JPWO2013080440A1 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JPWO2013080440A1
JPWO2013080440A1 JP2013529245A JP2013529245A JPWO2013080440A1 JP WO2013080440 A1 JPWO2013080440 A1 JP WO2013080440A1 JP 2013529245 A JP2013529245 A JP 2013529245A JP 2013529245 A JP2013529245 A JP 2013529245A JP WO2013080440 A1 JPWO2013080440 A1 JP WO2013080440A1
Authority
JP
Japan
Prior art keywords
heat transfer
heat
circuit board
transfer support
cooling body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013529245A
Other languages
Japanese (ja)
Inventor
泰仁 田中
泰仁 田中
美里 柴田
美里 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2013529245A priority Critical patent/JPWO2013080440A1/en
Publication of JPWO2013080440A1 publication Critical patent/JPWO2013080440A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/162Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits the devices being mounted on two or more different substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/165Containers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/209Heat transfer by conduction from internal heat source to heat radiating structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Inverter Devices (AREA)

Abstract

基板に実装された発熱回路部品の熱を効率よく冷却体に放熱することができ、小型化が可能な電力変換装置を提供する。電力変換装置(1)は、一面を冷却体(3)に接合する半導体パワーモジュール(11)と、前記半導体パワーモジュールを駆動する発熱回路部品を含む回路部品を実装した複数の実装基板(21),(22),(42)と、前記複数の実装基板の熱を前記冷却体(3)に伝熱させる熱伝導路(35),(37)とを備え、前記複数の実装基板のうち少なくとも互いに対向する一対の実装基板(22),(42)が伝熱部材(27)を介在させた中実状態で積層されている。Provided is a power conversion device that can efficiently dissipate heat of a heat generating circuit component mounted on a substrate to a cooling body and can be miniaturized. The power converter (1) includes a semiconductor power module (11) whose one surface is joined to a cooling body (3), and a plurality of mounting boards (21) on which circuit components including a heat generating circuit component for driving the semiconductor power module are mounted. , (22), (42) and heat conduction paths (35), (37) for transferring the heat of the plurality of mounting boards to the cooling body (3), and at least of the plurality of mounting boards A pair of mounting boards (22) and (42) facing each other are stacked in a solid state with a heat transfer member (27) interposed therebetween.

Description

本発明は、電力変換用の半導体スイッチング素子を内蔵した半導体パワーモジュール上に、半導体スイッチング素子を駆動する発熱回路部品を含む回路部品を実装した実装基板を支持する電力変換装置に関する。   The present invention relates to a power conversion apparatus for supporting a mounting substrate on which a circuit component including a heat generating circuit component for driving a semiconductor switching element is mounted on a semiconductor power module incorporating a semiconductor switching element for power conversion.

この種の電力変換装置としては、特許文献1に記載された電力変換装置が知られている。この電力変換装置は、筐体内に、水冷ジャケットを配置し、この水冷ジャケット上に電力変換用の半導体スイッチング素子としてのIGBTを内蔵したパワーモジュールを配置して冷却するようにしている。また、筐体内には、パワーモジュールの水冷ジャケットとは反対側に所定距離を保って制御回路基板及び駆動回路基板を配置し、この制御回路基板及び駆動回路基板で発生する熱を、放熱部材を介して制御回路基板及び駆動回路基板を支持する金属ベース板に伝達し、さらに金属ベース板に伝達された熱を、この金属ベース板を支持する筐体の側壁を介して水冷ジャケットに伝達するようにしている。   As this type of power conversion device, a power conversion device described in Patent Document 1 is known. In this power conversion device, a water cooling jacket is disposed in a casing, and a power module including an IGBT as a semiconductor switching element for power conversion is disposed on the water cooling jacket for cooling. In addition, a control circuit board and a drive circuit board are arranged in the casing at a predetermined distance on the side opposite to the water cooling jacket of the power module, and heat generated by the control circuit board and the drive circuit board is transferred to the heat dissipation member. The heat is transmitted to the metal base plate supporting the control circuit board and the drive circuit board through the metal base plate, and the heat transmitted to the metal base plate is transmitted to the water cooling jacket through the side wall of the housing supporting the metal base plate. I have to.

特許第4657329号公報Japanese Patent No. 4657329

ところで、上記特許文献1に記載された従来例にあっては、制御回路基板で発生する熱を、制御回路基板→放熱部材→金属ベース板→筐体→水冷ジャケットという経路で放熱するようにしている。このため、筐体が伝熱経路の一部として利用されることにより、筐体にも良好な伝熱性が要求されることになり、筐体形成材料が熱伝導率の高い金属に限定され、小型軽量化の要求される電力変換装置おいて、樹脂等の軽量な材料の選択が不可能となり軽量化が困難となるという未解決の課題がある。   By the way, in the conventional example described in Patent Document 1, the heat generated in the control circuit board is radiated through the path of the control circuit board → the heat radiating member → the metal base plate → the housing → the water cooling jacket. Yes. For this reason, since the casing is used as a part of the heat transfer path, the casing is required to have good heat transfer properties, and the casing forming material is limited to a metal having high thermal conductivity, In a power conversion device that is required to be small and light, there is an unsolved problem that it is difficult to select a light material such as a resin and it is difficult to reduce the weight.

また、筐体には、防水・防塵が要求されることが多いため、金属ベース板と筐体との間、筐体と水冷ジャケットとの間には液状シール剤の塗布やゴム製パッキンの挟み込みなどが一般的に行われている。液状シール剤やゴム製パッキンは熱伝導率が一般的に低く、これらが熱冷却経路に介在することで熱抵抗が増え冷却効率が低下するという未解決の課題もある。この未解決の課題を解決するためには、基板や実装部品の除去しきれない発熱を筐体や筐体蓋からの自然対流による放熱も必要となり、筐体や筐体蓋の表面積を大きくするために、筐体や筐体蓋の外形が大きくなり電力変換装置が大型化することになる。   Also, since the housing is often required to be waterproof and dustproof, apply a liquid sealant or sandwich rubber packing between the metal base plate and the housing and between the housing and the water cooling jacket. Etc. are generally performed. Liquid sealants and rubber packings generally have a low thermal conductivity, and there is an unsolved problem that the thermal resistance increases and the cooling efficiency decreases due to the presence of these in the thermal cooling path. In order to solve this unsolved problem, it is also necessary to dissipate the heat generated by the substrate and mounted components by natural convection from the case and case cover, increasing the surface area of the case and case cover. For this reason, the outer shape of the housing and the housing lid is increased, and the power converter is increased in size.

そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、基板に実装された発熱回路部品の熱を効率よく冷却体に放熱することができ、小型化が可能な電力変換装置を提供することを目的としている。   Therefore, the present invention has been made paying attention to the unsolved problems of the above-described conventional example, and can efficiently dissipate the heat of the heat generating circuit components mounted on the substrate to the cooling body, and can be downsized. It aims at providing a simple power converter.

上記目的を達成するために、本発明に係る電力変換装置の第1の態様は、一面を冷却体に接合する半導体パワーモジュールと、前記半導体パワーモジュールを駆動する発熱回路部品を含む回路部品を実装した複数の実装基板と、前記複数の実装基板の熱を前記冷却体に伝熱させる熱伝導路とを備えている。そして、前記複数の実装基板のうち少なくとも互いに対向する一対の実装基板が伝熱部材を介在させた中実状態で積層されている。
この構成によると、互いに対向する発熱回路部品を実装した一対の実装基板を伝熱部材を介在させて中実状態で積層するので、一対の実装基板間に空気層が形成されることがなく、発熱回路部品の発熱を効率よく伝熱部材を介し、さらに熱伝導路を介して冷却体に放熱することができる。
In order to achieve the above object, a first aspect of a power conversion device according to the present invention includes a semiconductor power module in which one surface is joined to a cooling body and a circuit component including a heat generating circuit component that drives the semiconductor power module. And a heat conduction path for transferring heat from the plurality of mounting boards to the cooling body. Then, at least a pair of mounting substrates facing each other among the plurality of mounting substrates is stacked in a solid state with a heat transfer member interposed therebetween.
According to this configuration, since a pair of mounting boards on which the heat generating circuit components facing each other are stacked in a solid state with a heat transfer member interposed therebetween, an air layer is not formed between the pair of mounting boards, Heat generated by the heat generating circuit component can be efficiently radiated to the cooling body through the heat transfer member and further through the heat conduction path.

また、本発明に係る電力変換装置の第2の態様は、電力変換用の半導体スイッチング素子をケース体に内蔵する半導体パワーモジュールと、該半導体パワーモジュールの一方の面に配置された冷却体と、前記半導体パワーモジュールの他方の面上に支持される前記半導体スイッチング素子を駆動する発熱回路部品を含む回路部品を実装した複数の実装基板とを備えている。そして、前記複数の実装基板のうち少なくとも互いに対向する一対の実装基板が伝熱部材及び伝熱支持板を介在させた中実状態で積層され、前記発熱回路部品の発熱を、前記伝熱部材及び前記伝熱支持板を介し、さらに前記半導体パワーモジュール及び前記各実装基板を囲む筐体とは独立した複数の熱伝導路を通って前記冷却体に放熱するようにしている。   Moreover, the second aspect of the power conversion device according to the present invention is a semiconductor power module in which a semiconductor switching element for power conversion is built in a case body, a cooling body disposed on one surface of the semiconductor power module, And a plurality of mounting boards on which circuit components including a heat generating circuit component for driving the semiconductor switching element supported on the other surface of the semiconductor power module are mounted. A pair of mounting substrates facing each other at least among the plurality of mounting substrates are stacked in a solid state with a heat transfer member and a heat transfer support plate interposed therebetween, and the heat transfer member and the heat transfer member Heat is radiated to the cooling body through the heat transfer support plate and through a plurality of heat conduction paths independent of the casing surrounding the semiconductor power module and the mounting boards.

この構成によると、互いに対向する発熱回路部品を実装した一対の実装基板を伝熱部材及び伝熱支持板を介在させて中実状態で積層するので、一対の実装基板間に空気層が形成されることがなく、発熱回路部品の発熱を効率よく伝熱部材及び伝熱支持板を介し、さらに熱伝導路を介して冷却体に放熱することができる。この場合、実装基板と冷却体との間の複数の熱伝導路がモジュール及び各実装基板を囲む筐体とは独立して形成されているので、筐体の熱伝導率を考慮することなく筐体を形成することができ、設計の自由度を向上できる。   According to this configuration, since the pair of mounting substrates on which the heat generating circuit components facing each other are stacked in a solid state with the heat transfer member and the heat transfer support plate interposed, an air layer is formed between the pair of mounting substrates. Therefore, the heat generated by the heat generating circuit component can be efficiently radiated to the cooling body through the heat transfer member and the heat transfer support plate, and further through the heat conduction path. In this case, since the plurality of heat conduction paths between the mounting board and the cooling body are formed independently of the housing surrounding the module and each mounting board, the housing is considered without considering the heat conductivity of the housing. A body can be formed and the degree of freedom in design can be improved.

また、本発明に係る電力変換装置の第3の態様は、前記一対の実装基板の一方の実装基板が、表裏両面に伝熱部材を配置している。
この構成によると、実装基板の表裏両面に伝熱部材が配置されているので、実装基板に実装された表裏の発熱回路部品の発熱を、表裏の伝熱部材によって効率よく冷却体に導くことができる。
また、本発明に係る電力変換装置の第4の態様は、前記一対の実装基板が、前記弾性体を所定圧縮率で圧縮した状態で固定されている。
この構成によると、弾性体を圧縮した状態で固定するので、実装基板に実装された発熱部品との接触をより良好に行うことができ、放熱効果を向上させることができる。
Moreover, the 3rd aspect of the power converter device which concerns on this invention has arrange | positioned the heat-transfer member in one mounting board of a pair of said mounting board on both front and back.
According to this configuration, since the heat transfer members are arranged on both the front and back surfaces of the mounting board, heat generated by the front and back heat generating circuit components mounted on the mounting board can be efficiently guided to the cooling body by the front and back heat transfer members. it can.
Moreover, the 4th aspect of the power converter device which concerns on this invention is being fixed in the state which the said pair of mounting substrate compressed the said elastic body with the predetermined compression rate.
According to this configuration, since the elastic body is fixed in a compressed state, contact with the heat-generating component mounted on the mounting board can be performed more favorably, and the heat dissipation effect can be improved.

また、本発明に係る電力変換装置の第5の態様は、前記一対の実装基板間に、前記弾性体の圧縮率を決定する間隔調整部材が設けられている。
この構成によると、弾性体の圧縮率を間隔調整部材によって決定することができ、弾性体の圧縮率を一定値に容易に調整することができる。
また、本発明に係る電力変換装置の第6の態様は、前記伝熱部材が、熱伝導性を有する絶縁体で構成されている。
この構成によると、伝熱部材が絶縁体で構成されているので、対向する実装基板同士の間隔を狭く設定することができ、電力変換装置を小型化することができる。
Moreover, the 5th aspect of the power converter device which concerns on this invention is provided with the space | interval adjustment member which determines the compression rate of the said elastic body between said pair of mounting substrates.
According to this configuration, the compression rate of the elastic body can be determined by the interval adjusting member, and the compression rate of the elastic body can be easily adjusted to a constant value.
Moreover, as for the 6th aspect of the power converter device which concerns on this invention, the said heat-transfer member is comprised with the insulator which has thermal conductivity.
According to this configuration, since the heat transfer member is formed of an insulator, it is possible to set the interval between the mounting boards facing each other to be narrow, and to reduce the size of the power conversion device.

