JPWO2013129359A1 - 立体物検出装置 - Google Patents

立体物検出装置 Download PDF

Info

Publication number
JPWO2013129359A1
JPWO2013129359A1 JP2014502228A JP2014502228A JPWO2013129359A1 JP WO2013129359 A1 JPWO2013129359 A1 JP WO2013129359A1 JP 2014502228 A JP2014502228 A JP 2014502228A JP 2014502228 A JP2014502228 A JP 2014502228A JP WO2013129359 A1 JPWO2013129359 A1 JP WO2013129359A1
Authority
JP
Japan
Prior art keywords
dimensional object
area
detection
luminance
object detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014502228A
Other languages
English (en)
Other versions
JP5668891B2 (ja
Inventor
早川 泰久
泰久 早川
修 深田
修 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2014502228A priority Critical patent/JP5668891B2/ja
Application granted granted Critical
Publication of JP5668891B2 publication Critical patent/JP5668891B2/ja
Publication of JPWO2013129359A1 publication Critical patent/JPWO2013129359A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/20Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/22Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle
    • B60R1/23Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with a predetermined field of view
    • B60R1/27Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with a predetermined field of view providing all-round vision, e.g. using omnidirectional cameras
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/165Anti-collision systems for passive traffic, e.g. including static obstacles, trees
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/80Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement
    • B60R2300/806Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement for aiding parking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/80Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement
    • B60R2300/8093Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement for obstacle warning

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)

Abstract

撮像手段10により撮像された撮像画像を鳥瞰視画像に視点変換する画像変換手段31と、異なる時刻の鳥瞰視画像の位置を鳥瞰視上で位置合わせした差分画像上において、所定の差分を示す画素数をカウントして度数分布化することで差分波形情報を生成し、差分波形情報に基づいて車両後方に設定された検出領域において立体物を検出する立体物検出手段32,33,34と、検出領域内の画素の輝度を検出する輝度検出手段34とを備え、立体物検出手段32,33,34は、検出領域のうち輝度が所定閾値以上である領域を高輝度領域として検出し、少なくとも高輝度領域を覆う所定範囲の領域を、立体物を検出し難い検出制御領域として設定するとともに、撮像手段からの後方距離が大きいほど検出制御領域を広くし、検出制御領域を設定した検出領域において差分波形情報を生成する。

