JP2019095079A - Cooling system for high temperature superconductive electric power equipment and its operational method - Google Patents

Cooling system for high temperature superconductive electric power equipment and its operational method Download PDF

Info

Publication number
JP2019095079A
JP2019095079A JP2017221868A JP2017221868A JP2019095079A JP 2019095079 A JP2019095079 A JP 2019095079A JP 2017221868 A JP2017221868 A JP 2017221868A JP 2017221868 A JP2017221868 A JP 2017221868A JP 2019095079 A JP2019095079 A JP 2019095079A
Authority
JP
Japan
Prior art keywords
refrigerant
high temperature
liquefied refrigerant
cooling
temperature superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017221868A
Other languages
Japanese (ja)
Inventor
昌樹 弘川
Masaki Hirokawa
昌樹 弘川
吉田 茂
Shigeru Yoshida
茂 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2017221868A priority Critical patent/JP2019095079A/en
Publication of JP2019095079A publication Critical patent/JP2019095079A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

To provide a cooling system for high temperature superconductive electric power equipment capable of performing efficient cooling operation under low power consumption when the high temperature superconductive electric power equipment is cooled with liquefaction refrigerant cooled by several refrigerators, and provide its operational method.SOLUTION: The cooling system for high temperature superconductive electric power equipment comprises: a liquefaction refrigerant supply line 1 for use in circulating liquefaction refrigerant; high temperature superconductive electric power equipment 4 installed at the liquefaction refrigerant supply line 1 and cooled by the liquefaction refrigerant; a refrigerant pump 2 installed at the liquefaction refrigerant supply line 1 for circulating the liquefaction refrigerant in force that is led-through from the high temperature superconductive electric power equipment 4; and several refrigerators 3 installed at a downstream side of the refrigerant pump 2 in the liquefaction refrigerant supply line 1 and at an upstream side of the high temperature superconductive electric power equipment 4 to store at least a part of the liquefaction refrigerant supply line 1 and cool the liquefaction refrigerant circulated at the liquefaction refrigerant supply line 1 in which each of the several refrigerators 3 is connected in series to cool the liquefaction refrigerant press fed from the refrigerant pump 2 while being flowed in series among the several refrigerators 3, thereafter the liquefaction refrigerant is fed out to the high temperature superconductive electric power equipment 4.SELECTED DRAWING: Figure 1

Description

本発明は、高温超電導電力機器用冷却システム及びその運転方法に関するものである。   The present invention relates to a cooling system for high temperature superconducting power devices and a method of operating the same.

例えば、超電導送電ケーブル、超電導変圧器、超電導モーター、超電導限流器、超電導電力貯蔵器等の超電導電力機器を冷却する際、特に、高温超電導(HTS:High Temperature Superconducting)を利用した高温超電導電力機器を冷却する場合には、例えば、−200℃以下の極低温域での冷却性能が要求される。このため、高温超電導電力機器を冷却する場合には、液化冷媒として、極低温域での冷却が可能な液体窒素が用いられている。   For example, when cooling superconducting power devices such as a superconducting power transmission cable, a superconducting transformer, a superconducting motor, a superconducting current limiting device, and a superconducting power storage device, a high temperature superconducting power device using high temperature superconducting (HTS), in particular. In the case of cooling, for example, cooling performance in a cryogenic temperature range of -200.degree. C. or less is required. For this reason, when cooling a high temperature superconducting power device, liquid nitrogen which can be cooled in a very low temperature range is used as a liquefied refrigerant.

超電導電力機器を冷却する場合、侵入熱や超電導電力機器を構成する超電導体(例えば、コイルやケーブル等)に通電することによる発熱で液化冷媒が昇温する。このため、超電導電力機器を冷却する冷却システムは、一般に、液化冷媒を冷却するための冷凍機と、液化冷媒を循環させるためのポンプと、液化冷媒を貯留する貯槽とを含む構成とされている(例えば、特許文献1を参照)。   When cooling a superconducting power device, the temperature of the liquefied refrigerant rises due to heat generation caused by induction heat or electricity supplied to a superconductor (for example, a coil, a cable, etc.) constituting the superconducting power device. For this reason, the cooling system for cooling the superconducting power device generally includes a refrigerator for cooling the liquefied refrigerant, a pump for circulating the liquefied refrigerant, and a storage tank for storing the liquefied refrigerant. (See, for example, Patent Document 1).

図4及び図5は、従来の冷却システムの概略構成を示す系統図である。
図4に示すように、従来、高温超電導電力機器を冷却する場合は、冷凍機103で液体窒素を冷却してサブクール状態の液体窒素を生成し、このサブクール液体窒素を高温超電導電力機器104に循環させて冷却する方法が一般的であり、1台で十分な冷却能力を有する冷凍機103を用いて、冷媒ポンプ102による液体窒素の循環で冷却運転が行われている。ここで、サブクール状態とは、液体温度がその飽和温度よりも低い状態のことをいい、例えば、大気圧下の液体窒素の場合、沸点(約77K)から凝固点(約63K)の範囲の温度である状態のことをいう。
FIG.4 and FIG.5 is a systematic diagram which shows schematic structure of the conventional cooling system.
As shown in FIG. 4, conventionally, when cooling a high temperature superconducting power device, the liquid nitrogen is cooled by the refrigerator 103 to generate subcooled liquid nitrogen, and this subcooled liquid nitrogen is circulated to the high temperature superconducting power device 104. The cooling method is generally used, and a cooling operation is performed by circulation of liquid nitrogen by the refrigerant pump 102 using one refrigerator 103 having a sufficient cooling capacity. Here, the subcooled state means that the liquid temperature is lower than its saturation temperature, for example, in the case of liquid nitrogen under atmospheric pressure, at a temperature ranging from the boiling point (about 77 K) to the freezing point (about 63 K) It refers to a certain state.

一方、高温超電導電力機器は24時間運転で稼働される場合も多いことから、その冷却システムにも、安定して24時間運転可能であることが求められる。このため、近年では、複数台の冷凍機を用い、例えば、冷凍機のメンテナンスが必要な場合には、その都度、使用する冷凍機を切り替えることで、24時間運転による冷却に対応している。このような場合には、図5に示すように、複数の冷媒ポンプ102A,102B,102C、及び、複数の冷凍機103A,103B,103Cが並列に配置され、各冷凍機の出口における、サブクール状態とされた液体窒素の出口温度Toutが等しくなるように、各々の冷凍機が独立運転する構成が採用されている。   On the other hand, since high temperature superconducting power devices are often operated in a 24-hour operation, the cooling system is also required to be able to operate in a stable manner for 24 hours. For this reason, in recent years, for example, when maintenance of a refrigerator is required, cooling by 24-hour operation is supported by switching the used refrigerator, each time when maintenance of the refrigerator is required. In such a case, as shown in FIG. 5, a plurality of refrigerant pumps 102A, 102B, 102C and a plurality of refrigerators 103A, 103B, 103C are arranged in parallel, and the subcool state at the outlet of each refrigerator A configuration is employed in which each refrigerator operates independently so that the outlet temperatures Tout of the liquid nitrogen that are determined are equal.

特開2016−169880号公報JP, 2016-169880, A

ここで、図5に示すような、3台の冷凍機103A,103B,103Cを並列で配置した構成を採用し、例えば、これらの各冷凍機を同時に運転した場合には、冷却システムとしての冷却能力をより高めることが可能になる。例えば、仮に、高温超電導電力機器の冷却に要する必要冷却能力が6000ワットである場合には、2000ワットの冷却能力を有する冷凍機を3台同時に運転することで、上記の必要冷却能力が得られることになる。   Here, a configuration in which three refrigerators 103A, 103B, and 103C are arranged in parallel as shown in FIG. 5 is adopted, and, for example, when each of these refrigerators is operated simultaneously, cooling as a cooling system It will be possible to further enhance the ability. For example, if the required cooling capacity required to cool a high-temperature superconducting power device is 6000 watts, the above-mentioned required cooling capacity can be obtained by operating three refrigerators having a cooling capacity of 2000 watts simultaneously. It will be.

一方、高温超電導電力機器の運転においては冷凍機の消費電力の管理が極めて重要である。例えば、実用規模の高温超電導電力機器用の冷却システムの例として、超電導送電ケーブル冷却システムがある。これは、変電所と変電所の間に敷設される数キロメールから数十キロメールに及ぶ超電導送電ケーブルの冷却システムであり、これを冷却するための冷凍能力は大容量となる。従って、高温超電導電力機器用の冷却システムの冷却効率の改善への要求は大きい。このため、高温超電導電力機器の冷却システムにおいては、少しでもその消費電力を低減すること、即ち、効率的に冷凍機を運転することが、省エネや運転コストの低減等の観点から非常に重要となる。しかしながら、例えば、図5に示すような構成の冷却システムを用いて3台の冷凍機103A,103B,103Cを同時に運転した場合には、冷凍機は1台毎の独立運転であることから、必要な電力は単純に1台あたりの消費電力の3倍となるため、決して効率の良い方法ではなかった。このため、極低温域における高い冷却能力を実現しながら、消費電力を低減できる高温超電導電力機器用の冷却システムが切に求められていた。   On the other hand, management of the power consumption of the refrigerator is extremely important in the operation of high temperature superconducting power devices. For example, a superconducting transmission cable cooling system is an example of a cooling system for high-temperature superconducting power devices of practical scale. This is a cooling system for superconducting transmission cables ranging from several kilometers to several tens of kilometers, installed between substations, and the refrigeration capacity for cooling this is a large capacity. Therefore, there is a great demand for improvement of the cooling efficiency of the cooling system for high temperature superconducting power devices. Therefore, in the cooling system of high-temperature superconducting power devices, it is very important to reduce the power consumption as much as possible, that is, to operate the refrigerator efficiently from the viewpoint of energy saving, reduction of operation cost, etc. Become. However, for example, when three refrigerators 103A, 103B and 103C are simultaneously operated using a cooling system having a configuration as shown in FIG. 5, since the refrigerators are operated independently, it is necessary. Power was simply three times the power consumption per unit, so it was never an efficient way. For this reason, a cooling system for high temperature superconducting power devices capable of reducing power consumption while realizing high cooling capacity in a cryogenic temperature region has been strongly desired.

本発明は上記問題に鑑みてなされたものであり、複数の冷凍機で液化冷媒を冷却しながら、この液化冷媒で高温超電導電力機器を冷却する際、少ない消費電力で効率的に冷却することが可能な高温超電導電力機器用冷却システム及びその運転方法を提供することを目的とする。   The present invention has been made in view of the above problems, and while cooling a liquefied refrigerant with a plurality of refrigerators, when cooling a high temperature superconducting power device with this liquefied refrigerant, cooling efficiently with little power consumption It is an object of the present invention to provide a possible cooling system for high temperature superconducting power devices and an operating method thereof.

