant gas cooling the coolant.

循環ポンプ7は、図1に示すように、第2循環経路L2で冷却液を循環させるものである。
また、図1に示すように、第2循環経路L2には、副熱交換器5から流出する冷却液の温度を測定するための温度測定手段10が設けられている。温度測定手段10としては、例えば、熱電対などがあげられる。
また、被冷却体6としては、例えば、超電導送電ケーブル、超電導変圧器、超電導モーター等のHTS機器が挙げられる。
As shown in FIG. 1, the circulation pump 7 circulates the coolant in the second circulation path L2.
As shown in FIG. 1, the second circulation path L <b> 2 is provided with a temperature measuring means 10 for measuring the temperature of the coolant flowing out from the sub heat exchanger 5. Examples of the temperature measuring means 10 include a thermocouple.
Moreover, as the to-be-cooled body 6, HTS apparatus, such as a superconducting power transmission cable, a superconducting transformer, a superconducting motor, is mentioned, for example.

次に、本実施形態の冷凍機1の運転方法について説明する。
まず、第1循環経路L1において、ターボ圧縮機2によって冷媒ガスが断熱圧縮される。次に、冷媒ガスは主熱交換器3に導入され、副熱交換器5からの戻りの冷媒ガス(断熱圧縮される前の冷媒ガス)と熱交換される。このとき、断熱圧縮された冷媒ガスは65〜70Kまで冷却される。
なお、ターボ圧縮機2で断熱圧縮された冷媒ガスは高温となるため、ターボ圧縮機2の後段に熱交換器を設けて、冷媒ガスを大気温度近くまで冷却してもよい。
Next, the operation method of the refrigerator 1 of this embodiment is demonstrated.
First, the refrigerant gas is adiabatically compressed by the turbo compressor 2 in the first circulation path L1. Next, the refrigerant gas is introduced into the main heat exchanger 3 and heat exchanged with the refrigerant gas returned from the auxiliary heat exchanger 5 (the refrigerant gas before being adiabatically compressed). At this time, the adiabatic-compressed refrigerant gas is cooled to 65 to 70K.
Since the refrigerant gas adiabatically compressed by the turbo compressor 2 becomes a high temperature, a heat exchanger may be provided at the subsequent stage of the turbo compressor 2 to cool the refrigerant gas to near the atmospheric temperature.

次に、膨張タービン4において、冷媒ガスを膨張タービン4に導入する圧力(高圧側圧力、1〜2MPa)から膨張タービン4から導出する圧力(低圧側圧力、0.5〜1MPa)へと断熱膨張させて、冷媒ガスの温度を55〜65Kまで下降させる。   Next, in the expansion turbine 4, adiabatic expansion from the pressure (high pressure side pressure, 1-2 MPa) for introducing the refrigerant gas to the expansion turbine 4 to the pressure (low pressure side pressure, 0.5-1 MPa) derived from the expansion turbine 4 is performed. And the temperature of the refrigerant gas is lowered to 55 to 65K.

次に、膨張タービン4で55〜65Kまで冷却した冷媒ガスは副熱交換器5に導入され、被冷却体6を冷却する冷却液と熱交換される。このとき、冷却液はサブクール状態まで冷却される。例えば、液体窒素を65Kまで冷却する場合、冷媒ガス温度は65〜70K程度まで上昇する。   Next, the refrigerant gas cooled to 55 to 65 K by the expansion turbine 4 is introduced into the auxiliary heat exchanger 5 and heat exchanged with the coolant that cools the cooled object 6. At this time, the coolant is cooled to the subcooled state. For example, when liquid nitrogen is cooled to 65K, the refrigerant gas temperature rises to about 65 to 70K.

一方、サブクール状態の冷却液は、循環ポンプ7により被冷却体6を一定温度に保持するように第2循環経路L2を循環する。なお、サブクール状態の冷却液の温度範囲は、例えば、大気圧下の液体窒素の場合では、沸点(約77K)から凝固点(約63K)までの温度となる。また、被冷却体6を冷却する冷却液の温度を温度測定手段10で常時モニタしておく。被冷却体6を保持する温度はHTS機器によって多少異なるが、たいてい約70K程度に冷却維持するものが多い。   On the other hand, the coolant in the subcooled state circulates through the second circulation path L2 so that the cooled body 6 is maintained at a constant temperature by the circulation pump 7. For example, in the case of liquid nitrogen under atmospheric pressure, the temperature range of the coolant in the subcooled state is a temperature from the boiling point (about 77 K) to the freezing point (about 63 K). In addition, the temperature of the coolant for cooling the cooled object 6 is constantly monitored by the temperature measuring means 10. Although the temperature at which the object to be cooled 6 is held varies slightly depending on the HTS equipment, most of them are cooled and maintained at about 70K.

