JPWO2013105421A1 - Reverse osmosis processing method - Google Patents

Reverse osmosis processing method Download PDF

Info

Publication number
JPWO2013105421A1
JPWO2013105421A1 JP2013553236A JP2013553236A JPWO2013105421A1 JP WO2013105421 A1 JPWO2013105421 A1 JP WO2013105421A1 JP 2013553236 A JP2013553236 A JP 2013553236A JP 2013553236 A JP2013553236 A JP 2013553236A JP WO2013105421 A1 JPWO2013105421 A1 JP WO2013105421A1
Authority
JP
Japan
Prior art keywords
reverse osmosis
water
treatment method
iron
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013553236A
Other languages
Japanese (ja)
Other versions
JP6135511B2 (en
Inventor
育野 望
望 育野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2013553236A priority Critical patent/JP6135511B2/en
Publication of JPWO2013105421A1 publication Critical patent/JPWO2013105421A1/en
Application granted granted Critical
Publication of JP6135511B2 publication Critical patent/JP6135511B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/14Maintenance of water treatment installations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/22Eliminating or preventing deposits, scale removal, scale prevention
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/12Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing nitrogen

Abstract

鉄系無機凝集剤中の重金属によるRO膜の劣化を防止することができる逆浸透処理方法を提供する。被処理水に鉄系無機凝集剤を添加し、浮上分離及び二層濾過などによって固液分離した後、逆浸透装置で処理する逆浸透処理方法において、該逆浸透装置への給水にキレート系スケール抑制剤とスケール分散剤とを添加する。キレート系スケール抑制剤は、エチレンジアミン四酢酸又はニトリロ三酢酸が好適である。Provided is a reverse osmosis treatment method capable of preventing deterioration of an RO membrane due to heavy metals in an iron-based inorganic flocculant. In a reverse osmosis treatment method in which an iron-based inorganic flocculant is added to the water to be treated and solid-liquid separation is performed by flotation separation, two-layer filtration, etc., and then treated with a reverse osmosis device, Add inhibitor and scale dispersant. The chelate scale inhibitor is preferably ethylenediaminetetraacetic acid or nitrilotriacetic acid.

Description

本発明は、逆浸透処理方法に係り、特に被処理水に鉄系無機凝集剤を添加し、固液分離した後、逆浸透処理する方法に関する。   The present invention relates to a reverse osmosis treatment method, and more particularly to a method of reverse osmosis treatment after adding an iron-based inorganic flocculant to water to be treated and solid-liquid separation.

被処理水に塩化第二鉄を添加した後、加圧浮上分離し、砂濾過した後、逆浸透膜装置(以下、RO装置ということがある。)で膜分離処理する方法は特許文献1,2等に記載の通り周知である。RO処理に際し、RO給水にスケール分散剤を添加することも行われている(特許文献3,4)。   Patent Document 1 discloses a method of performing membrane separation treatment with a reverse osmosis membrane device (hereinafter sometimes referred to as RO device) after adding ferric chloride to water to be treated, separating by pressure floating and sand filtering. It is well-known as described in 2 etc. In the RO treatment, a scale dispersant is also added to the RO water supply (Patent Documents 3 and 4).

特許文献5の0003段落には、塩化鉄よりなる凝集剤にはMn(マンガン)が含まれており、38%濃度の塩化第二鉄溶液にはマンガンが400〜1000mg/L存在することが記載されている。   Patent Document 5, paragraph 0003 describes that the flocculant made of iron chloride contains Mn (manganese), and that 38% concentration of ferric chloride solution contains 400 to 1000 mg / L of manganese. Has been.

特開2009−240974JP2009-240974 特開2008−246386JP2008-246386 特開平5−269463JP-A-5-269463 特開平10−202066JP 10-202066 A 特開2006−342007JP 2006-342007 A

被処理水に鉄系無機凝集剤を添加し、固液分離した後、RO処理する方法において、鉄系無機凝集剤中のMn等の重金属がRO膜表面に付着し、これが酸化触媒として作用し、RO膜を劣化させることがある。   In a method of adding an iron-based inorganic flocculant to the water to be treated and separating it into solid and liquid, followed by RO treatment, heavy metals such as Mn in the iron-based inorganic flocculant adhere to the RO membrane surface, and this acts as an oxidation catalyst. , RO membrane may be deteriorated.