Description

本発明は、立体物検出装置に関するものである。
本出願は、2012年3月2日に出願された日本国特許出願の特願2012−046648に基づく優先権を主張するものであり、文献の参照による組み込みが認められる指定国については、上記の出願に記載された内容を参照により本出願に組み込み、本出願の記載の一部とする。
従来より、撮像画像からエッジ成分を抽出し、抽出したエッジ成分に基づいて他車両を検出する車両検出装置が知られている(特許文献1参照)。
特開2000−113201号公報
しかしながら、従来技術では、スミアやフレアによる局所的な光変化が生じた場合に、このスミアやフレアにより生じたエッジ成分を、他車両のエッジ成分として誤検出してしまう場合があった。一般に、スミアやフレアに対応する領域の輝度は高いため、輝度の高い領域を除いて立体物を検出することで、スミアやフレアによる光の影響を排除することもできるが、撮像画像を鳥瞰視画像に変換して該鳥瞰視画像に基づいて立体物を検出する場合には、自車両からの後方距離が大きいほど、撮像画像を鳥瞰視画像に変換する際にスミアやフレアに対応する領域が引き伸ばされて、スミアやフレアに対応する領域の輝度が低くなってしまい、このような輝度の低いスミアやフレアの光の像を、隣接車両として誤検出してしまう場合があった。
本発明が解決しようとする課題は、スミアやフレアによる光の影響を排除し、検出対象である他車両を適切に検出できる立体物検出装置を提供することである。
本発明は、検出領域のうち輝度が所定閾値以上である高輝度領域を検出し、該高輝度領域を含む領域を、立体物を検出し難い検出制御領域として設定するとともに、撮像手段からの後方距離が大きいほど検出制御領域を広い範囲に設定して、検出制御領域を設定した検出領域において立体物を検出することで、上記課題を解決する。
本発明によれば、撮像手段からの後方距離が大きいほど、高輝度領域を覆う検出制御領域を広く設定することで、スミアやフレアに対応する高輝度な領域のみならず、スミアやフレアに対応する輝度が低い領域においても、スミアやフレアによる光の影響を排除することができ、これにより、検出対象である他車両を適切に検出できる。
図1は、第1実施形態に係る立体物検出装置を搭載した車両の概略構成図である。 図2は、図1の車両の走行状態を示す平面図である。 図3は、第1実施形態に係る計算機の詳細を示すブロック図である。 図4は、第1実施形態に係る位置合わせ部の処理の概要を説明するための図であり、(a)は車両の移動状態を示す平面図、(b)は位置合わせの概要を示す画像である。 図5は、第1実施形態に係る立体物検出部による差分波形の生成の様子を示す概略図である。 図6は、第1実施形態に係る立体物検出部によって分割される小領域を示す図である。 図7は、第1実施形態に係る立体物検出部により得られるヒストグラムの一例を示す図である。 図8は、第1実施形態に係る立体物検出部による重み付けを示す図である。 図9は、第1実施形態に係る立体物検出部により得られるヒストグラムの他の例を示す図である。 図10は、隣接車線に存在する隣接車両を判定する方法を説明するための図である。 図11は、第1実施形態に係る検出制御部による検出制御方法を説明するための図である。 図12は、第1実施形態に係る隣接車両検出方法を示すフローチャートである。 図13は、第2実施形態に係る計算機の詳細を示すブロック図である。 図14は、第2実施形態に係る検出制御部による検出制御方法を説明するための図である。 図15は、第2実施形態に係る隣接車両検出方法を示すフローチャートである(その1)。 図16は、第2実施形態に係る隣接車両検出方法を示すフローチャートである(その2)。 図17は、第2実施形態に係る特定輝度領域の検出方法を説明するための図である。 図18は、第2実施形態に係る特定輝度領域の検出方法の他の例を説明するための図である。 図19は、第3実施形態に係る計算機の詳細を示すブロック図である。 図20は、車両の走行状態を示す図であり、(a)は検出領域等の位置関係を示す平面図、(b)は実空間における検出領域等の位置関係を示す斜視図である。 図21は、第3実施形態に係る輝度差算出部の動作を説明するための図であり、(a)は鳥瞰視画像における注目線、参照線、注目点及び参照点の位置関係を示す図、(b)は実空間における注目線、参照線、注目点及び参照点の位置関係を示す図である。 図22は、第3実施形態に係る輝度差算出部の詳細な動作を説明するための図であり、(a)は鳥瞰視画像における検出領域を示す図、(b)は鳥瞰視画像における注目線、参照線、注目点及び参照点の位置関係を示す図である。 図23は、エッジ検出動作を説明するための画像例を示す図である。 図24は、エッジ線とエッジ線上の輝度分布を示す図であり、(a)は検出領域に立体物(隣接車両)が存在している場合の輝度分布を示す図、(b)は検出領域に立体物が存在しない場合の輝度分布を示す図である。 図25は、第3実施形態に係る隣接車両検出方法を示すフローチャートである。 図26は、マスク領域における閾値thの一例を示すグラフである。
《第1実施形態》
図1は、第1実施形態に係る立体物検出装置1を搭載した車両の概略構成図である。本実施形態に係る立体物検出装置1は、自車両V1が車線変更する際に接触の可能性がある隣接車線に存在する他車両(以下、隣接車両ともいう。)を検出することを目的とする。本実施形態に係る立体物検出装置1は、図1に示すように、カメラ10と、車速センサ20と、計算機30とを備える。
カメラ10は、図1に示すように、自車両V1の後方における高さhの箇所において、光軸が水平から下向きに角度θとなるように車両V1に取り付けられている。カメラ10は、この位置から自車両V1の周囲環境のうちの所定領域を撮像する。車速センサ20は、自車両V1の走行速度を検出するものであって、例えば車輪に回転数を検知する車輪速センサで検出した車輪速から車速度を算出する。計算機30は、自車両後方の隣接車線に存在する隣接車両の検出を行う。
図2は、図1の自車両V1の走行状態を示す平面図である。同図に示すように、カメラ10は、所定の画角aで車両後方側を撮像する。このとき、カメラ10の画角aは、自車両V1が走行する車線に加えて、その左右の車線(隣接車線)についても撮像可能な画角に設定されている。
図3は、図1の計算機30の詳細を示すブロック図である。なお、図3においては、接続関係を明確とするためにカメラ10、および車速センサ20についても図示する。
図3に示すように、計算機30は、視点変換部31と、位置合わせ部32と、立体物検出部33と、検出制御部34とを備える。以下に、それぞれの構成について説明する。
視点変換部31は、カメラ10による撮像にて得られた所定領域の撮像画像データを入力し、入力した撮像画像データを鳥瞰視される状態の鳥瞰画像データに視点変換する。鳥瞰視される状態とは、上空から例えば鉛直下向きに見下ろす仮想カメラの視点から見た状態である。この視点変換は、例えば特開2008−219063号公報に記載されるようにして実行することができる。撮像画像データを鳥瞰視画像データに視点変換するのは、立体物に特有の鉛直エッジは鳥瞰視画像データへの視点変換により特定の定点を通る直線群に変換されるという原理に基づき、これを利用すれば平面物と立体物とを識別できるからである。
位置合わせ部32は、視点変換部31の視点変換により得られた鳥瞰視画像データを順次入力し、入力した異なる時刻の鳥瞰視画像データの位置を合わせる。図4は、位置合わせ部32の処理の概要を説明するための図であり、(a)は自車両V1の移動状態を示す平面図、(b)は位置合わせの概要を示す画像である。
図4(a)に示すように、現時刻の自車両V1がPに位置し、一時刻前の自車両V1がP’に位置していたとする。また、自車両V1の後側方向に隣接車両V2が位置して自車両V1と並走状態にあり、現時刻の隣接車両V2がPに位置し、一時刻前の隣接車両V2がP’に位置していたとする。さらに、自車両V1は、一時刻で距離d移動したものとする。なお、一時刻前とは、現時刻から予め定められた時間(例えば1制御周期)だけ過去の時刻であってもよいし、任意の時間だけ過去の時刻であってもよい。
このような状態において、現時刻における鳥瞰視画像PBは図4(b)に示すようになる。この鳥瞰視画像PBでは、路面上に描かれる白線については矩形状となり、比較的正確に平面視された状態となるが、隣接車両V2(位置P)については倒れ込みが発生する。また、一時刻前における鳥瞰視画像PBt−1についても同様に、路面上に描かれる白線については矩形状となり、比較的正確に平面視された状態となるが、隣接車両V2(位置P’)については倒れ込みが発生する。既述したとおり、立体物の鉛直エッジ(厳密な意味の鉛直エッジ以外にも路面から三次元空間に立ち上がったエッジを含む)は、鳥瞰視画像データへの視点変換処理によって倒れ込み方向に沿った直線群として現れるのに対し、路面上の平面画像は鉛直エッジを含まないので、視点変換してもそのような倒れ込みが生じないからである。
位置合わせ部32は、上記のような鳥瞰視画像PB,PBt−1の位置合わせをデータ上で実行する。この際、位置合わせ部32は、一時刻前における鳥瞰画像PBt−1をオフセットさせ、現時刻における鳥瞰視画像PBと位置を一致させる。図4(b)の左側の画像と中央の画像は、移動距離d’だけオフセットした状態を示す。このオフセット量d’は、図4(a)に示した自車両V1の実際の移動距離dに対応する鳥瞰視画像データ上の移動量であり、車速センサ20からの信号と一時刻前から現時刻までの時間に基づいて決定される。
また、位置合わせ後において位置合わせ部32は、鳥瞰視画像PB,PBt−1の差分をとり、差分画像PDのデータを生成する。ここで、本実施形態において、位置合わせ部32は、照度環境の変化に対応するために、鳥瞰視画像PB,PBt−1の画素値の差を絶対値化し、当該絶対値が所定の閾値th以上であるときに、差分画像PDの画素値を「1」とし、絶対値が所定の閾値th未満であるときに、差分画像PDの画素値を「0」とすることで、図4(b)の右側に示すような差分画像PDのデータを生成することができる。
図3に戻り、立体物検出部33は、図4(b)に示す差分画像PDのデータに基づいて立体物を検出する。この際、立体物検出部33は、実空間上における立体物の移動距離についても算出する。立体物の検出および移動距離の算出にあたり、立体物検出部33は、まず差分波形を生成する。
差分波形の生成にあたって立体物検出部33は、差分画像PDにおいて検出領域を設定する。本例の立体物検出装置1は、自車両V1が車線変更する際に接触の可能性がある隣接車両について移動距離を算出することを目的とするものである。このため、本例では、図2に示すように自車両V1の後側方に矩形状の検出領域A1,A2を設定する。なお、このような検出領域A1,A2は、自車両V1に対する相対位置から設定してもよいし、白線の位置を基準に設定してもよい。白線の位置を基準に設定する場合に、立体物検出装置1は、例えば既存の白線認識技術等を利用するとよい。
また、立体物検出部33は、図2に示すように、設定した検出領域A1,A2の自車両V1側における辺(走行方向に沿う辺)を接地線L1,L2として認識する。一般に接地線は立体物が地面に接触する線を意味するが、本実施形態では地面に接触する線でなく上記の如くに設定される。なおこの場合であっても、経験上、本実施形態に係る接地線と、本来の隣接車両V2の位置から求められる接地線との差は大きくなり過ぎず、実用上は問題が無い。
図5は、立体物検出部33による差分波形の生成の様子を示す概略図である。図5に示すように、立体物検出部33は、位置合わせ部32で算出した差分画像PD(図4(b)の右図)のうち検出領域A1,A2に相当する部分から、差分波形DWを生成する。この際、立体物検出部33は、視点変換により立体物が倒れ込む方向に沿って、差分波形DWを生成する。なお、図5に示す例では、便宜上検出領域A1のみを用いて説明するが、検出領域A2についても同様の手順で差分波形DWを生成する。
具体的に説明すると、まず立体物検出部33は、差分画像PDのデータ上において立体物が倒れ込む方向上の線Laを定義する。そして、立体物検出部33は、線La上において所定の差分を示す差分画素DPの数をカウントする。本実施形態では、所定の差分を示す差分画素DPは、差分画像PDの画素値が「0」「1」で表現されており、「1」を示す画素が、差分画素DPとしてカウントされる。
立体物検出部33は、差分画素DPの数をカウントした後、線Laと接地線L1との交点CPを求める。そして、立体物検出部33は、交点CPとカウント数とを対応付け、交点CPの位置に基づいて横軸位置、すなわち図5右図の上下方向軸における位置を決定するとともに、カウント数から縦軸位置、すなわち図5右図の左右方向軸における位置を決定し、交点CPにおけるカウント数としてプロットする。
以下同様に、立体物検出部33は、立体物が倒れ込む方向上の線Lb,Lc…を定義して、差分画素DPの数をカウントし、各交点CPの位置に基づいて横軸位置を決定し、カウント数(差分画素DPの数)から縦軸位置を決定しプロットする。立体物検出部33は、上記を順次繰り返して度数分布化することで、図5右図に示すように差分波形DWを生成する。
ここで、差分画像PDのデータ上における差分画素PDは、異なる時刻の画像において変化があった画素であり、言い換えれば立体物が存在した箇所であるといえる。このため、立体物が存在した箇所において、立体物が倒れ込む方向に沿って画素数をカウントして度数分布化することで差分波形DWを生成することとなる。特に、立体物が倒れ込む方向に沿って画素数をカウントすることから、立体物に対して高さ方向の情報から差分波形DWを生成することとなる。
なお、図5左図に示すように、立体物が倒れ込む方向上の線Laと線Lbとは検出領域A1と重複する距離が異なっている。このため、検出領域A1が差分画素DPで満たされているとすると、線Lb上よりも線La上の方が差分画素DPの数が多くなる。このため、立体物検出部33は、差分画素DPのカウント数から縦軸位置を決定する場合に、立体物が倒れ込む方向上の線La,Lbと検出領域A1とが重複する距離に基づいて正規化する。具体例を挙げると、図5左図において線La上の差分画素DPは6つあり、線Lb上の差分画素DPは5つである。このため、図5においてカウント数から縦軸位置を決定するにあたり、立体物検出部33は、カウント数を重複距離で除算するなどして正規化する。これにより、差分波形DWに示すように、立体物が倒れ込む方向上の線La,Lbに対応する差分波形DWの値はほぼ同じとなっている。
差分波形DWの生成後、立体物検出部33は、生成した差分波形DWに基づいて、隣接車線に存在している隣接車両の検出を行う。立体物検出部33は、現時刻における差分波形DWと一時刻前の差分波形DWt−1との対比により移動距離を算出する。すなわち、立体物検出部33は、差分波形DW,DWt−1の時間変化から移動距離を算出する。
詳細に説明すると、立体物検出部33は、図6に示すように差分波形DWを複数の小領域DWt1〜DWtn(nは2以上の任意の整数)に分割する。図6は、立体物検出部33によって分割される小領域DWt1〜DWtnを示す図である。小領域DWt1〜DWtnは、例えば図6に示すように、互いに重複するようにして分割される。例えば小領域DWt1と小領域DWt2とは重複し、小領域DWt2と小領域DWt3とは重複する。
次いで、立体物検出部33は、小領域DWt1〜DWtn毎にオフセット量(差分波形の横軸方向(図6の上下方向)の移動量)を求める。ここで、オフセット量は、一時刻前における差分波形DWt−1と現時刻における差分波形DWとの差(横軸方向の距離)から求められる。この際、立体物検出部33は、小領域DWt1〜DWtn毎に、一時刻前における差分波形DWt−1を横軸方向に移動させた際に、現時刻における差分波形DWとの誤差が最小となる位置(横軸方向の位置)を判定し、差分波形DWt−1の元の位置と誤差が最小となる位置との横軸方向の移動量をオフセット量として求める。そして、立体物検出部33は、小領域DWt1〜DWtn毎に求めたオフセット量をカウントしてヒストグラム化する。