次に、副熱交換器5から導出された冷媒ガス(戻りの冷媒ガス)は、主熱交換器3に戻り、ターボ圧縮機2によって断熱圧縮された冷媒ガスと熱交換される。このとき、副熱交換器5から導出された冷媒ガス(戻りの冷媒ガス)の温度は大気温度近くまでさらに上昇する。その後、副熱交換器5から導出された冷媒ガス(戻りの冷媒ガス)は、ターボ圧縮機の入口側に戻る。   Next, the refrigerant gas derived from the auxiliary heat exchanger 5 (returned refrigerant gas) returns to the main heat exchanger 3 and is heat-exchanged with the refrigerant gas adiabatically compressed by the turbo compressor 2. At this time, the temperature of the refrigerant gas (returned refrigerant gas) derived from the auxiliary heat exchanger 5 further increases to near the atmospheric temperature. Thereafter, the refrigerant gas (returned refrigerant gas) derived from the auxiliary heat exchanger 5 returns to the inlet side of the turbo compressor.

このように、本実施形態の冷凍機1に設けられた第1循環経路L1では、冷媒ガスが循環するような構成となっており、ブレイトンサイクルを構成している。
また、副熱交換器5で冷却ガスの圧力損失が大きい場合には、第1循環経路L1において、膨張タービン4を副熱交換器5の後段すなわち主熱交換器3の前段に設け、1〜2MPaの高圧の冷媒ガスを副熱交換器5に導入することもできる。これにより、副熱交換器5で冷却ガスの圧力損失が大きい場合であっても対応することができる。
As described above, the first circulation path L1 provided in the refrigerator 1 of the present embodiment is configured such that the refrigerant gas circulates, and constitutes a Brayton cycle.
Further, when the pressure loss of the cooling gas is large in the auxiliary heat exchanger 5, the expansion turbine 4 is provided in the rear stage of the auxiliary heat exchanger 5, that is, in the front stage of the main heat exchanger 3, in the first circulation path L1, A high-pressure refrigerant gas of 2 MPa can be introduced into the auxiliary heat exchanger 5. Thereby, even if the pressure loss of the cooling gas is large in the auxiliary heat exchanger 5, it can be dealt with.

次に、本実施形態の副熱交換器5について、図2に基づいてさらに詳細に説明する。
図2に示すように、副熱交換器5内には、冷媒ガスが流れる第1循環経路L1が、経路L1aと経路L1bとが並行するように(経路L1a内の冷媒ガスと経路L1b内の冷媒ガスが並行流となるように)、第1熱交換部5aが形成されている。また、副熱交換器5内には、冷却液が流れる経路L2aが、冷媒ガスが流れる経路L1bと対向するように(経路L1bと経路L2aとが対向流となるように)、第2熱交換部5bが形成されている。
Next, the sub heat exchanger 5 of the present embodiment will be described in more detail based on FIG.
As shown in FIG. 2, in the auxiliary heat exchanger 5, the first circulation path L1 through which the refrigerant gas flows is arranged so that the path L1a and the path L1b are in parallel (the refrigerant gas in the path L1a and the path L1b The first heat exchange section 5a is formed so that the refrigerant gas is in a parallel flow. Further, in the auxiliary heat exchanger 5, the second heat exchange is performed so that the path L2a through which the coolant flows is opposed to the path L1b through which the refrigerant gas flows (so that the path L1b and the path L2a are opposed to each other). Part 5b is formed.

副熱交換器5内にこのような流路を設けることにより、第1熱交換部5aの並行流部分では冷媒ガス同士を相互に熱交換させて、膨張タービン4で冷却された冷媒ガスの温度を冷却液の凝固点以上まで上昇させるとともに、第2熱交換部5bの対向流部分ではこの冷媒ガスと被冷却体6を冷却させる冷却液(サブクール状態)とを熱交換させて、冷却液を冷却する。
すなわち、副熱交換器5では、冷却液がサブクール状態かつ凝固点以上の状態で、冷媒ガスと冷却液とが熱交換される。
By providing such a flow path in the sub heat exchanger 5, the temperature of the refrigerant gas cooled by the expansion turbine 4 is exchanged between the refrigerant gases in the parallel flow portion of the first heat exchange section 5a. In the counterflow portion of the second heat exchanging portion 5b, heat is exchanged between the refrigerant gas and the cooling liquid (subcooled state) for cooling the cooled object 6 to cool the cooling liquid. To do.
That is, in the sub heat exchanger 5, the refrigerant gas and the cooling liquid are heat-exchanged in a state where the cooling liquid is in the subcooled state and the freezing point or higher.