また、本発明に係る電力変換装置の第7の態様は、前記伝熱部材が、熱伝導性を有し且つ伸縮性を有する弾性体で構成されている。
この構成によると、伝熱部材が伸縮性を有するので、実装基板に実装された発熱部品等の周囲に接触させることができ、接触面積を増加させて、放熱効果を向上させることができる。
また、本発明に係る電力変換装置の第8の態様は、前記複数の熱伝導路が、前記伝熱支持板と前記冷却体とを連結する伝熱支持側板で構成されている。
この構成によると、一対の実装基板間に配置された伝熱支持板と冷却体との間を伝熱支持側板で連結するので、熱伝導路の断面積を広くして熱抵抗を低下させることができ、冷却体への放熱をより効率よく行うことができる。
Moreover, the 7th aspect of the power converter device which concerns on this invention is comprised with the elastic body in which the said heat-transfer member has heat conductivity and has a stretching property.
According to this configuration, since the heat transfer member has elasticity, the heat transfer member can be brought into contact with the periphery of a heat-generating component or the like mounted on the mounting substrate, the contact area can be increased, and the heat dissipation effect can be improved.
Moreover, as for the 8th aspect of the power converter device which concerns on this invention, these heat conduction paths are comprised with the heat-transfer support side plate which connects the said heat-transfer support plate and the said cooling body.
According to this configuration, the heat transfer support side plate is connected between the heat transfer support plate and the cooling body disposed between the pair of mounting boards, so that the thermal resistance is reduced by increasing the cross-sectional area of the heat conduction path. And heat dissipation to the cooling body can be performed more efficiently.

また、本発明に係る電力変換装置の第9の態様は、前記伝熱支持板及び伝熱支持側板が、熱伝導率の高い金属材料で構成されている。
この構成によると、実装基板を熱伝導率の高いアルミニウム、アルミニウム合金、銅等で構成するので、冷却体への放熱をより効率よく行うことができる。
According to a ninth aspect of the power conversion device of the present invention, the heat transfer support plate and the heat transfer support side plate are made of a metal material having high thermal conductivity.
According to this configuration, since the mounting substrate is made of aluminum, aluminum alloy, copper, or the like having high thermal conductivity, heat dissipation to the cooling body can be performed more efficiently.

本発明によれば、発熱回路部品を含む回路部品を実装した互いに対向する一対の実装基板を、両者間に少なくとも伝熱部材を介在させて中実状態で積層するので、一対の実装基板間に熱溜まりとなる空気層が形成されることなく、発熱回路部品の発熱を効率よく冷却体に放熱することができる。
しかも、一対の実装基板間が少なくとも伝熱部材を介して一体化されるので、上下方向の振動や横揺れに対する剛性を高めることができる。
According to the present invention, a pair of mounting substrates facing each other on which circuit components including a heat generating circuit component are mounted are stacked in a solid state with at least a heat transfer member interposed therebetween, so The heat generated by the heat generating circuit components can be efficiently radiated to the cooling body without forming an air layer that becomes a heat reservoir.
In addition, since the pair of mounting substrates is integrated at least through the heat transfer member, the rigidity against vertical vibration and roll can be increased.

さらに、一対の実装基板に実装された発熱回路部品の発熱を、伝熱部材及び伝熱支持部材を介し、さらに半導体スイッチング素子をケース体に内蔵した半導体パワーモジュール及び実装基板の双方を囲む筐体とは独立した熱伝導路を通って冷却体に連結することにより、実装基板の表裏の発熱を効率よく冷却体に放熱することができる。このため、筐体や筐体蓋からの放熱作用との併用を減少させることができ、筐体や筐体蓋の大きさを抑えて小型化された安価な電力変換装置を提供することができる。
しかも、筐体に良好な伝熱性を要求することがないので、筐体に樹脂等の軽量な材料を用いることができ、筐体を軽量化して安価な電力変換装置の提供が可能となる。
Further, a case that surrounds both the semiconductor power module and the mounting substrate, in which the heat generation of the heat generating circuit components mounted on the pair of mounting substrates is conducted via the heat transfer member and the heat transfer support member, and the semiconductor switching element is incorporated in the case body. By connecting to the cooling body through an independent heat conduction path, heat generated on the front and back of the mounting board can be efficiently radiated to the cooling body. For this reason, the combined use with the heat dissipation action from the housing and the housing lid can be reduced, and an inexpensive power conversion device that is reduced in size by suppressing the size of the housing and the housing lid can be provided. .
In addition, since the casing does not require good heat conductivity, a lightweight material such as a resin can be used for the casing, and the casing can be reduced in weight and an inexpensive power conversion device can be provided.

本発明に係る電力変換装置の第1の実施形態の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of 1st Embodiment of the power converter device which concerns on this invention. 第1の実施形態の要部を示す拡大断面図である。It is an expanded sectional view showing the important section of a 1st embodiment. 実装基板、伝熱部材、伝熱支持板の積層状態を示す拡大断面図である。It is an expanded sectional view which shows the lamination | stacking state of a mounting substrate, a heat-transfer member, and a heat-transfer support plate. 発熱回路部品の放熱経路を説明する図である。It is a figure explaining the heat dissipation path | route of a heat generating circuit component. 電力変換装置に対して上下振動や横揺れが作用した状態を示す図である。It is a figure which shows the state which the vertical vibration and the roll acted with respect to the power converter device. 従来例を示す模式的断面図である。It is typical sectional drawing which shows a prior art example. 本発明の第1の実施形態の変形例を示す図2と同様の拡大断面図である。It is an expanded sectional view similar to FIG. 2 which shows the modification of the 1st Embodiment of this invention. 本発明の第2の実施形態を示す図2と同様の拡大断面図である。It is an expanded sectional view similar to FIG. 2 which shows the 2nd Embodiment of this invention. 本発明の第3の実施形態を示す図2と同様の拡大断面図である。It is an expanded sectional view similar to FIG. 2 which shows the 3rd Embodiment of this invention. 本発明の第4の実施形態を示す図2と同様の拡大断面図である。It is an expanded sectional view similar to FIG. 2 which shows the 4th Embodiment of this invention. パワーモジュールの冷却部材の変形例を示す断面図である。It is sectional drawing which shows the modification of the cooling member of a power module.

以下、本発明の実施の形態を図面について説明する。
図1は本発明に係る電力変換装置の全体構成を示す断面図である。
図中、1は電力変換装置であって、この電力変換装置1は筐体2内に収納されている。筐体2は、合成樹脂材を成形したものであり、水冷ジャケットの構成を有する冷却体3を挟んで上下に分割された下部筐体2A及び上部筐体2Bで構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing the overall configuration of a power converter according to the present invention.
In the figure, reference numeral 1 denotes a power converter, and the power converter 1 is housed in a housing 2. The casing 2 is formed by molding a synthetic resin material, and includes a lower casing 2A and an upper casing 2B that are divided vertically with a cooling body 3 having a water-cooling jacket structure interposed therebetween.

下部筐体2Aは有底角筒体で構成されている。この下部筐体2Aは開放上部が冷却体3で覆われ、内部に平滑用のフィルムコンデンサ4が収納されている。
上部筐体2Bは、上端及び下端を開放した角筒体2aと、この角筒体2aの上端を閉塞する蓋体2bとを備えている。そして、角筒体2aの下端が冷却体3で閉塞されている。この角筒体2aの下端と冷却体3との間には、図示しないが、液状シール剤の塗布やゴム製パッキンの挟み込みなどのシール材が介在されている。
The lower housing 2A is a bottomed rectangular tube. The lower casing 2A has an open upper portion covered with a cooling body 3, and a smoothing film capacitor 4 is accommodated therein.
The upper housing 2B includes a rectangular tube 2a having an open upper end and a lower end, and a lid 2b that closes the upper end of the rectangular tube 2a. The lower end of the rectangular tube 2a is closed by the cooling body 3. Although not shown, a sealing material such as application of a liquid sealant or sandwiching rubber packing is interposed between the lower end of the rectangular tube 2a and the cooling body 3.

冷却体3は、冷却水の給水口3a及び排水口3bが筐体2の外方に開口され、給水口3a及び排水口3b間に冷却水通路3cが形成されている。これら給水口3a及び排水口3bは例えばフレキシブルホースを介して図示しない冷却水供給源に接続されている。この冷却体3は例えば熱伝導率の高い(例えば100W・m-1・K-1以上)アルミニウム、アルミニウム合金を射出成形して形成されている。In the cooling body 3, a cooling water supply port 3 a and a drainage port 3 b are opened to the outside of the housing 2, and a cooling water passage 3 c is formed between the water supply port 3 a and the drainage port 3 b. The water supply port 3a and the drainage port 3b are connected to a cooling water supply source (not shown) via, for example, a flexible hose. The cooling body 3 is formed, for example, by injection molding aluminum or aluminum alloy having high thermal conductivity (for example, 100 W · m −1 · K −1 or more).

そして、冷却体3は、下面が平坦面とされ、上面には中央部に平面から見て方形の凹部3dが形成されている。この凹部3dの中央部には、平面から見て方形の突出台部3eが形成され、この突出台部3eの周囲に角枠状の周溝3fが形成されている。この突出台部3eの高さは冷却体3の上面より低く、後述する伝熱支持側板35及び37の底板39の厚みと略等しく設定されている。また、冷却体3には、下部筐体2Aに保持されたフィルムコンデンサ4の絶縁被覆された正負の電極4aを上下に挿通する挿通孔3gが形成されている。   The lower surface of the cooling body 3 is a flat surface, and a concave portion 3d having a square shape when viewed from the plane is formed in the center on the upper surface. At the center of the recess 3d, a rectangular protruding base 3e as viewed from above is formed, and a rectangular frame-shaped peripheral groove 3f is formed around the protruding base 3e. The height of the protruding base 3e is lower than the upper surface of the cooling body 3, and is set substantially equal to the thickness of the bottom plates 39 of the heat transfer support side plates 35 and 37 described later. The cooling body 3 is formed with an insertion hole 3g through which the positive and negative electrodes 4a covered with insulation of the film capacitor 4 held by the lower housing 2A are vertically inserted.

電力変換装置1は、図2とともに参照して明らかなように、電力変換用の例えばインバータ回路を構成する半導体スイッチング素子として例えば絶縁ゲートバイポーラトランジスタ(IGBT)を内蔵した半導体パワーモジュール11を備えている。
この半導体パワーモジュール11は、扁平な直方体状の絶縁性のケース体12内にIGBTを内蔵しており、ケース体12の下面に金属製の冷却部材13が形成されている。
As is apparent from FIG. 2, the power conversion apparatus 1 includes a semiconductor power module 11 that incorporates, for example, an insulated gate bipolar transistor (IGBT) as a semiconductor switching element that constitutes, for example, an inverter circuit for power conversion. .
The semiconductor power module 11 includes an IGBT in a flat rectangular parallelepiped insulating case body 12, and a metal cooling member 13 is formed on the lower surface of the case body 12.

ケース体12及び冷却部材13には平面からみて四隅に固定部材としての固定ねじ14を挿通する挿通孔15が形成されている。これら挿通孔15内に固定ねじ14を挿通し,固定ねじの雄ねじ部の先端を冷却体3に螺合させることにより、半導体パワーモジュール11が冷却体3の上面に装着される。
また、ケース体12の上面には、挿通孔15の内側における4箇所に所定高さの基板固定部16が突出形成されている。
The case body 12 and the cooling member 13 are formed with insertion holes 15 through which the fixing screws 14 as the fixing members are inserted at the four corners when viewed from the plane. The semiconductor power module 11 is mounted on the upper surface of the cooling body 3 by inserting the fixing screw 14 into the insertion holes 15 and screwing the tip of the male screw portion of the fixing screw into the cooling body 3.
In addition, on the upper surface of the case body 12, substrate fixing portions 16 having a predetermined height are formed to protrude at four locations inside the insertion hole 15.

この基板固定部16の上端には、半導体パワーモジュール11に内蔵されたIGBTを駆動する駆動回路等が実装された駆動回路基板21が固定されている。また、駆動回路基板21の上方に所定間隔を保って半導体パワーモジュール11に内蔵されたIGBTを制御する相対的に発熱量の大きい、又は発熱密度の大きい発熱回路部品を含む制御回路等を実装した実装基板としての制御回路基板22及び同様に発熱回路部品を含む電源回路等を実装した実装基板としての電源回路基板42が固定されている。   A drive circuit board 21 on which a drive circuit for driving an IGBT built in the semiconductor power module 11 is mounted is fixed to the upper end of the board fixing portion 16. In addition, a control circuit including a heat generation circuit component having a relatively large heat generation amount or a high heat generation density for controlling the IGBT built in the semiconductor power module 11 with a predetermined interval above the drive circuit board 21 is mounted. A control circuit board 22 as a mounting board and a power supply circuit board 42 as a mounting board on which a power supply circuit including a heat generating circuit component is mounted are fixed.

そして、駆動回路基板21は、基板固定部16に対向する位置に形成した挿通孔21a内に継ぎねじ24の雄ねじ部24aを挿通し、この雄ねじ部24aを基板固定部16の上面に形成した雌ねじ部16aに螺合することにより固定されている。
また、制御回路基板22は、図3に示すように、継ぎねじ24の上端に形成した雌ねじ部24bに対向する位置に形成した挿通孔22a内に継ぎねじ46の雄ねじ部46aを挿通し、この継ぎねじ46の雄ねじ部46aを継ぎねじ24の雌ねじ部24bに螺合することにより固定されている。
Then, the drive circuit board 21 is inserted into the insertion hole 21 a formed at a position facing the board fixing part 16, and the male screw part 24 a of the joint screw 24 is inserted, and the male screw part 24 a is formed on the upper surface of the board fixing part 16. It is fixed by screwing into the part 16a.
Further, as shown in FIG. 3, the control circuit board 22 inserts the male screw portion 46a of the joint screw 46 into the insertion hole 22a formed at a position facing the female screw portion 24b formed at the upper end of the joint screw 24. The male screw portion 46 a of the joint screw 46 is fixed by being screwed into the female screw portion 24 b of the joint screw 24.