上記課題を解決するため、請求項1に係る発明は、液化冷媒を循環させる液化冷媒供給ラインと、前記液化冷媒供給ラインに設けられ、該液化冷媒供給ラインを循環する前記液化冷媒によって冷却される高温超電導電力機器と、前記液化冷媒供給ラインに設けられ、前記高温超電導電力機器から導出された前記液化冷媒を圧送循環させる冷媒ポンプと、前記液化冷媒供給ラインにおける前記液化冷媒の流れ方向で前記冷媒ポンプの下流側であって前記高温超電導電力機器の上流側に設けられ、前記液化冷媒供給ラインの少なくとも一部を収容し、前記液化冷媒供給ラインを循環する前記液化冷媒を冷却する複数の冷凍機と、を有し、前記複数の冷凍機は、それぞれ直列に接続されており、前記冷媒ポンプから圧送される前記液化冷媒を、前記複数の冷凍機間で直列に流通させながら冷却した後、前記高温超電導電力機器に送出することを特徴とする高温超電導電力機器用冷却システムである。   In order to solve the above problems, the invention according to claim 1 is provided with a liquefied refrigerant supply line for circulating liquefied refrigerant, and the liquefied refrigerant supply line, and is cooled by the liquefied refrigerant circulating through the liquefied refrigerant supply line. A high temperature superconducting power device, a refrigerant pump provided in the liquefied refrigerant supply line, for pumping and circulating the liquefied refrigerant derived from the high temperature superconducting power device, the refrigerant in a flow direction of the liquefied refrigerant in the liquefied refrigerant supply line A plurality of refrigerators provided downstream of a pump and upstream of the high temperature superconducting power device, accommodating at least a part of the liquefied refrigerant supply line, and cooling the liquefied refrigerant circulating in the liquefied refrigerant supply line And the plurality of refrigerators are respectively connected in series, and the liquefied refrigerant pumped from the refrigerant pump is After cooling while flowing in series between the number of the refrigerator, a cooling system for high temperature superconducting power apparatus characterized in that it sent to the high-temperature superconducting power apparatus.

請求項2に係る発明は、請求項1に記載の冷却システムであって、前記複数の冷凍機が、それぞれ、冷媒ガスを循環させる冷媒ガス循環ラインを有し、さらに、該冷媒ガス循環ラインに設けられた、前記冷媒ガスを圧縮する圧縮機、該圧縮機の後段側に配置されて前記冷媒ガスを膨張させる膨張機、前記膨張機で膨張させた前記冷媒ガスと前記液化冷媒供給ラインを循環する前記液化冷媒とを熱交換させることで該液化冷媒を冷却する液化冷媒用熱交換器、及び、該液化冷媒用熱交換器を通過した前記冷媒ガスと前記圧縮機で圧縮された前記冷媒ガスとを熱交換させる冷媒ガス用熱交換器を含むことを特徴とする高温超電導電力機器用冷却システムである。   The invention according to claim 2 is the cooling system according to claim 1, wherein each of the plurality of refrigerators has a refrigerant gas circulation line for circulating a refrigerant gas, and further, in the refrigerant gas circulation line A compressor for compressing the refrigerant gas, an expander for expanding the refrigerant gas, which is disposed downstream of the compressor, the refrigerant gas expanded by the expander and the liquefied refrigerant supply line being circulated And a heat exchanger for liquefied refrigerant which cools the liquefied refrigerant by heat exchange with the liquefied refrigerant, and the refrigerant gas which has passed through the heat exchanger for liquefied refrigerant and the refrigerant gas compressed by the compressor. And a heat exchanger for a refrigerant gas that exchanges heat with the heat exchanger.

請求項3に係る発明は、請求項1又は請求項2に記載の冷却システムであって、前記複数の冷凍機に備えられる圧縮機が、それぞれ同一の回転数で運転されることを特徴とする高温超電導電力機器用冷却システムである。   The invention according to claim 3 is the cooling system according to claim 1 or 2, characterized in that the compressors provided in the plurality of refrigerators are operated at the same rotational speed. It is a cooling system for high temperature superconducting power devices.

請求項4に係る発明は、請求項1又は請求項2に記載の冷却システムであって、前記複数の冷凍機が同一の冷凍能力で運転されることを特徴とする高温超電導電力機器用冷却システムである。   The invention according to claim 4 is the cooling system according to claim 1 or 2, wherein the plurality of refrigerators are operated with the same refrigeration capacity. It is.

請求項5に係る発明は、請求項1〜請求項4の何れか一項に記載の冷却システムであって、前記液化冷媒が前記冷凍機をバイパスするバイパス管が備えられていることを特徴とする高温超電導電力機器用冷却システムである。   The invention according to claim 5 is the cooling system according to any one of claims 1 to 4, characterized in that a bypass pipe is provided for the liquefied refrigerant to bypass the refrigerator. Cooling system for high temperature superconducting power devices.

さらに、請求項6に係る発明は、請求項1〜請求項5の何れか一項に記載の高温超電導電力機器用冷却システムを用いて高温超電導電力機器を冷却することを特徴とする高温超電導電力機器用冷却システムの運転方法である。   Furthermore, the invention according to claim 6 is characterized in that the high temperature superconducting power device is cooled using the cooling system for a high temperature superconducting power device according to any one of claims 1 to 5 It is an operation method of the cooling system for equipment.

本発明に係る高温超電導電力機器用冷却システムによれば、液化冷媒供給ラインにおける冷媒ポンプの下流側であって高温超電導電力機器の上流側に設けられ、液化冷媒供給ラインを循環する液化冷媒を冷却する複数の冷凍機を有し、これら複数の冷凍機が、それぞれ直列に接続され、冷媒ポンプから圧送される液化冷媒を複数の冷凍機間で直列に流通させながら冷却した後、高温超電導電力機器に送出する構成を採用している。
このように、複数の冷凍機を直列に配置することで、液化冷媒供給ラインの上流側に配置される冷凍機に対して、下流側に配置される冷凍機の駆動電力を、冷却能力を低下させることなく低電力で設定できる。これにより、特に大きな冷却能力が必要で、従来は冷凍機の消費電力も大きくなりがちだった高温超電導電力機器の冷却に関し、冷却能力を低下させることなく駆動電力を大幅に低減することができる。従って、少ない消費電力で効率的に高温超電導電力機器を冷却することが可能になる。
According to the cooling system for high-temperature superconducting power devices according to the present invention, the liquefied refrigerant supply line is provided downstream of the refrigerant pump and upstream of the high-temperature superconducting power devices, and cools the liquefied refrigerant circulating in the liquefied refrigerant supply line. High temperature superconducting electric power apparatus after cooling while making the plurality of refrigerators connected in series among the plurality of refrigerators, the plurality of refrigerators being connected in series, respectively, The configuration for sending to
Thus, by arranging a plurality of refrigerators in series, the cooling power is reduced for the driving power of the coolers disposed downstream with respect to the refrigerator disposed upstream of the liquefied refrigerant supply line It can be set with low power without having to As a result, with regard to the cooling of high temperature superconducting power devices, which require a particularly large cooling capacity and the power consumption of the refrigerator tends to be large conventionally, the driving power can be significantly reduced without reducing the cooling capacity. Therefore, it becomes possible to cool the high temperature superconducting power device efficiently with little power consumption.

また、本発明に係る高温超電導電力機器用冷却システムの運転方法によれば、上記構成を備えた本発明に係る高温超電導電力機器用冷却システムを用いて高温超電導電力機器を冷却する方法なので、上記同様、下流側に配置される冷凍機の駆動電力を、冷却能力を低下させることなく低電力で設定できる。これにより、冷凍機の消費電力が大きくなりがちな高温超電導電力機器の冷却に関し、冷却能力を低下させることなく駆動電力を大幅に低減することができる。従って、少ない消費電力で効率的に高温超電導電力機器を冷却することが可能になる。   Further, according to the method of operating the cooling system for high-temperature superconducting power devices according to the present invention, the method for cooling high-temperature superconducting power devices using the cooling system for high-temperature superconducting power devices according to the present invention having the above configuration Similarly, the drive power of the refrigerator disposed downstream can be set with low power without reducing the cooling capacity. As a result, with regard to the cooling of the high temperature superconducting power device in which the power consumption of the refrigerator tends to increase, the driving power can be significantly reduced without reducing the cooling capacity. Therefore, it becomes possible to cool the high temperature superconducting power device efficiently with little power consumption.

本発明の一実施形態である高温超電導電力機器用冷却システム及びその運転方法について模式的に説明する図であり、システム全体の概略構成を示す系統図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which illustrates typically the cooling system for high temperature superconducting power devices which is one Embodiment of this invention, and its operating method, and is a systematic diagram which shows schematic structure of the whole system. 本発明の一実施形態である高温超電導電力機器用冷却システム及びその運転方法について模式的に説明する図であり、図1中に示した冷凍機をさらに詳細に示す概略図である。It is a figure which illustrates typically the cooling system for high-temperature superconducting power devices which is one embodiment of the present invention, and its operation method, and is a schematic diagram showing the refrigerator shown in Drawing 1 in more detail. 本発明の一実施形態である高温超電導電力機器用冷却システム及びその運転方法について説明する図であり、冷凍機の冷却能力と冷却温度との関係を、冷凍機に備えられる圧縮機の回転数毎に示すグラフである。It is a figure explaining the cooling system for high temperature superconducting electric power equipment which is one embodiment of the present invention, and its operation method, and the relation between the cooling capacity of a refrigerator, and cooling temperature is every rotation speed of the compressor with which a refrigerator is equipped Is a graph shown in FIG. 従来の冷却システムの構成を説明する図であり、1台の冷凍機を用いた場合の系統図である。It is a figure explaining the composition of the conventional cooling system, and is a systematic diagram at the time of using one refrigerator. 従来の冷却システムの構成を説明する系統図であり、複数の冷凍機を並列に配置した場合の系統図である。It is a systematic diagram explaining the composition of the conventional cooling system, and is a systematic diagram at the time of arranging a plurality of refrigerators in parallel.

以下、本発明を適用した一実施形態である高温超電導電力機器用冷却システム及びその運転方法について、図1〜図3を適宜参照しながら説明する(図4及び図5の従来図も適宜参照)。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。また、以下の説明において例示する材料等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。   Hereinafter, a cooling system for a high temperature superconducting power device, which is an embodiment to which the present invention is applied, and a method of operating the same will be described with reference to FIG. 1 to FIG. 3 as appropriate. . In the drawings used in the following description, in order to make the features easy to understand, the features that are the features may be enlarged and shown for convenience, and the dimensional ratio of each component is limited to be the same as the actual Absent. In addition, the materials and the like exemplified in the following description are merely examples, and the present invention is not limited to them, and can be appropriately changed and implemented without changing the gist of the invention.

本発明に係る高温超電導電力機器用冷却システム及びその運転方法は、例えば、超電導送電ケーブル、超電導変圧器、超電導モーター、超電導限流器、超電導電力貯蔵器等、高温の超電導電力機器を−200℃以下の極低温領域まで冷却する用途に適用することが可能なものである。   The cooling system for high temperature superconducting power devices according to the present invention and the operating method thereof include, for example, a high temperature superconducting power device such as a superconducting power transmission cable, a superconducting transformer, a superconducting motor, a superconducting current limiter, and a superconducting power storage device at -200 ° C. It is possible to apply to the application of cooling to the following cryogenic temperature region.