ところで、図1に示すように、被冷却体(HTS機器)6の負荷変動・運転変化により、冷却液の温度が変化する。これに対して、本実施形態の冷凍機1によれば、副熱交換器5の後段(すなわち、被冷却体6の前段)に温度測定手段10を設けているので、被冷却体6を冷却する冷却液の温度を常時測定することができる。また、冷却液の測定温度に応じてターボ圧縮機2の回転数を制御することができる。冷却液の測定温度が下降したとき、すなわち、HTS機器等の被冷却体6の負荷が低減したときは、ターボ圧縮機2の回転数を下げることとなる。一方、冷却液の測定温度が上昇したとき、すなわち、HTS機器等の被冷却体6の負荷が増大したときは、ターボ圧縮機2の回転数を上げることとなる。
以上により、冷凍機1の冷凍能力は、ターボ圧縮機2の回転数の制御によって変化させることがきる。
By the way, as shown in FIG. 1, the temperature of the coolant changes due to the load fluctuation / operation change of the cooled object (HTS device) 6. On the other hand, according to the refrigerator 1 of the present embodiment, the temperature measuring means 10 is provided in the subsequent stage of the auxiliary heat exchanger 5 (that is, the preceding stage of the cooled object 6), so that the cooled object 6 is cooled. The temperature of the coolant to be measured can always be measured. Further, the rotational speed of the turbo compressor 2 can be controlled in accordance with the measured temperature of the coolant. When the measured temperature of the coolant is lowered, that is, when the load on the cooled object 6 such as an HTS device is reduced, the rotational speed of the turbo compressor 2 is lowered. On the other hand, when the measured temperature of the coolant rises, that is, when the load on the cooled object 6 such as an HTS device increases, the rotational speed of the turbo compressor 2 is increased.
As described above, the refrigeration capacity of the refrigerator 1 can be changed by controlling the rotational speed of the turbo compressor 2.

また、膨張タービン4の膨張比は、冷凍機1の高圧側圧力と低圧側圧力との関係で決まる。冷凍機1のこれら圧力を決定するのはターボ圧縮機2の圧縮比である。膨張タービン4は、ターボ圧縮機2を介して高められた冷媒ガス出口圧力(高圧側圧力)を、ターボ圧縮機2の冷媒ガス入口圧力(低圧側圧力)まで膨張する機能を有しているだけで、膨張タービン4自身で膨張比を決定することはできない。すなわち、ターボ圧縮機2での冷媒ガスの圧縮比に応じて、膨張タービン4の冷媒ガスの膨張比が決定される。   The expansion ratio of the expansion turbine 4 is determined by the relationship between the high pressure side pressure and the low pressure side pressure of the refrigerator 1. It is the compression ratio of the turbo compressor 2 that determines these pressures in the refrigerator 1. The expansion turbine 4 only has a function of expanding the refrigerant gas outlet pressure (high pressure side pressure) increased through the turbo compressor 2 to the refrigerant gas inlet pressure (low pressure side pressure) of the turbo compressor 2. Thus, the expansion ratio cannot be determined by the expansion turbine 4 itself. That is, the expansion ratio of the refrigerant gas in the expansion turbine 4 is determined according to the compression ratio of the refrigerant gas in the turbo compressor 2.

つまり、ターボ圧縮機2の回転数を下げると、ターボ圧縮機2の特性により圧縮比が小さくなり、結果、膨張タービン4の膨張比が小さくなるので、膨張タービン4から導出される冷媒ガス温度は回転数を下げる前よりも上昇する。
逆に、ターボ圧縮機2の回転数を上げると、ターボ圧縮機2の特性により圧縮比が大きくなり、結果、膨張タービン4の膨張比が大きくなるので、膨張タービン4から導出される冷媒ガス温度は回転数を上げる前よりも下降する。
That is, when the rotational speed of the turbo compressor 2 is lowered, the compression ratio becomes small due to the characteristics of the turbo compressor 2 and, as a result, the expansion ratio of the expansion turbine 4 becomes small. Therefore, the refrigerant gas temperature derived from the expansion turbine 4 becomes It rises more than before the rotation speed is lowered.
On the contrary, when the rotational speed of the turbo compressor 2 is increased, the compression ratio increases due to the characteristics of the turbo compressor 2, and as a result, the expansion ratio of the expansion turbine 4 increases, so that the refrigerant gas temperature derived from the expansion turbine 4 Falls below before increasing the number of revolutions.