ここで、駆動回路基板21には、冷却体3による冷却を必要としない発熱量が小さい回路部品が実装されている。また、制御回路基板22には、冷却体による冷却を必要とする発熱回路部品を含む回路部品26が表裏両面に実装されている。さらに、電源回路基板42には、冷却体による冷却を必要とする発熱回路部品を裏面側に実装し、冷却体による冷却を必要としない発熱量が小さい回路部品を表面側に実装している。   Here, the drive circuit board 21 is mounted with a circuit component that does not require cooling by the cooling body 3 and that generates a small amount of heat. In addition, circuit components 26 including heat generating circuit components that require cooling by a cooling body are mounted on the front and back surfaces of the control circuit board 22. Furthermore, on the power circuit board 42, a heat generating circuit component that requires cooling by the cooling body is mounted on the back surface side, and a circuit component that does not require cooling by the cooling body and that generates a small amount of heat is mounted on the front surface side.

そして、制御回路基板22は、表裏に伝熱部材27及び28が配置されている。これら伝熱部材27及び28は、伸縮性を有する弾性体で制御回路基板22と同じ外形寸法に構成されている。
これら伝熱部材27及び28としては、例えば弾性体としてのシリコンゴムの内部に金属フィラーを介在させることにより絶縁性能を発揮しながら伝熱性を高めたものが適用されている。これら伝熱部材27及び28は、例えば厚み方向に5〜30%程度に圧縮することにより、熱抵抗が減り効率良い伝熱効果を発揮することができる。
The control circuit board 22 has heat transfer members 27 and 28 arranged on the front and back sides. These heat transfer members 27 and 28 are elastic bodies having elasticity, and have the same outer dimensions as the control circuit board 22.
As these heat transfer members 27 and 28, for example, a member having improved heat transfer performance while exhibiting insulation performance by interposing a metal filler inside silicon rubber as an elastic body is applied. These heat transfer members 27 and 28 can exhibit an efficient heat transfer effect by reducing thermal resistance, for example, by compressing them to about 5 to 30% in the thickness direction.

このため、各伝熱部材27及び28の制御回路基板22とは反対側には、板状の伝熱支持板29及び30が配置されている。これら伝熱支持板29及び30は熱伝導率が高く(例えば100W・m-1・K-1以上)剛性があるアルミニウム、アルミニウム合金、銅等の金属材料で形成されている。
さらに、伝熱支持板29の上面側には伝熱部材27及び28と同様の構成を有する伝熱部材41が配置され、この伝熱部材41の伝熱支持板29とは反対側に電源回路基板42が配置されている。
For this reason, plate-like heat transfer support plates 29 and 30 are arranged on the opposite sides of the heat transfer members 27 and 28 from the control circuit board 22. These heat transfer support plates 29 and 30 are formed of a metal material such as aluminum, an aluminum alloy, or copper having high thermal conductivity (for example, 100 W · m −1 · K −1 or more) and rigidity.
Further, a heat transfer member 41 having the same configuration as the heat transfer members 27 and 28 is disposed on the upper surface side of the heat transfer support plate 29, and a power supply circuit is provided on the opposite side of the heat transfer support plate 29 from the heat transfer support plate 29. A substrate 42 is disposed.

そして、制御回路基板22と伝熱支持板30とが制御回路基板22の上面側から伝熱部材28を通じて伝熱支持板30に形成された雌ねじ30cに螺合する固定ねじ43によって固定されている。この制御回路基板22と伝熱支持板30とを固定する際に、図3に示すように、伝熱部材28に固定ねじ43を挿通する間座33を設けている。   The control circuit board 22 and the heat transfer support plate 30 are fixed by a fixing screw 43 that is screwed into the female screw 30 c formed on the heat transfer support plate 30 from the upper surface side of the control circuit board 22 through the heat transfer member 28. . When fixing the control circuit board 22 and the heat transfer support plate 30, as shown in FIG. 3, a spacer 33 through which the fixing screw 43 is inserted is provided in the heat transfer member 28.

この間座33は、伝熱部材28の厚みTより低い伝熱部材管理高さHを有する間隔調整部材とされ、この間座33の高さが伝熱部材28を厚み方向に5〜30%程度圧縮する高さに設定されている。したがって、制御回路基板22及び伝熱支持板30を固定ねじ43で固定したときに、伝熱部材28が厚み方向に5〜30%程度に正確に圧縮されて固定され、伝熱部材28の熱抵抗が減って効率の良い伝熱効果を発揮することができる。このとき、伝熱部材28の圧縮率は間座33の高さHによって管理されるので、締め付け不足や締め付け過剰が生じることなく、適切な締め付けが行われる。   The spacer 33 is an interval adjusting member having a heat transfer member management height H lower than the thickness T of the heat transfer member 28. The height of the spacer 33 compresses the heat transfer member 28 in the thickness direction by about 5 to 30%. It is set to the height you want. Therefore, when the control circuit board 22 and the heat transfer support plate 30 are fixed with the fixing screws 43, the heat transfer member 28 is accurately compressed and fixed to about 5 to 30% in the thickness direction, and the heat of the heat transfer member 28 is fixed. The resistance is reduced and an efficient heat transfer effect can be exhibited. At this time, since the compression ratio of the heat transfer member 28 is managed by the height H of the spacer 33, appropriate tightening is performed without causing insufficient tightening or excessive tightening.

そして、制御回路基板22は、図3に示すように、裏面を継ぎねじ24の上面に接触させた状態で、継ぎねじ24の上面に形成された雌ねじ部24bに継ぎねじ46の下端に形成された雄ねじ部46aを螺合させて締付けることにより、継ぎねじ24の上面に固定されている。
そして、継ぎねじ46が伝熱部材27に形成された挿通孔27a内に挿通されるように伝熱部材27を配置し、この伝熱部材27の上面側に伝熱支持板29が配置され、この伝熱支持板29の上面側に継ぎねじ46が伝熱部材41に形成された挿通孔41a内に挿通されるように伝熱部材41を配置し、さらに伝熱部材41の上面側に電源回路基板42を配置する。
As shown in FIG. 3, the control circuit board 22 is formed at the lower end of the joint screw 46 on the female screw portion 24 b formed on the upper surface of the joint screw 24 with the back surface in contact with the upper surface of the joint screw 24. The male screw portion 46a is screwed and tightened to be fixed to the upper surface of the joint screw 24.
Then, the heat transfer member 27 is disposed so that the joint screw 46 is inserted into the insertion hole 27 a formed in the heat transfer member 27, and the heat transfer support plate 29 is disposed on the upper surface side of the heat transfer member 27, The heat transfer member 41 is arranged on the upper surface side of the heat transfer support plate 29 so that the joint screw 46 is inserted into an insertion hole 41 a formed in the heat transfer member 41, and further the power source is connected to the upper surface side of the heat transfer member 41. A circuit board 42 is disposed.

この電源回路基板42と伝熱支持板29とは、電源回路基板42の上面側から伝熱部材41を通じて伝熱支持板29に形成された雌ねじ29cに螺合する固定ねじ44によって固定されている。この電源回路基板42と伝熱支持板29とを固定する際に、図3に示すように、伝熱部材41に固定ねじ44を挿通する間座45を設けている。   The power circuit board 42 and the heat transfer support plate 29 are fixed by a fixing screw 44 that is screwed into the female screw 29c formed on the heat transfer support plate 29 from the upper surface side of the power circuit board 42 through the heat transfer member 41. . When the power supply circuit board 42 and the heat transfer support plate 29 are fixed, a spacer 45 through which the fixing screw 44 is inserted is provided in the heat transfer member 41 as shown in FIG.

この間座45は、伝熱部材41の厚みTより低い伝熱部材管理高さHを有する間隔調整部材とされ、この間座45の高さが伝熱部材41を厚み方向に5〜30%程度圧縮する高さに設定されている。したがって、電源回路基板42及び伝熱支持板29を固定ねじ44で固定したときに、伝熱部材41が厚み方向に5〜30%程度に正確に圧縮されて固定され、伝熱部材41の熱抵抗が減って効率の良い伝熱効果を発揮することができる。このとき、伝熱部材41の圧縮率は間座45の高さHによって管理されるので、締め付け不足や締め付け過剰が生じることなく、適切な締め付けが行われる。
そして、電源回路基板42は、その上面側から固定ねじ47を挿通し、その雄ねじ部を継ぎねじ46の上面に形成された雌ねじ部46bに螺合させて締め付けることにより、継ぎねじ46の上面に固定されている。
The spacer 45 is an interval adjusting member having a heat transfer member management height H lower than the thickness T of the heat transfer member 41, and the height of the spacer 45 compresses the heat transfer member 41 by about 5 to 30% in the thickness direction. It is set to the height you want. Therefore, when the power supply circuit board 42 and the heat transfer support plate 29 are fixed with the fixing screws 44, the heat transfer member 41 is accurately compressed and fixed to about 5 to 30% in the thickness direction, and the heat of the heat transfer member 41 is increased. The resistance is reduced and an efficient heat transfer effect can be exhibited. At this time, since the compression rate of the heat transfer member 41 is managed by the height H of the spacer 45, appropriate tightening is performed without causing insufficient tightening or excessive tightening.
The power supply circuit board 42 is inserted into the upper surface of the joint screw 46 by inserting the fixing screw 47 from the upper surface side and screwing the male screw portion into the female screw portion 46 b formed on the upper surface of the joint screw 46. It is fixed.

一方、制御回路基板22と伝熱支持板29との間に介在される伝熱部材27の圧縮率は、継ぎねじ46の高さによって規定されている。すなわち、伝熱支持板29と電源回路基板42との間隔が間座45と、電源回路基板42の上方から間座45を通って伝熱支持板29に形成した雌ねじ部29cに螺合する固定ねじ44とによって規定されている。このため、継ぎねじ46の上面及び下面間の高さH2は、図3に示すように、間座45の高さ、伝熱支持板29の厚み及び伝熱部材27の5〜30%程度に圧縮したときの高さを加算した高さに設定されている。   On the other hand, the compression rate of the heat transfer member 27 interposed between the control circuit board 22 and the heat transfer support plate 29 is defined by the height of the joint screw 46. That is, the space between the heat transfer support plate 29 and the power supply circuit board 42 is fixed so that the spacer 45 is screwed into the female screw portion 29c formed on the heat transfer support plate 29 through the spacer 45 from above the power supply circuit board 42. And a screw 44. Therefore, the height H2 between the upper surface and the lower surface of the joint screw 46 is about 5 to 30% of the height of the spacer 45, the thickness of the heat transfer support plate 29, and the heat transfer member 27, as shown in FIG. It is set to the height obtained by adding the height when compressed.

したがって、制御回路基板22の取付け高さ位置を、継ぎねじ46の下面に形成した雄ねじ部46aを継ぎねじ24の上端に形成した雌ねじ部24bに螺合させることにより規定する。この状態で、伝熱部材27を、継ぎねじ46に伝熱部材27に形成した挿通孔27aを通して配置し、伝熱部材27の上面に固定ねじ44によって一体化された伝熱支持板29及び電源回路基板42を配置する。そして、電源回路基板42を固定ねじ47で継ぎねじ46の上面に締付け固定することにより、伝熱部材27を5〜30%程度の圧縮率で圧縮して固定することができる。   Therefore, the mounting height position of the control circuit board 22 is defined by screwing the male screw portion 46 a formed on the lower surface of the joint screw 46 with the female screw portion 24 b formed on the upper end of the joint screw 24. In this state, the heat transfer member 27 is arranged in the joint screw 46 through the insertion hole 27a formed in the heat transfer member 27, and the heat transfer support plate 29 and the power source integrated with the fixing screw 44 on the upper surface of the heat transfer member 27. A circuit board 42 is disposed. Then, by tightening and fixing the power circuit board 42 to the upper surface of the joint screw 46 with the fixing screw 47, the heat transfer member 27 can be compressed and fixed at a compression rate of about 5 to 30%.

このようにして、制御回路基板22及び電源回路基板42は、両者間に伝熱部材27、伝熱支持板29及び伝熱部材41を介在させ空気層が存在しない中実状態で積層される。このため、伝熱部材27及び28が制御回路基板22に実装された発熱回路部品を含む回路部品に密着することになり、回路部品の発熱を伝熱部材27及び28を介して伝熱支持板29及び30に放熱する。   In this manner, the control circuit board 22 and the power supply circuit board 42 are laminated in a solid state where there is no air layer with the heat transfer member 27, the heat transfer support plate 29, and the heat transfer member 41 interposed therebetween. For this reason, the heat transfer members 27 and 28 are brought into close contact with the circuit components including the heat generating circuit components mounted on the control circuit board 22, and the heat generation of the circuit components is transmitted through the heat transfer members 27 and 28. Heat is dissipated to 29 and 30.

そして、伝熱支持板29は、図2及び図3に示すように、左端部は制御回路基板22、伝熱部材27及び28の左端と同じ位置とされているが、右端部は、制御回路基板22、伝熱部材27及び28の右端より右方に突出する連結部29aが形成されている。この連結部29aには、図3に拡大して示すように、連結孔29bが貫通して形成されている。
同様に、伝熱支持板30は、図2及び図3に示すように、右端部は制御回路基板22、伝熱部材27及び28の右端と同じ位置とされているが、左端部は、制御回路基板22、伝熱部材27及び28の左端より左方に突出する連結部30aが形成されている。この連結部30aには、図3に拡大して示すように、連結孔30bが貫通して形成されている。
As shown in FIGS. 2 and 3, the heat transfer support plate 29 has the left end at the same position as the left end of the control circuit board 22 and the heat transfer members 27 and 28, but the right end has the control circuit. A connecting portion 29 a is formed to protrude rightward from the right ends of the substrate 22 and the heat transfer members 27 and 28. As shown in an enlarged view in FIG. 3, a connecting hole 29b is formed through the connecting portion 29a.
Similarly, as shown in FIGS. 2 and 3, the heat transfer support plate 30 has the right end portion at the same position as the right end of the control circuit board 22 and the heat transfer members 27 and 28, but the left end portion is controlled. A connecting portion 30a is formed that protrudes to the left from the left ends of the circuit board 22 and the heat transfer members 27 and 28. As shown in an enlarged view in FIG. 3, a connecting hole 30b is formed through the connecting portion 30a.