本発明は、鉄系無機凝集剤中の重金属によるRO膜の劣化を防止することができる逆浸透処理方法を提供することを目的とする。   An object of this invention is to provide the reverse osmosis processing method which can prevent degradation of RO membrane by the heavy metal in an iron-type inorganic flocculant.

本発明の逆浸透処理方法は、被処理水に鉄系無機凝集剤を添加し、固液分離した後、逆浸透装置で処理する逆浸透処理方法において、該逆浸透装置への給水にキレート系スケール抑制剤とスケール分散剤とを添加することを特徴とするものである。   The reverse osmosis treatment method of the present invention is a reverse osmosis treatment method in which an iron-based inorganic flocculant is added to water to be treated, solid-liquid separated, and then treated with a reverse osmosis device. A scale inhibitor and a scale dispersant are added.

本発明は、鉄系無機凝集剤中のMn、Zn及びNiの合計の含有率が0.05重量%以上である場合に適用するのに好適である。   The present invention is suitable for application when the total content of Mn, Zn and Ni in the iron-based inorganic flocculant is 0.05% by weight or more.

本発明では、被処理水に鉄系無機凝集剤を添加し、固液分離した分離水をRO給水とする。このRO給水に対しスケール分散剤の他にさらにキレート系スケール抑制剤を添加する。これにより、重金属の酸化触媒作用によるRO膜の劣化が防止される。   In the present invention, an iron-based inorganic flocculant is added to the water to be treated, and the separated water that has been subjected to solid-liquid separation is used as RO water supply. In addition to the scale dispersant, a chelate scale inhibitor is added to the RO water supply. Thereby, the deterioration of the RO membrane due to the heavy metal oxidation catalyst action is prevented.

実施の形態に係る逆浸透処理方法の説明図である。It is explanatory drawing of the reverse osmosis processing method which concerns on embodiment. 実施例1と比較例1の結果を示すグラフである。6 is a graph showing the results of Example 1 and Comparative Example 1.

以下、本発明についてさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

[被処理水]
被処理水としては、工業用水、河川水、湖沼水、井水などの他、有機性排水の生物処理水、各種製造工程や洗浄工程からの排水などが例示される。
[Treatment water]
Examples of water to be treated include industrial water, river water, lake water, well water, biologically treated water of organic waste water, waste water from various manufacturing processes and cleaning processes, and the like.

[鉄系無機凝集剤]
鉄系無機凝集剤としては、塩化第二鉄、ポリ硫酸鉄などが挙げられるが、特に重金属含有率が高い塩化第二鉄が挙げられる。この鉄系無機凝集剤中のMn、Ni及びZnの合計の含有率が0.05重量%以上5重量%以下、例えば0.1重量%以上2重量%以下である場合に本発明を適用すると効果的である。被処理水への鉄系無機凝集剤の添加量は、ジャーテストなどによって実験的に定めるのが好ましい。被処理水への鉄系無機凝集剤の添加量は、被処理水の水質等によっても異なるが、通常10〜400mg/L程度である。
[Iron-based inorganic flocculant]
Examples of the iron-based inorganic flocculant include ferric chloride and polyiron sulfate, and particularly ferric chloride having a high heavy metal content. When the present invention is applied when the total content of Mn, Ni and Zn in the iron-based inorganic flocculant is 0.05 wt% or more and 5 wt% or less, for example 0.1 wt% or more and 2 wt% or less It is effective. The amount of iron-based inorganic flocculant added to the water to be treated is preferably determined experimentally by jar test or the like. The amount of the iron-based inorganic flocculant added to the water to be treated is usually about 10 to 400 mg / L, although it varies depending on the quality of the water to be treated.