以上より、本実施形態の冷凍機1によれば、HTS機器等の被冷却体6の負荷変動・運転変化に応じて、すみやかに、ターボ圧縮機2の回転数を制御することで、冷媒ガスの温度を適切な温度に維持することできる。そのため、被冷却体6を一定温度に保持することができる。   As described above, according to the refrigerator 1 of the present embodiment, the refrigerant gas can be quickly controlled by controlling the rotation speed of the turbo compressor 2 in accordance with the load fluctuation / operation change of the cooled object 6 such as an HTS device. Can be maintained at an appropriate temperature. Therefore, the to-be-cooled body 6 can be kept at a constant temperature.

以上説明したように、本実施形態の冷凍機1は、ブレイトンサイクルを構成する当該冷凍機1内に第2循環経路L2内の冷却液(液体窒素)をサブクール状態にするための副熱交換器5を設け、当該副熱交換器5内の第1熱交換部5aで第1循環経路L1内の冷媒ガス(ネオンガス)を自身で熱交換させるとともに第2熱交換部5bで第2循環経路L2内の冷却液を冷却するように構成されている。よって、副熱交換器5内で冷却液を凝固させることがない。   As described above, the refrigerator 1 of the present embodiment is a sub heat exchanger for bringing the coolant (liquid nitrogen) in the second circulation path L2 into a subcool state in the refrigerator 1 constituting the Brayton cycle. 5, the refrigerant gas (neon gas) in the first circulation path L1 is heat-exchanged by the first heat exchange section 5a in the sub heat exchanger 5 and the second circulation path L2 in the second heat exchange section 5b. It is comprised so that the inside coolant may be cooled. Therefore, the cooling liquid is not solidified in the auxiliary heat exchanger 5.

また、本実施形態の冷凍機1の運転方法によれば、副熱交換器5の出口側の冷却液の温度変化のみに応じて、第1循環経路L1に設けられたターボ圧縮機2の回転数を制御するので、被冷却体(HTS機器)6の急激な運転状態の変動があった場合でも、副熱交換器5内で冷却液を凝固させることなく、HTS機器内の高温超電導体を適切に効率よく冷却することができる。   In addition, according to the operation method of the refrigerator 1 of the present embodiment, the rotation of the turbo compressor 2 provided in the first circulation path L1 according to only the temperature change of the coolant on the outlet side of the auxiliary heat exchanger 5. Because the number is controlled, the high-temperature superconductor in the HTS device is not solidified in the sub heat exchanger 5 even if there is a sudden change in the operating state of the cooled object (HTS device) 6. It can be cooled appropriately and efficiently.

