JPWO2013105147A1 - Vane type compressor - Google Patents

Vane type compressor Download PDF

Info

Publication number
JPWO2013105147A1
JPWO2013105147A1 JP2013553091A JP2013553091A JPWO2013105147A1 JP WO2013105147 A1 JPWO2013105147 A1 JP WO2013105147A1 JP 2013553091 A JP2013553091 A JP 2013553091A JP 2013553091 A JP2013553091 A JP 2013553091A JP WO2013105147 A1 JPWO2013105147 A1 JP WO2013105147A1
Authority
JP
Japan
Prior art keywords
vane
cylinder
rotor
peripheral surface
aligner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013553091A
Other languages
Japanese (ja)
Other versions
JP5642297B2 (en
Inventor
辰也 佐々木
辰也 佐々木
関屋 慎
慎 関屋
雷人 河村
雷人 河村
英明 前山
英明 前山
高橋 真一
真一 高橋
幹一朗 杉浦
幹一朗 杉浦
勝紀 佐藤
勝紀 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013553091A priority Critical patent/JP5642297B2/en
Application granted granted Critical
Publication of JP5642297B2 publication Critical patent/JP5642297B2/en
Publication of JPWO2013105147A1 publication Critical patent/JPWO2013105147A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0827Vane tracking; control therefor by mechanical means
    • F01C21/0836Vane tracking; control therefor by mechanical means comprising guiding means, e.g. cams, rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/321Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the inner member and reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

ベーンの先端部の摩耗を抑制し、回転軸部を小径で支持できることで軸受摺動損失を低減し、かつローター部の外径及び回転中心の精度を向上させるベーン型圧縮機を得る。ベーン先端部5bとシリンダー内周面1bとの間の隙間をδ、シリンダー内周面1bの半径をrc、ベーンアライナー軸受部2b、3bの半径をraとし、式rv=rc−ra−δとなるように、ベーンアライナー部5c、5dの外周側とベーン先端部5bとの間の距離rvを設定することで、第1ベーン5のベーン先端部5bはシリンダー内周面1bに接触することなく、回転することとなる。A vane compressor that suppresses wear at the tip of the vane, supports the rotating shaft portion with a small diameter, reduces bearing sliding loss, and improves the outer diameter of the rotor portion and the accuracy of the rotation center is obtained. The clearance between the vane tip 5b and the cylinder inner peripheral surface 1b is δ, the radius of the cylinder inner peripheral surface 1b is rc, the radius of the vane aligner bearing portions 2b and 3b is ra, and the equation rv = rc−ra−δ Thus, by setting the distance rv between the outer peripheral side of the vane aligner portions 5c and 5d and the vane tip portion 5b, the vane tip portion 5b of the first vane 5 does not contact the cylinder inner peripheral surface 1b. Will rotate.

Description

本発明は、ベーン型圧縮機に関する。   The present invention relates to a vane type compressor.

従来、ローターシャフト(シリンダー内で回転運動する円柱形のローター部と、ローター部に回転力を伝達するシャフトとが一体化されたものをローターシャフトという)のローター部内に一箇所又は複数箇所形成されたベーン溝内にベーンが嵌入され、そのベーンの先端がシリンダーの内周面と当接しながら摺動する構成の一般的なベーン型圧縮機が提案されている(例えば、特許文献1参照)。   Conventionally, one or a plurality of portions are formed in the rotor portion of a rotor shaft (a rotor portion in which a cylindrical rotor portion that rotates in a cylinder and a shaft that transmits rotational force to the rotor portion are integrated). There has been proposed a general vane type compressor having a configuration in which a vane is fitted into a vane groove and the tip of the vane slides while contacting the inner peripheral surface of the cylinder (for example, see Patent Document 1).

また、ローターシャフトの内側を中空に構成しその中にベーンの固定軸を配し、ベーンはその固定軸に回転可能に取り付けられ、さらに、ローター部の外周部付近に半円棒形状の一対の挟持部材(ブッシュ)を介してベーンがローター部に対して回転自在に保持されているベーン型圧縮機が提案されている(例えば、特許文献2参照)。   The rotor shaft has a hollow interior and a vane fixed shaft disposed therein. The vane is rotatably attached to the fixed shaft, and a pair of semicircular rods is formed near the outer periphery of the rotor portion. There has been proposed a vane type compressor in which a vane is rotatably held with respect to a rotor part via a clamping member (bush) (see, for example, Patent Document 2).

特開平10−252675号公報(第4頁、第1図)JP-A-10-252675 (page 4, FIG. 1) 特開2000−352390号公報(第6頁、第1図)JP 2000-352390 A (6th page, FIG. 1)

特許文献1に記載の従来の一般的なベーン型圧縮機は、ベーン先端の曲率半径とシリンダーの内周面の曲率半径が大きく異なるため、シリンダーの内周面とベーン先端との間に油膜は形成されず、流体潤滑状態とはならず境界潤滑状態で摺動する。一般に潤滑状態による摩擦係数は、流体潤滑状態においては0.001〜0.005程度であるのに対し、境界潤滑状態においては非常に大きくなり、概ね0.05以上となる。   In the conventional general vane type compressor described in Patent Document 1, since the curvature radius of the vane tip and the curvature radius of the inner circumferential surface of the cylinder are greatly different, the oil film is not formed between the inner circumferential surface of the cylinder and the vane tip. It is not formed, and it slides in a boundary lubrication state instead of a fluid lubrication state. In general, the friction coefficient in the lubrication state is about 0.001 to 0.005 in the fluid lubrication state, but becomes very large in the boundary lubrication state, and is generally about 0.05 or more.

このため、従来の一般的なベーン型圧縮機の構成では、ベーン先端とシリンダーの内周面とが境界潤滑状態で摺動することによって摺動抵抗が大きくなり、機械損失の増大による圧縮機効率の大幅な低下が発生してしまうという問題点があった。それと同時に、ベーン先端及びシリンダーの内周面が摩耗しやすく、長期の寿命を確保することが困難であるという問題点もあった。   For this reason, in the configuration of a conventional general vane type compressor, sliding resistance increases due to sliding between the tip of the vane and the inner peripheral surface of the cylinder in the boundary lubrication state, and compressor efficiency due to an increase in mechanical loss. There has been a problem in that a significant decrease in the amount of occurrence occurs. At the same time, the tip of the vane and the inner peripheral surface of the cylinder are easily worn, and it is difficult to ensure a long life.

そこで、上記の問題点を改善するものとして、ローター部の内部を中空にし、その中にベーンをシリンダーの内周面の中心にて回転可能に支持する固定軸を有し、かつ、ベーンがローター部に対し回転可能となるようにローター部の外周部近傍で挟持部材を介してベーンを保持する方法(例えば、上記特許文献2)が提案された。   Therefore, to improve the above-mentioned problems, the interior of the rotor part is made hollow, and a vane is rotatably supported at the center of the inner peripheral surface of the cylinder, and the vane is a rotor. A method of holding a vane via a clamping member in the vicinity of the outer peripheral portion of the rotor portion so as to be rotatable with respect to the portion (for example, Patent Document 2 above) has been proposed.

この構成によって、ベーンがシリンダー内周面の中心にて回転支持されることになる。これにより、ベーンの長手方向は常にシリンダー内周面の中心に向かうため、ベーン先端はシリンダー内周面に沿うように回転することとなる。このため、ベーン先端とシリンダーの内周面との間に微小な隙間を保ち、非接触にして運転することが可能となり、ベーン先端での摺動による損失が発生せず、また、ベーン先端及びシリンダーの内周面の摩耗を抑制することが可能なベーン型圧縮機を得ることができる。   With this configuration, the vane is rotatably supported at the center of the inner peripheral surface of the cylinder. Thereby, since the longitudinal direction of the vane is always directed to the center of the cylinder inner peripheral surface, the vane tip rotates along the cylinder inner peripheral surface. For this reason, a minute gap is maintained between the vane tip and the inner peripheral surface of the cylinder, and it is possible to operate without contact, no loss due to sliding at the vane tip occurs, A vane type compressor capable of suppressing wear on the inner peripheral surface of the cylinder can be obtained.

しかしながら、特許文献2に記載された方法では、ローター部内部の中空に構成することにより、ローター部への回転力の付与、及び、ローター部の回転支持が難しくなる。また、特許文献2では、ローター部の両端面に端板を設けている。片側の端板は、回転軸からの動力を伝達する必要があるため円盤状であり、端板の中心に回転軸が接続される構成となっている。また、他側の端板は、ベーン固定軸及びベーン軸支持材の回転範囲と干渉しないように構成する必要があるため、中央部に穴の開いたリング状に構成する必要がある。このため、端板を回転支持する部分は、回転軸に比べて大径に構成する必要があり、軸受摺動損失が大きくなるという問題点があった。   However, in the method described in Patent Document 2, it is difficult to apply a rotational force to the rotor portion and to support the rotation of the rotor portion by forming the hollow inside the rotor portion. Moreover, in patent document 2, the end plate is provided in the both end surfaces of the rotor part. The end plate on one side has a disk shape because it is necessary to transmit power from the rotating shaft, and the rotating shaft is connected to the center of the end plate. Moreover, since it is necessary to comprise the end plate of the other side so that it may not interfere with the rotation range of a vane fixed axis | shaft and a vane axis | shaft support material, it is necessary to comprise in the ring shape which opened the hole in the center part. For this reason, the part which supports the end plate in rotation needs to be configured to have a larger diameter than that of the rotating shaft, and there is a problem that bearing sliding loss increases.

また、ローター部とシリンダーの内周面との間は、圧縮したガスが漏れないように狭い隙間を形成するため、ローター部の外径及び回転中心部は高い精度が必要とされる。しかし、ローター部と端板とは別々の部品で構成されるため、ローター部と端板との締結により発生する歪み、及び、ローター部と端板との同軸ずれ等、ローター部の外径及び回転中心部の精度を悪化させる要因となってしまうという問題点もあった。   Further, since a narrow gap is formed between the rotor portion and the inner peripheral surface of the cylinder so that the compressed gas does not leak, the outer diameter and the rotation center portion of the rotor portion are required to have high accuracy. However, since the rotor part and the end plate are composed of separate parts, the outer diameter of the rotor part, such as the distortion generated by the fastening of the rotor part and the end plate, and the coaxial displacement between the rotor part and the end plate, etc. There is also a problem that the accuracy of the rotation center portion is deteriorated.

本発明は、上記のような課題を解決するためになされたもので、ベーンの先端部の摩耗を抑制し、回転軸部を小径で支持できることで軸受摺動損失を低減し、かつローター部の外径及び回転中心の精度を向上させるベーン型圧縮機を得ることを目的とする。   The present invention has been made in order to solve the above-described problems, and can suppress wear of the tip of the vane, reduce the bearing sliding loss by being able to support the rotating shaft portion with a small diameter, and reduce the rotor portion. An object of the present invention is to obtain a vane type compressor that improves the accuracy of the outer diameter and the rotation center.

本発明に係るベーン型圧縮機は、円筒状の内周面が形成されたシリンダーと、該シリンダーの内部において、前記内周面の中心軸と所定の距離ずれた回転軸を中心に回転する円筒形状のローター部、及び、該ローター部に回転力を伝達する回転軸部を有したローターシャフトと、前記シリンダーの前記内周面の一方の開口部を閉塞し、主軸受部によって前記回転軸を支承するフレームと、前記シリンダーの前記内周面の他方の開口部を閉塞し、主軸受部によって前記回転軸を支承するシリンダーヘッドと、前記ローター部に設けられ、前記ローター部内から突出する先端部が外側に凸となる円弧形状に形成された少なくとも1枚のベーンと、を備えたベーン型圧縮機において、前記ベーンの前記先端部の前記円弧形状の法線と、前記シリンダーの前記内周面の法線とが常にほぼ一致する状態で、前記ベーン、前記ローター部の外周部、及び前記シリンダーの前記内周面によって囲まれる空間で冷媒を圧縮するように前記ベーンを支持し、前記ベーンを前記ローター部に対して回転可能かつ移動可能に支持するベーン支持手段を備え、前記ローターシャフトは、前記ローター部と前記回転軸部とが一体に形成されて構成され、前記ベーンの前記先端部の前記円弧形状の曲率半径は、前記シリンダーの前記内周面の曲率半径と略同一であり、前記ベーン支持手段は、前記ローター部の外周部近傍に、前記ローター部の中心軸方向に垂直な断面が略円形となるように該中心軸方向に貫通したブッシュ保持部と、該ブッシュ保持部の中に挿入される一対の略半円柱状物であり、前記ブッシュ保持部内で前記ベーンを挟持するブッシュと、前記ベーンにおける、前記シリンダーの前記内周面の中心である内周面中心側の端面が、前記ローター部に接触しないように、前記ローター部において該ローター部の中心軸方向に貫通して形成されたベーン逃がし部と、によって構成され、前記ベーンは、前記フレーム側かつ前記ローター部の中心側の端面近傍、及び、前記シリンダーヘッド側かつ前記ローター部の中心側の端面近傍に設けられた一対の円弧形状のベーンアライナー部を有し、前記フレーム及び前記シリンダーヘッドの前記シリンダー側の端面に、前記シリンダーの前記内周面と同心の凹部又は溝部が形成され、前記ベーンアライナー部は、前記凹部又は前記溝部内に嵌入され、該凹部又は該溝部の外周面であるベーンアライナー軸受部で支承され、前記ベーンの先端部側の面に、前記ベーンの長さ方向に垂直な平面部が形成されたものである。   A vane compressor according to the present invention includes a cylinder having a cylindrical inner peripheral surface, and a cylinder that rotates around a rotation axis that is deviated from the central axis of the inner peripheral surface by a predetermined distance inside the cylinder. A rotor shaft having a shape, and a rotor shaft having a rotation shaft portion for transmitting a rotational force to the rotor portion, and one opening portion of the inner peripheral surface of the cylinder is closed, and the rotation shaft is moved by a main bearing portion. A frame to be supported; a cylinder head that closes the other opening of the inner peripheral surface of the cylinder and supports the rotating shaft by a main bearing; and a tip that is provided on the rotor and protrudes from the rotor A vane-type compressor comprising: at least one vane formed in an arc shape protruding outward, wherein the arc-shaped normal line of the tip of the vane and the cylinder The vane is supported so that the refrigerant is compressed in a space surrounded by the vane, the outer peripheral portion of the rotor portion, and the inner peripheral surface of the cylinder in a state where the normal line of the inner peripheral surface of the cylinder always coincides with the normal line. And vane support means for supporting the vane so as to be rotatable and movable with respect to the rotor portion, wherein the rotor shaft is formed by integrally forming the rotor portion and the rotary shaft portion, and the vane The radius of curvature of the arc shape of the tip of the cylinder is substantially the same as the radius of curvature of the inner peripheral surface of the cylinder, and the vane support means is located in the vicinity of the outer peripheral portion of the rotor portion and the central axis of the rotor portion. A bush holding portion penetrating in the direction of the central axis so that a cross section perpendicular to the direction is substantially circular, and a pair of substantially semi-cylindrical objects inserted into the bush holding portion, the bush In the rotor portion, the rotor is arranged such that a bush for sandwiching the vane in the holding portion and an end surface on the inner peripheral surface center side which is the center of the inner peripheral surface of the cylinder in the vane do not contact the rotor portion. A vane relief portion formed so as to penetrate in the central axis direction of the portion, and the vane is near the end surface on the frame side and the center side of the rotor portion, and on the cylinder head side and on the rotor portion. A pair of arc-shaped vane aligner portions provided near the end surface on the center side are formed, and concavities or grooves concentric with the inner peripheral surface of the cylinder are formed on the cylinder-side end surfaces of the frame and the cylinder head. The vane aligner is fitted into the recess or the groove, and is a vane aligner that is an outer peripheral surface of the recess or the groove. -A flat part perpendicular to the length direction of the vane is formed on the surface of the vane at the front end part side, which is supported by the bearing part.