図7は、立体物検出部33により得られるヒストグラムの一例を示す図である。図7に示すように、各小領域DWt1〜DWtnと一時刻前における差分波形DWt−1との誤差が最小となる移動量であるオフセット量には、多少のバラつきが生じる。このため、立体物検出部33は、バラつきを含んだオフセット量をヒストグラム化し、ヒストグラムから移動距離を算出する。この際、立体物検出部33は、ヒストグラムの極大値から隣接車両の移動距離を算出する。すなわち、図7に示す例において、立体物検出部33は、ヒストグラムの極大値を示すオフセット量を移動距離τと算出する。このように、本実施形態では、オフセット量にバラつきがあったとしても、その極大値から、より正確性の高い移動距離を算出することが可能となる。なお、移動距離τは、自車両に対する隣接車両の相対移動距離である。このため、立体物検出部33は、絶対移動距離を算出する場合には、得られた移動距離τと車速センサ20からの信号とに基づいて、絶対移動距離を算出することとなる。
このように、本実施形態では、異なる時刻に生成された差分波形DWの誤差が最小となるときの差分波形DWのオフセット量から立体物の移動距離を算出することで、波形という1次元の情報のオフセット量から移動距離を算出することとなり、移動距離の算出にあたり計算コストを抑制することができる。また、異なる時刻に生成された差分波形DWを複数の小領域DWt1〜DWtnに分割することで、立体物のそれぞれの箇所を表わした波形を複数得ることができ、これにより、立体物のそれぞれの箇所毎にオフセット量を求めることができ、複数のオフセット量から移動距離を求めることができるため、移動距離の算出精度を向上させることができる。また、本実施形態では、高さ方向の情報を含む差分波形DWの時間変化から立体物の移動距離を算出することで、単に1点の移動のみに着目するような場合と比較して、時間変化前の検出箇所と時間変化後の検出箇所とが高さ方向の情報を含んで特定されるため立体物において同じ箇所となり易く、同じ箇所の時間変化から移動距離を算出することとなり、移動距離の算出精度を向上させることができる。
なお、ヒストグラム化にあたり立体物検出部33は、複数の小領域DWt1〜DWtn毎に重み付けをし、小領域DWt1〜DWtn毎に求めたオフセット量を重みに応じてカウントしてヒストグラム化してもよい。図8は、立体物検出部33による重み付けを示す図である。
図8に示すように、小領域DW(mは1以上n−1以下の整数)は平坦となっている。すなわち、小領域DWは所定の差分を示す画素数のカウントの最大値と最小値との差が小さくなっている。立体物検出部33は、このような小領域DWについて重みを小さくする。平坦な小領域DWについては、特徴がなくオフセット量の算出にあたり誤差が大きくなる可能性が高いからである。
一方、小領域DWm+k(kはn−m以下の整数)は起伏に富んでいる。すなわち、小領域DWは所定の差分を示す画素数のカウントの最大値と最小値との差が大きくなっている。立体物検出部33は、このような小領域DWについて重みを大きくする。起伏に富む小領域DWm+kについては、特徴的でありオフセット量の算出を正確に行える可能性が高いからである。このように重み付けすることにより、移動距離の算出精度を向上することができる。
なお、移動距離の算出精度を向上するために上記実施形態では差分波形DWを複数の小領域DWt1〜DWtnに分割したが、移動距離の算出精度がさほど要求されない場合は小領域DWt1〜DWtnに分割しなくてもよい。この場合に、立体物検出部33は、差分波形DWと差分波形DWt−1との誤差が最小となるときの差分波形DWのオフセット量から移動距離を算出することとなる。すなわち、一時刻前における差分波形DWt−1と現時刻における差分波形DWとのオフセット量を求める方法は上記内容に限定されない。
なお、本実施形態において立体物検出部33は、自車両V1(カメラ10)の移動速度を求め、求めた移動速度から静止物についてのオフセット量を求める。静止物のオフセット量を求めた後、立体物検出部33は、ヒストグラムの極大値のうち静止物に該当するオフセット量を無視したうえで、隣接車両の移動距離を算出する。
図9は、立体物検出部33により得られるヒストグラムの他の例を示す図である。カメラ10の画角内に隣接車両の他に静止物が存在する場合に、得られるヒストグラムには2つの極大値τ1,τ2が現れる。この場合、2つの極大値τ1,τ2のうち、いずれか一方は静止物のオフセット量である。このため、立体物検出部33は、移動速度から静止物についてのオフセット量を求め、そのオフセット量に該当する極大値について無視し、残り一方の極大値を採用して立体物の移動距離を算出する。これにより、静止物により立体物の移動距離の算出精度が低下してしまう事態を防止することができる。
なお、静止物に該当するオフセット量を無視したとしても、極大値が複数存在する場合、カメラ10の画角内に隣接車両が複数台存在すると想定される。しかし、検出領域A1,A2内に複数の隣接車両が存在することは極めて稀である。このため、立体物検出部33は、移動距離の算出を中止する。これにより、本実施形態では、極大値が複数あるような誤った移動距離を算出してしまう事態を防止することができる。
さらに、立体物検出部33は、算出した立体物の相対移動距離を時間微分することで、自車両に対する立体物の相対移動速度を算出するとともに、算出した立体物の相対移動速度に、車速センサ20により検出された自車両の車速を加算することで、立体物の絶対移動速度を算出する。また、立体物検出部33は、立体物の相対移動距離から、立体物に対する自車両の相対移動速も算出する。
差分波形DWの生成後、立体物検出部33は、生成した差分波形DWに基づいて、隣接車線に存在している隣接車両の検出を行う。ここで、図10は、隣接車線に存在する他車両の判定方法を説明するための図であり、差分波形DWおよび隣接車線に存在する他車両を検出するための閾値αの一例を示している。たとえば、立体物検出部33は、図10に示すように、生成した差分波形DWのピークが所定の閾値α以上であるか否かを判断し、差分波形DWのピークが所定の閾値α以上である場合に、検出した立体物を、隣接車線に存在する隣接車両であると判定し、差分波形DWのピークが所定の閾値α以上でない場合に、検出された立体物は隣接車線に存在する隣接車両ではないと判定する。
図3に示す検出制御部34は、スミアやフレアの影響を排除するために、検出領域A1,A2のうちスミアやフレアに対応する領域を含むマスク領域を設定し、検出領域A1,A2からマスク領域を除いた検出対象領域から立体物を検出するに、位置合わせ部32による差分画像DPのデータ生成を制御する。ここで、図11は、検出制御部34による検出制御方法を説明するための図である。
具体的には、検出制御部34は、鳥瞰視画像PBにおいて、検出領域A1,A2内の各位置で輝度値を検出し、図11右図に示すように、検出領域A1,A2のうち所定の輝度閾値sb以上の領域を、スミアやフレアに対応する特定輝度領域として検出する。なお、本実施形態では、スミアやフレアの影響を排除することを目的としているため、上記所定の輝度閾値sbとは、スミアやフレアに対応する領域と判断できる輝度値に設定される。たとえば図11に示す例では、検出領域A1内に2つのスミアが生じているため、検出制御部34は、検出領域A1内のうち輝度閾値sb以上の輝度値を有する2つの領域を、スミアに対応する特定輝度領域Rb,Rbとして検出する。
そして、検出制御部34は、特定輝度領域を含む領域をマスク領域として設定する。具体的には、検出制御部34は、自車両V1(カメラ10)からの後方距離が大きいほど、特定輝度領域を含むマスク領域を広い範囲に設定する。たとえば、図11に示す例では、特定輝度領域Rbは自車両V1(カメラ10)からの後方距離がDであり、特定輝度領域Rbは自車両V1(カメラ10)からの後方距離がDよりも大きいDである。そのため、検出制御部34は、自車両V1(カメラ10)からの後方距離がDである特定輝度領域Rbを含むマスク領域Rmよりも、自車両V1(カメラ10)からの後方距離がDである特定輝度領域Rbを含むマスク領域Rmを広い範囲に設定する。
なお、検出制御部34は、たとえば、自車両V1(カメラ10)からの後方距離に比例して、特定輝度領域を含むマスク領域を広い範囲に設定する構成としてもよいし、あるいは、自車両V1(カメラ10)からの後方距離ごとに、マスク領域を広げる量(ピクセル量)を段階的に決めておき、自車両V1(カメラ10)からの後方距離に応じて、予め決めた量(ピクセル量)だけマスク領域を広げる構成としてもよい。
次に、本実施形態に係る隣接車両検出処理について説明する。図12は、第1実施形態の隣接車両検出処理を示すフローチャートである。
図12に示すように、まず、計算機30により、カメラ10から撮像画像のデータの取得が行われ(ステップS101)、視点変換部31により、取得した撮像画像のデータに基づいて、鳥瞰視画像PBのデータが生成される(ステップS102)。
次いで、検出制御部34により、検出領域A1のうち輝度値が所定閾値sb以上の領域が特定輝度領域として検出され(ステップS103)、検出された特定輝度領域を含むマスク領域の設定が行われる(ステップS104)。
具体的には、検出制御部34は、自車両V1(カメラ10)から特定輝度領域までの後方距離が大きいほど、マスク領域を広い範囲に設定する。たとえば、検出制御部34は、図11に示すように、マスク領域Rmよりも後方のマスク領域Rmを、マスク領域Rmよりも広い範囲に設定する。
そして、位置合わせ部32により、鳥瞰視画像PBのデータと、一時刻前の鳥瞰視画像PBt−1のデータとの位置合わせが行われ、差分画像PDのデータの生成が行われる(ステップS105)。なお、差分画像PDのデータを生成する際に、検出制御部34は、差分画像PDのデータの生成する対象からステップS104で設定したマスク領域を除外し、検出領域A1からマスク領域を除いた検出対象領域において差分画像PDのデータを生成するように、位置合わせ部32を制御する。これにより、位置合わせ部32は、たとえば、マスク領域において、差分画像PDの画素値を一律に「0」に設定し、一方、検出対象領域においては、絶対値が所定の閾値th以上である場合に、差分画像PDの画素値を「1」とし、絶対値が所定の閾値th未満である場合に、差分画像PDの画素値を「0」とする。これにより、位置合わせ部32は、検出領域A1からマスク領域を除いた検出対象領域において差分画像PDのデータを生成することができる。
そして、立体物検出部33は、画素値が「1」の差分画素DPの数をカウントして、差分波形DWを生成する(ステップS106)。なお、本実施形態では、マスク領域において差分画像PDの画素値を一律に「0」に設定しているため、立体物検出部33は、検出領域A1のうちマスク領域を除いた検出対象領域において差分波形DWを生成することとなる。
そして、立体物検出部33は、差分波形DWのピークが閾値α以上であるか否かを判断する(ステップS107)。差分波形DWのピークが閾値α以上でない場合、すなわち差分が殆どない場合には、撮像画像(検出対象領域)内には立体物が存在しないと考えられる。このため、差分波形DWのピークが閾値α以上でないと判断した場合には(ステップS107=No)、立体物検出部33は、立体物が存在せず隣接車両が存在しないと判断する(ステップS116)。そして、ステップS101に戻り、図12に示す処理を繰り返す。このように、本実施形態では、立体物検出部33は、検出領域A1のうちスミアやフレアに対応するマスク領域を除いた検出対象領域のみにおいて、立体物の検出を行うこととなる。
一方、差分波形DWのピークが閾値α以上であると判断した場合には(ステップS107=Yes)、立体物検出部33により、隣接車線に立体物が存在すると判断され、ステップS108に進み、立体物検出部33により、差分波形DWが、複数の小領域DWt1〜DWtnに分割される。次いで、立体物検出部33は、小領域DWt1〜DWtn毎に重み付けを行い(ステップS109)、小領域DWt1〜DWtn毎のオフセット量を算出し(ステップS110)、重みを加味してヒストグラムを生成する(ステップS111)。
そして、立体物検出部33は、ヒストグラムに基づいて自車両V1に対する立体物の移動距離である相対移動距離を算出する(ステップS112)。次に、立体物検出部33は、相対移動距離から立体物の絶対移動速度を算出する(ステップS113)。このとき、立体物検出部33は、相対移動距離を時間微分して相対移動速度を算出するとともに、車速センサ20で検出された自車速を加算して、絶対移動速度を算出する。
その後、立体物検出部33は、立体物の絶対移動速度が10km/h以上、且つ、自車両に対する立体物の相対移動速度が+60km/h以下であるか否かを判断する(ステップS114)。双方を満たす場合には(ステップS114=Yes)、立体物検出部33は、検出した立体物は隣接車線に存在する隣接車両であり、隣接車線に隣接車両が存在すると判断する(ステップS115)。そして、図12に示す処理を終了する。一方、いずれか一方でも満たさない場合には(ステップS114=No)、立体物検出部33は、隣接車線に隣接車両が存在しないと判断する(ステップS116)。そして、ステップS101に戻り、図12に示す処理を繰り返す。
なお、本実施形態では自車両の後側方を検出領域A1,A2とし、自車両が車線変更した場合に接触する可能性があるか否かに重点を置いている。このため、ステップS114の処理が実行されている。すなわち、本実施形態にけるシステムを高速道路で作動させることを前提とすると、隣接車両の速度が10km/h未満である場合、たとえ隣接車両が存在したとしても、車線変更する際には自車両の遠く後方に位置するため問題となることが少ない。同様に、隣接車両の自車両に対する相対移動速度が+60km/hを超える場合(すなわち、隣接車両が自車両の速度よりも60km/hより大きな速度で移動している場合)、車線変更する際には自車両の前方に移動しているため問題となることが少ない。このため、ステップS114では車線変更の際に問題となる隣接車両を判断しているともいえる。
また、ステップS114において隣接車両の絶対移動速度が10km/h以上、且つ、隣接車両の自車両に対する相対移動速度が+60km/h以下であるかを判断することにより、以下の効果がある。例えば、カメラ10の取り付け誤差によっては、静止物の絶対移動速度を数km/hであると検出してしまう場合があり得る。よって、10km/h以上であるかを判断することにより、静止物を隣接車両であると判断してしまう可能性を低減することができる。また、ノイズによっては隣接車両の自車両に対する相対速度を+60km/hを超える速度に検出してしまうことがあり得る。よって、相対速度が+60km/h以下であるかを判断することにより、ノイズによる誤検出の可能性を低減できる。
さらに、ステップS114の処理に代えて、隣接車両の絶対移動速度がマイナスでないことや、0km/hでないことを判断してもよい。また、本実施形態では自車両が車線変更した場合に接触する可能性がある否かに重点を置いているため、ステップS115において隣接車両が検出された場合に、自車両の運転者に警告音を発したり、所定の表示装置により警告相当の表示を行ったりしてもよい。