被処理水に鉄系無機凝集剤を添加した場合、必要に応じpH調整剤を添加してpHを4〜8特に5〜8程度に調整して凝集処理することが好ましい。pH調整剤としては、塩酸、硫酸などの酸や、水酸化ナトリウム等のアルカリが用いられるが、これらに限定されない。鉄系無機凝集剤を添加した後アニオン性ポリマー凝集剤などのポリマー凝集剤を添加してもよい。   When an iron-based inorganic flocculant is added to the water to be treated, it is preferable to add a pH adjuster as necessary to adjust the pH to about 4 to 8, particularly about 5 to 8 for the flocculant treatment. Examples of the pH adjuster include acids such as hydrochloric acid and sulfuric acid, and alkalis such as sodium hydroxide, but are not limited thereto. After adding the iron-based inorganic flocculant, a polymer flocculant such as an anionic polymer flocculant may be added.

[固液分離]
凝集処理後の固液分離としては、浮上分離又は沈降分離と、濾材層に通水する濾過とを併用することが望ましい。濾材としては、砂、アンスラサイトなどを用いることができる。
[Solid-liquid separation]
As solid-liquid separation after the flocculation treatment, it is desirable to use both floating separation or sedimentation separation and filtration for passing water through the filter medium layer. Sand, anthracite, or the like can be used as the filter medium.

[キレート系スケール抑制剤]
キレート系スケール抑制剤としては、エチレンジアミン四酢酸(EDTA)やニトリロ三酢酸(NTA)などが好適に用いられる。これらのキレート系スケール抑制剤は1種を単独で用いても良く、2種以上を併用しても良い。
[Chelate scale inhibitor]
As the chelate scale inhibitor, ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), or the like is preferably used. These chelate-based scale inhibitors may be used alone or in combination of two or more.

EDTA、NTA等のキレート系スケール抑制剤の添加量は、RO給水中のMn、Zn及びNiの重金属合計当量の20倍量以上特に30〜40倍量が好ましい。このキレート系スケール抑制剤の添加により、キレート系スケール抑制剤がRO給水中の重金属とキレート系化合物を形成し、重金属を可溶化するので重金属がRO装置からの濃縮水と共に流出し、重金属がRO膜面に付着することが防止され、重金属の触媒作用に起因したRO膜の劣化が防止される。   The addition amount of chelate-based scale inhibitors such as EDTA and NTA is preferably 20 times or more, particularly 30 to 40 times the total equivalent amount of heavy metals of Mn, Zn and Ni in the RO water supply. By adding this chelate scale inhibitor, the chelate scale inhibitor forms a chelate compound with the heavy metal in the RO water supply, solubilizes the heavy metal, so that the heavy metal flows out together with the concentrated water from the RO device, and the heavy metal is RO Adhering to the membrane surface is prevented, and deterioration of the RO membrane due to the catalytic action of heavy metals is prevented.

[スケール分散剤]
スケール分散剤としては、(メタ)アクリル酸重合体及びその塩、マレイン酸重合体及びその塩などの低分子量ポリマー、エチレンジアミンテトラメチレンホスホン酸及びその塩、ヒドロキシエチリデンジホスホン酸及びその塩、ニトリロトリメチレンホスホン酸及びその塩、ホスホノブタントリカルボン酸及びその塩などのホスホン酸及びホスホン酸塩、ヘキサメタリン酸及びその塩、トリポリリン酸及びその塩などの無機重合リン酸及び無機重合リン酸塩などを使用することができる。これらのスケール分散剤は1種を単独で用いても良く、2種以上を併用しても良い。
スケール分散剤の添加量は、RO装置の給水である固液分離水に対して1〜100mg/L程度とすることが好ましい。
[Scale dispersant]
Scale dispersants include (meth) acrylic acid polymers and salts thereof, low molecular weight polymers such as maleic acid polymers and salts thereof, ethylenediaminetetramethylenephosphonic acid and salts thereof, hydroxyethylidene diphosphonic acid and salts thereof, nitrilotrimethylene Use phosphonic acid and phosphonate such as phosphonic acid and its salt, phosphonobutanetricarboxylic acid and its salt, hexametaphosphoric acid and its salt, inorganic polyphosphoric acid such as tripolyphosphoric acid and its salt, inorganic polymeric phosphate, etc. be able to. These scale dispersants may be used alone or in combination of two or more.
The addition amount of the scale dispersant is preferably about 1 to 100 mg / L with respect to the solid-liquid separated water which is the water supply of the RO device.