本発明によれば、ベーンの先端部とシリンダーの内周面との間に所定の適正な間隙を設けることによって、先端部からの冷媒の漏れを抑制しつつ、機械損失の増大による圧縮機効率の低下を抑制し、かつ、先端部の摩耗をゼロにすることができる。
また、ベーンの先端部の円弧形状及びシリンダーの内周面の法線が常にほぼ一致するように圧縮動作を行うために必要なベーンがシリンダーの内周面の中心を回転中心として回転運動する機構を、ローター部と回転軸部とを一体にした構成で実現できるため、回転軸部を小径で支持できることで軸受摺動損失を低減し、かつローター部の外径及び回転中心の精度を向上させることができ、ローター部とシリンダーの内周面との間を狭い隙間で形成して漏れ損失を低減することが可能となる。
また、ベーンアライナー部に平面部を形成することによって、ベーンの上下端面の平面研磨加工を実施する際、回転する砥石がベーンアライナー部に干渉することを回避することができる。これによって、ベーンと、フレーム及びシリンダーヘッドとのそれぞれの隙間を小さく保持することができるので、ベーンと、フレーム及びシリンダヘッドとの間のそれぞれの摺動損失を抑制することができ、耐焼付き性、耐摩耗性を向上させると同時に、高効率化を実現できる。
According to the present invention, by providing a predetermined appropriate gap between the tip portion of the vane and the inner peripheral surface of the cylinder, the compressor efficiency due to an increase in mechanical loss while suppressing the leakage of the refrigerant from the tip portion. Can be suppressed, and wear at the tip can be reduced to zero.
In addition, the mechanism that the vane necessary to perform the compression operation so that the arc shape of the tip of the vane and the normal line of the inner peripheral surface of the cylinder always coincide substantially rotates around the center of the inner peripheral surface of the cylinder. Can be realized with a configuration in which the rotor portion and the rotating shaft portion are integrated, so that the rotating shaft portion can be supported with a small diameter, thereby reducing bearing sliding loss and improving the accuracy of the outer diameter of the rotor portion and the rotation center. It is possible to reduce the leakage loss by forming a narrow gap between the rotor portion and the inner peripheral surface of the cylinder.
In addition, by forming the flat portion in the vane aligner portion, it is possible to avoid the rotating grindstone from interfering with the vane aligner portion when the upper and lower end surfaces of the vane are polished. As a result, the gaps between the vane, the frame, and the cylinder head can be kept small, so that each sliding loss between the vane, the frame, and the cylinder head can be suppressed, and seizure resistance can be reduced. In addition to improving wear resistance, high efficiency can be realized.

本発明の実施の形態1に係るベーン型圧縮機200の縦断面図である。It is a longitudinal cross-sectional view of the vane type compressor 200 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るベーン型圧縮機200の圧縮要素101の分解斜視図である。It is a disassembled perspective view of the compression element 101 of the vane type compressor 200 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るベーン型圧縮機200の第1ベーン5及び第2ベーン6の平面図及び正面図である。It is the top view and front view of the 1st vane 5 and the 2nd vane 6 of the vane type compressor 200 which concern on Embodiment 1 of this invention. 本発明の実施の形態1に係るベーン型圧縮機200において図1のI−I断面図である。FIG. 2 is a cross-sectional view taken along the line II of FIG. 1 in the vane type compressor 200 according to Embodiment 1 of the present invention. 本発明の実施の形態1に係るベーン型圧縮機200の圧縮動作を示す図である。It is a figure which shows the compression operation | movement of the vane type compressor 200 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るベーン型圧縮機200のベーンアライナー部5c、6cの回転動作を示す図1におけるJ−J断面図である。It is JJ sectional drawing in FIG. 1 which shows rotation operation | movement of the vane aligner parts 5c and 6c of the vane type compressor 200 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るベーン型圧縮機200の第1ベーン5のベーン部5a周りの要部断面図である。It is principal part sectional drawing around the vane part 5a of the 1st vane 5 of the vane type compressor 200 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るベーン型圧縮機200の別形態の圧縮要素101の分解斜視図である。It is a disassembled perspective view of the compression element 101 of another form of the vane type compressor 200 which concerns on Embodiment 1 of this invention. 本発明の実施の形態2において相対運動する固体二面間の微小隙間内の流れを示す図である。It is a figure which shows the flow in the micro clearance gap between the two solid surfaces which carry out relative motion in Embodiment 2 of this invention. 本発明の実施の形態2に係るベーン型圧縮機200のベーンアライナー部5cとベーンアライナー軸受部2bとの関係を示した模式図である。It is the schematic diagram which showed the relationship between the vane aligner part 5c and the vane aligner bearing part 2b of the vane type compressor 200 which concerns on Embodiment 2 of this invention. 本発明の実施の形態2における解析モデルである。It is an analysis model in Embodiment 2 of this invention. 本発明の実施の形態2に係るベーン型圧縮機200においてベーンアライナー軸受部2bにベーンアライナー部5cが嵌入した状態を示す図である。It is a figure which shows the state which the vane aligner part 5c fitted in the vane aligner bearing part 2b in the vane type compressor 200 which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係るベーン型圧縮機200において偏心率ε=0.9の場合のゾンマーフェルト数Sとβ/αとの関係を示した解析結果図である。It is the analysis result figure which showed the relationship between the Sommerfeld number S and (beta) / (alpha) in the case of the eccentricity (epsilon) = 0.9 in the vane type compressor 200 which concerns on Embodiment 2 of this invention.

実施の形態1.
図1は、本発明の実施の形態1に係るベーン型圧縮機200の縦断面図であり、図2は、同ベーン型圧縮機200の圧縮要素101の分解斜視図であり、そして、図3は、同ベーン型圧縮機200の第1ベーン5及び第2ベーン6の平面図及び正面図である。このうち、図1において、実線で示す矢印はガス(冷媒)の流れ、そして、破線で示す矢印は冷凍機油25の流れを示している。以下、図1〜図3を参照しながら、ベーン型圧縮機200の構造について説明する。
Embodiment 1 FIG.
1 is a longitudinal sectional view of a vane type compressor 200 according to Embodiment 1 of the present invention, FIG. 2 is an exploded perspective view of a compression element 101 of the vane type compressor 200, and FIG. These are the top view and front view of the 1st vane 5 and the 2nd vane 6 of the vane type compressor 200. Among these, in FIG. 1, an arrow indicated by a solid line indicates a flow of gas (refrigerant), and an arrow indicated by a broken line indicates a flow of refrigerating machine oil 25. Hereinafter, the structure of the vane type compressor 200 will be described with reference to FIGS.

本実施の形態に係るベーン型圧縮機200は、外形を形成する密閉容器103、その密閉容器103内に収納された圧縮要素101、その圧縮要素101の上部に位置し、圧縮要素101を駆動する電動要素102、及び、密閉容器103内の底部に設けられ、冷凍機油25を貯溜する油溜め104によって構成されている。   A vane type compressor 200 according to the present embodiment is located in a hermetic container 103 forming an outer shape, a compression element 101 accommodated in the hermetic container 103, and an upper part of the compression element 101, and drives the compression element 101. The electric element 102 and an oil sump 104 that stores the refrigerating machine oil 25 are provided at the bottom in the sealed container 103.

密閉容器103は、ベーン型圧縮機200の外形を形成するものであり、その内部に、圧縮要素101及び電動要素102を収納し、冷媒及び冷凍機油を密閉するものである。密閉容器103の側面には、冷媒を密閉容器103内部に吸入する吸入管26が設置され、密閉容器103の上面には、圧縮された冷媒を外部に吐出するための吐出管24が設置されている。   The hermetic container 103 forms the outer shape of the vane compressor 200, and houses the compression element 101 and the electric element 102 therein, and hermetically seals the refrigerant and the refrigerating machine oil. A suction pipe 26 for sucking the refrigerant into the sealed container 103 is installed on the side surface of the sealed container 103, and a discharge pipe 24 for discharging the compressed refrigerant to the outside is installed on the upper surface of the sealed container 103. Yes.

圧縮要素101は、吸入管26から密閉容器103内に吸入された冷媒を圧縮するものであり、シリンダー1、フレーム2、シリンダーヘッド3、ローターシャフト4、第1ベーン5、第2ベーン6、及び、ブッシュ7、8によって構成されている。   The compression element 101 compresses the refrigerant sucked into the sealed container 103 from the suction pipe 26, and includes the cylinder 1, the frame 2, the cylinder head 3, the rotor shaft 4, the first vane 5, the second vane 6, and , Bushes 7 and 8.

シリンダー1は、全体形状が略円筒状で、軸方向に円筒状の円の中心とは偏心した位置が中心となるように略円形状の貫通部1fが形成されている。また、その貫通部1fの内周面であるシリンダー内周面1bの一部に、貫通部1fの中心から外側に向かってR形状に抉られた切欠き部1cが設けられ、その切欠き部1cには吸入ポート1aが開口している。この吸入ポート1aは、吸入管26に連通しており、この吸入ポート1aから貫通部1f内に冷媒が吸入されることになる。また、後述する最近接点32を挟んで吸入ポート1aと反対側に位置し、その最近接点32の近傍、かつ、後述するフレーム2に面した側に吐出ポート1dが切り欠いて設けられている(図2参照)。また、シリンダー1の外周部には軸方向に貫通し、貫通部1fの中心と対称となる位置に2つの油戻し穴1eが設けられている。   The overall shape of the cylinder 1 is substantially cylindrical, and a substantially circular penetrating portion 1f is formed so that the position eccentric from the center of the cylindrical circle in the axial direction is the center. Further, a notch 1c that is wound in an R shape from the center of the penetrating portion 1f to the outside is provided on a part of the cylinder inner peripheral surface 1b that is the inner peripheral surface of the penetrating portion 1f. A suction port 1a is opened at 1c. The suction port 1a communicates with the suction pipe 26, and the refrigerant is sucked into the through portion 1f from the suction port 1a. Further, a discharge port 1d is cut out and provided on the opposite side of the suction port 1a with a nearest contact point 32, which will be described later, between the nearest contact point 32 and the side facing the frame 2 described later ( (See FIG. 2). Further, two oil return holes 1e are provided in the outer peripheral portion of the cylinder 1 in the axial direction and at positions symmetrical to the center of the through portion 1f.

フレーム2は、縦断面形状が略T字状で、シリンダー1に接する部分が略円板形状であり、シリンダー1の貫通部1fの一方の開口部(図2における上側)を閉塞するものである。また、フレーム2の中央部は円筒形状になっており、この円筒形状部は中空であり、ここに主軸受部2cが形成されている。また、フレーム2のシリンダー1側の端面、かつ、主軸受部2c部分には、外周面がシリンダー内周面1bと同心円の凹部2aが形成されている。この凹部2aに、後述する第1ベーン5のベーンアライナー部5c、及び、第2ベーン6のベーンアライナー部6cが嵌入される。このとき、ベーンアライナー部5c、6cは、凹部2aの外周面であるベーンアライナー軸受部2bで支承される。また、フレーム2において、シリンダー1に設けた吐出ポート1dと連通し、軸方向に貫通した吐出ポート2dが設けられており、この吐出ポート2dのシリンダー1と反対側の開口部には、吐出弁27及びその吐出弁27の開度を規制するための吐出弁押え28が取り付けられている。   The frame 2 has a substantially T-shaped vertical cross section, and a portion in contact with the cylinder 1 has a substantially disk shape, and closes one opening (upper side in FIG. 2) of the through portion 1f of the cylinder 1. . The central portion of the frame 2 has a cylindrical shape. The cylindrical portion is hollow, and a main bearing portion 2c is formed here. Further, a concave portion 2a whose outer peripheral surface is concentric with the cylinder inner peripheral surface 1b is formed on the end surface of the frame 2 on the cylinder 1 side and the main bearing portion 2c. A vane aligner portion 5c of the first vane 5 and a vane aligner portion 6c of the second vane 6 which will be described later are fitted into the recess 2a. At this time, the vane aligner portions 5c and 6c are supported by the vane aligner bearing portion 2b which is the outer peripheral surface of the recess 2a. The frame 2 is provided with a discharge port 2d that communicates with a discharge port 1d provided in the cylinder 1 and penetrates in the axial direction. A discharge valve 2d is provided at an opening on the opposite side of the cylinder 1 from the discharge port 2d. 27 and a discharge valve presser 28 for restricting the opening degree of the discharge valve 27 are attached.

シリンダーヘッド3は、縦断面形状が略T字状で、シリンダー1に接する部分が略円板形状であり、シリンダー1の貫通部1fの他方の開口部(図2では下側)を閉塞するものである。また、シリンダーヘッド3の中央部は円筒形状になっており、この円筒形状は中空であり、ここに主軸受部3cが形成されている。また、シリンダーヘッド3のシリンダー1側の端面、かつ、主軸受部3c部分には、外周面がシリンダー内周面1bと同心円の凹部3aが形成されている。この凹部3aに、後述する第1ベーン5のベーンアライナー部5d、及び、第2ベーン6のベーンアライナー部6dが嵌入される。このとき、ベーンアライナー部5d、6dは、凹部3aの外周面であるベーンアライナー軸受部3bで支承される。   The cylinder head 3 has a substantially T-shaped longitudinal cross-section, and the portion in contact with the cylinder 1 has a substantially disk shape, and closes the other opening (the lower side in FIG. 2) of the penetrating portion 1f of the cylinder 1. It is. Further, the central portion of the cylinder head 3 has a cylindrical shape, and this cylindrical shape is hollow, and a main bearing portion 3c is formed here. Further, a concave portion 3a whose outer peripheral surface is concentric with the cylinder inner peripheral surface 1b is formed on the end surface of the cylinder head 3 on the cylinder 1 side and the main bearing portion 3c. A vane aligner portion 5d of the first vane 5 and a vane aligner portion 6d of the second vane 6, which will be described later, are fitted into the recess 3a. At this time, the vane aligner portions 5d and 6d are supported by the vane aligner bearing portion 3b which is the outer peripheral surface of the recess 3a.