以上のように、第1実施形態では、異なる時刻の2枚の撮像画像を鳥瞰視画像に変換し、2枚の鳥瞰視画像の差分に基づいて差分画像PDを生成し、差分画像PD上の差分データから差分波形DWを生成することで、生成した差分波形DWに基づいて、隣接車線に存在する隣接車両を検出する。また、第1実施形態では、2枚の鳥瞰視画像の差分に基づいて差分画像PDを生成する際に、検出領域A1,A2のうち輝度が所定値以上である領域を、スミアやフレアに対応する特定輝度領域として検出し、カメラ10からの後方距離が大きいほど、特定輝度領域を含むマスク領域を広い範囲に設定する。そして、検出領域A1,A2からマスク領域を除いた検出対象領域のみにおいて、2枚の鳥瞰視画像の差分を検出し、検出対象領域のみに対応する差分画像PDを生成する。これにより、本実施形態では、スミアやフレアに対応する高輝度な領域のみならず、撮像画像を鳥瞰視画像に変換した際にスミアやフレアに対応する領域が引き伸ばされて生じた輝度の低い領域も、立体物の検出対象となる領域から除外することができるため、スミアやフレアによる影響を排除して、立体物を適切に検出することができる。
すなわち、一般に、スミアやフレアが生じている撮像画像を鳥瞰視画像に変換した場合、自車両V1からスミアやフレアが生じた位置までの後方距離が小さいほど、スミアやフレアに対応する領域は鳥瞰視画像にくっきりと現れる。一方、スミアやフレアが生じている撮像画像を鳥瞰視画像に変換した場合に、自車両V1からスミアやフレアが生じた位置までの後方距離が大きいほど、スミアやフレアに対応する領域が引き伸ばされ、スミアやフレアに対応する領域が広がってしまう。このように引き伸ばされたスミアやフレアに対応する領域においては、スミアやフレアの中心位置から遠くなるほど、その輝度は低くなる。そのため、たとえば、スミアやフレアと判断できる高輝度な領域だけを除いて立体物を検出しても、スミアやフレアに対応する領域のうち、スミアやフレアの中心位置から遠く輝度が低い位置において、スミアやフレアによる光の像を隣接車両として誤検出してしまう場合があった。
これに対して、本実施形態では、自車両V1(カメラ10)から特定輝度領域までの後方距離が大きいほど、特定輝度領域を含むマスク領域を広い範囲に設定し、検出領域A1のうちマスク領域を除いた検出対象領域で立体物を検出することで、スミアやフレアの中心位置から遠く輝度が低い位置においても、スミアやフレアによる光の影響を排除することができる、スミアやフレアによる光の像を隣接車両として誤検出してしまうことを有効に防止することができる。
《第2実施形態》
続いて、第2実施形態に係る立体物検出装置1aについて説明する。第2実施形態に係る立体物検出装置1aは、図13に示すように、検出制御部34aおよび記憶部35を備え、以下に説明するように動作すること以外は、第1実施形態と同様である。ここで、図13は、第2実施形態に係る計算機30aの詳細を示すブロック図である。
第2実施形態において、図13に示す検出制御部34aは、図14に示すように、自車両V1(カメラ10)から特定輝度領域までの後方距離が大きいほど、特定輝度領域を検出するための輝度閾値sbを低く設定し、設定された輝度閾値sb以上の領域を特定輝度領域として検出する。そして、検出制御部34aは、検出領域A1,A2から特定輝度領域を除いた検出対象領域について、差分画像PDの画像データを生成するように、位置合わせ部32を制御する。
また、たとえば太陽が雲で翳り、スミアやフレアに対応する領域の輝度値が輝度閾値sb未満となった場合でも、このようなスミアやフレアに対応する領域を特定輝度領域として検出するため、検出制御部34aは、今回処理時において輝度閾値sb以上の輝度値を有する特定輝度領域を検出できない場合でも、前回処理時において検出された特定輝度領域の周辺に存在し、かつ、所定の輝度値のピークを有する領域を、輝度の低いスミアやフレアに対応する特定輝度領域として検出し、これをマスク領域として設定する。これにより、第2実施形態では、たとえば太陽が雲で翳り、輝度が低くなってしまったスミアやフレアの光の像を、隣接車両として誤検出してしまうことを有効に防止することができる。
記憶部35は、ROMやRAMなどの記憶媒体であり、検出制御部34aにより検出された特定輝度領域の検出位置を記憶する。記憶部35に記憶された特定輝度領域の位置情報は、上述した検出制御部34aにより適宜参照される。
次に、第2実施形態に係る隣接車両検出処理について説明する。図15および図16は、第2実施形態の隣接車両検出処理を示すフローチャートである。
ステップS201,S202では、第1実施形態のステップS101,S102と同様に、撮像画像のデータの取得が行われ(ステップS201)、取得した撮像画像のデータに基づいて、鳥瞰視画像PBのデータが生成される(ステップS202)。
次いで、ステップS203では、検出制御部34aにより、検出領域A1,A2のうち輝度値が所定閾値sb以上の領域が特定輝度領域として検出される。なお、第2実施形態では、図14に示すように、自車両V1(カメラ10)から特定輝度領域までの後方距離が大きいほど、特定輝度領域を検出するための輝度閾値sbが低く設定され、検出制御部34aは、このように設定された輝度閾値sb以上の領域を特定輝度領域として検出する。
そして、ステップS204では、検出制御部34aにより、ステップS203で特定輝度領域が検出されたか否かの判断が行われる。特定輝度領域が検出された場合には、ステップS205に進み、検出制御部34aは、ステップS203で検出された特定輝度領域をマスク領域として設定する。そして、ステップS206に進む。一方、特定輝度領域が検出されなかった場合には、ステップS205の処理を行わずにステップS206に進む。
ステップS206では、検出制御部34aにより、記憶部35が参照され、前回処理において検出された特定輝度領域の情報が読み出される。そして、ステップS207では、ステップS206で読み出した特定輝度領域の情報に基づいて、検出制御部34aにより、ステップS203で検出された特定輝度領域が、前回処理時において検出された特定輝度領域の周辺に存在するか否かの判断が行われる。
たとえば、検出制御部34aは、ステップS203で検出された特定輝度領域における輝度値のピーク位置が、前回処理時に検出された特定輝度領域における輝度値のピーク位置から、所定の画素範囲内に存在する場合に、ステップS203で検出された特定輝度領域が、前回処理時において検出された特定輝度領域の周辺に存在すると判断することができる。そして、ステップS203で検出された特定輝度領域が、前回処理時において検出された特定輝度領域の周辺に存在すると判断された場合には、ステップS208に進み、一方、前回処理において検出された特定輝度領域の位置の周辺で、今回処理において特定輝度領域が検出されなかった場合には、ステップS210に進む。
ステップS208では、検出制御部34aにより、ステップS203で検出された特定輝度領域の周辺において 、輝度値が輝度閾値sb’以上の領域を今回処理時の特定輝度領域として検出する処理が行われる。ここで、図17は、第2実施形態に係る特定輝度領域の検出方法を説明するための図である。たとえば、検出制御部34aは、図17に示すように、今回処理時において輝度閾値sb以上の輝度を有する領域(図17中、実線で示す領域)を検出した場合に、前回処理時に検出された特定輝度領域の周辺に存在し、かつ、輝度閾値sb以上よりも小さい輝度閾値sb’以上の輝度を有する領域を、たとえば太陽が雲で翳り輝度が低くなったスミアやフレアに対応する領域と判断し、今回処理時の特定輝度領域Rbとして検出する。これにより、今回処理時点におけてスミアやフレアに対応する領域を、検出対象領域から適切に排除することができる。そして、ステップS209において、検出制御部34aにより、ステップS208で検出された特定輝度領域が、マスク領域に設定される。
また、第2実施形態では、ステップS207〜S209の処理に代えて、ステップS211〜S214の処理を行う構成としてもよい。具体的には、まず、ステップS211では、検出制御部34aにより、ステップS206で読み出した前回処理時の特定輝度領域の情報に基づいて、前回処理時の特定輝度領域Rb’の周辺に、所定の輝度値のピークを有する領域が存在するか否かの判断が行われる。たとえば、検出制御部34aは、図18に示すように、前回処理時の特定輝度領域Rb’の周辺において、周囲に比べて輝度値が高く(輝度閾値sb以上の輝度値ではなくともよい)、輝度値の勾配が所定の勾配以上となるピークを有する領域が存在する場合に、所定の輝度値のピークを有する領域が存在すると判断する。これにより、検出制御部34aは、たとえば図18に示すように、太陽が雲で翳りスミアやフレアの輝度が低くなったために、所定の輝度閾値sb以上の輝度値を有する領域が検出できない場合でも、このような輝度の低いスミアやフレアに対応する領域を特定輝度領域として検出することができる。なお、図18は、第2実施形態に係る特定輝度領域の検出方法の他の例を説明するための図である。
そして、ステップS211において、前回処理時の特定輝度領域の周辺において、所定の輝度値のピークを有する領域が存在すると判断された場合には、ステップS212に進み、一方、前回処理時の特定輝度領域の周辺に、所定の輝度値のピークを有する領域が存在しないと判断された場合には、ステップS210に進む。
ステップS212では、検出制御部34aにより、ステップS211で検出した所定の輝度値のピークを有する領域の位置に、前回処理時の特定輝度領域をシフトさせる処理が行われる。具体的には、検出制御部34aは、ステップS211で検出した所定の輝度値のピークを有する領域における輝度値のピーク位置と、前回処理時の特定輝度領域の中心位置とが一致するように、前回処理時の特定輝度領域をシフトさせる。そして、ステップS213において、検出制御部34aは、ステップS212でシフトさせた前回処理時の特定輝度領域に対応する領域を、今回処理時の特定輝度領域として検出する。そして、ステップS214において、検出制御部34aにより、ステップS213で検出された特定輝度領域が、マスク領域に設定される。これにより、図18に示すように、所定の輝度閾値sb以上の輝度値を有する領域が存在しない場合でも、前回処理時の特定輝度領域の周辺において特定輝度領域を検出することができる。
ステップS210では、検出制御部34aにより、今回処理において検出された特定輝度領域の位置が、記憶部35に記憶される。なお、ステップS210で記憶された特定輝度領域の位置は、次回処理時のステップS206で、前回処理時の特定輝度領域として利用されることとなる。
そして、図16に進み、ステップS215では、位置合わせ部32により、鳥瞰視画像PBのデータと、一時刻前の鳥瞰視画像PBt−1のデータとの位置合わせが行われ、差分画像PDのデータの生成が行われる。なお、第2実施形態では、差分画像PDのデータを生成する際に、位置合わせ部32は、ステップS205およびステップS210で設定したマスク領域を除いた検出対象領域において、差分画像PDのデータを生成する。そして、立体物検出部33は、マスク領域を除いた検出対象領域に対応する差分画像PDから、差分波形DWを生成する(ステップS216)。なお、図16に示すステップS217以降の処理は、第1実施形態のステップS107以降の処理と同様のため説明は省略する。
以上のように、第2実施形態では、図14に示すように、自車両V1(カメラ10)から特定輝度領域までの後方距離が大きいほど、特定輝度領域を検出するための輝度閾値sbを低く設定し、設定された輝度閾値sb以上の領域を特定輝度領域として検出する。これにより、第2実施形態においても、撮像画像を鳥瞰視画像に変換することで、スミアやフレアに対応する領域が引き伸ばされてしまい、引き伸ばされたスミアやフレアに対応する領域において、スミアやフレアに対応する領域の中心位置から離れた位置の輝度が低くなった場合でも、このような輝度の低いスミアやフレアに対応する領域を特定輝度領域として検出して、検出対象領域から除外することができるため、スミアやフレアによる光の像を隣接車両として誤検出してしまうことを有効に防止することができる。
また、第2実施形態では、今回処理時において輝度閾値sb以上の輝度値を有する特定輝度領域に加えて、今回処理時において輝度閾値sb以上の輝度値を有しない場合でも、前回処理時において検出された特定輝度領域の周辺に存在し、かつ、所定の輝度値のピークを有する領域を、輝度の低いスミアやフレアに対応する特定輝度領域として検出する。これにより、たとえば太陽が雲で陰り、スミアやフレアに対応する領域の輝度値が輝度閾値sb未満となった場合でも、このようなスミアやフレアに対応する領域を特定輝度領域として検出することができ、このような輝度の低いスミアやフレアの光の像を、隣接車両として誤検出してしまうことを有効に防止することができる。
なお、上記構成に加えて、第2実施形において、夜間であるか昼間であるかを判断し、夜間であると判断した場合には、昼間であると判断した場合と比較して、輝度閾値sbを高く設定する構成としてもよい。これにより、スミアやフレアが発生し難い夜間においては、検出対象領域が設定されやすくなるため、夜間において隣接車両を検出しやすくなる。
さらに、第2実施形態において、たとえば、太陽の位置情報を取得し、太陽が西方に位置すると判断した場合に、輝度閾値sbを低く設定する構成としてもよい。これにより、スミアやフレアが発生しやすい西日が照射される状況において、スミアやフレアに対応する領域を特定輝度領域として検出しやすくなるため、スミアやフレアによる光の影響をより適切に排除することができる。なお、太陽の位置情報を取得する方法は、特に限定されないが、たとえば、検出制御部34aは、撮像画像内において、所定値以上の輝度値を有する所定面積以上の領域を、太陽に対応する領域として検出することで、太陽の位置情報を取得することができる。
《第3実施形態》
続いて、第3実施形態に係る立体物検出装置1bについて説明する。第3実施形態に係る立体物検出装置1bは、図19に示すように、第1実施形態の計算機30に代えて、計算機30bを備えており、以下に説明するように動作すること以外は、第1実施形態と同様である。ここで、図19は、第3実施形態に係る計算機30bの詳細を示すブロック図である。
第3実施形態にかかる立体物検出装置1bは、図19に示すように、カメラ10と計算機30bとを備えており、計算機30bは、視点変換部31、輝度差算出部36、エッジ線検出部37、立体物検出部33a、および検出制御部34bから構成されている。以下に、第3実施形態に係る立体物検出装置1bの各構成について説明する。
図20は、図19のカメラ10の撮像範囲等を示す図であり、図20(a)は平面図、図20(b)は、自車両V1から後側方における実空間上の斜視図を示す。図20(a)に示すように、カメラ10は所定の画角aとされ、この所定の画角aに含まれる自車両V1から後側方を撮像する。カメラ10の画角aは、図2に示す場合と同様に、カメラ10の撮像範囲に自車両V1が走行する車線に加えて、隣接する車線も含まれるように設定されている。
本例の検出領域A1,A2は、平面視(鳥瞰視された状態)において台形状とされ、これら検出領域A1,A2の位置、大きさ及び形状は、距離d〜dに基づいて決定される。なお、同図に示す例の検出領域A1,A2は台形状に限らず、図2に示すように鳥瞰視された状態で矩形など他の形状であってもよい。
ここで、距離d1は、自車両V1から接地線L1,L2までの距離である。接地線L1,L2は、自車両V1が走行する車線に隣接する車線に存在する立体物が地面に接触する線を意味する。本実施形態においては、自車両V1の後側方において自車両V1の車線に隣接する左右の車線を走行する隣接車両V2等(2輪車等を含む)を検出することが目的である。このため、自車両V1から白線Wまでの距離d11及び白線Wから隣接車両V2が走行すると予測される位置までの距離d12から、隣接車両V2の接地線L1,L2となる位置である距離d1を略固定的に決定しておくことができる。
また、距離d1については、固定的に決定されている場合に限らず、可変としてもよい。この場合に、計算機30aは、白線認識等の技術により自車両V1に対する白線Wの位置を認識し、認識した白線Wの位置に基づいて距離d11を決定する。これにより、距離d1は、決定された距離d11を用いて可変的に設定される。以下の本実施形態においては、隣接車両V2が走行する位置(白線Wからの距離d12)及び自車両V1が走行する位置(白線Wからの距離d11)は大凡決まっていることから、距離d1は固定的に決定されているものとする。