そして、伝熱支持板29の連結部29aに上部筐体2Bとは独立した熱伝導路を形成する伝熱支持側板35が固定ねじ36で固定されて連結されている。この固定ねじ36は伝熱支持板29の上方から連結孔29bを通じて伝熱支持側板35に形成された雌ねじ(図示せず)に螺合されている。
また、伝熱支持板30の連結部30aに上部筐体2Bとは独立した熱伝導路を形成する伝熱支持側板37が固定ねじ38で固定されて連結されている。この固定ねじ38も伝熱支持板30の上方から連結孔30bを通じて伝熱支持側板37に形成された雌ねじ(図示せず)に螺合されている。
A heat transfer support side plate 35 that forms a heat conduction path independent of the upper housing 2 </ b> B is fixed and connected to the connecting portion 29 a of the heat transfer support plate 29 with a fixing screw 36. The fixing screw 36 is screwed into a female screw (not shown) formed on the heat transfer support side plate 35 through the connection hole 29b from above the heat transfer support plate 29.
Further, a heat transfer support side plate 37 that forms a heat conduction path independent of the upper housing 2 </ b> B is fixed and connected to the connecting portion 30 a of the heat transfer support plate 30 by a fixing screw 38. The fixing screw 38 is also screwed from above the heat transfer support plate 30 to a female screw (not shown) formed on the heat transfer support side plate 37 through the connection hole 30b.

ここで、伝熱支持側板35は、垂直板部35aと、この垂直板部35aの上端から左方に延長する連結板部35bとで逆L字状に形成されている。そして、伝熱支持側板35は、垂直板部35aと連結板部35bとの連結部が円筒面の一部となる湾曲面(R面取り)35cとされている。同様に、伝熱支持側板37も、垂直板部37aと、この垂直板部37aの状態から右方に延長する連結板部37bとで逆L字状に形成されている。そして、伝熱支持側板37は、垂直板部37aと連結板部37bとの連結部が円筒面の一部となる湾曲面37c(R面取り)とされている。   Here, the heat transfer support side plate 35 is formed in an inverted L shape by a vertical plate portion 35a and a connecting plate portion 35b extending leftward from the upper end of the vertical plate portion 35a. The heat transfer support side plate 35 has a curved surface (R chamfer) 35c in which the connecting portion between the vertical plate portion 35a and the connecting plate portion 35b is a part of the cylindrical surface. Similarly, the heat transfer support side plate 37 is also formed in an inverted L shape by a vertical plate portion 37a and a connecting plate portion 37b extending rightward from the state of the vertical plate portion 37a. The heat transfer support side plate 37 has a curved surface 37c (R chamfer) in which the connecting portion between the vertical plate portion 37a and the connecting plate portion 37b is a part of the cylindrical surface.

これら伝熱支持側板35及び37は、それらの垂直板部35a及び37aの下端側が共通の底板39で連結されて一体化されている。この底板39は、中央部に冷却体3の突出台部3eを挿通する方形孔39aが形成されて、冷却体3の周溝3fに収納される角枠状に形成されている。
そして、伝熱支持側板35及び37の垂直板部35a及び37aの下端と底板39との連結が円筒面の一部となる湾曲面(R面取り)35d及び37dとされている。
The heat transfer support side plates 35 and 37 are integrated by connecting the lower end sides of the vertical plate portions 35 a and 37 a with a common bottom plate 39. The bottom plate 39 is formed in a square frame shape in which a square hole 39a is formed in the center portion to insert the protruding base portion 3e of the cooling body 3 and is accommodated in the circumferential groove 3f of the cooling body 3.
Then, the curved plates (R chamfers) 35d and 37d, in which the lower plates of the vertical plate portions 35a and 37a of the heat transfer support side plates 35 and 37 and the bottom plate 39 are connected to each other, are part of the cylindrical surface.

このように伝熱支持側板35及び37の垂直板部35a及び37aの上下端部を円筒状の湾曲面35c,35d及び37c,37dとされている。このため、電力変換装置1に上下振動や横揺れが伝達されたときに、垂直板部35a及び37aと連結板部35b及び37b及び底板39との連結部に生じる応力集中を緩和することができる。したがって、伝熱支持側板35及び37で、制御回路基板22を支持する場合の上下振動や横揺れ等に対する耐振動性を向上することができる。   In this way, the upper and lower ends of the vertical plate portions 35a and 37a of the heat transfer support side plates 35 and 37 are formed into cylindrical curved surfaces 35c, 35d and 37c, 37d. For this reason, when vertical vibration or roll is transmitted to the power converter 1, stress concentration generated in the connecting portions of the vertical plate portions 35a and 37a, the connecting plate portions 35b and 37b, and the bottom plate 39 can be reduced. . Therefore, the heat resistance support side plates 35 and 37 can improve the vibration resistance against vertical vibration and roll when the control circuit board 22 is supported.

さらに、垂直板部35a及び37aと底板39との連結部と、垂直板部35a及び37aと連結板部35c及び37cとの連結部とを円筒状の湾曲面とすることにより、垂直板部35a及び37aと底板39との連結部及び垂直板部35a及び37aと連結板部35b及び37bとの連結部を直角のL字形状とする場合に比較して熱伝導経路を短くすることができる。このため、伝熱支持板29及び30から冷却体3までの熱伝導経路を短くして、効率的な熱冷却が可能となる。
なお、伝熱支持板30の駆動回路基板21と対向する下面には、絶縁距離を短くするために絶縁シート40が貼着されている。
Further, the vertical plate portions 35a and 37a are connected to the bottom plate 39, and the vertical plate portions 35a and 37a and the connection portions of the connection plate portions 35c and 37c are formed as cylindrical curved surfaces. In addition, the heat conduction path can be shortened as compared to the case where the connecting portions between the connecting portions 37a and the bottom plate 39 and the connecting portions between the vertical plate portions 35a and 37a and the connecting plate portions 35b and 37b have a right-angled L shape. For this reason, the heat conduction path from the heat transfer support plates 29 and 30 to the cooling body 3 can be shortened to enable efficient heat cooling.
An insulating sheet 40 is attached to the lower surface of the heat transfer support plate 30 facing the drive circuit board 21 in order to shorten the insulation distance.

また、伝熱支持側板35及び37と底板39とは黒色の表面を有する。これら伝熱支持側板35及び37と底板39との表面を黒色化にするには、表面に黒色樹脂をコーティングしたり、黒色塗料で塗装したりすればよい。このように、伝熱支持側板35及び37と底板39との表面を黒色とすることにより、金属の素材色と比較し熱放射率が大きくなり、放射伝熱量を増やすことができる。このため、伝熱支持側板35及び37と底板39との周囲への放熱が活発化され、制御回路基板22の熱冷却を効率良く行うことができる。なお、底板39を除いて伝熱支持側板35及び37のみの表面を黒色にするようにしてもよい。   The heat transfer support side plates 35 and 37 and the bottom plate 39 have black surfaces. In order to blacken the surfaces of the heat transfer support side plates 35 and 37 and the bottom plate 39, the surface may be coated with a black resin or painted with a black paint. Thus, by making the surfaces of the heat transfer support side plates 35 and 37 and the bottom plate 39 black, the heat emissivity becomes larger than the metal material color, and the amount of radiant heat transfer can be increased. For this reason, the heat dissipation to the circumference | surroundings of the heat-transfer support side plates 35 and 37 and the bottom plate 39 is activated, and the heat cooling of the control circuit board 22 can be performed efficiently. In addition, you may make it make the surface of only the heat-transfer support side plates 35 and 37 black except for the bottom plate 39.

次に、上記第1の実施形態の電力変換装置1の組立方法を説明する。
先ず、冷却体3の周溝3f内に、伝熱支持側板35及び37に共通の底板39を配置し、この底板39の上面に半導体パワーモジュール11に形成した冷却部材13の下面を接触させ且つ冷却部材13を冷却体3の突出台部3eに接触させた状態で、固定ねじ14で半導体パワーモジュール11と底板39とを冷却体3に一体に固定する。
また、半導体パワーモジュール11には、冷却体3に固定する前又は固定した後に、その上面に形成された基板固定部16に駆動回路基板21を載置する。そして、この駆動回路基板21をその上方から4本の継ぎねじ24によって基板固定部16に固定する。
Next, a method for assembling the power conversion device 1 according to the first embodiment will be described.
First, a bottom plate 39 common to the heat transfer support side plates 35 and 37 is disposed in the circumferential groove 3f of the cooling body 3, and the lower surface of the cooling member 13 formed on the semiconductor power module 11 is brought into contact with the upper surface of the bottom plate 39, and The semiconductor power module 11 and the bottom plate 39 are integrally fixed to the cooling body 3 with the fixing screw 14 in a state where the cooling member 13 is in contact with the protruding base portion 3 e of the cooling body 3.
In the semiconductor power module 11, the drive circuit board 21 is mounted on the board fixing part 16 formed on the upper surface of the semiconductor power module 11 before or after fixing to the cooling body 3. Then, the drive circuit board 21 is fixed to the board fixing portion 16 by four joint screws 24 from above.

次いで、駆動回路基板21の上面における周縁部の回路部品が搭載されていない部分に例えば駆動回路基板21と絶縁シート40との間の絶縁距離を保つスペーサを少なくとも3つ載置し、この状態で、継ぎねじ24を基準として下面に絶縁シート40を貼着した伝熱支持板30、伝熱部材28及び制御回路基板22の順で積層する。このとき、伝熱部材28の固定ねじ43の挿通部に間座33を挿通しておく。
この状態で、制御回路基板22の上面から継ぎねじ46の下端に形成された雄ねじ部46aを挿通孔22aを通じて挿通し、継ぎねじ24の上面に形成された雌ねじ部24bに螺合させて制御回路基板22を継ぎねじ24の上端に固定する。
Next, for example, at least three spacers that maintain an insulation distance between the drive circuit board 21 and the insulating sheet 40 are placed on a portion of the upper surface of the drive circuit board 21 where the circuit components at the peripheral edge are not mounted. Then, the heat transfer support plate 30, the heat transfer member 28, and the control circuit board 22 in which the insulating sheet 40 is bonded to the lower surface with the joint screw 24 as a reference are laminated in this order. At this time, the spacer 33 is inserted through the insertion portion of the fixing screw 43 of the heat transfer member 28.
In this state, the male screw portion 46a formed at the lower end of the joint screw 46 is inserted through the insertion hole 22a from the upper surface of the control circuit board 22, and screwed into the female screw portion 24b formed on the upper surface of the joint screw 24. The substrate 22 is fixed to the upper end of the joint screw 24.

次いで、制御回路基板22の上面に継ぎねじ46が挿通孔27aに挿通するように、伝熱部材27を載置する。そして、予め、伝熱部材27の上面に電源回路基板42に固定ねじ44で伝熱部材41を介して伝熱支持板29を固定した組立体を、その伝熱支持板29の下面が伝熱部材27の上面に接触するように継ぎねじ46が伝熱支持板29、伝熱部材41の挿通孔を挿通するように装着する。   Next, the heat transfer member 27 is placed on the upper surface of the control circuit board 22 so that the joint screw 46 is inserted into the insertion hole 27a. An assembly in which the heat transfer support plate 29 is fixed to the power circuit board 42 via the heat transfer member 41 with the fixing screw 44 on the upper surface of the heat transfer member 27 in advance, and the lower surface of the heat transfer support plate 29 has the heat transfer. The joint screw 46 is mounted so as to pass through the insertion holes of the heat transfer support plate 29 and the heat transfer member 41 so as to contact the upper surface of the member 27.

この状態で、電源回路基板42を固定ねじ47によって、継ぎねじ46の上端に固定することにより、伝熱部材27の圧縮率が5〜30%程度となるように圧縮される。このため、伝熱部材41が5〜30%程度圧縮された状態となり、伝熱部材41の熱抵抗が減り効率のよい伝熱効果を発揮することができる。
その後、図1に示すように、半導体パワーモジュール11の正負の直流入力端子に11aに、ブスバー50を接続し、このブスバー50の他端に冷却体3を貫通するフィルムコンデンサ4の正負の接続端子4aを固定ねじ51で連結する。
In this state, the power supply circuit board 42 is fixed to the upper end of the joint screw 46 by the fixing screw 47, so that the heat transfer member 27 is compressed so that the compression ratio is about 5 to 30%. For this reason, the heat transfer member 41 is compressed by about 5 to 30%, the heat resistance of the heat transfer member 41 is reduced, and an efficient heat transfer effect can be exhibited.
Thereafter, as shown in FIG. 1, a bus bar 50 is connected to the positive and negative DC input terminals of the semiconductor power module 11 to 11 a, and the positive and negative connection terminals of the film capacitor 4 penetrating the cooling body 3 at the other end of the bus bar 50. 4a is connected with a fixing screw 51.