[実施例1]
HF排水処理水の模擬排水(Ca:100mg/L、F:13mg/L、pH3)を調製し、図1の通り反応槽1に導入し、水酸化ナトリウムを添加してpH=6〜7に調整すると共に、塩化第二鉄を反応槽1内の濃度が150mg/Lとなるように添加した。この塩化第二鉄中のMn含有率は1重量%、Ni含有率は0.05重量%、Zn含有率は0.05重量%であった。反応槽1からの流出水を、凝集槽2に導入して、反応させた後、加圧浮上槽3で加圧浮上処理し、処理水を二層濾過器4(濾材:砂、アンスラサイト)にて濾過した。濾過器4の濾過水にキレート系スケール抑制剤としてウェルクリンA801(栗田工業製)を10mg/L添加し、スケール分散剤としてクリフロートN900(栗田工業製)を10mg/L添加し、次いでRO装置5にてRO膜処理した。RO膜は日東電工製ES−20であり、回収率は85%とした。RO装置5の脱塩率と差圧の経時変化を図2に示す。
[Example 1]
Simulated waste water (Ca: 100 mg / L, F: 13 mg / L, pH 3) is prepared and introduced into the reaction tank 1 as shown in FIG. 1, and sodium hydroxide is added to adjust the pH to 6-7. While adjusting, ferric chloride was added so that the density | concentration in the reaction tank 1 might be set to 150 mg / L. In this ferric chloride, the Mn content was 1% by weight, the Ni content was 0.05% by weight, and the Zn content was 0.05% by weight. The effluent water from the reaction tank 1 is introduced into the coagulation tank 2 and reacted, and then subjected to pressure levitation treatment in the pressure levitation tank 3, and the treated water is treated with the two-layer filter 4 (filter medium: sand, anthracite). And filtered. 10 mg / L of Wellclin A801 (manufactured by Kurita Kogyo) as a chelate scale inhibitor is added to the filtered water of the filter 4, and 10 mg / L of Clifloat N900 (manufactured by Kurita Kogyo) is added as a scale dispersant, and then the RO device. RO membrane treatment was performed at 5. The RO membrane was Nitto Denko ES-20, and the recovery rate was 85%. FIG. 2 shows changes over time in the desalting rate and the differential pressure of the RO device 5.

[比較例1]
キレート系スケール抑制剤を添加しなかったこと以外は実施例1と同一条件にて処理を行った。RO装置5の脱塩率と差圧の経時変化を図2に示す。
[Comparative Example 1]
The treatment was performed under the same conditions as in Example 1 except that the chelate scale inhibitor was not added. FIG. 2 shows changes over time in the desalting rate and the differential pressure of the RO device 5.

図2の通り、本発明によると、RO膜の劣化が防止され、長期にわたって脱塩率が高く維持される。   As shown in FIG. 2, according to the present invention, the deterioration of the RO membrane is prevented, and the desalination rate is maintained high over a long period of time.

本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
なお、本出願は、2012年1月11日付で出願された日本特許出願(特願2012−003287)に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
In addition, this application is based on the Japanese patent application (Japanese Patent Application No. 2012-003287) for which it applied on January 11, 2012, The whole is used by reference.

Claims (8)