距離d2は、自車両V1の後端部から車両進行方向に伸びる距離である。この距離d2は、検出領域A1,A2が少なくともカメラ10の画角a内に収まるように決定されている。特に本実施形態において、距離d2は、画角aに区分される範囲に接するよう設定されている。距離d3は、検出領域A1,A2の車両進行方向における長さを示す距離である。この距離d3は、検出対象となる立体物の大きさに基づいて決定される。本実施形態においては、検出対象が隣接車両V2等であるため、距離d3は、隣接車両V2を含む長さに設定される。
距離d4は、図20(b)に示すように、実空間において隣接車両V2等のタイヤを含むように設定された高さを示す距離である。距離d4は、鳥瞰視画像においては図20(a)に示す長さとされる。なお、距離d4は、鳥瞰視画像において左右の隣接車線よりも更に隣接する車線(すなわち2車線隣りの隣隣接車線)を含まない長さとすることもできる。自車両V1の車線から2車線隣の車線を含んでしまうと、自車両V1が走行している車線である自車線の左右の隣接車線に隣接車両V2が存在するのか、2車線隣りの隣隣接車線に隣隣接車両が存在するのかについて、区別が付かなくなってしまうためである。
以上のように、距離d1〜距離d4が決定され、これにより検出領域A1,A2の位置、大きさ及び形状が決定される。具体的に説明すると、距離d1により、台形をなす検出領域A1,A2の上辺b1の位置が決定される。距離d2により、上辺b1の始点位置C1が決定される。距離d3により、上辺b1の終点位置C2が決定される。カメラ10から始点位置C1に向かって伸びる直線L3により、台形をなす検出領域A1,A2の側辺b2が決定される。同様に、カメラ10から終点位置C2に向かって伸びる直線L4により、台形をなす検出領域A1,A2の側辺b3が決定される。距離d4により、台形をなす検出領域A1,A2の下辺b4の位置が決定される。このように、各辺b1〜b4により囲まれる領域が検出領域A1,A2とされる。この検出領域A1,A2は、図20(b)に示すように、自車両V1から後側方における実空間上では真四角(長方形)となる。
図19に戻り、視点変換部31は、カメラ10による撮像にて得られた所定領域の撮像画像データを入力する。視点変換部31は、入力した撮像画像データに対して、鳥瞰視される状態の鳥瞰画像データに視点変換処理を行う。鳥瞰視される状態とは、上空から例えば鉛直下向き(又は、やや斜め下向き)に見下ろす仮想カメラの視点から見た状態である。この視点変換処理は、例えば特開2008−219063号公報に記載された技術によって実現することができる。
輝度差算出部36は、鳥瞰視画像に含まれる立体物のエッジを検出するために、視点変換部31により視点変換された鳥瞰視画像データに対して、輝度差の算出を行う。輝度差算出部36は、実空間における鉛直方向に伸びる鉛直仮想線に沿った複数の位置ごとに、当該各位置の近傍の2つの画素間の輝度差を算出する。輝度差算出部36は、実空間における鉛直方向に伸びる鉛直仮想線を1本だけ設定する手法と、鉛直仮想線を2本設定する手法との何れかによって輝度差を算出することができる。
ここでは、鉛直仮想線を2本設定する具体的な手法について説明する。輝度差算出部36は、視点変換された鳥瞰視画像に対して、実空間で鉛直方向に伸びる線分に該当する第1鉛直仮想線と、第1鉛直仮想線と異なり実空間で鉛直方向に伸びる線分に該当する第2鉛直仮想線とを設定する。輝度差算出部36は、第1鉛直仮想線上の点と第2鉛直仮想線上の点との輝度差を、第1鉛直仮想線及び第2鉛直仮想線に沿って連続的に求める。以下、この輝度差算出部36の動作について詳細に説明する。
輝度差算出部36は、図21(a)に示すように、実空間で鉛直方向に伸びる線分に該当し、且つ、検出領域A1を通過する第1鉛直仮想線La(以下、注目線Laという)を設定する。また輝度差算出部36は、注目線Laと異なり、実空間で鉛直方向に伸びる線分に該当し、且つ、検出領域A1を通過する第2鉛直仮想線Lr(以下、参照線Lrという)を設定する。ここで参照線Lrは、実空間における所定距離だけ注目線Laから離間する位置に設定される。なお、実空間で鉛直方向に伸びる線分に該当する線とは、鳥瞰視画像においてはカメラ10の位置Psから放射状に広がる線となる。この放射状に広がる線は、鳥瞰視に変換した際に立体物が倒れ込む方向に沿う線である。
輝度差算出部36は、注目線La上に注目点Pa(第1鉛直仮想線上の点)を設定する。また輝度差算出部36は、参照線Lr上に参照点Pr(第2鉛直板想線上の点)を設定する。これら注目線La、注目点Pa、参照線Lr、参照点Prは、実空間上において図21(b)に示す関係となる。図21(b)から明らかなように、注目線La及び参照線Lrは、実空間上において鉛直方向に伸びた線であり、注目点Paと参照点Prとは、実空間上において略同じ高さに設定される点である。なお、注目点Paと参照点Prとは必ずしも厳密に同じ高さである必要はなく、注目点Paと参照点Prとが同じ高さとみなせる程度の誤差は許容される。
輝度差算出部36は、注目点Paと参照点Prとの輝度差を求める。仮に、注目点Paと参照点Prとの輝度差が大きいと、注目点Paと参照点Prとの間にエッジが存在すると考えられる。特に、第3実施形態では、検出領域A1,A2に存在する立体物を検出するために、鳥瞰視画像に対して実空間において鉛直方向に伸びる線分として鉛直仮想線を設定しているため、注目線Laと参照線Lrとの輝度差が高い場合には、注目線Laの設定箇所に立体物のエッジがある可能性が高い。このため、図19に示すエッジ線検出部37は、注目点Paと参照点Prとの輝度差に基づいてエッジ線を検出する。
この点をより詳細に説明する。図22は、輝度差算出部36の詳細動作を示す図であり、図22(a)は鳥瞰視された状態の鳥瞰視画像を示し、図22(b)は、図22(a)に示した鳥瞰視画像の一部B1を拡大した図である。なお図22についても検出領域A1のみを図示して説明するが、検出領域A2についても同様の手順で輝度差を算出する。
カメラ10が撮像した撮像画像内に隣接車両V2が映っていた場合に、図22(a)に示すように、鳥瞰視画像内の検出領域A1に隣接車両V2が現れる。図22(b)に図22(a)中の領域B1の拡大図を示すように、鳥瞰視画像上において、隣接車両V2のタイヤのゴム部分上に注目線Laが設定されていたとする。この状態において、輝度差算出部36は、先ず参照線Lrを設定する。参照線Lrは、注目線Laから実空間上において所定の距離だけ離れた位置に、鉛直方向に沿って設定される。具体的には、本実施形態に係る立体物検出装置1bにおいて、参照線Lrは、注目線Laから実空間上において10cmだけ離れた位置に設定される。これにより、参照線Lrは、鳥瞰視画像上において、例えば隣接車両V2のタイヤのゴムから10cm相当だけ離れた隣接車両V2のタイヤのホイール上に設定される。
次に、輝度差算出部36は、注目線La上に複数の注目点Pa1〜PaNを設定する。図22(b)においては、説明の便宜上、6つの注目点Pa1〜Pa6(以下、任意の点を示す場合には単に注目点Paiという)を設定している。なお、注目線La上に設定する注目点Paの数は任意でよい。以下の説明では、N個の注目点Paが注目線La上に設定されたものとして説明する。
次に、輝度差算出部36は、実空間上において各注目点Pa1〜PaNと同じ高さとなるように各参照点Pr1〜PrNを設定する。そして、輝度差算出部36は、同じ高さ同士の注目点Paと参照点Prとの輝度差を算出する。これにより、輝度差算出部36は、実空間における鉛直方向に伸びる鉛直仮想線に沿った複数の位置(1〜N)ごとに、2つの画素の輝度差を算出する。輝度差算出部36は、例えば第1注目点Pa1とは、第1参照点Pr1との間で輝度差を算出し、第2注目点Pa2とは、第2参照点Pr2との間で輝度差を算出することとなる。これにより、輝度差算出部36は、注目線La及び参照線Lrに沿って、連続的に輝度差を求める。すなわち、輝度差算出部36は、第3〜第N注目点Pa3〜PaNと第3〜第N参照点Pr3〜PrNとの輝度差を順次求めていくこととなる。
輝度差算出部36は、検出領域A1内において注目線Laをずらしながら、上記の参照線Lrの設定、注目点Pa及び参照点Prの設定、輝度差の算出といった処理を繰り返し実行する。すなわち、輝度差算出部36は、注目線La及び参照線Lrのそれぞれを、実空間上において接地線L1の延在方向に同一距離だけ位置を変えながら上記の処理を繰り返し実行する。輝度差算出部36は、例えば、前回処理において参照線Lrとなっていた線を注目線Laに設定し、この注目線Laに対して参照線Lrを設定して、順次輝度差を求めていくことになる。
このように、第3実施形態では、実空間上で略同じ高さとなる注目線La上の注目点Paと参照線Lr上の参照点Prとから輝度差を求めることで、鉛直方向に伸びるエッジが存在する場合における輝度差を明確に検出することができる。また、実空間において鉛直方向に伸びる鉛直仮想線同士の輝度比較を行うために、鳥瞰視画像に変換することによって立体物が路面からの高さに応じて引き伸ばされてしまっても、立体物の検出処理が影響されることはなく、立体物の検出精度を向上させることができる。
図19に戻り、エッジ線検出部37は、輝度差算出部36により算出された連続的な輝度差から、エッジ線を検出する。例えば、図22(b)に示す場合、第1注目点Pa1と第1参照点Pr1とは、同じタイヤ部分に位置するために、輝度差は、小さい。一方、第2〜第6注目点Pa2〜Pa6はタイヤのゴム部分に位置し、第2〜第6参照点Pr2〜Pr6はタイヤのホイール部分に位置する。したがって、第2〜第6注目点Pa2〜Pa6と第2〜第6参照点Pr2〜Pr6との輝度差は大きくなる。このため、エッジ線検出部37は、輝度差が大きい第2〜第6注目点Pa2〜Pa6と第2〜第6参照点Pr2〜Pr6との間にエッジ線が存在することを検出することができる。
具体的には、エッジ線検出部37は、エッジ線を検出するにあたり、先ず下記の数式1に従って、i番目の注目点Pai(座標(xi,yi))とi番目の参照点Pri(座標(xi’,yi’))との輝度差から、i番目の注目点Paiに属性付けを行う。
[数1]
I(xi,yi)>I(xi’,yi’)+tのとき
s(xi,yi)=1
I(xi,yi)<I(xi’,yi’)−tのとき
s(xi,yi)=−1
上記以外のとき
s(xi,yi)=0
上記数式1において、tは所定の閾値を示し、I(xi,yi)はi番目の注目点Paiの輝度値を示し、I(xi’,yi’)はi番目の参照点Priの輝度値を示す。上記数式1によれば、注目点Paiの輝度値が、参照点Priに閾値tを加えた輝度値よりも高い場合には、当該注目点Paiの属性s(xi,yi)は‘1’となる。一方、注目点Paiの輝度値が、参照点Priから輝度閾値tを減じた輝度値よりも低い場合には、当該注目点Paiの属性s(xi,yi)は‘−1’となる。注目点Paiの輝度値と参照点Priの輝度値とがそれ以外の関係である場合には、注目点Paiの属性s(xi,yi)は‘0’となる。
次にエッジ線検出部37は、下記数式2に基づいて、注目線Laに沿った属性sの連続性c(xi,yi)から、注目線Laがエッジ線であるか否かを判定する。
[数2]
s(xi,yi)=s(xi+1,yi+1)のとき(且つ0=0を除く)、
c(xi,yi)=1
上記以外のとき、
c(xi,yi)=0
注目点Paiの属性s(xi,yi)と隣接する注目点Pai+1の属性s(xi+1,yi+1)とが同じである場合には、連続性c(xi,yi)は‘1’となる。注目点Paiの属性s(xi,yi)と隣接する注目点Pai+1の属性s(xi+1,yi+1)とが同じではない場合には、連続性c(xi,yi)は‘0’となる。
次にエッジ線検出部37は、注目線La上の全ての注目点Paの連続性cについて総和を求める。エッジ線検出部37は、求めた連続性cの総和を注目点Paの数Nで割ることにより、連続性cを正規化する。そして、エッジ線検出部37は、正規化した値が閾値θを超えた場合に、注目線Laをエッジ線と判断する。なお、閾値θは、予め実験等によって設定された値である。
すなわち、エッジ線検出部37は、下記数式3に基づいて注目線Laがエッジ線であるか否かを判断する。そして、エッジ線検出部37は、検出領域A1上に描かれた注目線Laの全てについてエッジ線であるか否かを判断する。
[数3]
Σc(xi,yi)/N>θ
このように、第3実施形態では、注目線La上の注目点Paと参照線Lr上の参照点Prとの輝度差に基づいて注目点Paに属性付けを行い、注目線Laに沿った属性の連続性cに基づいて当該注目線Laがエッジ線であるかを判断するので、輝度の高い領域と輝度の低い領域との境界をエッジ線として検出し、人間の自然な感覚に沿ったエッジ検出を行うことができる。この効果について詳細に説明する。図23は、エッジ線検出部37の処理を説明する画像例を示す図である。この画像例は、輝度の高い領域と輝度の低い領域とが繰り返される縞模様を示す第1縞模様101と、輝度の低い領域と輝度の高い領域とが繰り返される縞模様を示す第2縞模様102とが隣接した画像である。また、この画像例は、第1縞模様101の輝度が高い領域と第2縞模様102の輝度の低い領域とが隣接すると共に、第1縞模様101の輝度が低い領域と第2縞模様102の輝度が高い領域とが隣接している。この第1縞模様101と第2縞模様102との境界に位置する部位103は、人間の感覚によってはエッジとは知覚されない傾向にある。
これに対し、輝度の低い領域と輝度が高い領域とが隣接しているために、輝度差のみでエッジを検出すると、当該部位103はエッジとして認識されてしまう。しかし、エッジ線検出部37は、部位103における輝度差に加えて、当該輝度差の属性に連続性がある場合にのみ部位103をエッジ線として判定するので、エッジ線検出部37は、人間の感覚としてエッジ線として認識しない部位103をエッジ線として認識してしまう誤判定を抑制でき、人間の感覚に沿ったエッジ検出を行うことができる。
図19に戻り、立体物検出部33aは、エッジ線検出部37により検出されたエッジ線の量に基づいて立体物を検出する。上述したように、本実施形態に係る立体物検出装置1bは、実空間上において鉛直方向に伸びるエッジ線を検出する。鉛直方向に伸びるエッジ線が多く検出されるということは、検出領域A1,A2に立体物が存在する可能性が高いということである。このため、立体物検出部33aは、エッジ線検出部37により検出されたエッジ線の量に基づいて立体物を検出する。具体的には、立体物検出部33aは、エッジ線検出部37により検出されたエッジ線の量が、所定の閾値β以上であるか否かを判断し、エッジ線の量が所定の閾値β以上である場合には、エッジ線検出部37により検出されたエッジ線は、立体物のエッジ線であるものと判断し、これにより、エッジ線に基づく立体物を隣接車両V2として検出する。
また、立体物検出部33aは、立体物を検出するに先立って、エッジ線検出部37により検出されたエッジ線が正しいものであるか否かを判定する。立体物検出部33aは、エッジ線上の鳥瞰視画像のエッジ線に沿った輝度変化が所定の閾値tb以上であるか否かを判定する。エッジ線上の鳥瞰視画像の輝度変化が閾値tb以上である場合には、当該エッジ線が誤判定により検出されたものと判断する。一方、エッジ線上の鳥瞰視画像の輝度変化が閾値tb未満である場合には、当該エッジ線が正しいものと判定する。なお、この閾値tbは、実験等により予め設定された値である。
図24は、エッジ線の輝度分布を示す図であり、図24(a)は検出領域A1に立体物としての隣接車両V2が存在した場合のエッジ線及び輝度分布を示し、図24(b)は検出領域A1に立体物が存在しない場合のエッジ線及び輝度分布を示す。