次いで、冷却体3の上面に蓋体2bを取り外した上部筐体2Bをシール材を介して装着する。この上部筐体2Bの角筒体2aには、外部のコンバータ(図示せず)に接続する接続コード52の先端に固定された圧着端子53と、外部の3相電動モータ(図示せず)に接続したモータケーブル58の先端に固定した圧着端子59とが液密に挿通支持されている。
次いで、半導体パワーモジュール11の直流入力端子11aに接続コード52の先端に固定された圧着端子53を固定する。
Next, the upper housing 2B from which the lid 2b is removed is mounted on the upper surface of the cooling body 3 through a sealing material. The rectangular tube 2a of the upper housing 2B is connected to a crimp terminal 53 fixed to the tip of a connection cord 52 connected to an external converter (not shown) and an external three-phase electric motor (not shown). A crimp terminal 59 fixed to the tip of the connected motor cable 58 is inserted and supported in a liquid-tight manner.
Next, the crimp terminal 53 fixed to the tip of the connection cord 52 is fixed to the DC input terminal 11 a of the semiconductor power module 11.

次いで、半導体パワーモジュール11の3相交流出力端子11bにブスバー55を固定ねじ56で接続し、このブスバー55の途中に電流センサ57を配置する。そして、ブスバー55の他端にモータケーブル58の先端に固定した圧着端子59を固定ねじ60で固定して接続する。
そして、角筒体2aの上部開放端を蓋体2bでシール材を介して封鎖する。
その後、又はその前に、冷却体3の下面に、下部筐体2Aをシール材を介して固定して電力変換装置1の組立を完了する。
Next, a bus bar 55 is connected to the three-phase AC output terminal 11 b of the semiconductor power module 11 with a fixing screw 56, and a current sensor 57 is disposed in the middle of the bus bar 55. Then, a crimp terminal 59 fixed to the tip of the motor cable 58 is fixed to the other end of the bus bar 55 with a fixing screw 60 and connected.
Then, the upper open end of the rectangular tube 2a is sealed with a lid 2b via a sealing material.
After or before that, the lower housing 2A is fixed to the lower surface of the cooling body 3 via a sealing material, and the assembly of the power converter 1 is completed.

この組立完了状態で、半導体パワーモジュール11に接続コード52を介して外部のコンバータ(図示せず)から直流電力を供給するとともに、制御回路基板22に実装された電源回路、制御回路等を動作状態とし、制御回路から例えばパルス幅変調信号でなるゲート信号を駆動回路基板21に実装された駆動回路を介して半導体パワーモジュール11に供給する。   In this assembled state, the DC power is supplied to the semiconductor power module 11 from an external converter (not shown) via the connection cord 52, and the power supply circuit, the control circuit, and the like mounted on the control circuit board 22 are operated. Then, a gate signal composed of, for example, a pulse width modulation signal is supplied from the control circuit to the semiconductor power module 11 via the drive circuit mounted on the drive circuit board 21.

これによって、半導体パワーモジュール11に内蔵されたIGBTが制御されて、直流電力を交流電力に変換する。変換した交流電力は3相交流出力端子11bからブスバー55を介し、さらにモータケーブル58を介して外部の3相電動モータ(図示せず)に供給され、この3相電動モータ(図示せず)を駆動制御する。
このとき、半導体パワーモジュール11に内蔵されたIGBTで発熱が生じる。この発熱は半導体パワーモジュール11に形成された冷却部材13が冷却体3の突出台部3eに直接接触されているので、冷却体3に供給されている冷却水によって冷却される。
As a result, the IGBT built in the semiconductor power module 11 is controlled to convert DC power into AC power. The converted AC power is supplied from the three-phase AC output terminal 11b to the external three-phase electric motor (not shown) via the bus bar 55 and further via the motor cable 58, and this three-phase electric motor (not shown) is supplied. Drive control.
At this time, heat is generated in the IGBT built in the semiconductor power module 11. The generated heat is cooled by the cooling water supplied to the cooling body 3 because the cooling member 13 formed in the semiconductor power module 11 is in direct contact with the protruding base 3 e of the cooling body 3.

一方、制御回路基板22に実装されている制御回路の回路部品26には発熱回路部品が含まれており、これら発熱回路部品で発熱を生じる。このとき、発熱回路部品は制御回路基板22の上面及び下面側に実装されている。
そして、制御回路基板22の上面及び下面側には熱伝導率が高く弾性を有する伝熱部材27及び28を介して伝熱支持板29及び30が設けられている。
On the other hand, the circuit components 26 of the control circuit mounted on the control circuit board 22 include heat generating circuit components, and these heat generating circuit components generate heat. At this time, the heat generating circuit components are mounted on the upper and lower surfaces of the control circuit board 22.
Heat transfer support plates 29 and 30 are provided on the upper and lower surfaces of the control circuit board 22 via heat transfer members 27 and 28 having high heat conductivity and elasticity.

ここで、伝熱部材27及び28は、前述したように固定ねじ43及び電源回路基板42を継ぎねじ46の上面に固定ねじ47の締め付けによって、5〜30%程度の圧縮率で圧縮されているので、熱抵抗が減り効率の良い伝熱効果を発揮することができるとともに、発熱回路部品と伝熱部材27及び28との接触面積が大きくなる。
したがって、発熱回路部品の発熱が伝熱部材27及び28に効率よく伝熱される。このため、図4に示すように、伝熱部材27及び28に伝熱された熱が効率良く伝熱支持板29及び30に伝達される。
Here, as described above, the heat transfer members 27 and 28 are compressed at a compression ratio of about 5 to 30% by fastening the fixing screw 43 and the power circuit board 42 to the upper surface of the joint screw 46 with the fixing screw 47. Therefore, the thermal resistance can be reduced, and an efficient heat transfer effect can be exhibited, and the contact area between the heat generating circuit component and the heat transfer members 27 and 28 is increased.
Therefore, heat generated by the heat generating circuit components is efficiently transferred to the heat transfer members 27 and 28. Therefore, as shown in FIG. 4, the heat transferred to the heat transfer members 27 and 28 is efficiently transferred to the heat transfer support plates 29 and 30.

そして、伝熱支持板29及び30には、伝熱支持側板35及び37が連結されているので、伝熱支持板29及び30に伝達された熱は、伝熱支持側板35及び37を通って共通の底板39に伝達される。この底板39は、冷却体3の周溝3f内に直接接触されているので、伝達された熱は冷却体3に放熱される。
さらに、底板39に伝達された熱は、その上面側から半導体パワーモジュール11の冷却部材13に伝達され、この冷却部材13を介して冷却体3の突出台部3eに伝達されて放熱される。
Since the heat transfer support plates 29 and 30 are connected to the heat transfer support plates 29 and 30, the heat transferred to the heat transfer support plates 29 and 30 passes through the heat transfer support plates 35 and 37. It is transmitted to the common bottom plate 39. Since the bottom plate 39 is in direct contact with the circumferential groove 3 f of the cooling body 3, the transmitted heat is radiated to the cooling body 3.
Further, the heat transmitted to the bottom plate 39 is transmitted from the upper surface side to the cooling member 13 of the semiconductor power module 11, and is transmitted to the projecting base 3 e of the cooling body 3 through the cooling member 13 to be radiated.

一方、電源回路基板42でも裏面側に発熱回路部品が実装されており、この発熱回路部品の発熱が、図4に示すように、伝熱部材41を通じて伝熱支持板29に伝達される。このため、制御回路基板22の表面側の発熱回路部品の発熱と同様に、伝熱支持板29を通じ、伝熱支持側板35を通じて冷却体3に放熱される。   On the other hand, a heat generating circuit component is also mounted on the back side of the power circuit board 42, and the heat generated by the heat generating circuit component is transmitted to the heat transfer support plate 29 through the heat transfer member 41 as shown in FIG. Therefore, the heat is radiated to the cooling body 3 through the heat transfer support plate 29 and the heat transfer support side plate 35 in the same manner as the heat generation of the heat generating circuit components on the surface side of the control circuit board 22.

このように、上記第1の実施形態によると、互いに対向配置される一対の実装基板としての制御回路基板22及び電源回路基板42が、両者間に伝熱部材27及び41と伝熱支持板29とを介在させた中実状態で積層されている。このため、制御回路基板22と電源回路基板42との間に空気層が存在しないので、空気層が形成されている場合のように熱溜まりが形成されることがなく、制御回路基板22及び電源回路基板42に搭載された発熱回路部品の発熱を効率よく、冷却体3に放熱することができる。   As described above, according to the first embodiment, the control circuit board 22 and the power supply circuit board 42 as a pair of mounting boards opposed to each other include the heat transfer members 27 and 41 and the heat transfer support plate 29 therebetween. Are stacked in a solid state with intervening. For this reason, since an air layer does not exist between the control circuit board 22 and the power supply circuit board 42, a heat reservoir is not formed unlike the case where the air layer is formed, and the control circuit board 22 and the power supply Heat generated by the heat generating circuit component mounted on the circuit board 42 can be efficiently radiated to the cooling body 3.

因に、図6に示す従来例のように、駆動回路基板21及び制御回路基板22間、制御回路基板22及び電源回路基板42間にそれぞれ空間部が形成されている場合には、上部筐体2B内には空気の対流が殆どないため、各回路基板21、22及び42の発熱回路部品で発熱した熱が各回路基板21、22及び42間に留まって熱溜まりが形成される。この熱溜まりの熱がその上方の回路基板に影響することになり、放熱効果を効率よく行うことができない。   Incidentally, when the space portions are formed between the drive circuit board 21 and the control circuit board 22 and between the control circuit board 22 and the power supply circuit board 42 as in the conventional example shown in FIG. Since there is almost no air convection in 2B, the heat generated by the heat generating circuit components of the circuit boards 21, 22 and 42 stays between the circuit boards 21, 22 and 42 to form a heat pool. This heat pool heat affects the circuit board thereabove, and the heat dissipation effect cannot be performed efficiently.

しかしながら、上記第1の実施形態によると、発熱回路部品を実装した制御回路基板22及び電源回路基板42が、両者間に伝熱部材27及び41と伝熱支持板29とが介在されて空気層を含まない中実状態で積層されているので、熱溜まりが生じることを確実に防止することができる。このため、制御回路基板22及び電源回路基板42に実装された発熱回路部品の発熱を効率よく冷却体3に放熱することができる。   However, according to the first embodiment, the control circuit board 22 and the power supply circuit board 42 on which the heat generating circuit components are mounted have the air layer with the heat transfer members 27 and 41 and the heat transfer support plate 29 interposed therebetween. Therefore, it is possible to reliably prevent heat accumulation from occurring. Therefore, the heat generated by the heat generating circuit components mounted on the control circuit board 22 and the power supply circuit board 42 can be efficiently radiated to the cooling body 3.

また、制御回路基板22の表裏両面に伝熱部材27及び28が配置され、これら伝熱部材27及び28の制御回路基板22とは反対側に伝熱支持板29及び30が配置されているので、制御回路基板22に搭載された発熱回路部品で発生される発熱がそれぞれ熱抵抗の大きな制御回路基板22を介することなく直接伝熱部材27及び28を介して伝熱支持板29及び30に伝熱されるので、効率の良い放熱を行うことができる。
そして、伝熱部材27及び28に伝達された熱は伝熱支持板29及び30に伝熱され、さらに伝熱支持側板35及び37に伝達される。このとき、伝熱支持側板35及び37が半導体パワーモジュール11の長辺に沿って設けられている。
Further, the heat transfer members 27 and 28 are arranged on both the front and back surfaces of the control circuit board 22, and the heat transfer support plates 29 and 30 are arranged on the opposite side of the heat transfer members 27 and 28 from the control circuit board 22. The heat generated by the heat generating circuit components mounted on the control circuit board 22 is directly transferred to the heat transfer support plates 29 and 30 via the heat transfer members 27 and 28 without passing through the control circuit board 22 having a large thermal resistance. Since it is heated, efficient heat dissipation can be performed.
The heat transmitted to the heat transfer members 27 and 28 is transferred to the heat transfer support plates 29 and 30 and further transferred to the heat transfer support side plates 35 and 37. At this time, the heat transfer support side plates 35 and 37 are provided along the long side of the semiconductor power module 11.

このため、伝熱面積を広くとることができ、広い放熱経路を確保することができる。しかも、伝熱支持側板35及び37は折れ曲がり部が円筒状の湾曲部35c,35d及び37c,37dとされているので、折れ曲がり部をL字状にする場合に比較して冷却体3までの伝熱距離を短くすることができる。このため、放熱効率をより向上させることができる。ここで、熱輸送量Qは、下記(1)式で表すことができる。
Q=λ×(A/L)×T …………(1)
For this reason, a wide heat transfer area can be taken, and a wide heat dissipation path can be secured. In addition, since the bent portions of the heat transfer support side plates 35 and 37 are cylindrical curved portions 35c, 35d and 37c, 37d, the heat transfer support side plates 35 and 37 are transferred to the cooling body 3 as compared with the case where the bent portions are L-shaped. The thermal distance can be shortened. For this reason, the heat dissipation efficiency can be further improved. Here, the heat transport amount Q can be expressed by the following equation (1).
Q = λ × (A / L) × T (1)

ただし、λは熱伝導率[W/m℃]、Tは温度差[℃]基板温度T1−冷却体温度T2、Aは伝熱最小断面積[m2]、Lは伝熱長さ[m]である。
この(1)式から明らかなように、伝熱長さLが短くなると、熱輸送量Qは増加することになり、良好な冷却効果を発揮することができる。
また、伝熱支持側板35及び37が共通の底板39で一体化されているので、伝熱支持側板35及び37と底板39との間に部品同士の継ぎ目がなく、熱抵抗を抑制することができる。
Where λ is the thermal conductivity [W / m ° C.], T is the temperature difference [° C.] substrate temperature T 1 -cooling body temperature T 2, A is the minimum heat transfer cross section [m 2 ], and L is the heat transfer length [m]. ].
As is clear from the equation (1), when the heat transfer length L is shortened, the heat transport amount Q is increased, and a good cooling effect can be exhibited.
In addition, since the heat transfer support side plates 35 and 37 are integrated with a common bottom plate 39, there is no joint between the components between the heat transfer support side plates 35 and 37 and the bottom plate 39, thereby suppressing thermal resistance. it can.