被処理水に鉄系無機凝集剤を添加し、固液分離した後、逆浸透装置で処理する逆浸透処理方法において、
該逆浸透装置への給水にキレート系スケール抑制剤とスケール分散剤とを添加することを特徴とする逆浸透処理方法。
In the reverse osmosis treatment method in which the iron-based inorganic flocculant is added to the water to be treated and separated into solid and liquid, and then treated with a reverse osmosis apparatus,
A reverse osmosis treatment method comprising adding a chelate-based scale inhibitor and a scale dispersant to the water supplied to the reverse osmosis device.
請求項1において、キレート系スケール抑制剤は、エチレンジアミン四酢酸及び/又はニトリロ三酢酸であることを特徴とする逆浸透処理方法。   The reverse osmosis treatment method according to claim 1, wherein the chelate scale inhibitor is ethylenediaminetetraacetic acid and / or nitrilotriacetic acid. 請求項1又は2において、スケール分散剤は(メタ)アクリル酸重合体及びその塩、並びにマレイン酸重合体及びその塩よりなる群から選ばれる少なくとも1種であることを特徴とする逆浸透処理方法。   3. The reverse osmosis treatment method according to claim 1, wherein the scale dispersant is at least one selected from the group consisting of a (meth) acrylic acid polymer and a salt thereof, and a maleic acid polymer and a salt thereof. . 請求項1ないし3のいずれか1項において、前記鉄系無機凝集剤は、Mn、Zn及びNiの合計の含有率が0.05重量%以上であることを特徴とする逆浸透処理方法。   The reverse osmosis treatment method according to any one of claims 1 to 3, wherein the iron-based inorganic flocculant has a total content of Mn, Zn, and Ni of 0.05% by weight or more. 請求項1ないし4のいずれか1項において、前記被処理水に前記鉄系無機凝集剤を10〜400mg/L添加することを特徴とする逆浸透処理方法。   5. The reverse osmosis treatment method according to claim 1, wherein 10 to 400 mg / L of the iron-based inorganic flocculant is added to the water to be treated. 請求項1ないし5のいずれか1項において、前記キレート系スケール抑制剤の添加量が、前記給水中のMn、Zn及びNiの重金属合計当量の20倍量以上であることを特徴とする逆浸透処理方法。   The reverse osmosis according to any one of claims 1 to 5, wherein the addition amount of the chelate scale inhibitor is 20 times or more the total equivalent weight of heavy metals of Mn, Zn and Ni in the feed water. Processing method. 請求項1ないし6のいずれか1項において、前記給水にスケール分散剤を1〜200mg/L添加することを特徴とする逆浸透処理方法。   The reverse osmosis treatment method according to any one of claims 1 to 6, wherein 1 to 200 mg / L of a scale dispersant is added to the water supply. 請求項1ないし7のいずれか1項において、前記被処理水に鉄系無機凝集剤を添加してpH4〜8で凝集処理した後固液分離することを特徴とする逆浸透処理方法。   8. The reverse osmosis treatment method according to any one of claims 1 to 7, wherein an iron-based inorganic flocculant is added to the water to be treated and the mixture is subjected to agglomeration treatment at pH 4 to 8, followed by solid-liquid separation.
JP2013553236A 2012-01-11 2012-12-21 Reverse osmosis processing method Active JP6135511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013553236A JP6135511B2 (en) 2012-01-11 2012-12-21 Reverse osmosis processing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012003287 2012-01-11
JP2012003287 2012-01-11
JP2013553236A JP6135511B2 (en) 2012-01-11 2012-12-21 Reverse osmosis processing method
PCT/JP2012/083288 WO2013105421A1 (en) 2012-01-11 2012-12-21 Reverse osmosis treatment process

Publications (2)

Publication Number Publication Date
JPWO2013105421A1 true JPWO2013105421A1 (en) 2015-05-11
JP6135511B2 JP6135511B2 (en) 2017-05-31

Family

ID=48781379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013553236A Active JP6135511B2 (en) 2012-01-11 2012-12-21 Reverse osmosis processing method

Country Status (6)

Country Link
JP (1) JP6135511B2 (en)
KR (1) KR102021627B1 (en)
CN (1) CN104039713B (en)
SG (2) SG10201700194QA (en)
TW (1) TWI606014B (en)
WO (1) WO2013105421A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059194A (en) * 2000-08-23 2002-02-26 Nippon Steel Corp Treatment method of raw water
JP2002191942A (en) * 2000-12-22 2002-07-10 Sumitomo Heavy Ind Ltd Method for waste water treatment
JP2003071252A (en) * 2001-09-06 2003-03-11 Nitto Denko Corp Multi-stage type reverse osmosis treating method
JP2006007145A (en) * 2004-06-28 2006-01-12 Takuma Co Ltd Method for treating drainage in general refuse incineration plant
JP2009006209A (en) * 2007-06-26 2009-01-15 Toray Ind Inc Cleaning method of hollow fiber membrane module
JP2009066508A (en) * 2007-09-12 2009-04-02 Kurita Water Ind Ltd Coagulation method for organic matter-containing water