図24(a)に示すように、鳥瞰視画像において隣接車両V2のタイヤゴム部分に設定された注目線Laがエッジ線であると判断されていたとする。この場合、注目線La上の鳥瞰視画像の輝度変化はなだらかなものとなる。これは、カメラ10により撮像された画像が鳥瞰視画像に視点変換されたことにより、隣接車両V2のタイヤが鳥瞰視画像内で引き延ばされたことによる。一方、図24(b)に示すように、鳥瞰視画像において路面に描かれた「50」という白色文字部分に設定された注目線Laがエッジ線であると誤判定されていたとする。この場合、注目線La上の鳥瞰視画像の輝度変化は起伏の大きいものとなる。これは、エッジ線上に、白色文字における輝度が高い部分と、路面等の輝度が低い部分とが混在しているからである。
以上のような注目線La上の輝度分布の相違に基づいて、立体物検出部33aは、エッジ線が誤判定により検出されたものか否かを判定する。立体物検出部33aは、エッジ線に沿った輝度変化が所定の閾値tb以上である場合には、当該エッジ線が誤判定により検出されたものであり、当該エッジ線は、立体物に起因するものではないと判断する。これにより、路面上の「50」といった白色文字や路肩の雑草等がエッジ線として判定されてしまい、立体物の検出精度が低下することを抑制する。一方、立体物検出部33aは、エッジ線に沿った輝度変化が所定の閾値tb未満である場合には、当該エッジ線は、立体物のエッジ線であると判断し、立体物が存在するものと判断する。
具体的には、立体物検出部33aは、下記数式4,5の何れかにより、エッジ線の輝度変化を算出する。このエッジ線の輝度変化は、実空間上における鉛直方向の評価値に相当する。下記数式4は、注目線La上のi番目の輝度値I(xi,yi)と、隣接するi+1番目の輝度値I(xi+1,yi+1)との差分の二乗の合計値によって輝度分布を評価する。また、下記数式5は、注目線La上のi番目の輝度値I(xi,yi)と、隣接するi+1番目の輝度値I(xi+1,yi+1)との差分の絶対値の合計値よって輝度分布を評価する。
[数4]
鉛直相当方向の評価値=Σ[{I(xi,yi)−I(xi+1,yi+1)}
[数5]
鉛直相当方向の評価値=Σ|I(xi,yi)−I(xi+1,yi+1)|
なお、数式5に限らず、下記数式6のように、閾値t2を用いて隣接する輝度値の属性bを二値化して、当該二値化した属性bを全ての注目点Paについて総和してもよい。
[数6]
鉛直相当方向の評価値=Σb(xi,yi)
但し、|I(xi,yi)−I(xi+1,yi+1)|>t2のとき、
b(xi,yi)=1
上記以外のとき、
b(xi,yi)=0
注目点Paiの輝度値と参照点Priの輝度値との輝度差の絶対値が閾値t2よりも大きい場合、当該注目点Pa(xi,yi)の属性b(xi,yi)は‘1’となる。それ以外の関係である場合には、注目点Paiの属性b(xi,yi)は‘0’となる。この閾値t2は、注目線Laが同じ立体物上にないことを判定するために実験等によって予め設定されている。そして、立体物検出部33aは、注目線La上の全注目点Paについての属性bを総和して、鉛直相当方向の評価値を求めることで、エッジ線が立体物に起因するものであり、立体物が存在するか否かを判定する。
検出物制御部35bは、第1実施形態と同様に、図11に示すように、検出領域A1,A2のうち所定値以上の輝度値を有する領域を特定輝度領域として検出し、自車両からの後方距離が大きいほど、検出した特定輝度領域を含むマスク領域を広く設定する。そして、検出制御部35bは、検出領域A1,A2からマスク領域を除いた検出対象領域においてエッジ線を検出するように、輝度差算出部36を制御する。
次に、第3実施形態に係る隣接車両検出方法について説明する。図25は、本実施形態に係る隣接車両検出方法の詳細を示すフローチャートである。なお、図25においては、便宜上、検出領域A1を対象とする処理について説明するが、検出領域A2についても同様の処理が実行される。
まず、ステップS301では、カメラ10により、画角a及び取付位置によって特定された所定領域の撮像が行われ、計算機30bにより、カメラ10により撮像された撮像画像の画像データが取得される。次に視点変換部31は、ステップS302において、取得した画像データについて視点変換を行い、鳥瞰視画像データを生成する。
ステップS303,S304では、第1実施形態のステップS103,104と同様に、検出領域A1のうち輝度値が所定閾値sb以上の領域が特定輝度領域として検出され、検出された特定輝度領域を含むマスク領域の設定が行われる。なお、第3実施形態においても、検出制御部34bは、自車両V1(カメラ10)から特定輝度領域までの後方距離が大きいほど、マスク領域を広い範囲に設定する。
次に、輝度差算出部36は、ステップS305において、検出領域A1上に注目線Laおよび参照線Lrを設定する。このとき、輝度差算出部36は、実空間上において鉛直方向に伸びる線に相当する線を注目線Laとして設定するとともに、実空間上において鉛直方向に伸びる線分に該当し、且つ、注目線Laと実空間上において所定距離離れた線を参照線Lrとして設定する。
次に、輝度差算出部36は、ステップS306において、注目線La上に複数の注目点Paを設定するとともに、実空間上において注目点Paと参照点Prとが略同じ高さとなるように、参照点Prを設定する。これにより、注目点Paと参照点Prとが略水平方向に並ぶこととなり、実空間上において鉛直方向に伸びるエッジ線を検出しやすくなる。なお、輝度差算出部36は、エッジ線検出部37によるエッジ検出時に問題とならない程度の数の注目点Paを設定する。
次に、輝度差算出部36は、ステップS307において、実空間上において同じ高さとなる注目点Paと参照点Prとの輝度差を算出する。なお、第3実施形態において、輝度差算出部36は、検出領域A1からステップS304で設定したマスク領域を除いた検出対象領域において輝度差の算出を行う。そして、エッジ線検出部37は、上記の数式1に従って、各注目点Paの属性sを算出する。次に、エッジ線検出部37は、ステップS308において、上記の数式2に従って、各注目点Paの属性sの連続性cを算出する。そして、エッジ線検出部37は、ステップS309において、上記数式3に従って、連続性cの総和を正規化した値が閾値θより大きいか否かを判定する。正規化した値が閾値θよりも大きいと判断した場合(ステップS309=Yes)、エッジ線検出部37は、ステップS310において、当該注目線Laをエッジ線として検出する。そして、処理はステップS311に移行する。正規化した値が閾値θより大きくないと判断した場合(ステップS309=No)、エッジ線検出部37は、当該注目線Laをエッジ線として検出せず、処理はステップS311に移行する。
ステップS311において、計算機30bは、検出領域A1上に設定可能な注目線Laの全てについて上記のステップS305〜ステップS311の処理を実行したか否かを判断する。全ての注目線Laについて上記処理をしていないと判断した場合(ステップS311=No)、ステップS305に処理を戻して、新たに注目線Laを設定して、ステップS311までの処理を繰り返す。一方、全ての注目線Laについて上記処理をしたと判断した場合(ステップS311=Yes)、処理はステップS312に移行する。
ステップS312において、立体物検出部33aは、ステップS310において検出された各エッジ線について、当該エッジ線に沿った輝度変化を算出する。立体物検出部33aは、上記数式4,5,6の何れかの式に従って、エッジ線の輝度変化を算出する。次に立体物検出部33aは、ステップS313において、エッジ線のうち、輝度変化が所定の閾値tb以上であるエッジ線を除外する。すなわち、輝度変化の大きいエッジ線は正しいエッジ線ではないと判定し、エッジ線を立体物の検出には使用しない。これは、上述したように、検出領域A1に含まれる路面上の文字や路肩の雑草等がエッジ線として検出されてしまうことを抑制するためである。したがって、所定の閾値tbとは、予め実験等によって求められた、路面上の文字や路肩の雑草等によって発生する輝度変化に基づいて設定された値となる。一方、立体物検出部33aは、エッジ線のうち、輝度変化が所定の閾値tb未満であるエッジ線を、立体物のエッジ線と判断し、これにより、隣接車両に存在する立体物を検出する。
そして、ステップS314では、立体物検出部33aにより、エッジ線の量が所定の閾値β以上であるか否かの判断が行われる。エッジ線の量が閾値β以上であると判定された場合(ステップS314=Yes)は、立体物検出部33aは、ステップS315において、検出領域A1内に隣接車両が存在すると判定する。一方、エッジ線の量が閾値β以上ではないと判定された場合(ステップS314=No)、立体物検出部33aは、ステップS316において、検出領域A1内に隣接車両が存在しないと判定する。その後、図25に示す処理を終了する。
以上のように、第3実施形態では、撮像画像を鳥瞰視画像に変換し、変換した鳥瞰視画像から立体物のエッジ情報を検出することで、隣接車線に存在する隣接車両を検出する。そして、鳥瞰視画像から立体物のエッジ情報を検出する際に、検出領域A1,A2のうち輝度が所定値以上である領域を特定輝度領域として検出し、カメラ10からの後方距離が大きいほど、特定輝度領域を含むマスク領域を広い範囲に設定し、検出領域A1,A2からマスク領域を除いた検出対象領域において、エッジ情報を抽出する。これにより、第3実施形態では、エッジ情報に基づいて立体物を検出する際においても、撮像画像から鳥瞰視画像に変換することでスミアやフレアに対応する領域が引き伸ばされ、スミアやフレアに対応する領域のうち、スミアやフレアに対応する領域の中心位置から遠い位置の輝度が低い場合でも、このような輝度の低いスミアやフレアによる光の影響を排除することができるため、スミアやフレアによる光の像を隣接車両として誤検出してしまうことを有効に防止することができる。
なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
たとえば、上述した実施形態では、所定の輝度閾値sb以上の輝度を有する領域を、スミアやフレアに対応する特定輝度領域として検出する構成を例示したが、この構成に限定されるものではなく、たとえば一般的なCCD(Charge-Coupled Device)カメラの場合、光源から画像下方向にだけスミアが発生するため、画像下側から画像上方に向かって所定値以上の輝度値を有し、かつ、縦方向に連続した領域を検索し、これをスミアに対応する特定輝度領域として検出する構成としてもよい。
また、上述した第1実施形態および第2実施形態では、マスク領域を除いた検出対象領域において差分画像PDのデータを生成することで、マスク領域を除いた検出対象領域において立体物の検出を行う構成を例示したが、この構成に限定されず、たとえば、検出領域A1,A2全域で差分画像PDのデータを生成し、この差分画像PDのデータのうち検出対象領域に対応する部分から差分波形DWを生成することで、マスク領域を除いた検出対象領域において立体物の検出を行う構成としてもよい。あるいは、検出領域A1,A2全域で差分波形DWを生成し、この差分波形DWのうち検出対象領域に対応する部分において閾値α以上であるか否かを判定することで、マスク領域を除いた検出対象領域において立体物の検出を行う構成としてもよい。また、上述した第3実施形態では、輝度差算出部36により、マスク領域を除いた検出対象領域において輝度差を算出することで、マスク領域を除いた検出対象領域において立体物の検出を行う構成を例示したが、この構成に限定されず、たとえば、マスク領域を除いた検出対象領域において、エッジ線検出部37によりエッジ線の検出を行うことで、マスク領域を除いた検出対象領域において立体物の検出を行う構成としてもよい。
さらに、上述した実施形態に代えて、検出制御部34による検出制御を以下の構成でおこなってもよい。たとえば、第1実施形態において、自車両V1(カメラ10)までの後方距離が大きいほど、差分画像DPの差分データを検出し難いように、差分データを検出するための閾値thを変更する構成としてもよい。ここで、図26(A)は、図11に示す前方のマスク領域Rmにおける閾値thの一例を示すグラフであり、図26(B)は、図11に示す後方のマスク領域Rmにおける閾値thの一例を示すグラフである。
たとえば、図26(A)に示すように、前方のマスク領域Rmについては、鳥瞰視画像の全体的な輝度値がbrである場合に閾値thをthに設定するような閾値パターンを適用し、これに対して、図26(B)に示すように、後方のマスク領域Rmについては、鳥瞰視画像の全体的な輝度値がbrである場合に閾値thをthよりも高いthに設定する閾値パターンを適用する。このように、後方のマスク領域Rmにおいては、前方のマスク領域Rmと比較して、鳥瞰視画像の輝度が比較的低い領域でも隣接車両を検出し難いように、差分画像DPの差分データを検出するための閾値thを高く設定することで、後方のマスク領域Rmにおいては、前方のマスク領域Rmと比較して、比較的輝度の低い領域を車両検出の対象から除外することができるため、撮像画像を鳥瞰視画像に変換した際にスミアやフレアに対応する領域が引き伸ばされ、スミアやフレアの中心位置から遠い位置の輝度が低くなる場合でも、このような輝度の低いスミアやフレアによる光の影響を排除でき、輝度の低いスミアやフレアによる光の像を隣接車両として誤検出してしまうことを有効に防止することができる。なお、図26(A),(B)に示すように、閾値thは、自車両V1(カメラ10)から特定輝度領域までの後方距離に加えて、検出領域A1,A2内の輝度値が高い領域ほど高い値に設定することができる。
また、自車両V1(カメラ10)までの後方距離が大きいほど、差分画像DPの差分データを検出し難いように、差分データを検出するための閾値thを変更する構成のほか、自車両V1(カメラ10)までの後方距離が大きいほど、隣接車両を検出し難いように、隣接車両を判定するための閾値αを変更する構成としてもよい。同様に、第3実施形態において、自車両V1(カメラ10)までの後方距離が大きいほど、エッジ線を検出し難いように、エッジ線を検出するための閾値t、閾値θを変更する構成とし、また、自車両V1(カメラ10)までの後方距離が大きいほど、エッジ線を検出し難いように、輝度変化に応じてエッジ線を除外するための閾値tb以上のエッジ線を変更する構成としてもよい。加えて、第3実施形態において、自車両V1(カメラ10)までの後方距離が大きいほど、隣接車両を検出し難いように、隣接車両を判定するための閾値βを変更する構成としてもよい。
さらに、上述した第1実施形態および第2実施形態では、自車両V1の車速を速度センサ20からの信号に基づいて判断しているが、これに限らず、異なる時刻の複数の画像から速度を推定する構成としてもよい。この場合、車速センサ20が不要となり、構成の簡素化を図ることができる。
なお、上述した実施形態のカメラ10は本発明の撮像手段に相当し、視点変換部31は本発明の画像変換手段に相当し、位置合わせ部32、立体物検出部33、検出制御手段34、輝度差算出部36、およびエッジ線検出部37は本発明の立体物検出手段に相当し、検出制御部34は本発明の輝度検出手段、昼夜判定手段、および太陽位置取得手段に相当し、記憶部35は本発明の記憶手段に相当する。
1,1a,1b…立体物検出装置
10…カメラ
20…車速センサ
30,30a,30b…計算機
31…視点変換部
32…位置合わせ部
33,33a…立体物検出部
34,34a,34b,…検出制御部
35…記憶部
36…輝度差算出部
37…エッジ線検出部
a…画角
A1,A2…検出領域
CP…交点
DP…差分画素
DW,DW’…差分波形
DWt1〜DW,DWm+k〜DWtn…小領域
L1,L2…接地線
La,Lb…立体物が倒れ込む方向上の線
PB…鳥瞰視画像
PD…差分画像
V1…自車両
V2…隣接車両