<高温超電導電力機器用冷却システム>
以下、本実施形態の高温超電導電力機器用冷却システム(以下、単に冷却システムと略称することがある)の構成について詳述する。
図1に示すように、本実施形態の冷却システム10は、液化冷媒(図示略)を循環させる液化冷媒供給ライン1と、液化冷媒供給ライン1に設けられ、この液化冷媒供給ライン1を循環する液化冷媒によって冷却される高温超電導電力機器4と、液化冷媒供給ライン1に設けられ、高温超電導電力機器4から導出された液化冷媒を圧送循環させる冷媒ポンプ2と、液化冷媒供給ライン1における液化冷媒の流れ方向で冷媒ポンプ2の下流側であって高温超電導電力機器4の上流側に設けられ、液化冷媒供給ライン1の少なくとも一部を収容し、液化冷媒供給ライン1を循環する液化冷媒を冷却する複数の冷凍機3と、を有して概略構成される。
<Cooling system for high temperature superconducting power equipment>
Hereinafter, the configuration of the cooling system for high-temperature superconducting power devices of the present embodiment (hereinafter, may be simply referred to simply as a cooling system) will be described in detail.
As shown in FIG. 1, the cooling system 10 of the present embodiment is provided in the liquefied refrigerant supply line 1 for circulating liquefied refrigerant (not shown) and the liquefied refrigerant supply line 1, and is circulated through the liquefied refrigerant supply line 1. A high temperature superconducting power device 4 cooled by a liquefied refrigerant, a refrigerant pump 2 provided in the liquefied refrigerant supply line 1 for pumping and circulating the liquefied refrigerant derived from the high temperature superconducting power device 4, a liquefied refrigerant in the liquefied refrigerant supply line 1 Provided on the downstream side of the refrigerant pump 2 and the upstream side of the high-temperature superconducting power device 4 in the flow direction, and at least a part of the liquefied refrigerant supply line 1 is accommodated to cool the liquefied refrigerant circulating in the liquefied refrigerant supply line 1 And a plurality of refrigerators 3.

そして、本実施形態の冷却システム10は、複数の冷凍機3(3A,3B,3C)が、それぞれ直列に接続されており、冷媒ポンプ2から圧送される液化冷媒を、複数の冷凍機3A,3B,3C間で直列に流通させながら冷却した後、高温超電導電力機器4に送出するように構成されている。   In the cooling system 10 of the present embodiment, the plurality of refrigerators 3 (3A, 3B, 3C) are connected in series, and the liquefied refrigerant pressure-fed from the refrigerant pump 2 is divided into the plurality of refrigerators 3A, After being cooled while being circulated in series between 3B and 3C, they are sent to the high temperature superconducting power device 4.

液化冷媒供給ライン1は、液化冷媒貯槽8に貯留された液化冷媒を循環させるための配管であり、この液化冷媒供給ライン1内の所定の位置に上記の液化冷媒貯槽8が接続され、ループ状に構成される。液化冷媒供給ライン1は、詳細を後述するが、冷凍機3内の液化冷媒用熱交換器34(図2参照)内に配置される冷却区間1Aを有する。   The liquefied refrigerant supply line 1 is a pipe for circulating the liquefied refrigerant stored in the liquefied refrigerant storage tank 8, and the liquefied refrigerant storage tank 8 is connected to a predetermined position in the liquefied refrigerant supply line 1, thereby forming a loop. Configured The liquefied refrigerant supply line 1 has a cooling section 1A disposed in the liquefied refrigerant heat exchanger 34 (see FIG. 2) in the refrigerator 3, which will be described in detail later.

ここで、本実施形態において液化冷媒供給ライン1内を循環させる液化冷媒としては、超電導送電ケーブル等の高温超電導電力機器を冷却するにあたり、その超電導状態を維持できる臨界温度領域で液化可能な物質が好ましく、且つ、サブクール状態で電気絶縁性に優れたものが好ましい。このような液化冷媒としては、安全面やコスト面を考慮すると、例えば、液化窒素(液体窒素)を用いることができる。   Here, as the liquefied refrigerant to be circulated in the liquefied refrigerant supply line 1 in the present embodiment, a substance which can be liquefied in a critical temperature region capable of maintaining the superconducting state in cooling a high temperature superconducting power device such as a superconducting power transmission cable. Preferred is one that is excellent in electrical insulation in a subcooled state. As such a liquefied refrigerant, in consideration of safety and cost, for example, liquefied nitrogen (liquid nitrogen) can be used.

冷媒ポンプ2は、液化冷媒貯槽8から供給される液化冷媒を液化冷媒供給ライン1内に圧送して循環させるものであり、図1に示す例においては、3台の冷媒ポンプ2A,2B,2Cがそれぞれ並列に接続されている。即ち、冷媒ポンプ2は、高温超電導電力機器4に液化冷媒を圧送する機能を有するものである。   The refrigerant pump 2 pressure-feeds and circulates the liquefied refrigerant supplied from the liquefied refrigerant storage tank 8 into the liquefied refrigerant supply line 1, and in the example shown in FIG. 1, three refrigerant pumps 2A, 2B and 2C are provided. Are connected in parallel. That is, the refrigerant pump 2 has a function of pressure-feeding the liquefied refrigerant to the high temperature superconducting power device 4.

冷媒ポンプ2としては、冷媒の搬送に用いられる一般的なポンプを何ら制限無く用いることができるが、液化冷媒として液体窒素を用いる場合には、例えば、30L/min〜100L/minの範囲内で液体窒素を圧送可能なものを用いることが好ましい。   As the refrigerant pump 2, a general pump used for transporting the refrigerant can be used without any restriction, but in the case of using liquid nitrogen as the liquefied refrigerant, for example, within the range of 30 L / min to 100 L / min. It is preferable to use one that can pump liquid nitrogen.

冷凍機3は、液化冷媒供給ライン1を循環する液化冷媒を冷却するものであり、図1に示す例では、液化冷媒供給ライン1における冷媒ポンプ2と高温超電導電力機器4との間に複数で設けられ、より具体的には、3台の冷凍機3A,3B,3Cが、液化冷媒供給ライン1上で直列に接続されている。   The refrigerator 3 is for cooling the liquefied refrigerant circulating in the liquefied refrigerant supply line 1 and, in the example shown in FIG. 1, a plurality of refrigerant pumps 2 and high temperature superconducting power devices 4 in the liquefied refrigerant supply line 1 are provided. More specifically, three refrigerators 3A, 3B and 3C are connected in series on the liquefied refrigerant supply line 1.

複数の冷凍機3A,3B,3Cは、図2に示す例においては、それぞれ、冷媒ガス(図示略)を循環させる冷媒ガス循環ライン31を有している。また、冷凍機3A,3B,3Cは、冷媒ガス循環ライン31に設けられた、冷媒ガスを圧縮する圧縮機32、及び、この圧縮機32の後段側に配置されて冷媒ガスを断熱膨張させる膨張機33を、それぞれ有する。さらに、冷凍機3A,3B,3Cは、膨張機33で断熱膨張させた冷媒ガスと液化冷媒供給ライン1を循環する液化冷媒(液体窒素)とを熱交換させることで液化冷媒を冷却する液化冷媒用熱交換器34、及び、この液化冷媒用熱交換器34を通過した冷媒ガスと圧縮機32で圧縮された冷媒ガスとを熱交換させる冷媒ガス用熱交換器35を、それぞれ含んで構成される。また、図示例の冷凍機3A,3B,3Cには、冷媒ガス循環ライン31における圧縮機32と第3の区間31Cとの間に冷媒ガスを供給するための水冷部36が設けられている。   Each of the plurality of refrigerators 3A, 3B, 3C has a refrigerant gas circulation line 31 for circulating a refrigerant gas (not shown) in the example shown in FIG. In addition, the refrigerators 3A, 3B, 3C are provided in the refrigerant gas circulation line 31, and a compressor 32 for compressing the refrigerant gas, and an expansion unit which is disposed on the rear stage side of the compressor 32 and adiabatically expands the refrigerant gas. Each has a machine 33. Furthermore, the refrigerator 3A, 3B, 3C cools the liquefied refrigerant by heat exchange between the refrigerant gas adiabatically expanded by the expander 33 and the liquefied refrigerant (liquid nitrogen) circulating in the liquefied refrigerant supply line 1 Heat exchanger 34, and a refrigerant gas heat exchanger 35 for exchanging heat between the refrigerant gas having passed through the liquefied refrigerant heat exchanger 34 and the refrigerant gas compressed by the compressor 32. Ru. In the illustrated refrigerator 3A, 3B, 3C, a water cooling unit 36 for supplying a refrigerant gas is provided between the compressor 32 and the third section 31C in the refrigerant gas circulation line 31.

本実施形態の冷却システム1に備えられる冷凍機3A,3B,3Cは、上記構成により、それぞれ、液化冷媒供給ライン1の少なくとも一部を収容し、液化冷媒供給ライン1を循環する液化冷媒を冷却するものである。   The refrigerators 3A, 3B and 3C provided in the cooling system 1 of the present embodiment respectively accommodate at least a part of the liquefied refrigerant supply line 1 and cool the liquefied refrigerant circulating in the liquefied refrigerant supply line 1 according to the above configuration. It is

なお、冷凍機3A,3B,3Cは、圧縮機32及び水冷部36を除く構成要素については、図示略の真空容器(コールドボックス)内に収容される。この真空容器は、外部からの熱の侵入を抑制するためのものである。   The components of the refrigerator 3A, 3B, 3C other than the compressor 32 and the water-cooling unit 36 are accommodated in a vacuum container (cold box) not shown. This vacuum vessel is for suppressing the penetration of heat from the outside.

冷媒ガス循環ライン31は、ループ状とされたラインであり、冷媒ガスを循環させるためのラインである。
冷媒ガス循環ライン31は、第1〜第3の区間31A,31B,31Cを有する。
第1の区間31Aは、液化冷媒用熱交換器34内に配置されており、膨張機33で断熱膨張によって液化冷媒の温度よりも低温となった冷媒ガスが供給される。
第2及び第3の区間31B,31Cは、冷媒ガス用熱交換器35内に配置されている。第2の区間31Bには、液化冷媒用熱交換器34を通過した低圧の冷媒ガスが供給される。また、第3の区間31Cには、圧縮機32で圧縮されて水冷部36で冷却された高圧の冷媒ガスが供給される。
The refrigerant gas circulation line 31 is a looped line, and is a line for circulating the refrigerant gas.
The refrigerant gas circulation line 31 has first to third sections 31A, 31B, 31C.
The first section 31A is disposed in the liquefied refrigerant heat exchanger 34, and the expander 33 supplies a refrigerant gas whose temperature is lower than the temperature of the liquefied refrigerant by adiabatic expansion.
The second and third sections 31B and 31C are disposed in the refrigerant gas heat exchanger 35. The low pressure refrigerant gas that has passed through the liquefied refrigerant heat exchanger 34 is supplied to the second section 31B. Further, the high pressure refrigerant gas which is compressed by the compressor 32 and cooled by the water cooling unit 36 is supplied to the third section 31C.