ローターシャフト4は、シリンダー1内でシリンダー1の貫通部1fの中心軸とは偏心した中心軸上に回転運動を行う略円筒形状のローター部4a、そのローター部4aの上面である円の中心からその上面の垂直上向きに延設された回転軸部4b、及び、ローター部4aの下面である円の中心からその下面の垂直下向きに延設された回転軸部4cが一体となった構造となっている。この回転軸部4bは、フレーム2の主軸受部2cに挿通して支承され、回転軸部4cは、シリンダーヘッド3の主軸受部3cに挿通して支承されている。ローター部4aには、円筒形状のローター部4aの軸方向に対して垂直の断面が略円形でその軸方向に貫通してブッシュ保持部4d、4e及びベーン逃がし部4f、4gが形成されている。ブッシュ保持部4d、4eは、それぞれ、ローター部4aの中心に対して対称となる位置に形成されており、ブッシュ保持部4d、4eの内側方向にそれぞれ、ベーン逃がし部4f、4gが形成されている。すなわち、ローター部4a、ブッシュ保持部4d、4e、及び、ベーン逃がし部4f、4gの中心は略直線状に並ぶように形成されている。また、ブッシュ保持部4dとベーン逃がし部4fとは連通しており、ブッシュ保持部4eとベーン逃がし部4gとは連通している。また、ベーン逃がし部4f、4gの軸方向端部は、フレーム2の凹部2a及びシリンダーヘッド3の凹部3aに連通している。また、ローターシャフト4の回転軸部4cの下端部には、例えば、特開2009−264175号公報に記載されているようなローターシャフト4の遠心力を利用した油ポンプ31が設けられている。この油ポンプ31は、ローターシャフト4の回転軸部4cの下端の軸中央部に設けられ、回転軸部4cの下端からローター部4a及び回転軸部4bの内部にかけて上方向に延在する給油路4hと連通している。また、回転軸部4bには、給油路4hと凹部2aとを連通させる給油路4i、そして、回転軸部4cには、給油路4hと凹部3aとを連通させる給油路4jが設けられている。さらに、回転軸部4bの主軸受部2cの上方の位置には、密閉容器103内部空間に連通させる排油穴4kが設けられている。   The rotor shaft 4 is a substantially cylindrical rotor portion 4a that rotates on a central axis that is eccentric from the central axis of the through-hole 1f of the cylinder 1 in the cylinder 1, and from the center of a circle that is the upper surface of the rotor portion 4a. The rotating shaft portion 4b extending vertically upward on the upper surface and the rotating shaft portion 4c extending vertically downward on the lower surface from the center of the circle that is the lower surface of the rotor portion 4a are integrated. ing. The rotation shaft portion 4 b is inserted and supported by the main bearing portion 2 c of the frame 2, and the rotation shaft portion 4 c is inserted and supported by the main bearing portion 3 c of the cylinder head 3. The rotor portion 4a has a substantially circular cross section perpendicular to the axial direction of the cylindrical rotor portion 4a and penetrates in the axial direction to form bush holding portions 4d and 4e and vane relief portions 4f and 4g. . The bush holding portions 4d and 4e are formed at positions that are symmetrical with respect to the center of the rotor portion 4a, and vane relief portions 4f and 4g are formed in the inner directions of the bush holding portions 4d and 4e, respectively. Yes. That is, the centers of the rotor portion 4a, the bush holding portions 4d and 4e, and the vane relief portions 4f and 4g are formed so as to be substantially linearly arranged. The bush holding portion 4d and the vane escape portion 4f communicate with each other, and the bush holding portion 4e and the vane escape portion 4g communicate with each other. Further, the axial end portions of the vane relief portions 4 f and 4 g communicate with the concave portion 2 a of the frame 2 and the concave portion 3 a of the cylinder head 3. Moreover, the oil pump 31 using the centrifugal force of the rotor shaft 4 as described in, for example, Japanese Patent Application Laid-Open No. 2009-264175 is provided at the lower end portion of the rotating shaft portion 4c of the rotor shaft 4. The oil pump 31 is provided at the shaft center portion at the lower end of the rotating shaft portion 4c of the rotor shaft 4 and extends upward from the lower end of the rotating shaft portion 4c to the inside of the rotor portion 4a and the rotating shaft portion 4b. It communicates with 4h. The rotary shaft portion 4b is provided with an oil supply passage 4i that allows the oil supply passage 4h to communicate with the recess 2a, and the rotation shaft portion 4c is provided with an oil supply passage 4j that allows the oil supply passage 4h to communicate with the recess 3a. . Furthermore, an oil drain hole 4k that communicates with the internal space of the sealed container 103 is provided at a position above the main bearing portion 2c of the rotary shaft portion 4b.

第1ベーン5は、略四角形の板形状の部材であるベーン部5a、このベーン部5aのフレーム2側、かつ、回転軸部4b側の上端面に設けられた円弧形状、すなわち部分リング形状のベーンアライナー部5c、及び、ベーン部5aのシリンダーヘッド3側、かつ、回転軸部4c側の下端面に設けられた円弧形状、すなわち部分リング形状のベーンアライナー部5dによって構成されている。また、ベーン部5aのシリンダー内周面1b側の端面であるベーン先端部5bは、外側に凸の円弧形状に形成され、その円弧形状の曲率半径は、シリンダー内周面1bの曲率半径と略同一となるように形成されている。また、第1ベーン5は、図3で示されるように、ベーン部5aの長さ方向及びベーン先端部5bの円弧の法線方向が、ベーンアライナー部5c、5dの円弧の中心を通るように形成されている。また、円弧形状のベーンアライナー部5cにおけるベーン先端部5b側の面には、ベーン部5aの長さ方向に垂直な平面部5eが形成されている。同様に、円弧形状のベーンアライナー部5dにおけるベーン先端部5b側の面には、ベーン部5aの長さ方向に垂直な平面部5fが形成されている。   The first vane 5 has a vane portion 5a, which is a substantially square plate-shaped member, an arc shape provided on the upper end surface of the vane portion 5a on the frame 2 side and the rotating shaft portion 4b side, that is, a partial ring shape. The vane aligner portion 5c and the vane aligner portion 5d having a circular arc shape, that is, a partial ring shape, provided on the lower end surface of the vane portion 5a on the cylinder head 3 side and the rotating shaft portion 4c side. The vane tip 5b, which is the end surface of the vane portion 5a on the cylinder inner peripheral surface 1b side, is formed in an outwardly convex arc shape, and the radius of curvature of the arc shape is substantially the same as the radius of curvature of the cylinder inner peripheral surface 1b. It is formed to be the same. Further, as shown in FIG. 3, the first vane 5 has the length direction of the vane portion 5a and the normal direction of the arc of the vane tip portion 5b passing through the center of the arc of the vane aligner portions 5c and 5d. Is formed. In addition, a flat surface portion 5e perpendicular to the length direction of the vane portion 5a is formed on the surface on the vane tip portion 5b side of the arc-shaped vane aligner portion 5c. Similarly, a flat surface portion 5f perpendicular to the length direction of the vane portion 5a is formed on the surface on the vane tip portion 5b side of the arc-shaped vane aligner portion 5d.

第2ベーン6は、略四角形の板形状の部材であるベーン部6a、このベーン部6aのフレーム2側、かつ、回転軸部4b側の上端面に設けられた円弧形状、すなわち部分リング形状のベーンアライナー部6c、及び、ベーン部6aのシリンダーヘッド3側、かつ、回転軸部4c側の下端面に設けられた円弧形状、すなわち部分リング形状のベーンアライナー部6dによって構成されている。また、ベーン部6aのシリンダー内周面1b側の端面であるベーン先端部6bは、外側に凸の円弧形状に形成され、その円弧形状の曲率半径は、シリンダー内周面1bの曲率半径と略同一となるように形成されている。また、第2ベーン6は、図3で示されるように、ベーン部6aの長さ方向及びベーン先端部6bの円弧の法線方向が、ベーンアライナー部6c、6dの円弧の中心を通るように形成されている。また、円弧形状のベーンアライナー部6cにおけるベーン先端部6b側の面には、ベーン部6aの長さ方向に垂直な平面部6eが形成されている。同様に、円弧形状のベーンアライナー部6dにおけるベーン先端部6b側の面には、ベーン部6aの長さ方向に垂直な平面部6fが形成されている。   The second vane 6 has a vane portion 6a, which is a substantially square plate-shaped member, an arc shape provided on the upper end surface of the vane portion 6a on the frame 2 side and the rotating shaft portion 4b side, that is, a partial ring shape. The vane aligner portion 6c and the vane aligner portion 6d having an arc shape, that is, a partial ring shape, provided on the lower end surface of the vane portion 6a on the cylinder head 3 side and the rotating shaft portion 4c side. The vane tip 6b, which is the end surface of the vane portion 6a on the cylinder inner peripheral surface 1b side, is formed in an outwardly convex arc shape, and the radius of curvature of the arc shape is substantially the same as the radius of curvature of the cylinder inner peripheral surface 1b. It is formed to be the same. Further, as shown in FIG. 3, the second vane 6 has a length direction of the vane portion 6a and a normal direction of the arc of the vane tip portion 6b passing through the centers of the arcs of the vane aligner portions 6c and 6d. Is formed. In addition, a flat surface portion 6e perpendicular to the length direction of the vane portion 6a is formed on the surface of the arc-shaped vane aligner portion 6c on the vane tip portion 6b side. Similarly, a flat surface portion 6f perpendicular to the length direction of the vane portion 6a is formed on the surface on the vane tip portion 6b side of the arc-shaped vane aligner portion 6d.

ブッシュ7、8は、それぞれ略半円柱状に形成された一対の物体で構成されている。ブッシュ7は、ローターシャフト4のブッシュ保持部4dに嵌入され、その一対のブッシュ7の内側に板形状のベーン部5aが挟持される。このときベーン部5aは、ローター部4aに対して回転自在、かつ、ベーン部5aの長さ方向に移動可能に保持される。ブッシュ8は、ローターシャフト4のブッシュ保持部4eに嵌入され、その一対のブッシュ8の内側に板形状のベーン部6aが挟持される。このときベーン部6aは、ローター部4aに対して回転自在、かつ、ベーン部5aの長さ方向に移動可能に保持される。   The bushes 7 and 8 are each composed of a pair of objects formed in a substantially semi-cylindrical shape. The bush 7 is fitted into the bush holding portion 4 d of the rotor shaft 4, and a plate-shaped vane portion 5 a is sandwiched between the pair of bushes 7. At this time, the vane portion 5a is held so as to be rotatable with respect to the rotor portion 4a and movable in the length direction of the vane portion 5a. The bush 8 is fitted into the bush holding portion 4 e of the rotor shaft 4, and a plate-shaped vane portion 6 a is sandwiched between the pair of bushes 8. At this time, the vane portion 6a is held so as to be rotatable with respect to the rotor portion 4a and movable in the length direction of the vane portion 5a.

電動要素102は、例えば、ブラシレスDCモーターで構成され、図1で示されるように、密閉容器103の内周に固定される固定子21、及び、その固定子21の内側に配置され、永久磁石によって形成された回転子22によって構成されている。固定子21は、密閉容器103の上面に固定されたガラス端子23から電力が供給され、この電力によって回転子22が回転駆動する。また、この回転子22には、前述のローターシャフト4の回転軸部4bが挿通して固定されており、回転子22が回転することによって、その回転力が回転軸部4bに伝達し、ローターシャフト4全体が回転駆動することになる。   The electric element 102 is composed of, for example, a brushless DC motor, and as shown in FIG. 1, the stator 21 fixed to the inner periphery of the hermetic container 103 and the inner side of the stator 21. It is comprised by the rotor 22 formed by these. Electric power is supplied to the stator 21 from a glass terminal 23 fixed to the upper surface of the hermetic container 103, and the rotor 22 is rotationally driven by this electric power. The rotor 22 is fixed with the rotating shaft portion 4b of the rotor shaft 4 described above. The rotating force of the rotor 22 is transmitted to the rotating shaft portion 4b when the rotor 22 is rotated. The entire shaft 4 is rotationally driven.

(ベーン型圧縮機200の圧縮動作)
図4は、本発明の実施の形態1に係るベーン型圧縮機200において図1のI−I断面図であり、図5は、同ベーン型圧縮機200の圧縮動作を示す図である。以下、図4及び図5を参照しながら、ベーン型圧縮機200の圧縮動作について説明する。
(Compression operation of the vane compressor 200)
4 is a cross-sectional view taken along the line II of FIG. 1 in the vane compressor 200 according to Embodiment 1 of the present invention, and FIG. 5 is a diagram illustrating a compression operation of the vane compressor 200. Hereinafter, the compression operation of the vane type compressor 200 will be described with reference to FIGS. 4 and 5.

この図4においては、ローターシャフト4のローター部4aが、シリンダー内周面1bの一箇所(最近接点32)において最近接している状態が示されている。ここで、ベーンアライナー軸受部2b、3bの半径をra(後述する図6参照)、そして、シリンダー内周面1bの半径をrcとした場合、第1ベーン5のベーンアライナー部5c、5dの外周側とベーン先端部5bとの間の距離rv(図3参照)は、下記の式(1)で表される。   FIG. 4 shows a state in which the rotor portion 4a of the rotor shaft 4 is in closest contact with one place (the closest contact point 32) of the cylinder inner peripheral surface 1b. Here, when the radius of the vane aligner bearing portions 2b and 3b is ra (see FIG. 6 described later) and the radius of the cylinder inner peripheral surface 1b is rc, the outer periphery of the vane aligner portions 5c and 5d of the first vane 5 A distance rv (see FIG. 3) between the side and the vane tip 5b is expressed by the following equation (1).

rv=rc−ra−δ (1)   rv = rc-ra-δ (1)

ここで、δはベーン先端部5bとシリンダー内周面1bとの間の隙間を表すものであり、式(1)のようにrvを設定することで、第1ベーン5のベーン先端部5bはシリンダー内周面1bに接触することなく、回転することとなる。ここで、δが極力小さくなるようにrvを設定すると、ベーン先端部5bからの冷媒の漏れが極力少なくなる。また、式(1)の関係は、第2ベーン6においても同様で、第2ベーン6のベーン先端部6bとシリンダー内周面1bとの間は狭い隙間を保ちつつ、第2ベーン6は回転することとなる。   Here, δ represents the gap between the vane tip 5b and the cylinder inner peripheral surface 1b. By setting rv as shown in Equation (1), the vane tip 5b of the first vane 5 is It will rotate without contacting the cylinder inner peripheral surface 1b. Here, if rv is set so that δ is as small as possible, refrigerant leakage from the vane tip 5b is minimized. Further, the relationship of the expression (1) is the same for the second vane 6, and the second vane 6 rotates while maintaining a narrow gap between the vane tip 6 b of the second vane 6 and the cylinder inner peripheral surface 1 b. Will be.