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269463A (en) 1992-03-24 1993-10-19 Kurita Water Ind Ltd Membrane separation apparatus
JP3752761B2 (en) 1997-01-16 2006-03-08 栗田工業株式会社 Reverse osmosis membrane treatment method
JP5029982B2 (en) 2005-06-07 2012-09-19 鶴見曹達株式会社 Purification of aqueous iron chloride solution
JP5223219B2 (en) 2007-03-30 2013-06-26 栗田工業株式会社 Organic wastewater treatment equipment
JP5348369B2 (en) 2008-03-31 2013-11-20 栗田工業株式会社 Water treatment method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059194A (en) * 2000-08-23 2002-02-26 Nippon Steel Corp Treatment method of raw water
JP2002191942A (en) * 2000-12-22 2002-07-10 Sumitomo Heavy Ind Ltd Method for waste water treatment
JP2003071252A (en) * 2001-09-06 2003-03-11 Nitto Denko Corp Multi-stage type reverse osmosis treating method
JP2006007145A (en) * 2004-06-28 2006-01-12 Takuma Co Ltd Method for treating drainage in general refuse incineration plant
JP2009006209A (en) * 2007-06-26 2009-01-15 Toray Ind Inc Cleaning method of hollow fiber membrane module
JP2009066508A (en) * 2007-09-12 2009-04-02 Kurita Water Ind Ltd Coagulation method for organic matter-containing water

Also Published As

Publication number Publication date
WO2013105421A1 (en) 2013-07-18
TW201343566A (en) 2013-11-01
SG11201403820YA (en) 2014-11-27
CN104039713A (en) 2014-09-10
CN104039713B (en) 2016-08-24
TWI606014B (en) 2017-11-21
JP6135511B2 (en) 2017-05-31
KR20140109867A (en) 2014-09-16
KR102021627B1 (en) 2019-11-04
SG10201700194QA (en) 2017-03-30

Similar Documents

Publication Publication Date Title
JP5873771B2 (en) Organic wastewater treatment method and treatment apparatus
JP5277997B2 (en) Water purification method
JP5489982B2 (en) Pretreatment method for separation by reverse osmosis membrane of treated water
JP2012196614A (en) Method and system for wastewater treatment
JP5222808B2 (en) Flocculant, sewage purification method using flocculant, and water purifier using flocculant
JP5577571B2 (en) Scale inhibitor for circulating cooling water system in steel manufacturing process, and scale prevention method
JP2006204977A (en) Method and apparatus for treating biologically treated water-containing water
WO2018030109A1 (en) Membrane filtration method and membrane filtration system
JP5884493B2 (en) Treatment method for wastewater containing heavy metals
JP2006095425A (en) Method for purifying biological treatment water-containing water of waste water and apparatus for purifying the same
JP6135511B2 (en) Reverse osmosis processing method
JP6792490B2 (en) A method for removing suspended substances in an aqueous system that suppresses the formation of scales.
Kucera Reverse osmosis: Fundamental causes of membrane deposition and approaches to mitigation
JP2005224761A (en) Production method of pure water or ultrapure water
JP2016093789A (en) Water treatment method and water treatment system
JP2004267830A (en) Method for treating biological treatment water-containing water
JP7460004B1 (en) Fluorine-containing wastewater treatment equipment and method
JP2012232308A (en) Water cleaning device
JP2014046235A (en) Fresh water generating method
JP6524752B2 (en) Method of treating calcium ion and inorganic carbon containing water
JP2005125152A (en) Water treatment method and water treatment apparatus
JP2011025143A (en) Virus removal method
JP2018202277A (en) Membrane filtration method and membrane filtration device
Kapoor et al. Approaches towards scale control in desalination
JP2005238184A (en) Method for treating organoarsenic compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170410

R150 Certificate of patent or registration of utility model

Ref document number: 6135511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150