Claims (7)

  1. 車両後方を撮像する撮像手段と、
    前記撮像手段により得られた撮像画像を鳥瞰視画像に視点変換する画像変換手段と、
    前記画像変換手段により得られた異なる時刻の鳥瞰視画像の位置を鳥瞰視上で位置合わせし、当該位置合わせされた鳥瞰視画像の差分画像上において、所定の差分を示す画素数をカウントして度数分布化することで差分波形情報を生成し、当該差分波形情報に基づいて、車両後方に設定された検出領域において立体物を検出する立体物検出手段と、
    前記検出領域内の画素の輝度を検出する輝度検出手段と、を備え、
    前記立体物検出手段は、前記検出領域のうち輝度が所定閾値以上である領域を高輝度領域として検出し、前記検出領域のうち、少なくとも前記高輝度領域を覆う所定範囲の領域を、前記立体物を検出し難い検出制御領域として設定するとともに、前記撮像手段からの後方距離が大きいほど前記検出制御領域を広く設定し、前記検出制御領域を設定した前記検出領域において前記差分波形情報を生成することを特徴とする立体物検出装置。
  2. 車両後方を撮像する撮像手段と、
    前記撮像手段により得られた撮像画像を鳥瞰視画像に視点変換する画像変換手段と、
    前記画像変換手段により得られた鳥瞰視画像からエッジ情報を検出し、当該エッジ情報に基づいて、所定の検出領域に存在する立体物を検出する立体物検出手段と、
    前記検出領域内の画素の輝度を検出する輝度検出手段と、を備え、
    前記立体物検出手段は、前記検出領域のうち輝度が所定閾値以上である領域を高輝度領域として検出し、前記検出領域のうち、少なくとも前記高輝度領域を覆う所定範囲の領域を、前記立体物を検出し難い検出制御領域として設定するとともに、前記撮像手段からの後方距離が大きいほど前記検出制御領域を広く設定し、前記検出制御領域を設定した前記検出領域において前記エッジ情報を検出することを特徴とする立体物検出装置。
  3. 請求項1または2に記載の立体物検出装置であって、
    前記立体物検出手段は、前記検出領域のうち前記検出制御領域を除いた検出対象領域のみにおいて、前記立体物を検出することを特徴とする立体物検出装置。
  4. 請求項1〜3のいずれかに記載の立体物検出装置であって、
    前記立体物検出手段は、前記撮像手段からの後方距離が大きいほど、前記高輝度領域を検出するための前記所定閾値を低く設定することを特徴とする立体物検出装置。
  5. 請求項1〜4のいずれかに記載の立体物検出装置であって、
    昼間であるか夜間であるかを判定する昼夜判定手段をさらに備え、
    前記立体物検出手段は、夜間においては、昼間と比較して、前記高輝度領域を検出するための前記所定閾値を高く設定することを特徴とする立体物検出装置。
  6. 請求項1〜5のいずれかに記載の立体物検出装置であって、
    太陽の位置情報を取得する太陽位置取得手段をさらに備え、
    前記立体物検出手段は、前記太陽の位置情報に基づいて、太陽の位置が西方に存在すると判断した場合には、前記高輝度領域を検出するための前記所定閾値を低く設定することを特徴とする立体物検出装置。
  7. 請求項1〜6のいずれかに記載の立体物検出装置であって、
    前記検出領域内における前記高輝度領域の位置を記憶する記憶手段をさらに備え、
    前記立体物検出手段は、今回処理時に、前回処理時に検出された前記高輝度領域の位置において前記高輝度領域を検出できない場合には、前回処理時に検出された前記高輝度領域の位置に基づいて、前記検出制御領域を設定することを特徴とする立体物検出装置。
JP2014502228A 2012-03-02 2013-02-26 立体物検出装置 Active JP5668891B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014502228A JP5668891B2 (ja) 2012-03-02 2013-02-26 立体物検出装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012046648 2012-03-02
JP2012046648 2012-03-02
PCT/JP2013/054861 WO2013129359A1 (ja) 2012-03-02 2013-02-26 立体物検出装置
JP2014502228A JP5668891B2 (ja) 2012-03-02 2013-02-26 立体物検出装置