冷媒ガスとしては、液化冷媒供給ライン1を循環する液化冷媒の液化温度よりも十分に低い液化温度を有するものを用いる。液化冷媒として液化窒素を用いる場合、冷媒ガスとしては、例えば、ヘリウムガス、ネオンガス、あるいはヘリウムガスとネオンガスとを混合させた混合ガスを用いることが可能であるが、ネオンガスを用いることが好ましい。このように、ヘリウムよりも分子量の大きいネオンを含むネオンガスを冷媒ガスとして用いることで、音速が小さくなり、圧縮機32や膨張機33の回転数が低く抑えられるので、設計が容易になるとともに、冷凍機3の稼働信頼性を向上させることが可能になる。   As the refrigerant gas, one having a liquefying temperature sufficiently lower than the liquefying temperature of the liquefied refrigerant circulating in the liquefied refrigerant supply line 1 is used. When liquefied nitrogen is used as the liquefied refrigerant, it is possible to use, for example, helium gas, neon gas, or a mixed gas obtained by mixing helium gas and neon gas, but it is preferable to use neon gas. As described above, by using neon gas containing neon having a molecular weight larger than that of helium as the refrigerant gas, the speed of sound is reduced, and the number of rotations of the compressor 32 and the expander 33 can be suppressed to be low. It becomes possible to improve the operation reliability of the refrigerator 3.

液化冷媒用熱交換器34は、液化冷媒供給ライン1の冷却区間1A、及び、冷媒ガス循環ライン31の第1の区間31Aを収容可能な位置に設けられている。液化冷媒用熱交換器34は、冷却区間1Aを流れる液化冷媒と、第1の区間31Aを流れ、膨張機33で断熱膨張によって液化冷媒の温度よりも低温となった冷媒ガスとを熱交換させることで、液化冷媒をサブクール温度まで冷却させる。
液化冷媒用熱交換器34としては、小型化及び高性能化の観点から、例えば、アルミプレートフィン熱交換器を用いることができる。
The liquefied refrigerant heat exchanger 34 is provided at a position that can accommodate the cooling section 1A of the liquefied refrigerant supply line 1 and the first section 31A of the refrigerant gas circulation line 31. The liquefied refrigerant heat exchanger 34 exchanges heat between the liquefied refrigerant flowing in the cooling section 1A and the refrigerant gas which has flowed in the first section 31A and which has become lower in temperature than the temperature of the liquefied refrigerant by the adiabatic expansion in the expander 33 Thus, the liquefied refrigerant is cooled to the subcool temperature.
From the viewpoint of downsizing and high performance, for example, an aluminum plate fin heat exchanger can be used as the heat exchanger 34 for a liquefied refrigerant.

ここで、サブクール温度まで冷却された液化冷媒は、液化冷媒供給ライン1を介して高温超電導電力機器4に導入され、超電導送電ケーブル等の高温超電導電力機器4の冷却処理に供される。一方、液化冷媒の冷却に寄与した冷媒ガスは、冷媒ガス循環ライン31の冷媒ガス用熱交換器35に移送され、第2の区間31Bを介して、圧縮機32に戻される。   Here, the liquefied refrigerant which has been cooled to the subcool temperature is introduced into the high temperature superconducting power device 4 through the liquefied refrigerant supply line 1 and is used to cool the high temperature superconducting power device 4 such as a superconducting power transmission cable. On the other hand, the refrigerant gas that has contributed to the cooling of the liquefied refrigerant is transferred to the refrigerant gas heat exchanger 35 of the refrigerant gas circulation line 31, and returned to the compressor 32 via the second section 31B.

圧縮機32は、冷媒ガス循環ライン31における第2の区間31Bと第3の区間31Cとの間に配置されている。
圧縮機32は、冷媒ガスを圧縮することで、高温及び高圧とされた冷媒ガスを生成する。圧縮機32によって生成された高温及び高圧の冷媒ガスは、水冷部36に送出される。
The compressor 32 is disposed between the second section 31B and the third section 31C in the refrigerant gas circulation line 31.
The compressor 32 compresses the refrigerant gas to generate a high-temperature and high-pressure refrigerant gas. The high temperature and high pressure refrigerant gas generated by the compressor 32 is delivered to the water cooling unit 36.

なお、図2においては、圧縮機32及び水冷部36をそれぞれ1台のみ設けた場合を例に挙げて説明しているが、これには限定されない。例えば、冷媒ガス循環ライン31における第2の区間31Bと第3の区間31Cとの間に、複数の圧縮機32及び水冷部36を設けてもよい。冷媒ガス循環ライン31内に複数の圧縮機32及び水冷部36を設置することで、より高圧の冷媒ガスを生成することが可能になる。   In addition, in FIG. 2, although the case where only one each of the compressor 32 and the water cooling part 36 is provided is mentioned as an example, and demonstrated, it is not limited to this. For example, the plurality of compressors 32 and the water cooling unit 36 may be provided between the second section 31B and the third section 31C in the refrigerant gas circulation line 31. By installing the plurality of compressors 32 and the water cooling unit 36 in the refrigerant gas circulation line 31, it is possible to generate a higher pressure refrigerant gas.

水冷部36は、冷媒ガス循環ライン31における圧縮機32と第3の区間31Cとの間に配置されている。水冷部36は、高温及び高圧とされた冷媒ガスの温度を大気温度付近まで冷却する。水冷部36によって冷却された冷媒ガスは、第3の区間31Cに送出される。このような水冷部36としては、例えば、水冷式クーラー(シェル・アンド・チューブ熱交換器、プレート・アンド・シェル熱交換器)を用いることができる。   The water cooling unit 36 is disposed between the compressor 32 and the third section 31C in the refrigerant gas circulation line 31. The water cooling unit 36 cools the temperature of the high temperature and high pressure refrigerant gas to near the ambient temperature. The refrigerant gas cooled by the water cooling unit 36 is delivered to the third section 31C. For example, a water-cooled cooler (shell-and-tube heat exchanger, plate-and-shell heat exchanger) can be used as the water-cooling unit 36.

冷媒ガス用熱交換器35は、冷媒ガス循環ライン31のうちの第2及び第3の区間31B,31Cが内部に配置され、液化冷媒用熱交換器34を通過して第2の区間31Bを流れる低圧の冷媒ガスと、圧縮機32及び水冷部36を通過して第3の区間31Cを流れる高圧の冷媒ガスとを熱交換させる。
冷媒ガス用熱交換器35としては、小型化及び高性能化の観点から、例えば、アルミプレートフィン熱交換器等を用いることができる。
In the refrigerant gas heat exchanger 35, the second and third sections 31B and 31C of the refrigerant gas circulation line 31 are disposed inside, and the refrigerant gas heat exchanger 35 passes through the liquefied refrigerant heat exchanger 34 and the second section 31B is Heat exchange is performed between the low pressure refrigerant gas flowing therethrough and the high pressure refrigerant gas flowing through the third section 31C after passing through the compressor 32 and the water cooling unit 36.
As the refrigerant gas heat exchanger 35, for example, an aluminum plate fin heat exchanger or the like can be used from the viewpoint of downsizing and high performance.

膨張機33は、冷媒ガス循環ライン31における液化冷媒用熱交換器34と冷媒ガス用熱交換器35との間に配置されている。膨張機33は、冷媒ガスを断熱膨張させることで、液化冷媒のサブクール温度よりも低い温度の冷媒ガスを生成する。
なお、膨張機33と圧縮機32とを同一の回転軸上に配置させて一体化させてもよい。これにより、膨張機33で発生した動力を圧縮機32の駆動に有効利用できるので、冷凍機3の小型化並びに動力の省力化を図ることが可能になる。
The expander 33 is disposed between the liquefied refrigerant heat exchanger 34 and the refrigerant gas heat exchanger 35 in the refrigerant gas circulation line 31. The expander 33 adiabatically expands the refrigerant gas to generate refrigerant gas at a temperature lower than the subcool temperature of the liquefied refrigerant.
The expander 33 and the compressor 32 may be disposed on the same rotation axis and integrated. As a result, since the power generated by the expander 33 can be effectively used for driving the compressor 32, the downsizing of the refrigerator 3 and the reduction of the power can be achieved.

ここで、本実施形態の冷却システム10においては、例えば、冷凍能力及び消費電力の両方を勘案しながら、3台の冷凍機3A,3B,3Cのうち、何れか1台又は2台のみを運転する条件で、高温超電導電力機器を冷却することも可能である。   Here, in the cooling system 10 according to the present embodiment, for example, only one or two of the three refrigerators 3A, 3B, 3C are operated while considering both the refrigeration capacity and the power consumption. It is also possible to cool high temperature superconducting power devices under the following conditions.

高温超電導電力機器4は、例えば、超電導送電ケーブル、超電導変圧器、超電導モーター、超電導限流器、又は超電導電力貯蔵器等の超電導電力機器であり、冷凍機3(3A、3B、3C)で冷却された液化冷媒によって所定の温度まで冷却される。詳細な図示を省略するが、高温超電導電力機器4が、例えば、真空断熱二重管構造の超電導送電ケーブルである場合、二重管の内管側に収納された超電導ケーブルが液化冷媒によって所定の温度まで冷却される。一方、高温超電導電力機器4を冷却することで加熱された液化冷媒は、複数の冷媒ポンプ2(2A,2B,2C)に導入される。   The high temperature superconducting power device 4 is, for example, a superconducting power device such as a superconducting power transmission cable, a superconducting transformer, a superconducting motor, a superconducting current limiting device, or a superconducting power storage device, and is cooled by the refrigerator 3 (3A, 3B, 3C) It is cooled to a predetermined temperature by the liquefied refrigerant. Although detailed illustration is omitted, when the high temperature superconducting power device 4 is, for example, a superconducting power transmission cable of a vacuum adiabatic double-pipe structure, the superconducting cable housed in the inner pipe side of the double pipe is predetermined by the liquefied refrigerant. It is cooled to the temperature. On the other hand, the liquefied refrigerant heated by cooling the high temperature superconducting power device 4 is introduced to the plurality of refrigerant pumps 2 (2A, 2B, 2C).

なお、図示例の冷却システム10においては、バイパス配管7(7A、7B、7C)、切り替え弁6(6A、6B、6C)、及び逆止弁9(9A、9B、9C)が設けられている。例えば、高温超電導電力機器4に求められる冷却能力が大幅に低下した場合、あるいは、一部の冷凍機3のメンテナンスが必要になった場合等に、切り替え弁6を操作することで液化冷媒をバイパス配管7(7A、7B、7C)に導入し、冷凍機3をバイパスするように切り替えることで、一部の冷凍機3のみで高温超電導電力機器4を冷却することができる。即ち、切り替え弁6の操作により、液化冷媒をバイパス配管7に導入し、この際にバイパスした冷凍機の運転を停止することができる。   In the illustrated cooling system 10, bypass piping 7 (7A, 7B, 7C), switching valve 6 (6A, 6B, 6C), and check valve 9 (9A, 9B, 9C) are provided. . For example, when the cooling capacity required for the high temperature superconducting power device 4 is significantly reduced, or when maintenance of a part of the refrigerator 3 becomes necessary, the liquefied refrigerant is bypassed by operating the switching valve 6 By introducing the pipes 7 (7A, 7B, 7C) and switching to bypass the refrigerator 3, the high temperature superconducting power device 4 can be cooled with only a part of the refrigerator 3. That is, the liquefied refrigerant can be introduced into the bypass pipe 7 by the operation of the switching valve 6, and the operation of the bypassed refrigerator can be stopped at this time.