さらに、発熱回路部品が実装された制御回路基板22から冷却体3までの放熱経路に筐体2が含まれていないので、筐体2を高熱伝導率のアルミニウム等の金属を使用する必要がなく、合成樹脂材で構成することができるので、軽量化を図ることができる。
さらに、放熱経路が筐体2に依存することなく、電力変換装置1単独で放熱経路を形成することができるので、半導体パワーモジュール11と、駆動回路基板21、制御回路基板22とで構成される電力変換装置1を種々の異なる形態の筐体2や冷却体3に適用することができる。
Further, since the housing 2 is not included in the heat dissipation path from the control circuit board 22 on which the heat generating circuit components are mounted to the cooling body 3, it is not necessary to use a metal such as aluminum having high thermal conductivity for the housing 2. Since it can be made of a synthetic resin material, the weight can be reduced.
Furthermore, since the heat dissipation path can be formed by the power converter 1 alone without the heat dissipation path depending on the housing 2, the semiconductor power module 11, the drive circuit board 21, and the control circuit board 22 are configured. The power conversion device 1 can be applied to various types of housings 2 and cooling bodies 3.

また、制御回路基板22及び電源回路基板42間に圧縮された伝熱部材27及び41を介して伝熱支持板29が固定されているので、制御回路基板22及び電源回路基板42の剛性を高めることができる。このため、電力変換装置1を車両の走行用モータを駆動するモータ駆動回路として適用する場合のように、電力変換装置1に図5に示す上下振動や横揺れが作用する場合でも、これら上下振動や横揺れに対する剛性を高めることができる。したがって、上下振動や横揺れ等の影響が少ない電力変換装置1を提供することができる。   Further, since the heat transfer support plate 29 is fixed via the heat transfer members 27 and 41 compressed between the control circuit board 22 and the power supply circuit board 42, the rigidity of the control circuit board 22 and the power supply circuit board 42 is increased. be able to. For this reason, even when the power converter 1 is applied as a motor drive circuit for driving a vehicle driving motor, the vertical vibration or roll shown in FIG. And rigidity against rolling can be increased. Therefore, it is possible to provide the power conversion device 1 that is less affected by vertical vibration and roll.

さらに、伝熱部材27、28及び41を伝熱性を有する絶縁体で構成することにより、制御回路基板22と伝熱支持板29及び30との間の絶縁を行うことができるので、両者間の距離を短くすることができ、全体を小型化することができる。
なお、上記第1の実施形態においては、制御回路基板22及び電源回路基板42において、発熱回路部品を伝熱支持側板35及び37に近い部分に配置することにより、冷却体3迄の放熱経路の距離を短くするようにしてもよい。この場合には、発熱回路部品の冷却体3までの放熱経路の距離が短くなるので、効率良い放熱を行うことができる。
Furthermore, since the heat transfer members 27, 28, and 41 are formed of an insulator having heat transfer properties, the control circuit board 22 and the heat transfer support plates 29 and 30 can be insulated, so A distance can be shortened and the whole can be reduced in size.
In the first embodiment, in the control circuit board 22 and the power supply circuit board 42, the heat generating circuit components are arranged in a portion close to the heat transfer support side plates 35 and 37, so that the heat dissipation path to the cooling body 3 is improved. The distance may be shortened. In this case, since the distance of the heat radiation path to the cooling body 3 of the heat generating circuit component is shortened, efficient heat radiation can be performed.

また、上記第1の実施形態においては、電源回路基板42については下面側にのみ伝熱部材41を配置する場合について説明した。しかしながら、本発明では上記構成に限定されるものではなく、図7に示すように、電源回路基板42についても制御回路基板22と同様に表裏に伝熱部材41及び61を配置し、伝熱部材61の電源回路基板42とは反対側に伝熱支持板62を配置するようにしてもよい。
この場合、伝熱支持板62の上方から固定ねじ63を挿通して伝熱支持板29に形成した雌ねじ部29cに螺合させるとともに、固定ねじ63の周りに間座64及び65を設けることによって、伝熱部材41及び61を5〜30%程度圧縮した状態とすることができる。
Moreover, in the said 1st Embodiment, about the power supply circuit board 42, the case where the heat-transfer member 41 was arrange | positioned only on the lower surface side was demonstrated. However, the present invention is not limited to the above-described configuration. As shown in FIG. 7, the heat transfer members 41 and 61 are arranged on the front and back of the power circuit board 42 in the same manner as the control circuit board 22. The heat transfer support plate 62 may be arranged on the opposite side of the power supply circuit board 42 of 61.
In this case, the fixing screw 63 is inserted from above the heat transfer support plate 62 and screwed into the female screw portion 29 c formed on the heat transfer support plate 29, and spacers 64 and 65 are provided around the fixing screw 63. The heat transfer members 41 and 61 can be in a compressed state of about 5 to 30%.

そして、伝熱支持側板35に、その連結板部35cの上方に延長する延長部35eと、この延長部35eの上端から左方に延長する連結板部35fとを形成し、延長部35eと連結板部35fとの連結部に延長部35e及び連結板部35fに接する円筒面の一部となる湾曲面35gを形成する。この連結板部35fに伝熱支持板62の連結部62aを固定ねじ66で固定する。
この図7の構成とすることにより、電源回路基板42でも、制御回路基板22と同様に、表裏で伝熱部材41及び61で発熱回路部品の発熱を伝熱支持板29及び62に伝熱し、伝熱支持板29及び62から伝熱支持側板35を介して冷却体3に放熱することができる。
And the extension part 35e extended above the connection plate part 35c and the connection plate part 35f extended to the left from the upper end of this extension part 35e are formed in the heat-transfer support side plate 35, and it connects with the extension part 35e. An extended portion 35e and a curved surface 35g that is a part of a cylindrical surface in contact with the connecting plate portion 35f are formed at the connecting portion with the plate portion 35f. The connecting portion 62 a of the heat transfer support plate 62 is fixed to the connecting plate portion 35 f with a fixing screw 66.
By adopting the configuration of FIG. 7, the power circuit board 42 also transfers heat generated by the heat generating circuit components to the heat transfer support plates 29 and 62 by the heat transfer members 41 and 61 on the front and back sides, similarly to the control circuit board 22. Heat can be radiated from the heat transfer support plates 29 and 62 to the cooling body 3 via the heat transfer support side plate 35.

次に、本発明の第2の実施形態を図8について説明する。
この第2の実施形態では、3枚の実装基板を伝熱部材及び伝熱支持板を介在させて中実状態で積層するようにしたものである。
すなわち、第3の実施形態では、図8に示すように、上述した駆動回路基板21及び制御回路基板22についても伝熱部材71、伝熱部材28及び伝熱支持板30を介在させて中実状態で積層するようにしたことを除いては前述した第1の実施形態と同様の構成を有する。したがって、図2との対応部分には同一符号を付し、その詳細説明はこれを省略する。
Next, a second embodiment of the present invention will be described with reference to FIG.
In the second embodiment, three mounting boards are stacked in a solid state with a heat transfer member and a heat transfer support plate interposed therebetween.
That is, in the third embodiment, as shown in FIG. 8, the drive circuit board 21 and the control circuit board 22 described above are also solid with the heat transfer member 71, the heat transfer member 28, and the heat transfer support plate 30 interposed therebetween. The configuration is the same as that of the first embodiment except that the layers are stacked in a state. 2 corresponding to those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.

この第2の実施形態によると、駆動回路基板21と制御回路基板22とが、伝熱部材71、28及び伝熱支持板30が介在されて中実状態で積層されている。このため、駆動回路基板21に実装された発熱量の少ない回路部品の発熱を、伝熱部材71を介して伝熱支持板30に伝熱することができ、伝熱支持板30から伝熱支持側板37を介して冷却体3に放熱することができる。   According to the second embodiment, the drive circuit board 21 and the control circuit board 22 are stacked in a solid state with the heat transfer members 71 and 28 and the heat transfer support plate 30 interposed therebetween. For this reason, the heat generation of the circuit component with a small amount of heat mounted on the drive circuit board 21 can be transferred to the heat transfer support plate 30 via the heat transfer member 71, and the heat transfer support plate 30 can support the heat transfer. Heat can be radiated to the cooling body 3 through the side plate 37.

したがって、駆動回路基板21に実装された回路部品の発熱についても効率よく冷却体に放熱することができる。しかも、駆動回路基板21、制御回路基板22及び電源回路基板42が空気層を介在させることなく中実状態で一体化されているので、上下振動や横揺れに対する剛性を高めることができる。駆動回路基板21、制御回路基板22及び電源回路基板42毎に剛性対策を行う必要がなく、電力変換装置1の全体を小型化することができる。   Therefore, the heat generated by the circuit components mounted on the drive circuit board 21 can be efficiently radiated to the cooling body. In addition, since the drive circuit board 21, the control circuit board 22, and the power circuit board 42 are integrated in a solid state without interposing an air layer, rigidity against vertical vibration and roll can be increased. There is no need to take rigidity countermeasures for each of the drive circuit board 21, the control circuit board 22, and the power supply circuit board 42, and the entire power conversion device 1 can be downsized.

次に、本発明の第3の実施形態を図9について説明する。
この第3の実施形態では、前述した第1の実施形態と同様に制御回路基板22及び電源回路基板42を、両者間に伝熱部材27、28及び伝熱支持板29を介在させて中実状態で積層するようにしている。この場合は、制御回路基板22及び電源回路基板42に実装する発熱回路部品は、制御回路基板22については上面側に実装し、電源回路基板42については下面側に実装する。
Next, a third embodiment of the present invention will be described with reference to FIG.
In the third embodiment, the control circuit board 22 and the power supply circuit board 42 are solid with the heat transfer members 27 and 28 and the heat transfer support plate 29 interposed therebetween, as in the first embodiment described above. They are stacked in a state. In this case, the heat generating circuit components mounted on the control circuit board 22 and the power circuit board 42 are mounted on the upper surface side of the control circuit board 22 and mounted on the lower surface side of the power circuit board 42.

そして、伝熱支持板29はその両端に連結部29a及び29dが形成され、両連結部29a及び29dが左右対称形状に形成された伝熱支持側板35及び37の連結板部35b及び37bに連結されている。
なお、伝熱部材27及び28の圧縮は、伝熱支持板29に溶接、ロー付け等の固定手段で固定された伝熱部材27及び28の厚みの5〜30%程度の高さの間隔調整部材としての基板固定部81及び82に固定ねじ83及び84を螺合させて締め付けることにより行うようにしている。
The heat transfer support plate 29 is connected to the connection plate portions 35b and 37b of the heat transfer support side plates 35 and 37 in which connection portions 29a and 29d are formed at both ends, and both the connection portions 29a and 29d are formed in a symmetrical shape. Has been.
Note that the compression of the heat transfer members 27 and 28 is performed by adjusting the height of the heat transfer members 27 and 28 fixed to the heat transfer support plate 29 by fixing means such as welding or brazing at a height of about 5 to 30%. The fixing is performed by screwing the fixing screws 83 and 84 into the board fixing portions 81 and 82 as members.

なお、制御回路基板22及び電源回路基板42は、継ぎねじ24の上面に形成された雌ねじ部に電源回路基板42の上面側から固定ねじ85を挿通して螺合させることより、継ぎねじ24の上面に制御回路基板22を当接させた状態で固定されている。
この第3の実施形態によると、制御回路基板22及び電源回路基板42間にのみ伝熱部材27及び28と伝熱支持板29とが介在されており、これら制御回路基板22の下面から電源回路基板42の上面までの厚みを前述した第1及び第2の実施形態に比較して小さくすることができる。このため、電力変換装置1全体をより小型化することができる。
The control circuit board 22 and the power supply circuit board 42 are inserted into the female screw portion formed on the upper surface of the joint screw 24 by inserting a fixing screw 85 from the upper surface side of the power supply circuit board 42 and screwed together. The control circuit board 22 is fixed in contact with the upper surface.
According to the third embodiment, the heat transfer members 27 and 28 and the heat transfer support plate 29 are interposed only between the control circuit board 22 and the power supply circuit board 42, and the power supply circuit is provided from the lower surface of the control circuit board 22. The thickness up to the upper surface of the substrate 42 can be reduced as compared with the first and second embodiments described above. For this reason, the power converter device 1 whole can be further reduced in size.

また、伝熱支持板29の左右両端部に連結部29a及び29dが形成され、これら連結部29a及び29dに左右対称形状の伝熱支持側板35及び37が連結され、これら伝熱支持側板35及び37の下部が共通の底板39で一体化されて冷却体3に固定されているので、上下振動や横揺れに対する剛性をより大きくすることができる。このため、上下振動や横揺れに対する耐振動性をより向上させた電力変換装置1を提供することができる。   Further, connecting portions 29a and 29d are formed at the left and right end portions of the heat transfer support plate 29, and symmetrical heat transfer support side plates 35 and 37 are connected to the connection portions 29a and 29d. Since the lower part of 37 is integrated with the common bottom plate 39 and fixed to the cooling body 3, the rigidity against vertical vibration and roll can be further increased. For this reason, the power converter device 1 which improved the vibration resistance with respect to a vertical vibration or a roll can be provided.