(循環ポンプ7の回転数の制御)
本発明の高温超電導機器の冷却装置では、副熱交換器5の冷却液出口(点4)の温度10を一定とする様にターボ圧縮機2の回転数を制御している。よって、冷却液の循環流量が一定であれば、副熱交換器5の冷却液入口(点3)の温度は被冷却体6の負荷に依存する。
被冷却体6の負荷が減少すると、副熱交換器5の冷却液入口(点3)の温度が下降し、主熱交換器3に戻る冷媒ガスの温度も下降する。更に、膨張タービン4の入口温度も下降する。一方、被冷却体6の負荷が減少すると、冷凍能力を下げるためにターボ圧縮機2の回転数を下げる自動制御が行われる。ターボ圧縮機2の回転数が減少すると、冷媒ガスの圧縮比が流量とともに減少する。この時、膨張タービン4の入口温度の低下と膨張比の低下が同時に起こる。ただし、膨張タービンの出口温度は、用いたターボ圧縮機2と膨張タービン4の特性により上昇する場合と下降する場合がある。
膨張タービン4の出口温度が上昇した場合は、副熱交換器5の冷媒ガス入口(点1)の温度が上昇するので、副熱交換器5内で液体窒素(冷却液)が凝固することはない。一方、膨張タービン4の出口温度が下降した場合は、副熱交換器5の冷媒ガス入口(点1)の温度が下がるので、副熱交換器5内で冷却液が凝固する危険性がある。この冷却液の凝固を回避するため、副熱交換器5の冷媒ガス入口(点1)の温度に基づいて、循環ポンプ7の回転数を減少させ、冷却液の循環流量を減らすことが好ましい。冷却液の循環流量が減少すると、被冷却体6の影響によって冷却液の温度が上昇する。その結果、副熱交換器5において温度が下降した冷媒ガスと温度が上昇した冷却ガスが熱交換を行うことになるので、副熱交換器5内の冷却液の凝固を防ぐことができる。
被冷却体6の負荷が上昇し、定常に戻った場合には、直ちにターボ圧縮機2の回転数及び循環ポンプ7の回転数を元の数値まで増加させることで、冷却液の循環流量を回復させる。これにより、第2の閉流路L2内の冷却液の温度がサブクール状態となる温度範囲になるよう維持し、系全体の温度を安定に維持することができる。循環ポンプ7の回転数制御には、一般的なインバータ制御が適用可能である。
(Control of the rotation speed of the circulation pump 7)
In the cooling apparatus for high-temperature superconducting equipment according to the present invention, the rotational speed of the turbo compressor 2 is controlled so that the temperature 10 at the coolant outlet (point 4) of the auxiliary heat exchanger 5 is constant. Therefore, if the circulating flow rate of the coolant is constant, the temperature of the coolant inlet (point 3) of the auxiliary heat exchanger 5 depends on the load of the body 6 to be cooled.
When the load on the cooled object 6 decreases, the temperature of the coolant inlet (point 3) of the auxiliary heat exchanger 5 decreases, and the temperature of the refrigerant gas that returns to the main heat exchanger 3 also decreases. Furthermore, the inlet temperature of the expansion turbine 4 also decreases. On the other hand, when the load on the cooled object 6 decreases, automatic control is performed to reduce the rotational speed of the turbo compressor 2 in order to reduce the refrigerating capacity. When the rotational speed of the turbo compressor 2 decreases, the compression ratio of the refrigerant gas decreases with the flow rate. At this time, a decrease in the inlet temperature of the expansion turbine 4 and a decrease in the expansion ratio occur simultaneously. However, the outlet temperature of the expansion turbine may increase or decrease depending on the characteristics of the turbo compressor 2 and the expansion turbine 4 used.
When the outlet temperature of the expansion turbine 4 rises, the temperature of the refrigerant gas inlet (point 1) of the auxiliary heat exchanger 5 rises, so that the liquid nitrogen (coolant) is solidified in the auxiliary heat exchanger 5. Absent. On the other hand, when the outlet temperature of the expansion turbine 4 is lowered, the temperature of the refrigerant gas inlet (point 1) of the sub heat exchanger 5 is lowered, and there is a risk that the coolant is solidified in the sub heat exchanger 5. In order to avoid the solidification of the cooling liquid, it is preferable to reduce the circulation flow rate of the cooling liquid by reducing the rotational speed of the circulation pump 7 based on the temperature of the refrigerant gas inlet (point 1) of the sub heat exchanger 5. When the circulating flow rate of the cooling liquid decreases, the temperature of the cooling liquid rises due to the influence of the body 6 to be cooled. As a result, the refrigerant gas whose temperature has decreased in the sub heat exchanger 5 and the cooling gas whose temperature has increased perform heat exchange, so that the cooling liquid in the sub heat exchanger 5 can be prevented from solidifying.
When the load of the cooled object 6 rises and returns to a steady state, the circulating flow rate of the coolant is restored by immediately increasing the rotational speed of the turbo compressor 2 and the rotational speed of the circulation pump 7 to the original values. Let Thereby, it is possible to maintain the temperature of the coolant in the second closed flow path L2 so as to be in a temperature range where the subcooled state is achieved, and to maintain the temperature of the entire system stably. General inverter control can be applied to the rotational speed control of the circulation pump 7.

以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。   Hereinafter, the effects of the present invention will be made clearer by examples. In addition, this invention is not limited to a following example, In the range which does not change the summary, it can change suitably and can implement.

(実施例1)
図1に示す本発明の高温超電導機器の冷却装置を適用した冷凍機を定常状態となるまで運転した。冷媒ガスにはネオンガスを用い、冷却液には液体窒素を用いた。図2中に示した各点(測定点)における温度を測定した結果を、以下の表1に示す。
(Example 1)
The refrigerator to which the cooling device for the high-temperature superconducting equipment of the present invention shown in FIG. 1 was applied was operated until it reached a steady state. Neon gas was used as the refrigerant gas, and liquid nitrogen was used as the coolant. The results of measuring the temperature at each point (measurement point) shown in FIG.