以上の構成によって、シリンダー内周面1bと近接する最近接点32、第1ベーン5のベーン先端部5b、及び、第2ベーン6のベーン先端部6bによって、シリンダー1の貫通部1f内に、3つの空間(吸入室9、中間室10及び圧縮室11)が形成される。吸入室9には、切欠き部1cの吸入ポート1aを介して、吸入管26から吸入されてくる冷媒が入り込む。この切欠き部1cは、図4(このローターシャフト4の回転角の位置を90°とする)で示されるように、最近接点32の近傍から、第1ベーン5のベーン先端部5bとシリンダー内周面1bとの近接点Aの範囲まで形成されている。圧縮室11は、シリンダー1の吐出ポート1dを介して、冷媒の吐出時以外は吐出弁27によって閉塞されるフレーム2に設けた吐出ポート2dに連通している。したがって、中間室10は、回転角度90°までは吸入ポート1aと連通するが、その後、吸入ポート1a及び吐出ポート1dのいずれとも連通しない回転角度範囲において形成される空間であり、その後、吐出ポート1dと連通して、圧縮室11となる。また、図4において、ブッシュ中心7a、8aは、それぞれ、ブッシュ7、8の回転中心であり、ベーン部5a、6aの回転中心でもある。   With the above configuration, the closest contact point 32 that is close to the cylinder inner peripheral surface 1b, the vane tip 5b of the first vane 5, and the vane tip 6b of the second vane 6 have 3 Two spaces (suction chamber 9, intermediate chamber 10 and compression chamber 11) are formed. The refrigerant sucked from the suction pipe 26 enters the suction chamber 9 through the suction port 1a of the notch 1c. As shown in FIG. 4 (the position of the rotation angle of the rotor shaft 4 is 90 °), the notch 1c is formed near the vane tip 5b of the first vane 5 and the inside of the cylinder from the vicinity of the closest point 32. It is formed up to the range of the proximity point A with the peripheral surface 1b. The compression chamber 11 communicates with the discharge port 2d provided in the frame 2 that is closed by the discharge valve 27 through the discharge port 1d of the cylinder 1 except when the refrigerant is discharged. Accordingly, the intermediate chamber 10 is a space formed in a rotation angle range that communicates with the suction port 1a up to a rotation angle of 90 °, but does not communicate with either the suction port 1a or the discharge port 1d, and thereafter the discharge port. The compression chamber 11 is communicated with 1d. In FIG. 4, bush centers 7a and 8a are the rotation centers of the bushes 7 and 8, respectively, and the rotation centers of the vane portions 5a and 6a.

次に、ベーン型圧縮機200のローターシャフト4の回転動作について説明する。
ローターシャフト4の回転軸部4bが電動要素102の回転子22からの回転力を受け、ローター部4aは、シリンダー1の貫通部1f内で回転する。このローター部4aの回転に伴い、ローター部4aのブッシュ保持部4d、4eは、ローターシャフト4の中心を中心とする円の円周上を移動する。そして、ブッシュ保持部4d、4e内にそれぞれ保持されている一対のブッシュ7、8、並びに、その一対のブッシュ7、8それぞれの間に回転可能に挟持されている第1ベーン5のベーン部5a、及び、第2ベーン6のベーン部6aもローター部4aの回転と共に回転する。第1ベーン5及び第2ベーン6は、ローター部4aの回転による遠心力を受け、ベーンアライナー部5c、6c及びベーンアライナー部5d、6dは、ベーンアライナー軸受部2b、3bにそれぞれ押し付けられて摺動しながら、ベーンアライナー軸受部2b、3bの中心を回転中心として回転する。ここで、ベーンアライナー軸受部2b、3bとシリンダー内周面1bとは同心であるため、第1ベーン5及び第2ベーン6はシリンダー内周面1bの中心を回転中心として回転することになる。そうすると、第1ベーン5のベーン部5a、及び、第2ベーン6のベーン部6aの長さ方向がシリンダー内周面1bの中心を通るように、ブッシュ7、8が、それぞれブッシュ保持部4d、4e内で、ブッシュ中心7a、8aを回転中心として回転することになる。すなわち、ベーン先端部5b、6bの円弧形状及びシリンダー内周面1bの法線が常にほぼ一致する状態で、ローター部4aが回転することになる。
Next, the rotation operation of the rotor shaft 4 of the vane type compressor 200 will be described.
The rotating shaft portion 4 b of the rotor shaft 4 receives the rotational force from the rotor 22 of the electric element 102, and the rotor portion 4 a rotates within the through portion 1 f of the cylinder 1. As the rotor portion 4 a rotates, the bush holding portions 4 d and 4 e of the rotor portion 4 a move on the circumference of a circle centered on the center of the rotor shaft 4. The pair of bushes 7 and 8 held in the bush holding portions 4d and 4e, respectively, and the vane portion 5a of the first vane 5 that is rotatably held between the pair of bushes 7 and 8 respectively. And the vane part 6a of the 2nd vane 6 also rotates with rotation of the rotor part 4a. The first vane 5 and the second vane 6 receive a centrifugal force due to the rotation of the rotor portion 4a, and the vane aligner portions 5c, 6c and the vane aligner portions 5d, 6d are slid by being pressed against the vane aligner bearing portions 2b, 3b, respectively. While moving, the vane aligner bearing portions 2b and 3b rotate around the center of rotation. Here, since the vane aligner bearing portions 2b and 3b and the cylinder inner peripheral surface 1b are concentric, the first vane 5 and the second vane 6 rotate around the center of the cylinder inner peripheral surface 1b. Then, the bushes 7 and 8 are respectively connected to the bush holding portions 4d, so that the length directions of the vane portion 5a of the first vane 5 and the vane portion 6a of the second vane 6 pass through the center of the cylinder inner peripheral surface 1b. Within 4e, the bush centers 7a and 8a are rotated about the rotation center. That is, the rotor portion 4a rotates in a state in which the arc shape of the vane tip portions 5b and 6b and the normal line of the cylinder inner peripheral surface 1b are always substantially matched.

以上の動作において、ブッシュ7及び第1ベーン5のベーン部5aの側面は、互いに摺動を行い、ブッシュ8及び第2ベーン6のベーン部6aの側面も、互いに摺動を行う。また、ローターシャフト4のブッシュ保持部4d及びブッシュ7は、互いに摺動を行い、ローターシャフト4のブッシュ保持部4e及びブッシュ8も、互いに摺動を行う。   In the above operation, the side surfaces of the bush 7 and the vane portion 5a of the first vane 5 slide with each other, and the side surfaces of the bush 8 and the vane portion 6a of the second vane 6 also slide with each other. Further, the bush holding portion 4d and the bush 7 of the rotor shaft 4 slide with each other, and the bush holding portion 4e and the bush 8 of the rotor shaft 4 also slide with each other.

次に、図5を参照しながら、吸入室9、中間室10及び圧縮室11の容積が変化する様子を説明する。なお、図5においては簡単のため、吸入ポート1a、切欠き部1c及び吐出ポート1dの図示を略し、吸入ポート1a及び吐出ポート1dを矢印でそれぞれ吸入及び吐出として示している。まず、ローターシャフト4の回転に伴い、吸入管26を経由して低圧のガス冷媒が吸入ポート1aから流入する。ここで、図5における回転角度を、ローターシャフト4のローター部4aとシリンダー内周面1bとが最近接している最近接点32と、ベーン部5aとシリンダー内周面1bとが相対する一箇所とが一致するときを、「角度0°」と定義する。図5では、「角度0°」、「角度45°」、「角度90°」及び「角度135°」の場合におけるベーン部5a及びベーン部6aの位置、並びに、それぞれの場合における吸入室9、中間室10及び圧縮室11の状態を示している。また、図5の「角度0°」の図においては、ローターシャフト4の回転方向(図5では時計方向)を矢印で示している。ただし、他の角度の図においては、ローターシャフト4の回転方向を示す矢印は略している。なお、「角度180°」以降の状態を示していないのは、「角度180°」になると、「角度0°」において、第1ベーン5と第2ベーン6が入れ替わった状態と同じになり、それ以降は「角度0°」から「角度135°」までと同じ圧縮動作を示すためである。   Next, how the volumes of the suction chamber 9, the intermediate chamber 10, and the compression chamber 11 change will be described with reference to FIG. In FIG. 5, for the sake of simplicity, illustration of the suction port 1a, the notch 1c, and the discharge port 1d is omitted, and the suction port 1a and the discharge port 1d are shown as suction and discharge by arrows, respectively. First, as the rotor shaft 4 rotates, low-pressure gas refrigerant flows from the suction port 1a via the suction pipe 26. Here, the rotation angle in FIG. 5 is the closest point 32 where the rotor portion 4a of the rotor shaft 4 and the cylinder inner peripheral surface 1b are closest to each other, and one location where the vane portion 5a and the cylinder inner peripheral surface 1b face each other. Are defined as “angle 0 °”. In FIG. 5, the positions of the vane part 5a and the vane part 6a in the case of “angle 0 °”, “angle 45 °”, “angle 90 °”, and “angle 135 °”, and the suction chamber 9 in each case, The state of the intermediate chamber 10 and the compression chamber 11 is shown. Further, in the “angle 0 °” diagram of FIG. 5, the rotation direction of the rotor shaft 4 (clockwise in FIG. 5) is indicated by an arrow. However, in the figures at other angles, the arrow indicating the rotation direction of the rotor shaft 4 is omitted. The state after “angle 180 °” is not shown when “angle 180 °” is the same as the state in which the first vane 5 and the second vane 6 are switched at “angle 0 °” Thereafter, the same compression operation as that from “angle 0 °” to “angle 135 °” is shown.

図5における「角度0°」では、最近接点32と第2ベーン6のベーン部6aとで仕切られた右側の空間は中間室10であり、切欠き部1cを介して吸入ポート1aと連通しており、ガス冷媒を吸入する。最近接点32と第2ベーン6のベーン部6aとで仕切られた左側の空間は吐出ポート1dに連通した圧縮室11となる。   In “angle 0 °” in FIG. 5, the right space partitioned by the closest contact 32 and the vane portion 6a of the second vane 6 is the intermediate chamber 10, and communicates with the suction port 1a via the notch portion 1c. And inhales the gas refrigerant. The left space partitioned by the closest contact 32 and the vane portion 6a of the second vane 6 becomes the compression chamber 11 communicating with the discharge port 1d.

図5における「角度45°」では、第1ベーン5のベーン部5aと最近接点32とで仕切られた空間は吸入室9となる。第1ベーン5のベーン部5aと第2ベーン6のベーン部6aとで仕切られた中間室10は、切欠き部1cを介して吸入ポート1aと連通しており、中間室10の容積は「角度0°」のときより大きくなるので、ガス冷媒の吸入が継続される。また、第2ベーン6のベーン部6aと最近接点32とで仕切られた空間は圧縮室11であり、圧縮室11の容積は「角度0°」のときより小さくなり、ガス冷媒は圧縮されて徐々にその圧力が高くなる。   At “angle 45 °” in FIG. 5, the space partitioned by the vane portion 5 a of the first vane 5 and the closest point 32 becomes the suction chamber 9. The intermediate chamber 10 partitioned by the vane portion 5a of the first vane 5 and the vane portion 6a of the second vane 6 communicates with the suction port 1a through the notch portion 1c, and the volume of the intermediate chamber 10 is “ Since the angle is larger than that at “0 °”, the suction of the gas refrigerant continues. The space partitioned by the vane portion 6a of the second vane 6 and the nearest contact point 32 is the compression chamber 11, and the volume of the compression chamber 11 is smaller than that at the “angle 0 °”, and the gas refrigerant is compressed. The pressure gradually increases.

図5における「角度90°」では、第1ベーン5のベーン先端部5bがシリンダー内周面1b上の近接点Aと重なるので、中間室10は吸入ポート1aと連通しなくなる。これによって、中間室10へのガス冷媒の吸入は終了する。また、この状態で、中間室10の容積は略最大となる。圧縮室11の容積は「角度45°」のときよりさらに小さくなり、ガス冷媒の圧力は上昇する。吸入室9の容積は「角度45°」のときより大きくなり、切欠き部1cを介して吸入ポート1aと連通して、ガス冷媒が吸入される。   At the “angle of 90 °” in FIG. 5, the vane tip 5b of the first vane 5 overlaps with the proximity point A on the cylinder inner peripheral surface 1b, so that the intermediate chamber 10 does not communicate with the suction port 1a. Thereby, the suction of the gas refrigerant into the intermediate chamber 10 is completed. In this state, the volume of the intermediate chamber 10 is substantially maximum. The volume of the compression chamber 11 becomes even smaller than when the angle is 45 °, and the pressure of the gas refrigerant increases. The volume of the suction chamber 9 is larger than that at the “angle 45 °” and communicates with the suction port 1a through the notch 1c to suck the gas refrigerant.

図5における「角度135°」では、中間室10の容積は「角度90°」のときより小さくなり、冷媒の圧力は上昇する。また、圧縮室11の容積も「角度90°」のときより小さくなり、冷媒の圧力は上昇する。吸入室9の容積は「角度90°」のときより大きくなるので、ガス冷媒の吸入が継続される。   At “angle 135 °” in FIG. 5, the volume of the intermediate chamber 10 becomes smaller than that at “angle 90 °”, and the refrigerant pressure rises. Further, the volume of the compression chamber 11 becomes smaller than that at the “angle 90 °”, and the pressure of the refrigerant rises. Since the volume of the suction chamber 9 becomes larger than that at the “angle of 90 °”, the suction of the gas refrigerant is continued.

その後、第2ベーン6のベーン部6aが吐出ポート1dに近づくが、圧縮室11内のガス冷媒の圧力が、冷凍サイクルの高圧(吐出弁27を開くのに必要な圧力も含む)を上回ると、吐出弁27が開く。そして、圧縮室11内のガス冷媒は、吐出ポート1d及び吐出ポート2dを通って、図1で示されるように、密閉容器103内に吐出される。密閉容器103内に吐出されたガス冷媒は、電動要素102を通過して、密閉容器103の上部に固定された吐出管24を通って、外部(冷凍サイクルの高圧側)に吐出される。したがって、密閉容器103内の圧力は高圧である吐出圧力となる。   Thereafter, the vane portion 6a of the second vane 6 approaches the discharge port 1d, but when the pressure of the gas refrigerant in the compression chamber 11 exceeds the high pressure of the refrigeration cycle (including the pressure necessary to open the discharge valve 27). The discharge valve 27 is opened. Then, the gas refrigerant in the compression chamber 11 passes through the discharge port 1d and the discharge port 2d and is discharged into the sealed container 103 as shown in FIG. The gas refrigerant discharged into the sealed container 103 passes through the electric element 102 and is discharged to the outside (the high pressure side of the refrigeration cycle) through the discharge pipe 24 fixed to the upper part of the sealed container 103. Therefore, the pressure in the sealed container 103 is a high discharge pressure.

また、第2ベーン6のベーン部6aが吐出ポート1dを通過すると、圧縮室11には高圧のガス冷媒が若干残る(ロスとなる)。そして、「角度180°」(図示せず)で圧縮室11が消滅したとき、この高圧のガス冷媒は吸入室9において低圧のガス冷媒に変化する。なお、「角度180°」において、吸入室9が中間室10に移行し、中間室10が圧縮室11に移行して、以後、上記の圧縮動作を繰り返すことになる。   Further, when the vane portion 6a of the second vane 6 passes through the discharge port 1d, a little high-pressure gas refrigerant remains (loss) in the compression chamber 11. When the compression chamber 11 disappears at an “angle of 180 °” (not shown), the high-pressure gas refrigerant changes to a low-pressure gas refrigerant in the suction chamber 9. At “angle 180 °”, the suction chamber 9 moves to the intermediate chamber 10, the intermediate chamber 10 moves to the compression chamber 11, and thereafter, the above compression operation is repeated.