次に、本発明の第4の実施形態を図10について説明する。
この第4の実施形態は、前述した第1の実施形態の変形である図7の構成において、制御回路基板22と電源回路基板42との間を伝熱部材のみで中実状態に積層したものである。
すなわち、第4の実施形態においては、図7の構成において、伝熱支持板29と、伝熱支持側板35の連結板部35b及び湾曲面35cとを省略して、制御回路基板22と電源回路基板42との間に伝熱部材27のみを介在させ、これら制御回路基板22及び電源回路基板42を空気層が存在しない中実状態で積層するようにしている。ここで、制御回路基板22では発熱回路部品を下面側に実装し、電源回路基板42では発熱回路部品を上側に実装することが好ましい。さらに、制御回路基板22及び電源回路基板42には表裏を連結する銅などの熱伝導率の高い金属部材を埋込んで、表裏の熱伝導路を形成することが好ましい。
Next, a fourth embodiment of the present invention will be described with reference to FIG.
In the fourth embodiment, in the configuration of FIG. 7 which is a modification of the first embodiment described above, the control circuit board 22 and the power supply circuit board 42 are stacked in a solid state only by a heat transfer member. It is.
That is, in the fourth embodiment, in the configuration of FIG. 7, the control circuit board 22 and the power circuit are omitted by omitting the heat transfer support plate 29, the connecting plate portion 35 b and the curved surface 35 c of the heat transfer support side plate 35. Only the heat transfer member 27 is interposed between the substrate 42 and the control circuit board 22 and the power supply circuit board 42 are stacked in a solid state where no air layer is present. Here, it is preferable that the heating circuit component is mounted on the lower surface side in the control circuit board 22 and the heating circuit component is mounted on the upper side in the power circuit board 42. Further, it is preferable to embed a metal member having a high thermal conductivity such as copper for connecting the front and back surfaces of the control circuit board 22 and the power circuit board 42 to form a heat conduction path on the front and back sides.

この第4の実施形態によると、制御回路基板22については下側に配置した伝熱支持板30を介して伝熱支持側板37によって支持されて冷却体3への熱伝導路が形成され、電源回路基板42については上側に配置した伝熱支持板62を介して伝熱支持側板35によって支持されて冷却体3への熱伝導路が形成されている。
このため、制御回路基板22の下面側に発熱回路部品を実装することにより、この発熱回路部品の発熱が伝熱支持板30を介し、伝熱支持側板37を介して冷却体3へ放熱される。
According to the fourth embodiment, the control circuit board 22 is supported by the heat transfer support side plate 37 via the heat transfer support plate 30 disposed on the lower side, and a heat conduction path to the cooling body 3 is formed. The circuit board 42 is supported by the heat transfer support side plate 35 via the heat transfer support plate 62 disposed on the upper side, and a heat conduction path to the cooling body 3 is formed.
Therefore, by mounting the heat generating circuit component on the lower surface side of the control circuit board 22, the heat generated by the heat generating circuit component is radiated to the cooling body 3 via the heat transfer support plate 30 and the heat transfer support side plate 37. .

一方、電源回路基板の上面側に発熱回路部品を実装することにより、この発熱回路部品の発熱が伝熱支持板62を介し、伝熱支持側板35を介して冷却体3へ放熱される。
さらに、制御回路基板22の上面側に実装された回路部品の発熱及び電源回路基板42の下面側に実装された回路部品の発熱は伝熱部材27を介し、制御回路基板22及び電源回路基板42に埋め込んだ金属部材を介し、さらに反対側の伝熱部材28及び61を介して伝熱支持板30及び62に伝熱することにより、伝熱支持側板37及び35を介して冷却体に放熱することができる。制御回路基板22の上面側及び電源回路基板42の下面側に実装された回路部品の発熱が少ない場合には、金属部材の埋込を省略して、スルーホール等を通じた熱伝導路を介して放熱することができる。
On the other hand, by mounting the heat generating circuit component on the upper surface side of the power circuit board, the heat generated by the heat generating circuit component is radiated to the cooling body 3 via the heat transfer support plate 62 and the heat transfer support side plate 35.
Further, the heat generated by the circuit components mounted on the upper surface side of the control circuit board 22 and the heat generated by the circuit components mounted on the lower surface side of the power circuit board 42 are transmitted via the heat transfer member 27 and the control circuit board 22 and the power circuit board 42. Heat is transferred to the cooling body via the heat transfer support side plates 37 and 35 by transferring heat to the heat transfer support plates 30 and 62 via the heat transfer members 28 and 61 on the opposite side via the metal member embedded in be able to. When the circuit components mounted on the upper surface side of the control circuit board 22 and the lower surface side of the power circuit board 42 generate little heat, the embedding of the metal member is omitted and the heat conduction path through the through hole or the like is omitted. It can dissipate heat.

この第4の実施形態でも、このため、制御回路基板22と電源回路基板42との間に空気層が存在しないので、空気層が形成されている場合のように熱溜まりが形成されることを防止することができる。
なお、上記第1〜第4の実施形態においては、半導体パワーモジュール11の冷却部材13及び伝熱支持側板35及び37に共通の底板39を冷却体3に接触させる場合について説明した。しかしながら、本発明では上記構成に限定されるものではなく、図11に示すように、半導体パワーモジュール11に形成されている冷却部材13が冷却体3に流れる冷却水に直接接触する冷却フィン91を備えた構成とするようにしてもよい。この場合には、冷却体3の中央部に冷却フィン91を冷却水の通路に浸漬させる浸漬部92を形成する。
In the fourth embodiment, therefore, there is no air layer between the control circuit board 22 and the power circuit board 42, so that a heat pool is formed as in the case where the air layer is formed. Can be prevented.
In the first to fourth embodiments, the case where the bottom plate 39 common to the cooling member 13 and the heat transfer support side plates 35 and 37 of the semiconductor power module 11 is brought into contact with the cooling body 3 has been described. However, the present invention is not limited to the above-described configuration. As shown in FIG. 11, the cooling member 13 formed in the semiconductor power module 11 includes cooling fins 91 that directly contact the cooling water flowing through the cooling body 3. You may make it set it as the structure provided. In this case, an immersion part 92 for immersing the cooling fin 91 in the passage of the cooling water is formed in the central part of the cooling body 3.

そして、浸漬部92を囲む周壁93と冷却部材13との間にOリング等のシール部材96が配設されている。
この構成によると、半導体パワーモジュール11の冷却部材13に冷却フィン91が形成され、この冷却フィン91が冷却水に浸漬部92で冷却水に浸漬されているので、半導体パワーモジュール11をより効率良く冷却することができる。
A sealing member 96 such as an O-ring is disposed between the peripheral wall 93 surrounding the immersion part 92 and the cooling member 13.
According to this configuration, the cooling fins 91 are formed in the cooling member 13 of the semiconductor power module 11, and the cooling fins 91 are immersed in the cooling water in the cooling water at the immersion part 92, so that the semiconductor power module 11 is more efficiently used. Can be cooled.

また、上記第1〜第4の実施形態においては、伝熱支持板29及び30と伝熱支持側板35及び37とを別体で構成する場合について説明した。しかしながら、本発明は、上記構成に限定されるものでなく、伝熱支持板29及び30と伝熱支持側板35及び37とを一体に構成するようにしてもよい。この場合には、伝熱支持板29及び30と伝熱支持側板35及び37との間に継ぎ目が形成されることがなくなるので、熱抵抗をより小さくしてより効率の良い放熱を行うことができる。   Moreover, in the said 1st-4th embodiment, the case where the heat-transfer support plates 29 and 30 and the heat-transfer support side plates 35 and 37 were comprised separately was demonstrated. However, the present invention is not limited to the above configuration, and the heat transfer support plates 29 and 30 and the heat transfer support side plates 35 and 37 may be configured integrally. In this case, since no seam is formed between the heat transfer support plates 29 and 30 and the heat transfer support side plates 35 and 37, more efficient heat dissipation can be achieved by reducing the thermal resistance. it can.

また、上記第1〜第4の実施形態では、制御回路基板22と伝熱支持板29及び30との間に介挿した伝熱部材27及び28が弾性を有する場合について説明した。しかしながら、本発明では上記構成に限定されるものではなく、シリコンゴム以外の合成ゴムや天然ゴム等の弾性体を適用することができる。また、絶縁被覆した金属板等の弾性を有さない伝熱部材を適用することもできる。   Moreover, the said 1st-4th embodiment demonstrated the case where the heat-transfer members 27 and 28 inserted between the control circuit board 22 and the heat-transfer support plates 29 and 30 have elasticity. However, the present invention is not limited to the above configuration, and an elastic body such as synthetic rubber or natural rubber other than silicon rubber can be applied. A heat transfer member that does not have elasticity, such as an insulating coated metal plate, can also be applied.

さらに、上記第1〜第4の実施形態では、伝熱支持板30、29及び62を伝熱支持側板37及び35を介して冷却体3に連結して筐体2と別体の熱伝導路を形成する場合について説明した。しかしながら、本発明は上記構成に限定されるものではなく、筐体2を熱伝導率の高い部材で形成した場合には、筐体2を冷却体3への熱伝導路とすることができる。   Further, in the first to fourth embodiments, the heat transfer support plates 30, 29, and 62 are connected to the cooling body 3 via the heat transfer support side plates 37 and 35, and are separate from the housing 2. The case of forming is described. However, the present invention is not limited to the above configuration, and when the casing 2 is formed of a member having high thermal conductivity, the casing 2 can be used as a heat conduction path to the cooling body 3.

また、上記第1〜第4の実施形態では、平滑用のコンデンサとしてフィルムコンデンサ4を適用した場合について説明したが、これに限定されるものではなく、円柱状の電解コンデンサを適用するようにしてもよい。
さらに、上記第1〜第4の実施形態においては、本発明による電力変換装置を電気自動車に適用する場合について説明したが、これに限定されるものではなく、軌条を走行する鉄道車両にも本発明を適用することができ、任意の電気駆動車両に適用することができる。さらに電力変換装置としては電気駆動車両に限らず、他の産業機器における電動モータ等のアクチュエータを駆動する場合に本発明の電力変換装置を適用することができる。
In the first to fourth embodiments, the case where the film capacitor 4 is applied as a smoothing capacitor has been described. However, the present invention is not limited to this, and a cylindrical electrolytic capacitor is applied. Also good.
Further, in the first to fourth embodiments, the case where the power conversion device according to the present invention is applied to an electric vehicle has been described. However, the present invention is not limited to this, and the present invention is also applied to a rail vehicle traveling on a rail. The invention can be applied and can be applied to any electric drive vehicle. Furthermore, the power conversion device is not limited to an electrically driven vehicle, and the power conversion device of the present invention can be applied when driving an actuator such as an electric motor in other industrial equipment.

本発明によれば、基板に実装された発熱回路部品の熱を効率よく冷却体に放熱することができ、小型化が可能な電力変換装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the heat | fever of the heat generating circuit components mounted in the board | substrate can be efficiently radiated | emitted to a cooling body, and the power converter device which can be reduced in size can be provided.

1…電力変換装置、2…筐体、3…冷却体、4…フィルムコンデンサ、5…蓄電池収納部、11…パワーモジュール、12…ケース体、13…冷却部材、21…駆動回路基板、22…制御回路基板、24…継ぎねじ、27,28…伝熱部材、29,30…伝熱支持板、41…伝熱部材、42…電源回路基板、46…継ぎねじ、45…間座(間隔調整部材)、61…伝熱部材、62…伝熱支持板、63…固定ねじ、64,65…間座、66…固定ねじ、71…伝熱部材、81,82…基板固定部、83、84…固定ねじ、91…冷却フィン   DESCRIPTION OF SYMBOLS 1 ... Power converter device, 2 ... Housing | casing, 3 ... Cooling body, 4 ... Film capacitor, 5 ... Storage battery storage part, 11 ... Power module, 12 ... Case body, 13 ... Cooling member, 21 ... Drive circuit board, 22 ... Control circuit board, 24 ... Joint screw, 27, 28 ... Heat transfer member, 29, 30 ... Heat transfer support plate, 41 ... Heat transfer member, 42 ... Power supply circuit board, 46 ... Joint screw, 45 ... Spacer (space adjustment) Member), 61 ... heat transfer member, 62 ... heat transfer support plate, 63 ... fixing screw, 64, 65 ... spacer, 66 ... fixing screw, 71 ... heat transfer member, 81, 82 ... substrate fixing part, 83, 84 ... Fixing screw, 91 ... Cooling fin

また、本発明に係る電力変換装置の第3の態様は、前記一対の実装基板の一方の実装基板が、表裏両面に伝熱部材を配置している。
この構成によると、実装基板の表裏両面に伝熱部材が配置されているので、実装基板に実装された表裏の発熱回路部品の発熱を、表裏の伝熱部材によって効率よく冷却体に導くことができる。
また、本発明に係る電力変換装置の第4の態様は、前記一対の実装基板が、弾性体を所定圧縮率で圧縮した状態で固定されている。
この構成によると、弾性体を圧縮した状態で固定するので、実装基板に実装された発熱部品との接触をより良好に行うことができ、放熱効果を向上させることができる。
Moreover, the 3rd aspect of the power converter device which concerns on this invention has arrange | positioned the heat-transfer member in one mounting board of a pair of said mounting board on both front and back.
According to this configuration, since the heat transfer members are arranged on both the front and back surfaces of the mounting board, heat generated by the front and back heat generating circuit components mounted on the mounting board can be efficiently guided to the cooling body by the front and back heat transfer members. it can.
The fourth aspect of the power converting apparatus of the present invention, the pair of mounting substrate is fixed in a compressed state elastic body at a predetermined compression rate.
According to this configuration, since the elastic body is fixed in a compressed state, contact with the heat-generating component mounted on the mounting board can be performed more favorably, and the heat dissipation effect can be improved.