Figure 2013154185
Figure 2013154185

上記表1に示すように、図2中に示す点1aの温度は64.8Kであり、点1cの温度は65.4Kであり、点4の温度は67.0Kであった。ここで、大気圧下におけるサブクール状態の窒素温度は、沸点(約77K)から凝固点(約63K)までである。よって、本発明の冷凍機によれば、冷却液を加熱するためのヒーター等を用いることなく、冷媒ガス温度を冷却液が凝固しない温度に維持することができた。   As shown in Table 1 above, the temperature at point 1a shown in FIG. 2 was 64.8K, the temperature at point 1c was 65.4K, and the temperature at point 4 was 67.0K. Here, the nitrogen temperature in the subcooled state under atmospheric pressure is from the boiling point (about 77 K) to the freezing point (about 63 K). Therefore, according to the refrigerator of the present invention, the refrigerant gas temperature can be maintained at a temperature at which the coolant does not solidify without using a heater or the like for heating the coolant.

(実施例2)
図1に示す本発明の高温超電導機器の冷却装置を適用したブレイトンサイクル冷凍機を負荷変動運転した。冷媒ガスにはネオンガスを用い、冷却液には液体窒素を用いた。
HTS機器の負荷を変動させて、ターボ圧縮機の回転数を制御し、冷凍機の冷凍能力を制御した結果、図3に示すように、HTS機器の負荷が0.7から2.5kWに変動した場合でも、副熱交換器の液体窒素出口(点4)の温度は67Kで一定であった。したがって、本発明の高温超電導機器の冷却装置によれば、負荷変動運転した場合であっても冷却液を加熱するためのヒーター等を用いることなく、冷媒ガス温度を冷却液が凝固しない温度に維持することができた。
(Example 2)
The Brayton cycle refrigerator to which the cooling apparatus for high-temperature superconducting equipment of the present invention shown in FIG. Neon gas was used as the refrigerant gas, and liquid nitrogen was used as the coolant.
As a result of controlling the rotation speed of the turbo compressor and controlling the refrigerating capacity of the refrigerator by changing the load of the HTS equipment, the load of the HTS equipment fluctuates from 0.7 to 2.5 kW as shown in FIG. Even in this case, the temperature of the liquid nitrogen outlet (point 4) of the auxiliary heat exchanger was constant at 67K. Therefore, according to the cooling device for high-temperature superconducting equipment of the present invention, the refrigerant gas temperature is maintained at a temperature at which the cooling liquid does not solidify without using a heater or the like for heating the cooling liquid even in the case of load fluctuation operation. We were able to.

1 冷凍機(冷却装置)
2 ターボ圧縮機
3 主熱交換器
4 膨張タービン
5 副熱交換器
5a 第1熱交換部
5b 第2熱交換部
6 被冷却体
7 循環ポンプ
10 温度測定手段
L1 第1循環経路(第1の閉流路)
L2 第2循環経路(第2の閉流路)
1 Refrigerator (cooling device)
DESCRIPTION OF SYMBOLS 2 Turbo compressor 3 Main heat exchanger 4 Expansion turbine 5 Sub heat exchanger 5a 1st heat exchange part 5b 2nd heat exchange part 6 To-be-cooled body 7 Circulation pump 10 Temperature measurement means L1 1st circulation path (1st closing) Flow path)
L2 Second circulation path (second closed flow path)

Claims (8)