冷却システム10は、温度計5(5A,5B,5C)が各冷凍機3A,3B,3Cに対応してそれぞれ設けられ、これら各温度計で検出した液化冷媒温度を図示略の制御装置に入力することにより、液化冷媒の温度に応じて冷却システム10の運転制御を行うことができる。このとき、制御装置は、例えば、各温度計で検出される入口温度又は出口温度(冷凍機の入口又は出口における液化冷媒の温度)に基づき、複数の冷媒ポンプ2A,2B,2Cの運転台数を制御することが可能である。あるいは、各温度計で検出される各冷凍機3A,3B,3Cの入口温度又は出口温度に基づき、例えば、上記の複数の圧縮機32又は膨張機33の回転数を制御することにより、液化冷媒の流量や流速等の運転条件を変更することも可能である。   In the cooling system 10, thermometers 5 (5A, 5B, 5C) are provided corresponding to the respective refrigerators 3A, 3B, 3C, and the liquefied refrigerant temperatures detected by these thermometers are input to a controller (not shown). By doing this, the operation control of the cooling system 10 can be performed according to the temperature of the liquefied refrigerant. At this time, for example, based on the inlet temperature or the outlet temperature (the temperature of the liquefied refrigerant at the inlet or the outlet of the refrigerator) detected by each thermometer, the controller determines the number of operating refrigerant pumps 2A, 2B, 2C. It is possible to control. Alternatively, based on the inlet temperature or the outlet temperature of each refrigerator 3A, 3B, 3C detected by each thermometer, for example, the liquefied refrigerant by controlling the number of rotations of the plurality of compressors 32 or expanders 33 described above It is also possible to change the operating conditions such as flow rate and flow rate of

このとき、液化冷媒の温度が十分に低下している場合には、複数の冷凍機3A,3B,3Cのうちの一部、例えば、図示例において下流側に配置される冷凍機3Cの駆動電力を、上流側の冷凍機3A,3Bよりも低電力に設定することで、冷却能力を低下させることなく、省エネルギー運転が可能になる。
一方、液化冷媒の温度が十分に低下していないことを各温度計で検出した場合には、全ての冷凍機3A,3B,3Cの駆動電力を高電力で設定することで、液化冷媒の温度を直ちに低下させ、高温超電導電力機器4の冷却効率を高めることが可能になる。
At this time, when the temperature of the liquefied refrigerant is sufficiently lowered, driving power of a part of the plurality of refrigerators 3A, 3B, 3C, for example, the refrigerator 3C disposed downstream in the illustrated example The energy saving operation can be performed without reducing the cooling capacity, by setting the power consumption of the electric power storage system to a lower power than that of the upstream side refrigerator 3A, 3B.
On the other hand, when it is detected by each thermometer that the temperature of the liquefied refrigerant has not sufficiently decreased, the temperature of the liquefied refrigerant is set by setting the drive power of all the refrigerators 3A, 3B, 3C with high power. The cooling efficiency of the high temperature superconducting power device 4 can be increased immediately.

なお、冷凍機3の駆動電力を調整する方法としては、例えば、各冷凍機3A,3B,3Cに備えられる圧縮機32の駆動電力を、必要に応じて適宜低電力に設定する方法の他、膨張機33の駆動電力を変更する方法も採用できる。   In addition, as a method of adjusting the driving power of the refrigerator 3, for example, other than a method of appropriately setting the driving power of the compressor 32 provided in each refrigerator 3A, 3B, 3C to a low power as needed, A method of changing the drive power of the expander 33 can also be adopted.

ここで、図5に示すような、3台の冷凍機103A,103B,103Cを並列配置で備える従来の冷却システムにおいては、図4に示すような冷凍機103を1台だけ備えた冷却システムに比べて、その消費電力は単純に3倍となる。
一方、本実施形態の冷却システム10によれば、上記のように、複数の冷凍機3A,3B,3Cを直列に配置した構成を採用することで、特に、液化冷媒供給ライン1の上流側に配置される冷凍機(例えば冷凍機3A)に対して、下流側に配置される冷凍機(例えば冷凍機3C)の駆動電力を、冷却能力を低下させることなく低電力で設定できる。これにより、少ない消費電力で効率的に高温超電導電力機器を冷却することが可能になる。
Here, in the conventional cooling system including three refrigerators 103A, 103B, and 103C in parallel arrangement as shown in FIG. 5, a cooling system including only one refrigerator 103 as shown in FIG. 4 is used. By comparison, its power consumption is simply tripled.
On the other hand, according to the cooling system 10 of the present embodiment, as described above, by employing the configuration in which the plurality of refrigerators 3A, 3B, 3C are arranged in series, in particular, on the upstream side of the liquefied refrigerant supply line 1 With respect to the disposed refrigerator (for example, the refrigerator 3A), the driving power of the refrigerator (for example, the refrigerator 3C) disposed downstream can be set with low power without reducing the cooling capacity. This makes it possible to efficiently cool the high temperature superconducting power device with low power consumption.

<高温超電導電力機器用冷却システムの運転方法>
以下に、本実施形態の高温超電導電力機器用冷却システムの運転方法について、図1及び図2を参照しながら説明する。
本実施形態の運転方法は、上述したような本実施形態の高温超電導電力機器用冷却システム10を用いて超電導送電ケーブル等の高温超電導電力機器を冷却する方法である。
<Operation method of cooling system for high temperature superconducting power devices>
Hereinafter, an operation method of the cooling system for a high temperature superconducting power device of the present embodiment will be described with reference to FIGS. 1 and 2.
The operation method of the present embodiment is a method of cooling a high temperature superconducting power device such as a superconducting power transmission cable using the cooling system 10 for a high temperature superconducting power device of the present embodiment as described above.

まず、冷媒ポンプ2(2A,2B,2C)を用いて、高温超電導電力機器4と接続され、且つ、冷却区間1Aが冷凍機3内の液化冷媒用熱交換器34を通過する液化冷媒供給ライン1に、液化冷媒貯槽8に貯留された液化冷媒を供給する。   First, a liquefied refrigerant supply line is connected to the high temperature superconducting power device 4 using the refrigerant pump 2 (2A, 2B, 2C), and the cooling section 1A passes through the liquefied refrigerant heat exchanger 34 in the refrigerator 3 The liquefied refrigerant stored in the liquefied refrigerant storage tank 8 is supplied to 1.

次いで、複数の冷凍機3(図示例では3台の冷凍機3A,3B,3C)を用いて、液化冷媒供給ライン1の冷却区間1Aを通過する液化冷媒をサブクール温度まで冷却し、高温超電導電力機器4に供給することで、超電導送電ケーブル等の高温超電導電力機器4を冷却する。
具体的には、まず、冷凍機3A,3B,3Cを起動し、各々に備えられる圧縮機32によって図示略の冷媒ガスを断熱圧縮する。このとき、高圧側の冷媒ガスの圧力は、例えば、1〜2MPa程度とすることができる。圧縮機32によって圧縮されて高温状態となった冷媒ガスは、水冷部36によって常温まで冷却され、冷媒ガス用熱交換器35を通過する。
Next, the liquefied refrigerant passing through the cooling section 1A of the liquefied refrigerant supply line 1 is cooled to a subcool temperature using a plurality of refrigerators 3 (three refrigerators 3A, 3B, 3C in the illustrated example), and high temperature superconducting power By supplying the device 4, the high temperature superconducting power device 4 such as a superconducting power transmission cable is cooled.
Specifically, first, the refrigerators 3A, 3B, and 3C are activated, and the refrigerant gas (not shown) is adiabatically compressed by the compressors 32 provided for each. At this time, the pressure of the refrigerant gas on the high pressure side can be, for example, about 1 to 2 MPa. The refrigerant gas compressed to a high temperature state by the compressor 32 is cooled to normal temperature by the water cooling unit 36 and passes through the refrigerant gas heat exchanger 35.

そして、冷媒ガス用熱交換器35では、圧縮機32によって圧縮され、第3の区間31Cを流れる高圧の冷媒ガスと、液化冷媒用熱交換器34を通過し、第2の区間31Bを流れる低圧・低温の冷媒ガスとを熱交換させることで、第3の区間31Cを流れる冷媒ガスを冷却する。冷却された高圧の冷媒ガスは、膨張機33を介して、さらに冷却され、第1の区間31Aに導入される。   Then, in the refrigerant gas heat exchanger 35, the high pressure refrigerant gas which is compressed by the compressor 32 and flows in the third section 31C, passes through the liquefied refrigerant heat exchanger 34, and flows in the second section 31B. The refrigerant gas flowing in the third section 31C is cooled by heat exchange with the low temperature refrigerant gas. The cooled high-pressure refrigerant gas is further cooled via the expander 33 and introduced into the first section 31A.

次いで、液化冷媒用熱交換器34において、第1の区間31Aを流れ、膨張機33によってさらに冷却された冷媒ガスと、冷却区間1Aを流れる液化冷媒とを熱交換させることで、液化冷媒をサブクール温度まで冷却する。
さらに、低温のサブクール温度まで冷却された液化冷媒は高温超電導電力機器4に導入され、この高温超電導電力機器が冷却される。
そして、高温超電導電力機器4の冷却に寄与した液化冷媒は、高温超電導電力機器4から導出された後、液化冷媒供給ライン1を介して再び冷媒ポンプに入り、循環に供される。
Next, in the liquefied refrigerant heat exchanger 34, the liquefied refrigerant is subcooled by heat exchange between the refrigerant gas flowing through the first section 31A and further cooled by the expander 33 and the liquefied refrigerant flowing through the cooling section 1A. Cool to temperature.
Furthermore, the liquefied refrigerant that has been cooled to the low subcool temperature is introduced into the high temperature superconducting power device 4 and the high temperature superconducting power device is cooled.
Then, after the liquefied refrigerant that has contributed to the cooling of the high temperature superconducting power device 4 is derived from the high temperature superconducting power device 4, it enters the refrigerant pump again via the liquefied refrigerant supply line 1 and is provided for circulation.

本実施形態の冷却システムの運転方法によれば、液化冷媒供給ライン1の経路に複数の冷凍機3A,3B,3Cが直列で配置された冷却システム10を用いて高温超電導電力機器を冷却する方法である。従って、以下に詳述するような理由により、下流側に配置される冷凍機3Cの駆動電力を、冷却能力を低下させることなく低電力で設定できるので、少ない消費電力で効率的に高温超電導電力機器を冷却することが可能になる。   According to the operation method of the cooling system of the present embodiment, a method of cooling a high temperature superconducting power device using the cooling system 10 in which a plurality of refrigerators 3A, 3B, 3C are arranged in series in the path of the liquefied refrigerant supply line 1 It is. Therefore, the drive power of the refrigerator 3C disposed downstream can be set with low power without lowering the cooling capacity for the reasons described in detail below, so high temperature superconducting power can be efficiently produced with less power consumption. It is possible to cool the device.

以下、本実施形態の冷却システム10における冷却能力と消費電力との関係について説明する。   Hereinafter, the relationship between the cooling capacity and the power consumption in the cooling system 10 of the present embodiment will be described.

一般に、理想的な冷凍機であるカルノーサイクルにおける冷凍機の動力と、冷却能力との関係は、下記(1)式で与えられる。   Generally, the relationship between the power of the refrigerator in the Carnot cycle, which is an ideal refrigerator, and the cooling capacity is given by the following equation (1).