このように、ローターシャフト4のローター部4aの回転によって、吸入室9は徐々に容積が大きくなり、ガス冷媒の吸入を継続する。以後、吸入室9は中間室10に移行するが、その途中まで(吸入室9と中間室10とを仕切るベーン部(ベーン部5a又はベーン部6a)が近接点Aと相対するまで)徐々に容積が大きくなり、さらにガス冷媒の吸入が継続される。その途中において、中間室10の容積は最大となり、吸入ポート1aに連通しなくなるので、ここでガス冷媒の吸入が終了する。以後、中間室10の容積は徐々に小さくなり、ガス冷媒を圧縮することになる。その後、中間室10は圧縮室11に移行して、ガス冷媒の圧縮が継続される。所定の圧力まで圧縮されたガス冷媒は、吐出ポート1d及び吐出ポート2dを通って吐出弁27を押し上げて、密閉容器103内に吐出される。   As described above, the volume of the suction chamber 9 gradually increases due to the rotation of the rotor portion 4a of the rotor shaft 4, and the suction of the gas refrigerant is continued. Thereafter, the suction chamber 9 moves to the intermediate chamber 10, but gradually (until the vane portion (the vane portion 5a or the vane portion 6a) separating the suction chamber 9 and the intermediate chamber 10 faces the proximity point A). The volume increases and the suction of the gas refrigerant is continued. In the middle of the process, the volume of the intermediate chamber 10 becomes maximum, and the communication with the suction port 1a is lost. Thus, the suction of the gas refrigerant is finished here. Thereafter, the volume of the intermediate chamber 10 gradually decreases, and the gas refrigerant is compressed. Thereafter, the intermediate chamber 10 moves to the compression chamber 11 and the compression of the gas refrigerant is continued. The gas refrigerant compressed to a predetermined pressure pushes up the discharge valve 27 through the discharge port 1d and the discharge port 2d, and is discharged into the sealed container 103.

図6は、本発明の実施の形態1に係るベーン型圧縮機200のベーンアライナー部5c、6cの回転動作を示す図1におけるJ−J断面図である。図6の「角度0°」の図においては、ベーンアライナー部5c、6cの回転方向(図6では時計方向)を矢印で示している。ただし、他の角度の図においては、ベーンアライナー部5c、6cの回転方向を示す矢印は略している。
ローターシャフト4の回転により、第1ベーン5のベーン部5a及び第2ベーン6のベーン部6aがシリンダー内周面1bの中心を回転中心として回転する。これによって、ベーンアライナー部5c、6cは、図6で示されるように、凹部2a内を、ベーンアライナー軸受部2bに支持されてシリンダー内周面1bの中心を回転中心として回転する。また、同様に、ベーンアライナー部5d、6dは、凹部3a内を、ベーンアライナー軸受部3bに支持されてシリンダー内周面1bの中心を回転中心として回転する。
6 is a cross-sectional view taken along the line JJ in FIG. 1 illustrating the rotation operation of the vane aligner portions 5c and 6c of the vane type compressor 200 according to Embodiment 1 of the present invention. In the “angle 0 °” diagram of FIG. 6, the rotation direction of the vane aligner portions 5c and 6c (clockwise in FIG. 6) is indicated by an arrow. However, in the figures at other angles, the arrows indicating the rotation directions of the vane aligner portions 5c and 6c are omitted.
The rotation of the rotor shaft 4 causes the vane portion 5a of the first vane 5 and the vane portion 6a of the second vane 6 to rotate about the center of the cylinder inner peripheral surface 1b. Accordingly, as shown in FIG. 6, the vane aligner portions 5c and 6c are supported by the vane aligner bearing portion 2b in the recess 2a and rotate around the center of the cylinder inner peripheral surface 1b. Similarly, the vane aligner portions 5d and 6d are supported by the vane aligner bearing portion 3b in the recess 3a and rotate around the center of the cylinder inner peripheral surface 1b.

(冷凍機油25の挙動)
以上の動作において、図1で示されるように、ローターシャフト4の回転によって、油ポンプ31により油溜め104から冷凍機油25が吸い上げられ、給油路4hに送り出される。この給油路4hに送り出された冷凍機油25は、給油路4iを通ってフレーム2の凹部2aに、かつ、給油路4jを通ってシリンダーヘッド3の凹部3aに送り出される。凹部2a、3aに送り出された冷凍機油25は、ベーンアライナー軸受部2b、3bを潤滑すると共に、凹部2a、3aと連通したベーン逃がし部4f、4gに供給される。ここで、密閉容器103内の圧力は高圧である吐出圧力になっているため、凹部2a、3a及びベーン逃がし部4f、4g内の圧力も吐出圧力となる。また、凹部2a、3aに送り出された冷凍機油25の一部は、フレーム2の主軸受部2c及びシリンダーヘッド3の主軸受部3cに供給され潤滑する。
(Behavior of refrigeration oil 25)
In the above operation, as shown in FIG. 1, the refrigerating machine oil 25 is sucked up from the oil sump 104 by the oil pump 31 by the rotation of the rotor shaft 4, and sent out to the oil supply path 4h. The refrigerating machine oil 25 sent out to the oil supply passage 4h is sent out to the recess 2a of the frame 2 through the oil supply passage 4i and to the recess 3a of the cylinder head 3 through the oil supply passage 4j. The refrigerating machine oil 25 fed to the recesses 2a and 3a lubricates the vane aligner bearing portions 2b and 3b and is supplied to the vane relief portions 4f and 4g communicating with the recesses 2a and 3a. Here, since the pressure in the sealed container 103 is a high discharge pressure, the pressures in the recesses 2a and 3a and the vane relief portions 4f and 4g are also discharge pressures. A part of the refrigerating machine oil 25 fed to the recesses 2a and 3a is supplied to the main bearing portion 2c of the frame 2 and the main bearing portion 3c of the cylinder head 3 to be lubricated.

図7は、本発明の実施の形態1に係るベーン型圧縮機200の第1ベーン5のベーン部5a周りの要部断面図である。
図7で示されるように、実線の矢印は冷凍機油25の流れを示している。ベーン逃がし部4f内の圧力は吐出圧力であり、吸入室9及び中間室10内の圧力よりも高いため、冷凍機油25は、ベーン部5aの側面とブッシュ7との間の摺動部を潤滑しながら、圧力差及び遠心力によって吸入室9及び中間室10に送り出される。また、冷凍機油25は、ブッシュ7とローターシャフト4のブッシュ保持部4dとの間の摺動部を潤滑しながら、圧力差及び遠心力によって吸入室9及び中間室10に送り出される。また、中間室10に送り出された冷凍機油25の一部は、ベーン先端部5bとシリンダー内周面1bとの間の隙間をシールしながら吸入室9に流入する。
FIG. 7 is a cross-sectional view of a main part around the vane portion 5a of the first vane 5 of the vane type compressor 200 according to Embodiment 1 of the present invention.
As shown in FIG. 7, the solid line arrows indicate the flow of the refrigerating machine oil 25. Since the pressure in the vane relief portion 4f is the discharge pressure and is higher than the pressure in the suction chamber 9 and the intermediate chamber 10, the refrigerating machine oil 25 lubricates the sliding portion between the side surface of the vane portion 5a and the bush 7. However, it is sent out to the suction chamber 9 and the intermediate chamber 10 by the pressure difference and the centrifugal force. The refrigerating machine oil 25 is sent out to the suction chamber 9 and the intermediate chamber 10 by the pressure difference and the centrifugal force while lubricating the sliding portion between the bush 7 and the bush holding portion 4d of the rotor shaft 4. Further, a part of the refrigerating machine oil 25 sent out to the intermediate chamber 10 flows into the suction chamber 9 while sealing the gap between the vane tip 5b and the cylinder inner peripheral surface 1b.

また、上記では、第1ベーン5のベーン部5aで仕切られる空間が吸入室9及び中間室10である場合について示したが、ローターシャフト4の回転が進んで、第1ベーン5のベーン部5aで仕切られる空間が中間室10及び圧縮室11である場合でも同様である。すなわち、圧縮室11内の圧力がベーン逃がし部4fの圧力と同じ吐出圧力に達した場合でも、遠心力によって、冷凍機油25は、圧縮室11に向かって送り出されることになる。
なお、以上の動作は第1ベーン5に対して示したが、第2ベーン6においても同様である。
In the above description, the space partitioned by the vane portion 5a of the first vane 5 is the suction chamber 9 and the intermediate chamber 10. However, the rotation of the rotor shaft 4 proceeds and the vane portion 5a of the first vane 5 is advanced. The same applies to the case where the space partitioned by is the intermediate chamber 10 and the compression chamber 11. That is, even when the pressure in the compression chamber 11 reaches the same discharge pressure as the pressure of the vane escape portion 4f, the refrigerating machine oil 25 is sent out toward the compression chamber 11 by centrifugal force.
Although the above operation is shown for the first vane 5, the same is true for the second vane 6.

また、図1で示されるように、主軸受部2cに供給された冷凍機油25は、主軸受部2cと回転軸部4bとの隙間を通って、フレーム2の上方の空間に吐き出された後、シリンダー1の外周部に設けた油戻し穴1eを通って、油溜め104に戻される。また、主軸受部3cに供給された冷凍機油25は、主軸受部3cと回転軸部4cとの隙間を通って、油溜め104に戻される。また、ベーン逃がし部4f、4gを介して吸入室9、中間室10及び圧縮室11に送り出された冷凍機油25も、最終的にガス冷媒と共に吐出ポート2dからフレーム2の上方の空間に吐出された後、シリンダー1の外周部に形成された油戻し穴1eを通って、油溜め104に戻される。また、油ポンプ31により給油路4hに送り出された冷凍機油25のうち、余剰な冷凍機油25は、ローターシャフト4の上方の排油穴4kから、フレーム2の上方の空間に吐き出された後、シリンダー1の外周部に形成された油戻し穴1eを通って、油溜め104に戻される。   Further, as shown in FIG. 1, after the refrigerating machine oil 25 supplied to the main bearing portion 2 c is discharged into the space above the frame 2 through the gap between the main bearing portion 2 c and the rotating shaft portion 4 b. The oil is returned to the oil sump 104 through the oil return hole 1 e provided in the outer peripheral portion of the cylinder 1. The refrigerating machine oil 25 supplied to the main bearing portion 3c is returned to the oil sump 104 through the gap between the main bearing portion 3c and the rotating shaft portion 4c. Further, the refrigerating machine oil 25 sent to the suction chamber 9, the intermediate chamber 10 and the compression chamber 11 through the vane relief portions 4f and 4g is finally discharged together with the gas refrigerant into the space above the frame 2 from the discharge port 2d. After that, the oil is returned to the oil sump 104 through the oil return hole 1 e formed in the outer peripheral portion of the cylinder 1. Of the refrigerating machine oil 25 sent out to the oil supply passage 4 h by the oil pump 31, the surplus refrigerating machine oil 25 is discharged into the space above the frame 2 from the oil drain hole 4 k above the rotor shaft 4. The oil is returned to the oil sump 104 through the oil return hole 1 e formed in the outer peripheral portion of the cylinder 1.

(ベーン部5a、6aの上下端面の研磨加工)
前述のように、第1ベーン5及び第2ベーン6は、シリンダー1の貫通部1f内に形成される3つの空間である吸入室9、中間室10及び圧縮室11を間仕切りする部材である。これらの空間からのガス冷媒の漏れを抑制するためには、ベーン部5a、6aとフレーム2との隙間、及び、ベーン部5a、6aとシリンダーヘッド3との隙間が小さいほど効果的である。さらに、ベーン部5a、6aとフレーム2との間、及び、ベーン部5a、6aとシリンダーヘッド3との間の摺動損失を抑制するためにはベーン部5a、6aの上下端面を研磨することによって、十点平均粗さで0.8[μm]以下に仕上げることが望ましい。
(Polishing of upper and lower end surfaces of vanes 5a and 6a)
As described above, the first vane 5 and the second vane 6 are members that partition the suction chamber 9, the intermediate chamber 10, and the compression chamber 11, which are three spaces formed in the through portion 1 f of the cylinder 1. In order to suppress the leakage of the gas refrigerant from these spaces, it is more effective that the gap between the vane portions 5a, 6a and the frame 2 and the gap between the vane portions 5a, 6a and the cylinder head 3 are smaller. Furthermore, in order to suppress the sliding loss between the vane portions 5a and 6a and the frame 2 and between the vane portions 5a and 6a and the cylinder head 3, the upper and lower end surfaces of the vane portions 5a and 6a are polished. Therefore, it is desirable that the ten-point average roughness is 0.8 [μm] or less.

以下、ベーン部5a、6aの上下端面の平面研磨加工について、第1ベーン5のベーンアライナー部5cが取り付けられたベーン部5aの上端面を加工する場合を例として説明する。図3で示されるベーン部5aの上端面の距離rvの範囲に平面研磨加工を実施するためには、回転する砥石がベーンアライナー部5cに干渉しないように、図3で示されるように、逃がしとして平面部5eが形成されている。ここで、ベーン部5aの上端面を研磨する方法として、例えば、円筒体の端面に多数の切れ刃を設け、これを回転させながら工作物を切削するエンドミルと呼ばれる工具を使用する方法がある。エンドミルの端面をベーン部5aの上端部に垂直に接触させ、回転させながらベーン部5aの上端部を図3(a)で示される距離rvの方向に往復移動させることで研磨することが可能である。また、別の方法として、例えば、平面研削盤がある。回転砥石を、その軸が距離rvの方向と平行になるように配し、回転砥石の端面をベーン部5aの上端部に接触させ、回転砥石を軸周りに回転させると同時に距離rvの方向に往復移動させることで研磨することが可能である。このとき、ベーン部5aの上端面を研磨するために、平面部5eのベーン部5aの上端面の幅方向と同方向の幅は、ベーン部5aの上端面の幅よりも大きくすることが望ましい。本実施の形態においては、ベーンアライナー部5cに平面部5eが形成されていることによって、ベーン部5aの上端面の平面研磨加工を実施する際、回転する砥石がベーンアライナー部5cに干渉することを回避することができる。これは、ベーン部5aの下端面及びベーン部6aの上下端面の加工についても同様である。また、ベーンアライナー部5c、6cに平面部5e、6eが形成されていることによって、ベーン部5a、6aの上下端面は、十点平均粗さ0.8[μm]以下となるように加工することができる。それに対して、ベーン部5a、6aの上下端面の研磨を行わない場合の十点平均粗さは、少なくとも3[μm]以上となる。ベーン部5a、6aの上下端面の研磨を行った場合は、行わない場合と比較すると、ベーン部5a、6aとフレーム2との間、及び、ベーン部5a、6aとシリンダーヘッド3との間の摺動面における機械損失が、3割程度抑制される。さらに、ベーン部5a、6aとフレーム2との隙間、及び、ベーン部5a、6aとシリンダーヘッド3との隙間を小さくしておくことができるため、高効率化を実現できる。   Hereinafter, planar polishing of the upper and lower end surfaces of the vane portions 5a and 6a will be described by taking as an example the case of processing the upper end surface of the vane portion 5a to which the vane aligner portion 5c of the first vane 5 is attached. In order to perform surface polishing in the range of the distance rv of the upper end surface of the vane portion 5a shown in FIG. 3, as shown in FIG. 3, the rotating grindstone does not interfere with the vane aligner portion 5c. As shown in FIG. Here, as a method of polishing the upper end surface of the vane portion 5a, for example, there is a method of using a tool called an end mill for cutting a workpiece while providing a large number of cutting edges on the end surface of a cylindrical body and rotating the cutting blade. It is possible to polish by bringing the end face of the end mill vertically into contact with the upper end of the vane 5a and reciprocating the upper end of the vane 5a in the direction of the distance rv shown in FIG. is there. Another method is a surface grinder, for example. The rotating grindstone is arranged so that its axis is parallel to the direction of the distance rv, the end surface of the rotating grindstone is brought into contact with the upper end of the vane portion 5a, and the rotating grindstone is rotated around the axis and at the same time in the direction of the distance rv. It is possible to polish by reciprocating. At this time, in order to polish the upper end surface of the vane portion 5a, it is desirable that the width in the same direction as the upper end surface of the vane portion 5a of the flat portion 5e is larger than the width of the upper end surface of the vane portion 5a. . In the present embodiment, since the flat portion 5e is formed on the vane aligner portion 5c, the rotating grindstone interferes with the vane aligner portion 5c when performing the planar polishing of the upper end surface of the vane portion 5a. Can be avoided. The same applies to the processing of the lower end surface of the vane portion 5a and the upper and lower end surfaces of the vane portion 6a. In addition, since the flat portions 5e and 6e are formed on the vane aligner portions 5c and 6c, the upper and lower end surfaces of the vane portions 5a and 6a are processed so that the ten-point average roughness is 0.8 [μm] or less. be able to. On the other hand, the ten-point average roughness when the upper and lower end surfaces of the vanes 5a and 6a are not polished is at least 3 [μm] or more. When the upper and lower end surfaces of the vane portions 5a and 6a are polished, the vane portions 5a and 6a and the frame 2 and between the vane portions 5a and 6a and the cylinder head 3 are compared with the case where the polishing is not performed. The mechanical loss on the sliding surface is suppressed by about 30%. Further, since the gap between the vane portions 5a, 6a and the frame 2 and the gap between the vane portions 5a, 6a and the cylinder head 3 can be reduced, high efficiency can be realized.