冷媒ガスを圧縮・循環させるターボ圧縮機と、
圧縮した冷媒ガスを戻りの冷媒ガスとの熱交換により冷却する主熱交換器と、
冷却した冷媒ガスを断熱膨張させる膨張タービンと、
前記膨張タービンを出た極低温の冷媒ガスと冷却液とを熱交換させる副熱交換器と、
前記冷却液を前記副熱交換器と被冷却体の間で循環させる循環ポンプと、
前記冷却液の温度を測定する温度測定手段と、
前記副熱交換器で熱交換した後の冷媒ガスを、前記主熱交換器を介して前記ターボ圧縮機に循環させる循環経路を構成する第1の閉流路と、
前記副熱交換器で熱交換した後の冷却液を、前記循環ポンプで循環させる循環経路を構成する第2の閉流路と、を備え、
前記副熱交換器は、
前記冷媒ガスが並行に流れる経路を有し、前記冷媒ガスが相互に熱交換する第1熱交換部と、
前記第1熱交換部で熱交換された冷媒ガスと前記冷却液とが対向するように熱交換する第2熱交換部と、を有する高温超電導機器の冷却装置。
A turbo compressor that compresses and circulates refrigerant gas;
A main heat exchanger that cools the compressed refrigerant gas by heat exchange with the returned refrigerant gas;
An expansion turbine for adiabatically expanding the cooled refrigerant gas;
A sub heat exchanger for exchanging heat between the cryogenic refrigerant gas exiting the expansion turbine and the coolant;
A circulation pump for circulating the cooling liquid between the auxiliary heat exchanger and a body to be cooled;
Temperature measuring means for measuring the temperature of the coolant;
A first closed flow path constituting a circulation path for circulating the refrigerant gas after heat exchange in the auxiliary heat exchanger to the turbo compressor via the main heat exchanger;
A second closed flow path that constitutes a circulation path for circulating the coolant after the heat exchange with the auxiliary heat exchanger with the circulation pump;
The auxiliary heat exchanger is
A first heat exchanging unit having a path through which the refrigerant gas flows in parallel, and wherein the refrigerant gas exchanges heat with each other;
A cooling apparatus for a high-temperature superconducting device, comprising: a second heat exchange unit that exchanges heat so that the refrigerant gas exchanged in the first heat exchange unit and the cooling liquid face each other.
前記温度測定手段は、前記副熱交換器で熱交換された後の前記冷却液の温度を測定する請求項1に記載の高温超電導機器の冷却装置。   2. The cooling device for a high-temperature superconducting device according to claim 1, wherein the temperature measuring unit measures a temperature of the coolant after heat exchange is performed by the sub heat exchanger. 前記冷媒ガスは、ネオンガス、ヘリウムガス及びネオンガスの混合ガス、水素及びネオンガスの混合ガス、水素及びヘリウムガスの混合ガス、又はネオンガス、ヘリウムガス若しくは前記混合ガスに不活性ガスを混合させた混合ガスのいずれかである請求項1に記載の高温超電導機器の冷却装置。   The refrigerant gas is neon gas, a mixed gas of helium gas and neon gas, a mixed gas of hydrogen and neon gas, a mixed gas of hydrogen and helium gas, or a mixed gas of an inert gas mixed with neon gas, helium gas or the mixed gas. The cooling device for high-temperature superconducting equipment according to claim 1, which is any one of them. 前記冷却液は、液体窒素である請求項1に記載の高温超電導機器の冷却装置。   The cooling device for high-temperature superconducting equipment according to claim 1, wherein the cooling liquid is liquid nitrogen. 請求項1乃至4いずれか一項に記載の高温超電導機器の冷却装置の運転方法であって、
第2の閉流路内の冷却液の温度がサブクール状態となる温度範囲になるように、冷媒ガスの温度をターボ圧縮機の回転数により制御する高温超電導機器の冷却装置の運転方法。
A method for operating a cooling device for a high-temperature superconducting device according to any one of claims 1 to 4,
A method of operating a cooling device for a high-temperature superconducting device, wherein the temperature of the refrigerant gas is controlled by the number of revolutions of the turbo compressor so that the temperature of the coolant in the second closed flow path is in a temperature range that is in a subcooled state.
前記第2の閉流路内の冷却液の温度が低くなった場合には、前記ターボ圧縮機の回転数を下げる請求項5に記載の高温超電導機器の冷却装置の運転方法。   The method for operating a cooling device for a high-temperature superconducting device according to claim 5, wherein when the temperature of the coolant in the second closed flow path becomes low, the rotational speed of the turbo compressor is lowered. 前記第2の閉流路内の冷却液の温度が高くなった場合には、前記ターボ圧縮機の回転数を上げる請求項5に記載の高温超電導機器の冷却装置の運転方法。   The method of operating a cooling device for a high-temperature superconducting device according to claim 5, wherein when the temperature of the coolant in the second closed flow path becomes high, the number of revolutions of the turbo compressor is increased. 第2の閉流路内の冷却液がサブクール状態となる温度範囲になるように、前記冷却液の循環流量を前記循環ポンプの回転数により制御し、
前記循環ポンプの回転数をインバータ制御によって制御する請求項5に記載の高温超電導機器の冷却装置の運転方法。
Controlling the circulation flow rate of the coolant by the number of rotations of the circulation pump so that the coolant in the second closed flow path is in a temperature range in which the coolant is in a subcooled state.
The operating method of the cooling device for a high-temperature superconducting device according to claim 5, wherein the rotational speed of the circulation pump is controlled by inverter control.
JP2014510212A 2012-04-13 2013-04-12 Cooling device for high temperature superconducting equipment and method for operating the same Active JP5705375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014510212A JP5705375B2 (en) 2012-04-13 2013-04-12 Cooling device for high temperature superconducting equipment and method for operating the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012092079 2012-04-13
JP2012092079 2012-04-13
PCT/JP2013/061066 WO2013154185A1 (en) 2012-04-13 2013-04-12 Cooling device for high temperature superconducting apparatus and operation method therefor
JP2014510212A JP5705375B2 (en) 2012-04-13 2013-04-12 Cooling device for high temperature superconducting equipment and method for operating the same

Publications (2)