Figure 2019095079
Figure 2019095079

但し、上記(1)式中、Q:冷却能力、W:冷凍機の動力、Tc:冷却温度(℃)、Th:熱を放出する周囲温度(℃)である。   However, in said Formula (1), Q: Cooling capacity, W: Power of a refrigerator, Tc: Cooling temperature (degreeC), Th: Ambient temperature (degreeC) which releases heat.

ここで、冷凍機の動力Wに対する冷却能力Qの割合、即ち、上記(1)式中における「Q/W」は、冷凍機のCOP(coefficient of performance)、あるいは、成績係数と呼ばれている。
上記(1)式より、冷却温度Tc(ここでは液化冷媒(液体窒素)の出口温度)が高くなると、冷却温度Tcは周囲温度Thに近づき、右辺の分母が小さくなるため、冷凍機の動力Wが同じである場合、冷却能力Qは大きくなる。即ち、冷凍効率(冷却効率)が高いということになる。
Here, the ratio of the cooling capacity Q to the power W of the refrigerator, that is, "Q / W" in the above equation (1) is called the COP (coefficient of performance) of the refrigerator or the coefficient of performance. .
From the equation (1), when the cooling temperature Tc (here, the outlet temperature of the liquefied refrigerant (liquid nitrogen) increases, the cooling temperature Tc approaches the ambient temperature Th and the denominator on the right side decreases, so the power W of the refrigerator Is the same, the cooling capacity Q increases. That is, the refrigeration efficiency (cooling efficiency) is high.

そこで、図1に示す冷却システム10のように、複数の冷凍機3(図示例では3台の冷凍機3A,3B,3C)を直列に配置することで、液化冷媒供給ライン1の上流側から数えて1台目の冷凍機3A、及び、2台目の冷凍機3Bは、3台目の冷凍機3Cに比べて冷却温度Tcが高くなり、次式{冷凍機3A>冷凍機3B>冷凍機3C}で表される順で、冷凍機としての効率が高くなる。   Therefore, as in the cooling system 10 shown in FIG. 1, by arranging a plurality of refrigerators 3 (three refrigerators 3A, 3B, 3C in the illustrated example) in series, from the upstream side of the liquefied refrigerant supply line 1 The first refrigerator 3A and the second refrigerator 3B have higher cooling temperatures Tc than the third refrigerator 3C, and the following equation {refrigerator 3A> refrigerator 3B> refrigeration The efficiency as a refrigerator increases in the order represented by 3C}.

例えば、冷凍機3A及び冷凍機3Bが定格運転(圧縮機の定格回転数での運転)の場合、それぞれ冷却能力が増加し、冷凍機3Cの負荷が小さくなるため、冷凍機3Cに備えられる圧縮機32の回転数は定格回転よりも低くできるので、消費電力が低減される。即ち、図5に示すような、3台の冷凍機を並列で配置した従来の構成の冷却システムに比べて消費電力を低減することができる。   For example, when the refrigerator 3A and the refrigerator 3B are in rated operation (operation at the rated rotational speed of the compressor), the cooling capacity is increased and the load of the refrigerator 3C is reduced, so the compression provided in the refrigerator 3C Power consumption can be reduced because the speed of the machine 32 can be lower than the rated speed. That is, power consumption can be reduced as compared with the conventional cooling system in which three refrigerators are arranged in parallel as shown in FIG.

ネオンを冷媒とするターボブレイトンサイクル冷凍機、例えば、大陽日酸株式会社(本出願人)製ネオン冷凍機では、65〜80K程度の運転温度範囲において、その冷却能力Qは、冷却温度T及び圧縮機の回転数Nとの間に、下記(2)式で表される関係があることを見出している。
Q=40T−7500+12N ・・・・・(2)
但し、上記(2)式中、Q:冷却能力、T:冷却温度、N:圧縮機の回転数である。
また、上記(2)式は、図3のグラフに示したような、冷凍機の冷却能力と冷却温度との関係を、冷凍機に備えられる圧縮機の回転数毎に示したデータに基づき、内挿法(最小二乗法)にて関係式を算出したものである。
In a turbo Brayton cycle refrigerator using neon as a refrigerant, for example, a neon refrigerator manufactured by Taiyo Nissho Co., Ltd. (the present applicant), its cooling capacity Q is a cooling temperature T and an operating temperature range of about 65 to 80K. It has been found that there is a relationship represented by the following equation (2) with the number of revolutions N of the compressor.
Q = 40T-7500 + 12N (2)
However, in said Formula (2), it is Q: cooling capacity, T: cooling temperature, N: rotation speed of a compressor.
Further, the above equation (2) is based on data indicating the relationship between the cooling capacity of the refrigerator and the cooling temperature as shown in the graph of FIG. 3 for each rotation speed of the compressor provided in the refrigerator, The relational expression is calculated by the interpolation method (least squares method).

以下に、冷凍機の液化冷媒(液体窒素)の出口温度(図1中のTout)、及び、入口温度(図1中のTin)が、それぞれ、65K、71Kである場合を例に挙げ、冷凍機の消費電力を計算する。
なお、以下の説明では、図1に示す冷却システム10において、冷凍機3A、冷凍機3B及び冷凍機3Cの冷却能力を、それぞれQ1,Q2,Q3とし、その合計冷却能力が6000ワットである場合について例示する。また、冷凍機3A側の入口温度をTin、出口温度をT1、冷凍機3Bの出口温度をT2、冷凍機3Cの出口温度をToutとする。また、各冷凍機3A,3B,3Cに流れる液化冷媒(液体窒素)の流量は、図5に示すような並列配列時における1台あたりの流量の3倍(3M)とする。
In the following, the case where the outlet temperature (Tout in FIG. 1) of the liquefied refrigerant (liquid nitrogen) of the refrigerator and the inlet temperature (Tin in FIG. 1) are respectively 65 K and 71 K is taken as an example Calculate the power consumption of the aircraft.
In the following description, in the cooling system 10 shown in FIG. 1, the cooling capacities of the refrigerator 3A, the refrigerator 3B and the refrigerator 3C are Q1, Q2 and Q3, respectively, and the total cooling capacity is 6000 watts. For example, The inlet temperature on the side of the refrigerator 3A is Tin, the outlet temperature is T1, the outlet temperature of the refrigerator 3B is T2, and the outlet temperature of the refrigerator 3C is Tout. Further, the flow rate of the liquefied refrigerant (liquid nitrogen) flowing to each of the refrigerators 3A, 3B and 3C is set to be three times (3 M) the flow rate per unit at the time of parallel arrangement as shown in FIG.

ここで、それぞれの冷凍機3A,3B,3Cが独立した冷却温度制御(各冷凍機の出口温度をそれぞれの設定温度に維持する制御)を行った場合、冷凍機3A及び冷凍機3Bの冷却温度(各冷凍機の出口温度)は、65Kよりも明らかに高くなる。このため、冷凍機3A及び冷凍機3Bの圧縮機が最大575rpsの回転数Nで運転され、冷凍機3Cの圧縮機の回転数をN3とした場合、各冷凍機3A,3B,3Cの冷却能力Q1,Q2,Q3、及びこれらの合計冷却能力は、下記(3)〜(6)式で表される。
Q1=40×T1−7500+12×575 ・・・・・(3)
Q2=40×T2−7500+12×575 ・・・・・(4)
Q3=40×Tout−7500+12×N3 ・・・・・(5)
Q1+Q2+Q3=6000 ・・・・・(6)
但し、上記(3)〜(6)式は、冷凍機3Aの入口温度Tinを71K、冷凍機3C側の出口温度Toutを65Kとした場合となる。
Here, when each refrigerator 3A, 3B, 3C performs independent cooling temperature control (control to maintain the outlet temperature of each refrigerator at each setting temperature), the cooling temperature of the refrigerator 3A and the refrigerator 3B (The outlet temperature of each refrigerator) is clearly higher than 65K. Therefore, when the compressors of the refrigerator 3A and the refrigerator 3B are operated at the maximum rotation speed N of 575 rps and the rotation speed of the compressor of the refrigerator 3C is N3, the cooling capacity of each refrigerator 3A, 3B, 3C Q1, Q2, Q3 and their total cooling capacities are expressed by the following formulas (3) to (6).
Q1 = 40 × T1-7500 + 12 × 575 (3)
Q2 = 40 × T2-7500 + 12 × 575 (4)
Q3 = 40 × Tout-7500 + 12 × N3 (5)
Q1 + Q2 + Q3 = 6000 (6)
However, the said (3)-(6) Formula becomes a case where the inlet temperature Tin of 3 A of freezers is 71 K, and the outlet temperature Tout by the side of 3 C of freezers is 65K.

また、各冷凍機3A,3B,3Cのそれぞれの冷却能力Q1,Q2,Q3は、下記(7)〜(9)式に示すように、液化冷媒である液体窒素の交換熱量から算出できる。
Q1=3M×Cp×(Tin−T1) ・・・・・(7)
Q2=3M×Cp×(T1−T2) ・・・・・(8)
Q3=3M×Cp×(T2−Tout) ・・・・・(9)
但し、上記(7)〜(9)式中、3M:並列配置とした場合の冷凍機1台あたりの液体窒素循環量Mの3倍、Cp:液体窒素の比熱である。
Further, the cooling capacities Q1, Q2 and Q3 of the respective refrigerators 3A, 3B and 3C can be calculated from the amount of heat exchange of liquid nitrogen which is a liquefied refrigerant, as shown in the following formulas (7) to (9).
Q1 = 3M x Cp x (Tin-T1) (7)
Q2 = 3M x Cp x (T1-T2) (8)
Q3 = 3M x Cp x (T2-Tout) (9)
However, in the above formulas (7) to (9), 3 M: three times the circulating amount of liquid nitrogen M per refrigerator in the case of parallel arrangement, Cp: specific heat of liquid nitrogen.