Publications (2)

Publication Number Publication Date
JP5668891B2 JP5668891B2 (ja) 2015-02-12
JPWO2013129359A1 true JPWO2013129359A1 (ja) 2015-07-30

Family

ID=49082556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014502228A Active JP5668891B2 (ja) 2012-03-02 2013-02-26 立体物検出装置

Country Status (2)

Country Link
JP (1) JP5668891B2 (ja)
WO (1) WO2013129359A1 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4930046B2 (ja) * 2006-12-26 2012-05-09 日産自動車株式会社 路面判別方法および路面判別装置
JP5108605B2 (ja) * 2008-04-23 2012-12-26 三洋電機株式会社 運転支援システム及び車両
JP5251927B2 (ja) * 2010-06-21 2013-07-31 日産自動車株式会社 移動距離検出装置及び移動距離検出方法

Also Published As

Publication number Publication date
JP5668891B2 (ja) 2015-02-12
WO2013129359A1 (ja) 2013-09-06

Similar Documents

Publication Publication Date Title
JP5787024B2 (ja) 立体物検出装置
JP5981550B2 (ja) 立体物検出装置および立体物検出方法
JP5804180B2 (ja) 立体物検出装置
JP5776795B2 (ja) 立体物検出装置
JP5874831B2 (ja) 立体物検出装置
JP5682735B2 (ja) 立体物検出装置
JP5743020B2 (ja) 立体物検出装置
JP5943077B2 (ja) 立体物検出装置および立体物検出方法
JP5733467B2 (ja) 立体物検出装置
JPWO2014017624A1 (ja) 立体物検出装置および立体物検出方法
JP5783319B2 (ja) 立体物検出装置及び立体物検出方法
JP5835459B2 (ja) 立体物検出装置
JP5871069B2 (ja) 立体物検出装置及び立体物検出方法
JP5790867B2 (ja) 立体物検出装置
JP5668891B2 (ja) 立体物検出装置
JP5999183B2 (ja) 立体物検出装置および立体物検出方法
JP6011110B2 (ja) 立体物検出装置および立体物検出方法
JP6020568B2 (ja) 立体物検出装置および立体物検出方法
JP5768927B2 (ja) 立体物検出装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141201

R151 Written notification of patent or utility model registration

Ref document number: 5668891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151