(実施の形態1の効果)
以上の構成のように、ベーンアライナー部5c、5d、6c、6dのそれぞれに、平面部5e、5f、6e、6fを形成することによって、ベーン部5a、6aの上下端面の平面研磨加工を実施する際、回転する砥石がそれぞれベーンアライナー部5c、5d、6c、6dに干渉することを回避することができる。
また、これによって、ベーン部5a、6aの上下端面を十点平均粗さ0.8[μm]以下となるような加工が可能となり、ベーン部5a、6aとフレーム2との間、及び、ベーン部5a、6aとシリンダーヘッド3との間の摺動損失を抑制することができ、かつ、ベーン部5a、6aとフレーム2との隙間、及び、ベーン部5a、6aとシリンダーヘッド3との隙間を小さく保持することができるため、耐焼付き性、耐摩耗性を向上させると同時に、高効率化を実現できる。
(Effect of Embodiment 1)
As described above, the flat surface processing of the upper and lower end surfaces of the vane portions 5a and 6a is performed by forming the flat surface portions 5e, 5f, 6e, and 6f on the vane aligner portions 5c, 5d, 6c, and 6d, respectively. In doing so, it is possible to avoid the rotating grindstone from interfering with the vane aligner portions 5c, 5d, 6c, and 6d, respectively.
In addition, this makes it possible to process the upper and lower end surfaces of the vane portions 5a and 6a to have a 10-point average roughness of 0.8 [μm] or less, between the vane portions 5a and 6a and the frame 2, and the vane. The sliding loss between the parts 5a, 6a and the cylinder head 3 can be suppressed, the gap between the vane parts 5a, 6a and the frame 2, and the gap between the vane parts 5a, 6a and the cylinder head 3 Since the seizure resistance and the wear resistance can be improved, high efficiency can be achieved.

また、上記の式(1)の関係を有するように、ベーン先端部5b、6bとシリンダー内周面1bとの間に所定の適正な隙間δを設けることによって、ベーン先端部5b、6bからの冷媒の漏れを抑制しつつ、機械損失の増大による圧縮機効率の低下を抑制し、かつ、ベーン先端部5b、6bの摩耗をゼロにすることができる。   Further, by providing a predetermined appropriate gap δ between the vane tip portions 5b and 6b and the cylinder inner peripheral surface 1b so as to have the relationship of the above formula (1), the vane tip portions 5b and 6b are separated from the vane tip portions 5b and 6b. While suppressing the leakage of the refrigerant, it is possible to suppress a decrease in the compressor efficiency due to an increase in mechanical loss and to eliminate the wear of the vane tip portions 5b and 6b.

また、ベーン先端部5b、6bの円弧形状及びシリンダー内周面1bの法線が常にほぼ一致するように圧縮動作を行うために必要なベーン(第1ベーン5、第2ベーン6)がシリンダー内周面1bの中心を回転中心として回転運動する機構を、ローター部4aと回転軸部4b、4cとを一体にした構成で実現できる。このため、回転軸部4b、4cを小径で支持できることで軸受摺動損失を低減し、かつローター部4aの外径及び回転中心の精度を向上させることができ、ローター部4aとシリンダー内周面1bとの間を狭い隙間で形成して漏れ損失を低減することが可能となる。   In addition, vanes (first vane 5 and second vane 6) necessary for performing the compression operation so that the arc shapes of the vane tip portions 5b and 6b and the normal line of the cylinder inner peripheral surface 1b almost coincide with each other are provided in the cylinder. A mechanism that rotates around the center of the peripheral surface 1b as a rotation center can be realized by a configuration in which the rotor portion 4a and the rotating shaft portions 4b and 4c are integrated. For this reason, the rotation shaft portions 4b and 4c can be supported with a small diameter, so that the bearing sliding loss can be reduced, and the accuracy of the outer diameter and the rotation center of the rotor portion 4a can be improved. Leakage loss can be reduced by forming a narrow gap with 1b.

なお、本実施の形態において、ローターシャフト4のローター部4aに設置されるベーンとして第1ベーン5及び第2ベーン6の2枚としているが、これに限定されるものではなく、1枚又は3枚以上のベーンが設置される構成としてもよい。例えば、図8は、ベーンが3枚で構成された場合の圧縮要素101の分解斜視図であり、第1ベーン5及び第2ベーン6の他、3枚目のベーンとして、第3ベーン70が設置されたものである。この第3ベーン70のベーン部を挟持するためのブッシュ90がローター部4aに設置されている。   In the present embodiment, the vanes installed on the rotor portion 4a of the rotor shaft 4 are the first vane 5 and the second vane 6. However, the present invention is not limited to this, and one or three vanes are not limited to this. It is good also as a structure by which the vane of a sheet or more is installed. For example, FIG. 8 is an exploded perspective view of the compression element 101 when three vanes are configured. In addition to the first vane 5 and the second vane 6, the third vane 70 is used as the third vane. It is installed. A bush 90 for sandwiching the vane portion of the third vane 70 is installed in the rotor portion 4a.

また、図4、図5及び図7で示されるように、ベーン逃がし部4f、4gの断面を略円形状としているが、これに限定されるものではなく、ベーン部5a、6aがそれぞれ、ベーン逃がし部4f、4gの内周面に接触しなければ、任意の形状(例えば、長穴形状又は矩形状等)にしてもよい。   Further, as shown in FIGS. 4, 5 and 7, the cross sections of the vane relief portions 4f and 4g are substantially circular, but the present invention is not limited to this, and the vane portions 5a and 6a are respectively vanes. As long as it does not contact the inner peripheral surfaces of the relief portions 4f and 4g, it may have an arbitrary shape (for example, a long hole shape or a rectangular shape).

また、図1で示されるように、フレーム2及びシリンダーヘッド3に、それぞれの外周面であるベーンアライナー軸受部2b、3bがシリンダー内周面1bと同心円の凹部2a、3aが形成される構成としているがこれに限定されるものではない。すなわち、ベーンアライナー軸受部2b、3bがシリンダー内周面1bと同心円であり、かつ、ベーンアライナー部5c、6c、5d、6dが嵌入できるのであれば任意の形状としてもよく、例えば、ベーンアライナー部5c、6c、5d及び6dが嵌入できるようなリング状の溝で形成するものとしてもよい。   Further, as shown in FIG. 1, the frame 2 and the cylinder head 3 are configured such that the vane aligner bearing portions 2b and 3b which are the outer peripheral surfaces of the frame 2 and the cylinder head 3 are formed with concavities 2a and 3a which are concentric with the cylinder inner peripheral surface 1b. However, it is not limited to this. That is, the vane aligner bearing portions 2b and 3b may be of any shape as long as they are concentric with the cylinder inner peripheral surface 1b and the vane aligner portions 5c, 6c, 5d, and 6d can be fitted. It is good also as what forms by a ring-shaped groove | channel which can fit 5c, 6c, 5d, and 6d.

また、第1ベーン5及び第2ベーン6の材質として、焼付き及び摩耗を抑制するために、油を含浸させた焼結材、鋳鉄又は高速度工具鋼等を用いるものとすればよい。また、焼付き及び摩耗を抑制するために、固定潤滑被膜として、二硫化モリブデン、グラファイト、窒化ホウ素、二硫化タングステン、滑石、雲母、リン酸マンガン又は軟質金属のメッキとして金メッキ、銀メッキ、鉛メッキ又は銅メッキ等を施してもよい。さらに、耐摩耗性向上のための高硬度化の方法として、硬質クロムメッキ、Ni−Wメッキ、Fe−Wメッキ、Co−Wメッキ、Fe−Cメッキ、Ni−Coメッキ、Cu−Snメッキ若しくはNi−Moメッキ等のメッキ処理、PVD法若しくはCVD法によるTiC、TiN、Al、WC等のセラミック被膜処理、浸炭処理、窒化処理、又は、表面焼入れ等の表面処理を施してもよい。Further, as a material of the first vane 5 and the second vane 6, a sintered material impregnated with oil, cast iron, high-speed tool steel, or the like may be used in order to suppress seizure and wear. In order to suppress seizure and wear, as a fixed lubricating film, molybdenum disulfide, graphite, boron nitride, tungsten disulfide, talc, mica, manganese phosphate or soft metal plating as gold plating, silver plating, lead plating Or you may give copper plating etc. Further, as a method of increasing hardness for improving wear resistance, hard chrome plating, Ni—W plating, Fe—W plating, Co—W plating, Fe—C plating, Ni—Co plating, Cu—Sn plating or Surface treatment such as plating treatment such as Ni—Mo plating, ceramic coating treatment such as TiC, TiN, Al 2 O 3 , WC, etc., carburization treatment, nitriding treatment, or surface quenching by PVD method or CVD method may be performed. .

実施の形態2.
本実施の形態に係るベーン型圧縮機200について、実施の形態1に係るベーン型圧縮機200と相違する点を中心に説明する。
Embodiment 2. FIG.
The vane compressor 200 according to the present embodiment will be described focusing on differences from the vane compressor 200 according to the first embodiment.

(流体潤滑状態で摺動するための平面部5e、5f、6e、6fの形成)
平面部5e、5f、6e、6fの形成について、ベーンアライナー部5cの平面部5eを代表として以下に説明する。ベーンアライナー部5cの平面部5eの面積が、ベーンアライナー部5cの外曲面部の面積に対して大きくなるにつれて油膜のくさび効果が減少するため、ベーンアライナー部5cとベーンアライナー軸受部2bとが流体潤滑状態で摺動できなくなる。そこで、ベーンアライナー部5cとベーンアライナー軸受部2bとが流体潤滑状態で摺動できるための条件について以下に説明する。
(Formation of flat portions 5e, 5f, 6e, 6f for sliding in a fluid lubrication state)
The formation of the flat portions 5e, 5f, 6e, and 6f will be described below with the flat portion 5e of the vane aligner portion 5c as a representative. Since the wedge effect of the oil film decreases as the area of the flat surface portion 5e of the vane aligner portion 5c increases with respect to the area of the outer curved surface portion of the vane aligner portion 5c, the vane aligner portion 5c and the vane aligner bearing portion 2b It becomes impossible to slide in a lubricated state. Therefore, conditions for allowing the vane aligner portion 5c and the vane aligner bearing portion 2b to slide in the fluid lubrication state will be described below.

図9は、本発明の実施の形態2において相対運動する固体二面間の微小隙間内の流れを示す図であり、図10は、実施の形態2に係るベーン型圧縮機200のベーンアライナー部5cとベーンアライナー軸受部2bとの関係を示した模式図であり、そして、図11は、実施の形態2における解析モデルである。以下、図9〜図11を参照しながらレイノルズの流体潤滑理論について述べる。   FIG. 9 is a diagram showing a flow in a minute gap between two solid surfaces that move relative to each other in the second embodiment of the present invention, and FIG. 10 shows a vane aligner portion of the vane type compressor 200 according to the second embodiment. FIG. 11 is a schematic diagram showing the relationship between 5c and the vane aligner bearing portion 2b, and FIG. 11 is an analysis model in the second embodiment. The Reynolds fluid lubrication theory will be described below with reference to FIGS.

図9は相対運動する固体二面間の微小隙間内の流れを示している。相対運動する固体二面間の微小隙間内を水又は油のような非圧縮性流体が流れていることを想定した場合に、流体に発生する圧力Pに関する偏微分方程式は下記の式(2)で表され、この式(2)を非圧縮性レイノルズ方程式という。   FIG. 9 shows the flow in a minute gap between two solid surfaces that move relative to each other. When it is assumed that an incompressible fluid such as water or oil flows in a minute gap between two solid surfaces that move relative to each other, a partial differential equation relating to the pressure P generated in the fluid is expressed by the following equation (2): This equation (2) is called an incompressible Reynolds equation.

Figure 2013105147
Figure 2013105147

ここで、x、yは図9で示されるように、紙面に平行で互いに垂直な座標を示している。zは紙面に垂直で、かつ、x軸及びy軸に垂直な座標を示している。hは固体二面間の隙間でありxの関数である。ηは冷凍機油25の粘性係数である。u、v及びwはそれぞれx、y及びz軸方向の流体の速度を表している。U1は図9における下面のx軸方向速度、U2は図9における上面のx軸方向速度、そして、Vは図9における上面のy軸方向速度を表している。   Here, as shown in FIG. 9, x and y indicate coordinates parallel to the paper surface and perpendicular to each other. z represents a coordinate perpendicular to the paper surface and perpendicular to the x-axis and the y-axis. h is a gap between two solid surfaces and is a function of x. η is the viscosity coefficient of the refrigerator oil 25. u, v, and w represent fluid velocities in the x, y, and z axis directions, respectively. U1 represents the x-axis direction velocity of the lower surface in FIG. 9, U2 represents the x-axis direction velocity of the upper surface in FIG. 9, and V represents the y-axis direction velocity of the upper surface in FIG.