そして、上記(3)〜(9)式で表される連立方程式を解くと、以下のようになる。
Q1=2150ワット
Q2=2070ワット
Q3=1780ワット
T1=68.85K
T2=66.78K
N3=556.7rps
Then, the simultaneous equations expressed by the above equations (3) to (9) are solved as follows.
Q1 = 2150 watts Q2 = 2070 watts Q3 = 1780 watts T1 = 68.85 K
T2 = 66.78K
N3 = 556.7 rps

また、冷凍機の消費電力は、圧縮機の回転数Nに比例するため、直列配置の場合の総消費電力を、並列配置の場合の総消費電力で除すると、下記(10)式の通りとなり、貯億列配置の方が、消費電力が低減されることがわかる。
(2×575+556.7)/(3×575)=0.9894 ・・・・・(10)
Further, since the power consumption of the refrigerator is proportional to the number of revolutions N of the compressor, the total power consumption in the case of the series arrangement is divided by the total power consumption in the case of the parallel arrangement, the following equation (10) is obtained It can be seen that the power consumption is reduced in the storage array arrangement.
(2 × 575 + 556.7) / (3 × 575) = 0.9894 (10)

また、冷凍機を直列配置として、全ての冷凍機に備えられる圧縮機の回転数Nを同一回転数として運転すると、下記(11)〜(13)式、及び(6)〜(9)式で表される関係となる。
Q1=40×T1−7500+12×N ・・・・・(11)
Q2=40×T2−7500+12×N ・・・・・(12)
Q3=40×Tout−7500+12×N ・・・・・(13)
Q1+Q2+Q3=6000 ・・・・・(6)
Q1=3M×Cp×(Tin−T1) ・・・・・(7)
Q2=3M×Cp×(T1−T2) ・・・・・(8)
Q3=3M×Cp×(T2−Tout) ・・・・・(9)
In addition, when the refrigerators are operated in series and the number of revolutions N of the compressor provided in all the refrigerators is set to the same number of revolutions, the following equations (11) to (13) and (6) to (9) It becomes a relationship to be expressed.
Q1 = 40 × T1-7500 + 12 × N (11)
Q2 = 40 × T2-7500 + 12 × N (12)
Q3 = 40 × Tout-7500 + 12 × N (13)
Q1 + Q2 + Q3 = 6000 (6)
Q1 = 3M x Cp x (Tin-T1) (7)
Q2 = 3M x Cp x (T1-T2) (8)
Q3 = 3M x Cp x (T2-Tout) (9)

そして、上記(11)〜(13)式及び(6)〜(9)式で表される連立方程式を解くと、以下のようになる。
Q1=2079ワット
Q2=1999ワット
Q3=1922ワット
T1=68.92K
T2=66.92K
N=568.5rps
And when the simultaneous equations represented by said Formula (11)-(13) and (6)-(9) Formula are solved, it will become as follows.
Q1 = 2079 watts Q2 = 1999 watts Q3 = 1922 watts T1 = 68.92K
T2 = 66.92K
N = 568.5 rps

従って、合計の総消費電力は、下記(14)式の通りとなり、上記のような、冷凍機3Cのみを、定格回転数よりも低い回転数Nで圧縮機を運転した場合よりも消費電力は低減され、効率が向上することがわかる。
(3×568.5)/(3×575)=0.9887 ・・・・・(14)
Therefore, the total power consumption in total is as shown in the following equation (14), and the power consumption is higher than the case where the compressor is operated at the rotation speed N lower than the rated rotation speed only as described above. It can be seen that the efficiency is reduced.
(3 × 568.5) / (3 × 575) = 0.9887 (14)

さらに、冷凍機を直列配置として、全ての冷凍機の冷凍能力(冷却能力)が同一となるように運転した場合、即ち、Q1=Q2=Q3とした場合、下記(15)〜(17)式、及び(6)〜(9)式で表される関係となる。
Q1=40×T1−7500+12×N1 ・・・・・(15)
Q2=40×T2−7500+12×N2 ・・・・・(16)
Q3=40×Tout−7500+12×N3 ・・・・・(17)
Q1+Q2+Q3=6000 ・・・・・(6)
Q1=3M×Cp×(Tin−T1) ・・・・・(7)
Q2=3M×Cp×(T1−T2) ・・・・・(8)
Q3=3M×Cp×(T2−Tout) ・・・・・(9)
Furthermore, when the refrigerators are operated in series and operated so that the refrigeration capacities (cooling capacities) of all the refrigerators become the same, that is, when Q1 = Q2 = Q3, the following formulas (15) to (17) , And (6) to (9).
Q1 = 40 × T1-7500 + 12 × N1 (15)
Q2 = 40 × T2-7500 + 12 × N2 (16)
Q3 = 40 × Tout-7500 + 12 × N3 (17)
Q1 + Q2 + Q3 = 6000 (6)
Q1 = 3M x Cp x (Tin-T1) (7)
Q2 = 3M x Cp x (T1-T2) (8)
Q3 = 3M x Cp x (T2-Tout) (9)

そして、上記(15)〜(17)式、及び(6)〜(9)式で表される連立方程式を解くと、以下のようになる。
N1=561.7rps
N2=568.3rps
N3=575rps
T1=69.0K
T2=67.0K
And when the simultaneous equations represented by said Formula (15)-(17) and (6)-(9) Formula are solved, it will become as follows.
N1 = 561.7 rps
N2 = 568.3 rps
N3 = 575 rps
T1 = 69.0K
T2 = 67.0 K

従って、合計の総消費電力は、下記(18)式の通りとなり、上記の2つの例よりも、さらに総消費電力は低減され、効率が向上することがわかる。
(561.7+568.3+575)/(3×575)=0.9884 ・・・(18)
Therefore, it is understood that the total power consumption in total is as in the following equation (18), and the total power consumption is further reduced and the efficiency is improved more than the above two examples.
(561.7 + 568.3 + 575) / (3 × 575) = 0.9884 (18)

上記の例より、複数の冷凍機3を直列、例えば3台の冷凍機3A,3B,3Cを直列に配置し、それぞれの冷凍機が独立して各冷却温度を制御することで、従来のような複数の冷凍機を並列に配置した場合に比べて、総消費電力を低減できることがわかる。
さらに、各冷凍機3A,3B,3Cの冷却能力を等しく運転制御した場合には、これらの総消費電力は最も小さくなり、冷凍機の効率が最大となる最適運転ができることがわかる。また、各冷凍機の冷却能力を等しく運転すべく制御するためには、液化冷媒(液体窒素)の流量や、冷凍機への入口温度及び出口温度を高精度で検出する必要があるが、本実施形態では、各冷凍機に備えられる圧縮機の回転数を、上記のような連立方程式から求めた最適回転数に維持することで、容易に達成できる。
From the above example, a plurality of refrigerators 3 are arranged in series, for example, three refrigerators 3A, 3B, 3C are arranged in series, and each refrigerator independently controls each cooling temperature as in the conventional case. It can be seen that the total power consumption can be reduced as compared to the case where a plurality of refrigerators are arranged in parallel.
Furthermore, it can be seen that when the cooling capacities of the respective refrigerators 3A, 3B, 3C are equally controlled, the total power consumption thereof becomes the smallest, and the optimum operation can be achieved in which the efficiency of the refrigerator is the largest. Also, in order to control the cooling capacity of each refrigerator to operate equally, it is necessary to detect the flow rate of liquefied refrigerant (liquid nitrogen) and the inlet and outlet temperatures to the refrigerator with high accuracy. In the embodiment, this can be easily achieved by maintaining the number of revolutions of the compressor provided in each refrigerator at the optimum number of revolutions obtained from the simultaneous equations as described above.

なお、上記の例においては、冷凍機の入口温度Tinを71Kとし、出口温度Toutを65Kまで冷却する場合について説明しているが、この出入口間の温度が大きい程、本発明で得られる総消費電力の低減効果がより顕著となる。   In the above example, the case where the inlet temperature Tin of the refrigerator is 71 K and the outlet temperature Tout is cooled to 65 K is described, but the larger the temperature between the inlet and the outlet, the total consumption obtained by the present invention The power reduction effect is more pronounced.

<作用効果>
以上説明したように、本実施形態の高温超電導電力機器用冷却システム10によれば、液化冷媒供給ライン1における冷媒ポンプ2の下流側であって高温超電導電力機器4の上流側に設けられ、液化冷媒供給ライン1を循環する液化冷媒を冷却する複数の冷凍機3A,3B,3Cを有し、これら複数の冷凍機3A,3B,3Cが、それぞれ直列に接続され、冷媒ポンプ2から圧送される液化冷媒を複数の冷凍機3A,3B,3C間で直列に流通させながら冷却した後、高温超電導電力機器4に送出する構成を採用している。
上記のように、上流側の冷凍機3A及び冷凍機3Bを定格回転数で運転した場合、下流側の冷凍機3Cが低電力となる。また、冷凍機3A,3B,3Cの全てを定格回転数で運転すると、総消費電力はより小さくなる。さらに、冷凍機3A,3B,3Cの全てにおいて、冷凍能力が等しくなるように運転すると、上流側の冷凍機(例えば、冷凍機3A)の駆動電力が小さくなり、下流側の冷凍機(例えば、冷凍機3C)の駆動電力は大きくなるものの、これらの総消費電力を大幅に低減することが可能になる。
ここで、一般に、実用規模の高温超電導電力機器用の冷却システムは消費電力が大きいため、例えば、変電所と変電所の間に敷設される超電導送電ケーブルでは、ケーブルが数キロメールから数十キロメールという長さになることから、これを冷却するための冷凍能力は大容量となり、必要な冷凍機の台数も大幅に増加する。従って、仮に、冷却効率の向上率が数%程度であったとしても、同じ冷凍能力を維持しながら駆動電力を大幅に低く設定できるので、非常に大きな消費電力の低減効果が得られる。
従って、少ない消費電力で効率的に高温超電導電力機器を冷却することが可能になる。
<Function effect>
As described above, according to the cooling system 10 for high-temperature superconducting power devices of the present embodiment, the cooling system 10 is provided downstream of the refrigerant pump 2 in the liquefied refrigerant supply line 1 and upstream of the high-temperature superconducting power devices 4 A plurality of refrigerators 3A, 3B, 3C for cooling the liquefied refrigerant circulating in the refrigerant supply line 1, the plurality of refrigerators 3A, 3B, 3C are respectively connected in series and pressure-fed from the refrigerant pump 2 A configuration is employed in which the liquefied refrigerant is cooled while being circulated in series among the plurality of refrigerators 3A, 3B, 3C, and then sent to the high temperature superconducting power device 4.
As described above, when the upstream side refrigerator 3A and the refrigerator 3B are operated at the rated rotation speed, the downstream side refrigerator 3C has low power. In addition, when all of the refrigerators 3A, 3B, 3C are operated at the rated rotational speed, the total power consumption becomes smaller. Furthermore, if all the refrigerators 3A, 3B, 3C are operated to equalize the refrigerating capacity, the driving power of the upstream refrigerator (for example, the refrigerator 3A) becomes small, and the downstream refrigerator (for example, Although the drive power of the refrigerator 3C) is increased, it is possible to significantly reduce the total power consumption thereof.
Here, in general, since a cooling system for high-temperature superconducting power equipment of practical scale consumes a large amount of power, for example, in a superconducting transmission cable laid between a substation and a substation, the cable is several kilometers to several tens of kilometers Because of the length of the e-mail, the refrigeration capacity for cooling the e-mail will be large, and the number of required refrigerators will also increase significantly. Therefore, even if the improvement rate of the cooling efficiency is about a few percent, the drive power can be set to a much lower level while maintaining the same refrigeration capacity, so a very large power consumption reduction effect can be obtained.
Therefore, it becomes possible to cool the high temperature superconducting power device efficiently with little power consumption.

また、本実施形態の高温超電導電力機器用冷却システムの運転方法によれば、上記構成を備えた本実施形態の高温超電導電力機器用冷却システム10を用いて高温超電導電力機器を冷却する方法なので、上記同様、総消費電力を大幅に低減することができるので、少ない消費電力で効率的に高温超電導電力機器を冷却することが可能になる。   Further, according to the method of operating the cooling system for high-temperature superconducting power devices of the present embodiment, the high-temperature superconducting power devices are cooled using the cooling system 10 for high-temperature superconducting power devices of the present embodiment having the above configuration. As described above, since the total power consumption can be significantly reduced, it is possible to efficiently cool the high-temperature superconducting power device with less power consumption.