Publication Number Publication Date
JP5705375B2 JP5705375B2 (en) 2015-04-22
JPWO2013154185A1 true JPWO2013154185A1 (en) 2015-12-21

Family

ID=49327743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014510212A Active JP5705375B2 (en) 2012-04-13 2013-04-12 Cooling device for high temperature superconducting equipment and method for operating the same

Country Status (3)

Country Link
JP (1) JP5705375B2 (en)
KR (1) KR101368722B1 (en)
WO (1) WO2013154185A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020025168A1 (en) * 2018-07-30 2020-02-06 Linde Aktiengesellschaft High temperature superconductor refrigeration system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102001251B1 (en) * 2016-09-21 2019-07-18 한국전력공사 Integrated cooling system of liquid nitrogen circulation and refrigerator for hts cable
US10808967B2 (en) 2017-01-16 2020-10-20 Praxair Technology, Inc. Refrigeration cycle for liquid oxygen densification
JP7065745B2 (en) * 2018-10-12 2022-05-12 大陽日酸株式会社 Ultra-low temperature fluid circulation cooling system
JP7141342B2 (en) * 2019-01-31 2022-09-22 大陽日酸株式会社 Cryogenic fluid circulation cooling system and cryogenic fluid circulation cooling method
JP6951598B1 (en) * 2021-03-10 2021-10-20 大陽日酸株式会社 Turbo Brayton refrigerator
FR3132754B1 (en) * 2022-02-15 2023-12-29 Air Liquide Refrigeration device and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6438994B1 (en) 2001-09-27 2002-08-27 Praxair Technology, Inc. Method for providing refrigeration using a turboexpander cycle
US6640557B1 (en) * 2002-10-23 2003-11-04 Praxair Technology, Inc. Multilevel refrigeration for high temperature superconductivity
JP5356983B2 (en) 2009-11-18 2013-12-04 大陽日酸株式会社 Cryogenic refrigeration apparatus and operation method thereof
EP2336677A1 (en) * 2009-12-15 2011-06-22 Siemens Aktiengesellschaft Refrigeration system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020025168A1 (en) * 2018-07-30 2020-02-06 Linde Aktiengesellschaft High temperature superconductor refrigeration system
CN112368524A (en) * 2018-07-30 2021-02-12 林德有限责任公司 High temperature superconductor refrigeration system

Also Published As

Publication number Publication date
KR20130142201A (en) 2013-12-27
KR101368722B1 (en) 2014-02-28
JP5705375B2 (en) 2015-04-22
WO2013154185A1 (en) 2013-10-17

Similar Documents

Publication Publication Date Title
JP5705375B2 (en) Cooling device for high temperature superconducting equipment and method for operating the same
KR101161339B1 (en) Cryogenic refrigerator and control method therefor
JP5356983B2 (en) Cryogenic refrigeration apparatus and operation method thereof
JP5985746B2 (en) Brayton cycle refrigerator
JP6445752B2 (en) Superconducting magnet device
Lee et al. Design of high efficiency mixed refrigerant Joule–Thomson refrigerator for cooling HTS cable
US20220275999A1 (en) Refrigeration and/or liquefaction method, device and system
JPS59122868A (en) Cascade-turbo helium refrigerating liquefier utilizing neon gas
CN103047788B (en) J-T throttling refrigeration circulating system driven by low-temperature linear compressor
JP2018091391A (en) System for liquefying boil-off gas
KR20210088603A (en) Fluid temperature system and refrigeration system
Hirai et al. Neon turbo-Brayton cycle refrigerator for HTS power machines
JP2015187525A (en) Brayton cycle refrigerator, and method for cooling heat generating part of turbo-compressor
CN115096013B (en) Device and method for realizing quick cooling of helium cryogenic refrigerator
Hirai et al. Development of a Neon Cryogenic turbo‐expander with Magnetic Bearings
JP2018066511A (en) Turbo refrigerator
JP2019095079A (en) Cooling system for high temperature superconductive electric power equipment and its operational method
JP2016169880A (en) Superconductive cable cooling device and superconductive cable cooling method
JP5959062B2 (en) Current lead device
US20190252096A1 (en) Superconductive cable cooling system having integration of liquid nitrogen circulation and refrigerator
JP7141342B2 (en) Cryogenic fluid circulation cooling system and cryogenic fluid circulation cooling method
JP2873388B2 (en) Refrigerator and method for adjusting refrigeration capacity
JP2005003314A (en) Superconducting electromagnet cooling device
JP6951598B1 (en) Turbo Brayton refrigerator
JP2018189170A (en) Liquefied gas storage device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150224

R150 Certificate of patent or registration of utility model

Ref document number: 5705375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250