式(2)をベーンアライナー部5cとベーンアライナー軸受部2bとの隙間の流れに適用する。本来、ベーンアライナー部5cは、図10で示されるような形状であるが、数値解析においては解析モデルを簡略化するため、図11で示されるように、ベーンアライナー軸受部2b内に仮想軸を配している。図11において、ベーンアライナー部5cと仮想軸との隙間に流れる流体は、図9で示される固体二面間の流れと同等に扱うことができる。ここで、図9のx軸を図11におけるθに置換する。θは最大油膜厚さから図中の反時計回りに正の角度である。xとθとの関係は下記の式(3)で表される。   Formula (2) is applied to the flow of the gap between the vane aligner portion 5c and the vane aligner bearing portion 2b. Originally, the vane aligner portion 5c has a shape as shown in FIG. 10, but in order to simplify the analysis model in the numerical analysis, as shown in FIG. 11, a virtual axis is provided in the vane aligner bearing portion 2b. Arranged. In FIG. 11, the fluid flowing in the gap between the vane aligner portion 5c and the virtual axis can be handled in the same manner as the flow between the two solid surfaces shown in FIG. Here, the x-axis in FIG. 9 is replaced with θ in FIG. θ is a positive angle counterclockwise from the maximum oil film thickness. The relationship between x and θ is expressed by the following formula (3).

Figure 2013105147
Figure 2013105147

ここで、Rcはベーンアライナー軸受部2bの内周面の半径である。そして、式(3)を式(2)に代入すると、下記の式(4)が得られる。   Here, Rc is the radius of the inner peripheral surface of the vane aligner bearing portion 2b. Then, when Expression (3) is substituted into Expression (2), the following Expression (4) is obtained.

Figure 2013105147
Figure 2013105147

本来、固定されたベーンアライナー軸受部2b内をベーンアライナー部5cが回転運動するが、解析モデルにおいては、ベーンアライナー部5cを固定し、ベーンアライナー軸受部を回転させる。ここで、図11における任意の点A、Bにおけるそれぞれの円周方向速度U1、U2、及び、点Bにおける半径方向速度Vは、それぞれ下記の式(5)、(6)及び(7)で表される。   Originally, the vane aligner portion 5c rotates in the fixed vane aligner bearing portion 2b. However, in the analysis model, the vane aligner portion 5c is fixed and the vane aligner bearing portion is rotated. Here, the circumferential speeds U1 and U2 at arbitrary points A and B in FIG. 11 and the radial speed V at the point B are expressed by the following equations (5), (6) and (7), respectively. expressed.

Figure 2013105147
Figure 2013105147
Figure 2013105147
Figure 2013105147
Figure 2013105147
Figure 2013105147

ここで、ωはベーンアライナー軸受部2bの角速度、eはベーンアライナー軸受部2bの中心から仮想軸の中心までの距離、そして、φはY軸と、ベーンアライナー軸受部2bの内周面の中心と仮想軸の中心とを結んだ線との角度である。tは時間を表す。ベーンアライナー部5cは固定されているため回転はしないが、荷重の大きさ及び方向が変動するためベーンアライナー軸受部2b内を平行移動する。この平行移動による速度が上記の式(6)及び(7)のように表現される。また、各変数を以下のとおりに無次元化する。   Here, ω is the angular velocity of the vane aligner bearing portion 2b, e is the distance from the center of the vane aligner bearing portion 2b to the center of the virtual axis, and φ is the center of the Y axis and the inner peripheral surface of the vane aligner bearing portion 2b. And the line connecting the center of the virtual axis. t represents time. Since the vane aligner portion 5c is fixed, the vane aligner portion 5c does not rotate. However, since the magnitude and direction of the load fluctuate, the vane aligner portion 5c moves in parallel in the vane aligner bearing portion 2b. The speed by this parallel movement is expressed as in the above equations (6) and (7). Each variable is made dimensionless as follows.

Figure 2013105147
Figure 2013105147
Figure 2013105147
Figure 2013105147
Figure 2013105147
Figure 2013105147
Figure 2013105147
Figure 2013105147
Figure 2013105147
Figure 2013105147

ここで、Cはベーンアライナー軸受部2bと仮想軸との半径隙間、Lは紙面垂直方向のベーンアライナー軸受部2bの幅、εは仮想軸のベーンアライナー軸受部2bに対する偏心率であり、そして、Aは定数であり、その意味は後述する。そして、式(5)〜式(12)を式(4)に代入すると、下記の式(13)及び(14)が導出される。   Here, C is a radial gap between the vane aligner bearing portion 2b and the virtual shaft, L is a width of the vane aligner bearing portion 2b in the direction perpendicular to the paper surface, ε is an eccentricity of the virtual shaft with respect to the vane aligner bearing portion 2b, and A is a constant, the meaning of which will be described later. Then, when Expressions (5) to (12) are substituted into Expression (4), the following Expressions (13) and (14) are derived.

Figure 2013105147
Figure 2013105147
Figure 2013105147
Figure 2013105147

ここで、C/Rc<<1より式(14)は、下記の式(15)で表される。   Here, from C / Rc << 1, the formula (14) is expressed by the following formula (15).

Figure 2013105147
Figure 2013105147

上記の式(13)及び(15)より、下記の式(16)を得る。   From the above equations (13) and (15), the following equation (16) is obtained.

Figure 2013105147
Figure 2013105147

ここで、定数Aを下記の式(17)とおき、また、式(18)の関係がある。   Here, the constant A is set as the following formula (17), and there is a relationship of formula (18).

Figure 2013105147
Figure 2013105147
Figure 2013105147
Figure 2013105147

また、式(16)〜(18)から、下記の式(19)が導出される。   Further, the following equation (19) is derived from the equations (16) to (18).

Figure 2013105147
Figure 2013105147

そして、式(19)を有限要素法により解くことによって、θとzの平面における油膜圧力分布を算出することができる。ただし、平面部5eに対応する部分の油膜圧力pは「0」であるものとして解析している。   Then, the oil film pressure distribution in the plane of θ and z can be calculated by solving Equation (19) by the finite element method. However, the oil film pressure p in the portion corresponding to the flat portion 5e is analyzed as being “0”.

図12は、本発明の実施の形態2に係るベーン型圧縮機200においてベーンアライナー軸受部2bにベーンアライナー部5cが嵌入した状態を示す図である。
ここで、図12で示されるように、ベーンアライナー部5cの円弧角をα、ベーンアライナー部5cの平面部5eに対応する部分の円弧角をβ、そして、図12においてベーンアライナー部5cの外曲面とベーン部5aとが交わる交点間に対応する部分の円弧角をγとする。
なお、円弧角αは、ベーンが1枚の場合は最大で360°とすることができるが、ベーンが2枚の場合は最大で180°未満、そして、ベーンが3枚の場合は最大で120°未満とする。特に望ましい角度はベーンが2枚の場合は、最大で155°、ベーンが3枚の場合は、最大で95°である。これは、例えば、ベーンが2枚の場合、図6における「角度45°」及び「角度90°」の図で示されるように、ベーン部5a、6aのそれぞれの長さ方向は一致しないので、円弧角を180°とするとベーンアライナー部5c、6cが互いに干渉してしまうからである。
FIG. 12 is a diagram illustrating a state where the vane aligner portion 5c is fitted into the vane aligner bearing portion 2b in the vane type compressor 200 according to the second embodiment of the present invention.
Here, as shown in FIG. 12, the arc angle of the vane aligner portion 5c is α, the arc angle of the portion corresponding to the flat portion 5e of the vane aligner portion 5c is β, and in FIG. 12, the outside of the vane aligner portion 5c. Let γ be the arc angle of the portion corresponding to the intersection between the curved surface and the vane portion 5a.
The arc angle α can be set to 360 ° at the maximum when there is one vane, but is less than 180 ° at the maximum when there are two vanes, and 120 at the maximum when there are three vanes. Less than °. A particularly desirable angle is a maximum of 155 ° when two vanes are used, and a maximum of 95 ° when three vanes are used. This is because, for example, when there are two vanes, the length directions of the vane portions 5a and 6a do not match as shown in the “angle 45 °” and “angle 90 °” diagrams in FIG. This is because when the arc angle is 180 °, the vane aligner portions 5c and 6c interfere with each other.

そして、ベーンアライナー軸受部2bとベーンアライナー部5cとの潤滑特性を把握するために、偏心率が0.9の場合に、β/αをパラメーターとし、油膜圧力を解析的に算出した。また、この油膜圧力pは、後述するベーンアライナー部5cに作用する押付面圧Pと等しい。すなわち、ベーンアライナー部5cからベーンアライナー軸受部2bに作用する押付面圧Pと釣り合うだけの油膜圧力pが発生する。この押付面圧Pに基づいて、それぞれのβ/αに対応する下記の式(20)で示されるゾンマーフェルト数Sが算出される。   And in order to grasp | ascertain the lubrication characteristic of the vane aligner bearing part 2b and the vane aligner part 5c, when the eccentricity was 0.9, β / α was used as a parameter, and the oil film pressure was calculated analytically. The oil film pressure p is equal to the pressing surface pressure P acting on the vane aligner portion 5c described later. That is, an oil film pressure p sufficient to balance the pressing surface pressure P acting on the vane aligner bearing portion 2b is generated from the vane aligner portion 5c. Based on the pressing surface pressure P, the Sommerfeld number S shown in the following equation (20) corresponding to each β / α is calculated.

Figure 2013105147
Figure 2013105147

上記の式(20)のうち、ηは冷凍機油25の粘性係数、Nはベーンアライナー部5cの回転数、Pは前述したようにベーンアライナー部5cに作用する押付面圧、そして、Rcはベーンアライナー軸受部2bの軸受半径である。式(20)で示されるゾンマーフェルト数Sが決まることによって、ベーンアライナー軸受部2bとベーンアライナー部5cとの潤滑特性が一義的に決定される。   In the above equation (20), η is the viscosity coefficient of the refrigerating machine oil 25, N is the rotational speed of the vane aligner portion 5c, P is the pressing surface pressure acting on the vane aligner portion 5c as described above, and Rc is the vane. This is the bearing radius of the aligner bearing portion 2b. By determining the Sommerfeld number S expressed by the equation (20), the lubrication characteristics of the vane aligner bearing portion 2b and the vane aligner portion 5c are uniquely determined.

図13は、本発明の実施の形態2に係るベーン型圧縮機200において偏心率ε=0.9の場合のゾンマーフェルト数Sとβ/αとの関係を示した解析結果図である。
図13で示されるグラフは、偏心率ε=0.9の場合におけるゾンマーフェルト数Sとβ/αとの関係を示すグラフであり、下記の式(21)で表される。
FIG. 13 is an analysis result diagram showing the relationship between the Sommerfeld number S and β / α when the eccentricity ε = 0.9 in the vane compressor 200 according to the second embodiment of the present invention.
The graph shown in FIG. 13 is a graph showing the relationship between the Sommerfeld number S and β / α when the eccentricity ε = 0.9, and is expressed by the following equation (21).

β/α=0.1224ln(S)+0.2536 (21)   β / α = 0.1224ln (S) +0.2536 (21)

図13のグラフの線よりも右側の条件であれば、偏心率εは0.9未満となり、安定的な流体潤滑状態を確保することができる。すなわち、少なくともβ≧γの条件において、下記の式(22)を満たせば、ベーンアライナー部5c及びベーンアライナー軸受部2bが流動潤滑状態で摺動することが可能となる。   If the condition is on the right side of the line in the graph of FIG. 13, the eccentricity ε is less than 0.9, and a stable fluid lubrication state can be ensured. That is, at least in the condition of β ≧ γ, if the following formula (22) is satisfied, the vane aligner portion 5c and the vane aligner bearing portion 2b can slide in the fluid lubrication state.

β/α<0.1224ln(S)+0.2536 (22)   β / α <0.1224ln (S) +0.2536 (22)

例えば、ゾンマーフェルト数S=0.4の場合、β/αを0.14以下に設定することによって、ベーンアライナー部5cとベーンアライナー軸受部2bとが流体潤滑状態で摺動することが可能となる。
次に、円弧角α=150、円弧角β=27.1としてβ/α=0.18の条件において、偏心率εが0.9未満の場合と0.9以上の場合とを比較する。偏心率εが0.9のとき、最小油膜厚さは、0.9μmとなる。一般的に、ベーンアライナー部5cとベーンアライナー軸受部2bとの表面粗さは1μm程度であるため、最小油膜厚さが、1μmより小さくなると、ベーンアライナー部5cとベーンアライナー軸受部2は、直接接触しはじめることとなる。このため摩擦係数は急激に上昇し、摩耗量が増大する。すなわち偏心率εを0.9以上にすると、最小油膜厚さが、1μmより小さくなり、摩耗量が増える。それに対して、偏心率εを0.9未満にすると、ベーンアライナー部5cとベーンアライナー軸受部2bとの直接接触が抑制され、流体潤滑状態での摺動が可能となる。
For example, when the Sommerfeld number S is 0.4, by setting β / α to 0.14 or less, the vane aligner portion 5c and the vane aligner bearing portion 2b can slide in a fluid lubrication state. It becomes.
Next, when the arc angle α = 150 and the arc angle β = 27.1, and β / α = 0.18, the case where the eccentricity ε is less than 0.9 and the case where it is 0.9 or more are compared. When the eccentricity ε is 0.9, the minimum oil film thickness is 0.9 μm. Generally, since the surface roughness of the vane aligner portion 5c and the vane aligner bearing portion 2b is about 1 μm, when the minimum oil film thickness is smaller than 1 μm, the vane aligner portion 5c and the vane aligner bearing portion 2 directly You will begin to touch. For this reason, a friction coefficient rises rapidly and the amount of wear increases. That is, when the eccentricity ε is 0.9 or more, the minimum oil film thickness becomes smaller than 1 μm and the wear amount increases. On the other hand, when the eccentricity ε is less than 0.9, direct contact between the vane aligner portion 5c and the vane aligner bearing portion 2b is suppressed, and sliding in a fluid lubrication state is possible.

なお、以上の内容は、ベーンアライナー部5cとベーンアライナー軸受部2bとの関係において説明したが、ベーンアライナー部6cとベーンアライナー軸受部2bとの関係、ベーンアライナー部5dとベーンアライナー軸受部3bとの関係、及び、ベーンアライナー部6dとベーンアライナー軸受部3bとの関係においても同様である。
また、以上の内容はベーンが2枚の場合について述べたが、3枚又は4枚の場合でも式(22)が成り立てば、ベーンアライナー部5cとベーンアライナー軸受部2bとが流体潤滑状態で摺動することが可能となる。
In addition, although the above content was demonstrated in the relationship between the vane aligner part 5c and the vane aligner bearing part 2b, the relationship between the vane aligner part 6c and the vane aligner bearing part 2b, the vane aligner part 5d, and the vane aligner bearing part 3b This also applies to the relationship between the vane aligner portion 6d and the vane aligner bearing portion 3b.
Although the above description has been given for the case where there are two vanes, if the formula (22) holds even if there are three or four vanes, the vane aligner portion 5c and the vane aligner bearing portion 2b slide in a fluid lubricated state. It is possible to move.

(実施の形態2の効果)
以上のような条件に従って、ベーンアライナー部5c、5d、6c、6dにおいてそれぞれ平面部5e、5f、6e、6fを形成することによって、実施の形態1における効果を有するのはもちろんのこと、ベーンアライナー部5c、6cとベーンアライナー軸受部2bとの摺動、及び、ベーンアライナー部5d、ベーンアライナー部6dとベーンアライナー軸受部3bとの摺動を常に流体潤滑状態に維持することが可能となり、耐焼付き性、耐摩耗性を向上させると同時に、高効率化を実現できる。
(Effect of Embodiment 2)
According to the above conditions, the plane portions 5e, 5f, 6e, and 6f are formed in the vane aligner portions 5c, 5d, 6c, and 6d, respectively. The sliding between the portions 5c and 6c and the vane aligner bearing portion 2b and the sliding between the vane aligner portion 5d and the vane aligner portion 6d and the vane aligner bearing portion 3b can be maintained in a fluid lubrication state at all times. Improves attachment and wear resistance, and at the same time achieves higher efficiency.