本発明の高温超電導電力機器用冷却システム及びその運転方法によれば、複数の冷凍機で液化冷媒を冷却しながら、この液化冷媒で高温超電導電力機器を冷却するにあたり、少ない消費電力で効率的に冷却することが可能となる。従って、例えば、超電導送電ケーブル等の高温超電導電力機器を冷却する用途等において非常に好適である。   According to the cooling system for high temperature superconducting power devices of the present invention and the operating method thereof, while cooling the liquefied refrigerant with a plurality of refrigerators, in cooling the high temperature superconducting power devices with the liquefied refrigerant, the power consumption can be reduced efficiently. It becomes possible to cool. Therefore, for example, it is very suitable in the use etc. which cool high temperature superconducting electric power equipments, such as a superconducting power transmission cable.

10…高温超電導電力機器用冷却システム
1…液化冷媒供給ライン
1A…冷却区間
2,2A,2B,2C…冷媒ポンプ
3,3A,3B,3C…冷凍機(複数の冷凍機)
31…冷媒ガス循環ライン
31A…第1の区間
31B…第2の区間
31C…第3の区間
32…圧縮機
33…膨張機
34…液化冷媒用熱交換器
35…冷媒ガス用熱交換器
4…高温超電導電力機器
5,5A,5B,5C…温度計
6,6A,6B,6C…切り替え弁
7…バイパス配管
8…液化冷媒貯槽
9,9A,9B,9C…逆止弁
DESCRIPTION OF SYMBOLS 10 ... Cooling system for high temperature superconducting electric power equipment 1 ... Liquefied refrigerant supply line 1A ... Cooling area 2, 2A, 2B, 2C ... Refrigerant pump 3, 3A, 3B, 3C ... Refrigerator (multiple refrigerators)
31 Refrigerant gas circulation line 31A First section 31B Second section 31C Third section 32 Compressor 33 Expander 34 Heat exchanger for liquefied refrigerant 35 Heat exchanger for refrigerant gas 4 High temperature superconducting power devices 5, 5A, 5B, 5C ... thermometers 6, 6A, 6B, 6C ... switching valves 7 ... bypass piping 8 ... liquefied refrigerant storage tanks 9, 9A, 9B, 9C ... check valves

Claims (6)

液化冷媒を循環させる液化冷媒供給ラインと、
前記液化冷媒供給ラインに設けられ、該液化冷媒供給ラインを循環する前記液化冷媒によって冷却される高温超電導電力機器と、
前記液化冷媒供給ラインに設けられ、前記高温超電導電力機器から導出された前記液化冷媒を圧送循環させる冷媒ポンプと、
前記液化冷媒供給ラインにおける前記液化冷媒の流れ方向で前記冷媒ポンプの下流側であって前記高温超電導電力機器の上流側に設けられ、前記液化冷媒供給ラインの少なくとも一部を収容し、前記液化冷媒供給ラインを循環する前記液化冷媒を冷却する複数の冷凍機と、を有し、
前記複数の冷凍機は、それぞれ直列に接続されており、前記冷媒ポンプから圧送される前記液化冷媒を、前記複数の冷凍機間で直列に流通させながら冷却した後、前記高温超電導電力機器に送出することを特徴とする高温超電導電力機器用冷却システム。
A liquefied refrigerant supply line for circulating the liquefied refrigerant;
A high temperature superconducting power device provided in the liquefied refrigerant supply line and cooled by the liquefied refrigerant circulating in the liquefied refrigerant supply line;
A refrigerant pump which is provided in the liquefied refrigerant supply line and which feeds and circulates the liquefied refrigerant derived from the high temperature superconducting power device;
Provided on the downstream side of the refrigerant pump in the flow direction of the liquefied refrigerant in the liquefied refrigerant supply line and on the upstream side of the high-temperature superconducting power device, and accommodating at least a part of the liquefied refrigerant supply line And a plurality of refrigerators for cooling the liquefied refrigerant circulating in a supply line,
The plurality of refrigerators are connected in series, and the liquefied refrigerant pumped from the refrigerant pump is cooled while being circulated in series among the plurality of refrigerators, and then sent to the high temperature superconducting power device. A cooling system for a high temperature superconducting power device characterized by:
前記複数の冷凍機は、それぞれ、冷媒ガスを循環させる冷媒ガス循環ラインを有し、さらに、該冷媒ガス循環ラインに設けられた、前記冷媒ガスを圧縮する圧縮機、該圧縮機の後段側に配置されて前記冷媒ガスを膨張させる膨張機、前記膨張機で膨張させた前記冷媒ガスと前記液化冷媒供給ラインを循環する前記液化冷媒とを熱交換させることで該液化冷媒を冷却する液化冷媒用熱交換器、及び、該液化冷媒用熱交換器を通過した前記冷媒ガスと前記圧縮機で圧縮された前記冷媒ガスとを熱交換させる冷媒ガス用熱交換器を含むことを特徴とする請求項1に記載の高温超電導電力機器用冷却システム。   Each of the plurality of refrigerators has a refrigerant gas circulation line for circulating a refrigerant gas, and further, a compressor provided in the refrigerant gas circulation line for compressing the refrigerant gas, and a compressor downstream of the compressor An expander which is arranged to expand the refrigerant gas, and for cooling the liquefied refrigerant by heat exchange between the refrigerant gas expanded by the expander and the liquefied refrigerant circulating in the liquefied refrigerant supply line A heat exchanger, and a refrigerant gas heat exchanger for performing heat exchange between the refrigerant gas having passed through the liquefied refrigerant heat exchanger and the refrigerant gas compressed by the compressor. The cooling system for high temperature superconducting power devices according to 1. 前記複数の冷凍機に備えられる圧縮機が、それぞれ同一の回転数で運転されることを特徴とする請求項1又は請求項2に記載の高温超電導電力機器用冷却システム。   The cooling system for high-temperature superconducting power devices according to claim 1 or 2, wherein the compressors included in the plurality of refrigerators are operated at the same rotational speed. 前記複数の冷凍機が同一の冷凍能力で運転されることを特徴とする請求項1又は請求項2に記載の高温超電導電力機器用冷却システム。   The cooling system for high temperature superconducting power devices according to claim 1 or 2, wherein the plurality of refrigerators are operated with the same refrigeration capacity. 前記液化冷媒が前記冷凍機をバイパスするバイパス管が備えられていることを特徴とする請求項1〜請求項4の何れか一項に記載の高温超電導電力機器用冷却システム。   The cooling system for high-temperature superconducting power devices according to any one of claims 1 to 4, further comprising: a bypass pipe through which the liquefied refrigerant bypasses the refrigerator. 請求項1〜請求項5の何れか一項に記載の高温超電導電力機器用冷却システムを用いて高温超電導電力機器を冷却することを特徴とする高温超電導電力機器用冷却システムの運転方法。   A method of operating a cooling system for a high temperature superconducting power device, comprising cooling the high temperature superconducting power device using the cooling system for a high temperature superconducting power device according to any one of claims 1 to 5.
JP2017221868A 2017-11-17 2017-11-17 Cooling system for high temperature superconductive electric power equipment and its operational method Pending JP2019095079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017221868A JP2019095079A (en) 2017-11-17 2017-11-17 Cooling system for high temperature superconductive electric power equipment and its operational method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017221868A JP2019095079A (en) 2017-11-17 2017-11-17 Cooling system for high temperature superconductive electric power equipment and its operational method

Publications (1)

Publication Number Publication Date
JP2019095079A true JP2019095079A (en) 2019-06-20

Family

ID=66971378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017221868A Pending JP2019095079A (en) 2017-11-17 2017-11-17 Cooling system for high temperature superconductive electric power equipment and its operational method

Country Status (1)

Country Link
JP (1) JP2019095079A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3101404A1 (en) * 2019-10-01 2021-04-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Motorization device, flying vehicle and process for cooling an engine
CN114111082A (en) * 2021-11-02 2022-03-01 深圳供电局有限公司 Supercooled liquid nitrogen circulating system based on GM refrigerator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175476A (en) * 2007-01-19 2008-07-31 Mitsubishi Electric Corp Refrigerating air conditioner
WO2011132231A1 (en) * 2010-04-23 2011-10-27 住友重機械工業株式会社 Cooling system and cooling method
JP2012513005A (en) * 2008-11-25 2012-06-07 テクニップ フランス Process for producing a subcooled liquefied natural gas stream using a natural gas feed stream and associated apparatus
WO2015121992A1 (en) * 2014-02-14 2015-08-20 三菱電機株式会社 Refrigeration cycle device
JP2016169880A (en) * 2015-03-11 2016-09-23 大陽日酸株式会社 Superconductive cable cooling device and superconductive cable cooling method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175476A (en) * 2007-01-19 2008-07-31 Mitsubishi Electric Corp Refrigerating air conditioner
JP2012513005A (en) * 2008-11-25 2012-06-07 テクニップ フランス Process for producing a subcooled liquefied natural gas stream using a natural gas feed stream and associated apparatus
WO2011132231A1 (en) * 2010-04-23 2011-10-27 住友重機械工業株式会社 Cooling system and cooling method
WO2015121992A1 (en) * 2014-02-14 2015-08-20 三菱電機株式会社 Refrigeration cycle device
JP2016169880A (en) * 2015-03-11 2016-09-23 大陽日酸株式会社 Superconductive cable cooling device and superconductive cable cooling method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3101404A1 (en) * 2019-10-01 2021-04-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Motorization device, flying vehicle and process for cooling an engine
WO2021063638A1 (en) * 2019-10-01 2021-04-08 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Drive device, flying vehicle and method for cooling an engine
CN114111082A (en) * 2021-11-02 2022-03-01 深圳供电局有限公司 Supercooled liquid nitrogen circulating system based on GM refrigerator

Similar Documents

Publication Publication Date Title
JP5985746B2 (en) Brayton cycle refrigerator
KR101161339B1 (en) Cryogenic refrigerator and control method therefor
EP2562489B1 (en) Cooling system and cooling method
JP5356983B2 (en) Cryogenic refrigeration apparatus and operation method thereof
JP2014219125A (en) Refrigeration system
JP5705375B2 (en) Cooling device for high temperature superconducting equipment and method for operating the same
US20230107973A1 (en) Dilution refrigeration device and method
US10030919B2 (en) Cooling apparatus for superconductor
JP2018091391A (en) System for liquefying boil-off gas
JP2019095079A (en) Cooling system for high temperature superconductive electric power equipment and its operational method
Jin et al. Design of high-efficiency Joule-Thomson cycles for high-temperature superconductor power cable cooling
JP5380310B2 (en) Cryogenic refrigerator
ES2567430T3 (en) Cooling installation
CN114270116A (en) Refrigeration device and system
KR101052513B1 (en) Cooling cycle system for multistage compressor
JP2016169880A (en) Superconductive cable cooling device and superconductive cable cooling method
Hirai et al. Development of a Neon Cryogenic turbo‐expander with Magnetic Bearings
KR102001251B1 (en) Integrated cooling system of liquid nitrogen circulation and refrigerator for hts cable
JP2016539307A (en) Refrigeration method and corresponding cold box and cryogenic equipment
JP6926153B2 (en) Superconductor cooling device and superconductor cooling method
JP2018189170A (en) Liquefied gas storage device
JP2019117869A (en) Cooling device for superconducting cable and cooling method
JP2022091505A (en) Operation method of cryogenic fluid circulation-type cooling system, and cryogenic fluid circulation-type cooling system
Willems et al. Closed Loop Cooling Systems for HTS Applications
JPH06241594A (en) Supercritical helium cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200702

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20201106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211109