1 シリンダー、1a 吸入ポート、1b シリンダー内周面、1c 切欠き部、1d 吐出ポート、1e 油戻し穴、1f 貫通部、2 フレーム、2a 凹部、2b ベーンアライナー軸受部、2c 主軸受部、2d 吐出ポート、2f、2g ストッパー、3 シリンダーヘッド、3a 凹部、3b ベーンアライナー軸受部、3c 主軸受部、3f、3g ストッパー、4 ローターシャフト、4a ローター部、4b、4c 回転軸部、4d、4e ブッシュ保持部、4f、4g ベーン逃がし部、4h〜4j 給油路、4k 排油穴、5 第1ベーン、5a ベーン部、5b ベーン先端部、5c、5d ベーンアライナー部、5e、5f 平面部、6 第2ベーン、6a ベーン部、6b ベーン先端部、6c、6d ベーンアライナー部、6e、6f 平面部、7 ブッシュ、7a ブッシュ中心、8 ブッシュ、8a ブッシュ中心、9 吸入室、10 中間室、11 圧縮室、21 固定子、22 回転子、23 ガラス端子、24 吐出管、25 冷凍機油、26 吸入管、27 吐出弁、28 吐出弁押え、31 油ポンプ、32 最近接点、70 第3ベーン、90 ブッシュ、101 圧縮要素、102 電動要素、103 密閉容器、104 油溜め、200 ベーン型圧縮機。   1 cylinder, 1a suction port, 1b cylinder inner peripheral surface, 1c notch, 1d discharge port, 1e oil return hole, 1f penetration, 2 frame, 2a recess, 2b vane aligner bearing, 2c main bearing, 2d discharge Port, 2f, 2g stopper, 3 cylinder head, 3a recess, 3b vane aligner bearing, 3c main bearing, 3f, 3g stopper, 4 rotor shaft, 4a rotor, 4b, 4c rotating shaft, 4d, 4e Part, 4f, 4g vane relief part, 4h-4j oil supply passage, 4k oil drain hole, 5 first vane, 5a vane part, 5b vane tip part, 5c, 5d vane aligner part, 5e, 5f flat part, 6 second Vane, 6a Vane part, 6b Vane tip, 6c, 6d Vane aligner part, 6e, 6 Flat portion, 7 bush, 7a bush center, 8 bush, 8a bush center, 9 suction chamber, 10 intermediate chamber, 11 compression chamber, 21 stator, 22 rotor, 23 glass terminal, 24 discharge pipe, 25 refrigerating machine oil, 26 Suction pipe, 27 Discharge valve, 28 Discharge valve retainer, 31 Oil pump, 32 Nearest contact point, 70 3rd vane, 90 Bush, 101 Compression element, 102 Electric element, 103 Airtight container, 104 Oil sump, 200 Vane compressor

Claims (7)

円筒状の内周面が形成されたシリンダーと、
該シリンダーの内部において、前記内周面の中心軸と所定の距離ずれた回転軸を中心に回転する円筒形状のローター部、及び、該ローター部に回転力を伝達する回転軸部を有したローターシャフトと、
前記シリンダーの前記内周面の一方の開口部を閉塞し、主軸受部によって前記回転軸を支承するフレームと、
前記シリンダーの前記内周面の他方の開口部を閉塞し、主軸受部によって前記回転軸を支承するシリンダーヘッドと、
前記ローター部に設けられ、前記ローター部内から突出する先端部が外側に凸となる円弧形状に形成された少なくとも1枚のベーンと、
を備えたベーン型圧縮機において、
前記ベーンの前記先端部の前記円弧形状の法線と、前記シリンダーの前記内周面の法線とが常にほぼ一致する状態で、前記ベーン、前記ローター部の外周部、及び前記シリンダーの前記内周面によって囲まれる空間で冷媒を圧縮するように前記ベーンを支持し、前記ベーンを前記ローター部に対して回転可能かつ移動可能に支持し、前記ベーンの前記先端部が前記シリンダーの前記内周面側に最大限移動した場合に、該先端部と該内周面との所定の間隙を有するように保持するベーン支持手段を備え、
前記ローターシャフトは、前記ローター部と前記回転軸部とが一体に形成されて構成され、
前記ベーンの前記先端部の前記円弧形状の曲率半径は、前記シリンダーの前記内周面の曲率半径と略同一であり、
前記ベーン支持手段は、
前記ローター部の外周部近傍に、前記ローター部の中心軸方向に垂直な断面が略円形となるように該中心軸方向に貫通したブッシュ保持部と、
該ブッシュ保持部の中に挿入される一対の略半円柱状物であり、前記ブッシュ保持部内で前記ベーンを挟持するブッシュと、
前記ベーンにおける、前記シリンダーの前記内周面の中心である内周面中心側の端面が、前記ローター部に接触しないように、前記ローター部において該ローター部の中心軸方向に貫通して形成されたベーン逃がし部と、
によって構成され、
前記ベーンは、前記フレーム側かつ前記ローター部の中心側の端面近傍、及び、前記シリンダーヘッド側かつ前記ローター部の中心側の端面近傍に設けられた一対の円弧形状のベーンアライナー部を有し、
前記フレーム及び前記シリンダーヘッドの前記シリンダー側の端面に、前記シリンダーの前記内周面と同心の凹部又は溝部が形成され、
前記ベーンアライナー部は、前記凹部又は前記溝部内に嵌入され、該凹部又は該溝部の外周面であるベーンアライナー軸受部で支承され、前記ベーンの先端部側の面に、前記ベーンの長さ方向に垂直な平面部が形成された
ことを特徴とするベーン型圧縮機。
A cylinder having a cylindrical inner peripheral surface;
A rotor having a cylindrical rotor portion that rotates around a rotation axis that is shifted from the central axis of the inner peripheral surface by a predetermined distance inside the cylinder, and a rotation shaft portion that transmits a rotational force to the rotor portion. A shaft,
A frame that closes one opening of the inner peripheral surface of the cylinder and supports the rotating shaft by a main bearing;
A cylinder head that closes the other opening of the inner peripheral surface of the cylinder and supports the rotating shaft by a main bearing portion;
At least one vane provided in the rotor portion and formed in an arc shape in which a tip portion protruding from the rotor portion is convex outward;
In a vane compressor equipped with
The inner surface of the vane, the outer peripheral portion of the rotor portion, and the inner periphery of the cylinder are in a state where the normal line of the arc shape of the tip end portion of the vane and the normal line of the inner peripheral surface of the cylinder always coincide with each other. The vane is supported so as to compress the refrigerant in a space surrounded by a peripheral surface, the vane is supported so as to be rotatable and movable with respect to the rotor portion, and the tip end portion of the vane is the inner periphery of the cylinder. Vane support means for holding the tip portion and the inner peripheral surface so as to have a predetermined gap when moved to the maximum surface side,
The rotor shaft is configured by integrally forming the rotor portion and the rotating shaft portion,
The radius of curvature of the arc shape of the tip of the vane is substantially the same as the radius of curvature of the inner peripheral surface of the cylinder,
The vane support means includes
A bush holding portion penetrating in the central axis direction so that a cross section perpendicular to the central axis direction of the rotor portion is substantially circular, in the vicinity of the outer peripheral portion of the rotor portion;
A pair of substantially semi-cylindrical objects inserted into the bush holding portion, and a bush for sandwiching the vane in the bush holding portion;
In the vane, an end surface on the inner peripheral surface side that is the center of the inner peripheral surface of the cylinder is formed so as to penetrate the rotor portion in the central axis direction of the rotor portion so as not to contact the rotor portion. The vane relief part,
Composed by
The vane has a pair of arcuate vane aligner portions provided near the end surface on the frame side and the center side of the rotor portion, and near the end surface on the cylinder head side and the center side of the rotor portion,
Concave portions or groove portions concentric with the inner peripheral surface of the cylinder are formed on the cylinder and the cylinder side end surface of the cylinder head,
The vane aligner portion is fitted into the recess or the groove portion, and is supported by a vane aligner bearing portion that is an outer peripheral surface of the recess or the groove portion. A vane type compressor characterized in that a flat portion perpendicular to the surface is formed.
前記ベーンアライナー部の円弧形状において、前記ベーンアライナー部に形成された前記平面部に対応する部分の円弧角をβとし、前記ベーンアライナー部における前記ベーンの先端部側の面と、該ベーンアライナー部が設けられた前記ベーンの端面とが交わる部分に対応する部分の円弧角をγとした場合、β≧γを満たすように前記平面部が形成された
ことを特徴とする請求項1記載のベーン型圧縮機。
In the arc shape of the vane aligner portion, the arc angle of the portion corresponding to the flat portion formed in the vane aligner portion is β, and the vane tip portion side surface of the vane aligner portion and the vane aligner portion 2. The vane according to claim 1, wherein the flat surface portion is formed so as to satisfy β ≧ γ, where γ is an arc angle of a portion corresponding to a portion where the end surface of the vane provided with is γ. Mold compressor.
前記ベーンアライナー部の円弧形状の円弧角をαとし、ゾンマーフェルト数をSとした場合、β/α<0.1224ln(S)+0.2536を満たすように前記平面部が形成された
ことを特徴とする請求項2記載のベーン型圧縮機。
When the arc angle of the arc shape of the vane aligner portion is α and the Sommerfeld number is S, the plane portion is formed so as to satisfy β / α <0.1224ln (S) +0.2536. The vane type compressor according to claim 2,
前記ベーンの前記フレーム及び前記シリンダーヘッドに対向する端面の十点平均粗さが0.8[μm]以下である
ことを特徴とする請求項1〜請求項3のいずれか一項に記載のベーン型圧縮機。
4. The vane according to claim 1, wherein a ten-point average roughness of an end face of the vane facing the frame and the cylinder head is 0.8 [μm] or less. 5. Mold compressor.
前記ベーンアライナー部に前記平面部が形成された後に、前記ベーンの上端又は下端のいずれか一方が研磨されたことを特徴とする請求項1〜請求項4のいずれか一項に記載のベーン型圧縮機。 5. The vane mold according to claim 1, wherein either one of an upper end and a lower end of the vane is polished after the planar portion is formed on the vane aligner portion. Compressor. 前記ベーンの上端又は下端のいずれか一方がエンドミルによって研磨されたことを特徴とする請求項5記載のベーン型圧縮機。 6. The vane compressor according to claim 5, wherein either one of an upper end and a lower end of the vane is polished by an end mill. 前記ベーンの上端又は下端のいずれか一方が平面研削盤によって研磨されたことを特徴とする請求項5記載のベーン型圧縮機。 6. The vane compressor according to claim 5, wherein either one of the upper end and the lower end of the vane is polished by a surface grinder.
JP2013553091A 2012-01-11 2012-05-30 Vane type compressor Active JP5642297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013553091A JP5642297B2 (en) 2012-01-11 2012-05-30 Vane type compressor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012003121 2012-01-11
JP2012003121 2012-01-11
JP2013553091A JP5642297B2 (en) 2012-01-11 2012-05-30 Vane type compressor
PCT/JP2012/003513 WO2013105147A1 (en) 2012-01-11 2012-05-30 Vane compressor

Publications (2)

Publication Number Publication Date
JP5642297B2 JP5642297B2 (en) 2014-12-17
JPWO2013105147A1 true JPWO2013105147A1 (en) 2015-05-11

Family

ID=48781126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013553091A Active JP5642297B2 (en) 2012-01-11 2012-05-30 Vane type compressor

Country Status (3)

Country Link
JP (1) JP5642297B2 (en)
CN (1) CN103906926B (en)
WO (1) WO2013105147A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106949061A (en) * 2017-04-28 2017-07-14 广东美芝制冷设备有限公司 Rotary compressor and its pump housing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102591414B1 (en) 2017-02-07 2023-10-19 엘지전자 주식회사 Hermetic compressor
CN109253086A (en) * 2017-07-13 2019-01-22 上海海立电器有限公司 A kind of compressor
CN108825505A (en) * 2018-08-27 2018-11-16 珠海凌达压缩机有限公司 Slide plate, compressor and the air conditioner of compressor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE874944C (en) * 1951-02-17 1953-04-27 Heinz Knebel Rotary compressor
JPS6373593U (en) * 1986-11-04 1988-05-17
JPS6373593A (en) * 1986-09-16 1988-04-04 日立化成工業株式会社 Manufacture of ceramic multilayer interconnection board
US4859163A (en) * 1987-06-25 1989-08-22 Steven Schuller Performance Inc. Rotary pump having vanes guided by bearing blocks
JPH01224490A (en) * 1988-03-01 1989-09-07 Seiko Seiki Co Ltd Gas compressor
US5087183A (en) * 1990-06-07 1992-02-11 Edwards Thomas C Rotary vane machine with simplified anti-friction positive bi-axial vane motion control
JPH10252675A (en) * 1997-03-13 1998-09-22 Matsushita Electric Ind Co Ltd Vane rotary compressor
JP2000352390A (en) * 1999-06-08 2000-12-19 Hiroyoshi Ooka Axially supported vane rotary compressor
CN201326543Y (en) * 2008-12-18 2009-10-14 浙江鸿友压缩机制造有限公司 Vane type rotary compressor
CN201412342Y (en) * 2009-05-08 2010-02-24 浙江鸿友压缩机制造有限公司 Rotor component of static leaf blade compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106949061A (en) * 2017-04-28 2017-07-14 广东美芝制冷设备有限公司 Rotary compressor and its pump housing

Also Published As

Publication number Publication date
CN103906926A (en) 2014-07-02
WO2013105147A1 (en) 2013-07-18
CN103906926B (en) 2016-03-30
JP5642297B2 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
JP5642297B2 (en) Vane type compressor
JP6028832B2 (en) Compressor manufacturing method
JP5657144B2 (en) Vane type compressor
WO2013105129A1 (en) Vane-type compressor
KR101136600B1 (en) Compressor
JPWO2012023427A1 (en) Vane type compressor
JP5799258B2 (en) Sliding member and compressor
JP2013142351A (en) Vane type compressor
JP5932675B2 (en) Vane type compressor
JP5657143B2 (en) Vane type compressor
WO2018198811A1 (en) Rolling-cylinder-type displacement compressor
CN110966188A (en) Pump body structure of rotary cylinder piston compressor and rotary cylinder piston compressor
JP2014025397A (en) Sealed compressor and refrigeration cycle device
JP5661203B2 (en) Vane type compressor
JP2007205271A (en) Rotary fluid machine
US20240026883A1 (en) Compressor and moving scroll thereof
JP4784296B2 (en) Rotary fluid machine
JP5661204B2 (en) Vane type compressor
WO2014167708A1 (en) Vane compressor
JP2018017125A (en) Compressor
JP2016079923A (en) Oldham&#39;s ring and scroll compressor
JP2013142325A (en) Vane type compressor
JP2006097625A (en) Compressor
JPH0476294A (en) Fluid compressor
JP2006097620A (en) Compressor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141028

R150 Certificate of patent or registration of utility model

Ref document number: 5642297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250