さらに、一対の実装基板に実装された発熱回路部品の発熱を、伝熱部材及び伝熱支持を介し、さらに半導体スイッチング素子をケース体に内蔵した半導体パワーモジュール及び実装基板の双方を囲む筐体とは独立した熱伝導路を通って冷却体に連結することにより、実装基板の表裏の発熱を効率よく冷却体に放熱することができる。このため、筐体や筐体蓋からの放熱作用との併用を減少させることができ、筐体や筐体蓋の大きさを抑えて小型化された安価な電力変換装置を提供することができる。
しかも、筐体に良好な伝熱性を要求することがないので、筐体に樹脂等の軽量な材料を用いることができ、筐体を軽量化して安価な電力変換装置の提供が可能となる。
Further, a case that surrounds both the semiconductor power module and the mounting substrate, in which the heat generation of the heat generating circuit components mounted on the pair of mounting substrates is provided via the heat transfer member and the heat transfer support plate , and the semiconductor switching element is built in the case body. By connecting to the cooling body through an independent heat conduction path, heat generated on the front and back of the mounting board can be efficiently radiated to the cooling body. For this reason, the combined use with the heat dissipation action from the housing and the housing lid can be reduced, and an inexpensive power conversion device that is reduced in size by suppressing the size of the housing and the housing lid can be provided. .
In addition, since the casing does not require good heat conductivity, a lightweight material such as a resin can be used for the casing, and the casing can be reduced in weight and an inexpensive power conversion device can be provided.

そして、制御回路基板22は、表裏に伝熱部材27及び28が配置されている。これら伝熱部材27及び28は、伸縮性を有する弾性体で制御回路基板22と同じ外形寸法に構成されている。
これら伝熱部材27及び28としては、例えば弾性体としてのシリコンゴムの内部に金属フィラーを介在させることにより絶縁性能を発揮しながら伝熱性を高めたものが適用されている。これら伝熱部材27及び28は、例えば厚み方向に5〜30%程度圧縮することにより、熱抵抗が減り効率良い伝熱効果を発揮することができる
The control circuit board 22 has heat transfer members 27 and 28 arranged on the front and back sides. These heat transfer members 27 and 28 are elastic bodies having elasticity, and have the same outer dimensions as the control circuit board 22.
As these heat transfer members 27 and 28, for example, a member having improved heat transfer performance while exhibiting insulation performance by interposing a metal filler inside silicon rubber as an elastic body is applied. These heat transfer members 27 and 28, for example by Do圧 reduced as 5-30% in the thickness direction, it is possible to heat resistance exerts an efficient heat transfer effect reduces

この間座33は、伝熱部材28の厚みTより低い伝熱部材管理高さHを有する間隔調整部材とされ、この間座33の高さが伝熱部材28を厚み方向に5〜30%程度圧縮する高さに設定されている。したがって、制御回路基板22及び伝熱支持板30を固定ねじ43で固定したときに、伝熱部材28が厚み方向に5〜30%程度正確に圧縮されて固定され、伝熱部材28の熱抵抗が減って効率の良い伝熱効果を発揮することができる。このとき、伝熱部材28の圧縮率は間座33の高さHによって管理されるので、締め付け不足や締め付け過剰が生じることなく、適切な締め付けが行われる。 The spacer 33 is an interval adjusting member having a heat transfer member management height H lower than the thickness T of the heat transfer member 28. The height of the spacer 33 compresses the heat transfer member 28 in the thickness direction by about 5 to 30%. It is set to the height you want. Therefore, the control circuit board 22 and the heat transfer support plate 30 when fixed with fixing screw 43, the heat transfer member 28 is fixed is compressed in DoTadashi sure about 5-30% in the thickness direction, of the heat transfer member 28 The heat resistance is reduced and an efficient heat transfer effect can be exhibited. At this time, since the compression ratio of the heat transfer member 28 is managed by the height H of the spacer 33, appropriate tightening is performed without causing insufficient tightening or excessive tightening.

この間座45は、伝熱部材41の厚みTより低い伝熱部材管理高さHを有する間隔調整部材とされ、この間座45の高さが伝熱部材41を厚み方向に5〜30%程度圧縮する高さに設定されている。したがって、電源回路基板42及び伝熱支持板29を固定ねじ44で固定したときに、伝熱部材41が厚み方向に5〜30%程度正確に圧縮されて固定され、伝熱部材41の熱抵抗が減って効率の良い伝熱効果を発揮することができる。このとき、伝熱部材41の圧縮率は間座45の高さHによって管理されるので、締め付け不足や締め付け過剰が生じることなく、適切な締め付けが行われる。
そして、電源回路基板42は、その上面側から固定ねじ47を挿通し、その雄ねじ部を継ぎねじ46の上面に形成された雌ねじ部46bに螺合させて締め付けることにより、継ぎねじ46の上面に固定されている。
The spacer 45 is an interval adjusting member having a heat transfer member management height H lower than the thickness T of the heat transfer member 41, and the height of the spacer 45 compresses the heat transfer member 41 by about 5 to 30% in the thickness direction. It is set to the height you want. Therefore, when the power supply circuit board 42 and the heat transfer support plate 29 fixed with fixing screw 44, the heat transfer member 41 is fixed is compressed in DoTadashi sure about 5-30% in the thickness direction, of the heat transfer member 41 The heat resistance is reduced and an efficient heat transfer effect can be exhibited. At this time, since the compression rate of the heat transfer member 41 is managed by the height H of the spacer 45, appropriate tightening is performed without causing insufficient tightening or excessive tightening.
The power supply circuit board 42 is inserted into the upper surface of the joint screw 46 by inserting the fixing screw 47 from the upper surface side and screwing the male screw portion into the female screw portion 46 b formed on the upper surface of the joint screw 46. It is fixed.

一方、制御回路基板22と伝熱支持板29との間に介在される伝熱部材27の圧縮率は、継ぎねじ46の高さによって規定されている。すなわち、伝熱支持板29と電源回路基板42との間隔が間座45と、電源回路基板42の上方から間座45を通って伝熱支持板29に形成した雌ねじ部29cに螺合する固定ねじ44とによって規定されている。このため、継ぎねじ46の上面及び下面間の高さH2は、図3に示すように、間座45の高さ、伝熱支持板29の厚み及び伝熱部材27の5〜30%程度圧縮したときの高さを加算した高さに設定されている。 On the other hand, the compression rate of the heat transfer member 27 interposed between the control circuit board 22 and the heat transfer support plate 29 is defined by the height of the joint screw 46. That is, the space between the heat transfer support plate 29 and the power supply circuit board 42 is fixed so that the spacer 45 is screwed into the female screw portion 29c formed on the heat transfer support plate 29 through the spacer 45 from above the power supply circuit board 42. And a screw 44. Therefore, the height H2 between upper and lower surfaces of the joint screw 46, as shown in FIG. 3, the height of the spacer 45, as 5-30% of the thickness of the heat transfer support plate 29 and the heat transfer member 27 degrees It is set to a height obtained by adding the height when the compression.

ここで、伝熱支持側板35は、垂直板部35aと、この垂直板部35aの上端から左方に延長する連結板部35bとで逆L字状に形成されている。そして、伝熱支持側板35は、垂直板部35aと連結板部35bとの連結部が円筒面の一部となる湾曲面(R面取り)35cとされている。同様に、伝熱支持側板37も、垂直板部37aと、この垂直板部37aの上端から右方に延長する連結板部37bとで逆L字状に形成されている。そして、伝熱支持側板37は、垂直板部37aと連結板部37bとの連結部が円筒面の一部となる湾曲面37c(R面取り)とされている。 Here, the heat transfer support side plate 35 is formed in an inverted L shape by a vertical plate portion 35a and a connecting plate portion 35b extending leftward from the upper end of the vertical plate portion 35a. The heat transfer support side plate 35 has a curved surface (R chamfer) 35c in which the connecting portion between the vertical plate portion 35a and the connecting plate portion 35b is a part of the cylindrical surface. Similarly, the heat transfer support side plate 37 is also formed in an inverted L shape by a vertical plate portion 37a and a connecting plate portion 37b extending rightward from the upper end of the vertical plate portion 37a. The heat transfer support side plate 37 has a curved surface 37c (R chamfer) in which the connecting portion between the vertical plate portion 37a and the connecting plate portion 37b is a part of the cylindrical surface.

この状態で、電源回路基板42を固定ねじ47によって、継ぎねじ46の上端に固定することにより、伝熱部材27の圧縮率が5〜30%程度となるように圧縮される。このため、伝熱部材41が5〜30%程度圧縮された状態となり、伝熱部材41の熱抵抗が減り効率のよい伝熱効果を発揮することができる。
その後、図1に示すように、半導体パワーモジュール11の正負の直流入力端子11aに、ブスバー50を接続し、このブスバー50の他端に冷却体3を貫通するフィルムコンデンサ4の正負の電極4aを固定ねじ51で連結する。
In this state, the power supply circuit board 42 is fixed to the upper end of the joint screw 46 by the fixing screw 47, so that the heat transfer member 27 is compressed so that the compression ratio is about 5 to 30%. For this reason, the heat transfer member 41 is in a compressed state of about 5 to 30%, and the heat resistance of the heat transfer member 41 is reduced and an efficient heat transfer effect can be exhibited.
Thereafter, as shown in FIG. 1, the positive and negative DC input terminals 1 1a of the semiconductor power module 11 connects the bus bar 50, positive and negative electrodes of the film capacitor 4 through the heat sink 3 to the other end of the bus bar 50 4a is connected with a fixing screw 51.

一方、制御回路基板22に実装されている制御回路の回路部品26には発熱回路部品が含まれており、これら発熱回路部品で発熱を生じる。このとき、発熱回路部品は制御回路基板22の上面及び下面に実装されている。
そして、制御回路基板22の上面及び下面側には熱伝導率が高く弾性を有する伝熱部材27及び28を介して伝熱支持板29及び30が設けられている。
On the other hand, the circuit components 26 of the control circuit mounted on the control circuit board 22 include heat generating circuit components, and these heat generating circuit components generate heat. At this time, the heat generating circuit components are mounted on the upper surface and the lower surface of the control circuit board 22.
Heat transfer support plates 29 and 30 are provided on the upper and lower surfaces of the control circuit board 22 via heat transfer members 27 and 28 having high heat conductivity and elasticity.

次に、本発明の第2の実施形態を図8について説明する。
この第2の実施形態では、3枚の実装基板を伝熱部材及び伝熱支持板を介在させて中実状態で積層するようにしたものである。
すなわち、第の実施形態では、図8に示すように、上述した駆動回路基板21及び制御回路基板22についても伝熱部材71、伝熱部材28及び伝熱支持板30を介在させて中実状態で積層するようにしたことを除いては前述した第1の実施形態と同様の構成を有する。したがって、図2との対応部分には同一符号を付し、その詳細説明はこれを省略する。
Next, a second embodiment of the present invention will be described with reference to FIG.
In the second embodiment, three mounting boards are stacked in a solid state with a heat transfer member and a heat transfer support plate interposed therebetween.
That is, in the second embodiment, as shown in FIG. 8, the drive circuit board 21 and the control circuit board 22 described above are also solid with the heat transfer member 71, the heat transfer member 28, and the heat transfer support plate 30 interposed therebetween. The configuration is the same as that of the first embodiment except that the layers are stacked in a state. 2 corresponding to those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.

一方、電源回路基板の上面側に発熱回路部品を実装することにより、この発熱回路部品の発熱が伝熱支持板62を介し、伝熱支持側板35を介して冷却体3へ放熱される。
さらに、制御回路基板22の上面側に実装された回路部品の発熱及び電源回路基板42の下面側に実装された回路部品の発熱は伝熱部材27を介し、制御回路基板22及び電源回路基板42に埋め込んだ金属部材を介し、さらに反対側の伝熱部材28及び61を介して伝熱支持板30及び62に伝熱することにより、伝熱支持側板37及び35を介して冷却体に放熱することができる。制御回路基板22の上面側及び電源回路基板42の下面側に実装された回路部品の発熱が少ない場合には、金属部材の埋込を省略して、スルーホール等を通じた熱伝導路を介して放熱することができる。
On the other hand, by mounting the heat generating circuit component on the upper surface side of the power circuit board, the heat generated by the heat generating circuit component is radiated to the cooling body 3 via the heat transfer support plate 62 and the heat transfer support side plate 35.
Further, the heat generated by the circuit components mounted on the upper surface side of the control circuit board 22 and the heat generated by the circuit components mounted on the lower surface side of the power circuit board 42 are transmitted via the heat transfer member 27 and the control circuit board 22 and the power circuit board 42. Heat is transferred to the cooling body 3 via the heat transfer support side plates 37 and 35 by transferring heat to the heat transfer support plates 30 and 62 via the heat transfer members 28 and 61 on the opposite side via the metal member embedded in can do. When the circuit components mounted on the upper surface side of the control circuit board 22 and the lower surface side of the power circuit board 42 generate little heat, the embedding of the metal member is omitted and the heat conduction path through the through hole or the like is omitted. It can dissipate heat.

そして、浸漬部92を囲む周壁93と冷却部材13との間にOリング等のシール部材96が配設されている。
この構成によると、半導体パワーモジュール11の冷却部材13に冷却フィン91が形成され、この冷却フィン91が浸漬部92で冷却水に浸漬されているので、半導体パワーモジュール11をより効率良く冷却することができる。
A sealing member 96 such as an O-ring is disposed between the peripheral wall 93 surrounding the immersion part 92 and the cooling member 13.
According to this configuration, the cooling fins 91 formed on the cooling member 13 of the semiconductor power module 11, since the cooling fins 91 are immersed in the cooling water immersion漬部92, more efficiently cool the semiconductor power module 11 be able to.

Claims (9)

一面を冷却体に接合する半導体パワーモジュールと、
前記半導体パワーモジュールを駆動する発熱回路部品を含む回路部品を実装した複数の実装基板と、
前記複数の実装基板の熱を前記冷却体に伝熱させる熱伝導路とを備え、
前記複数の実装基板のうち少なくとも互いに対向する一対の実装基板が伝熱部材を介在させた中実状態で積層されている
ことを特徴とする電力変換装置。
A semiconductor power module that joins one surface to a cooling body;
A plurality of mounting boards on which circuit components including heat generating circuit components for driving the semiconductor power module are mounted;
A heat conduction path for transferring heat of the plurality of mounting boards to the cooling body,
A power conversion device, wherein at least a pair of mounting substrates facing each other among the plurality of mounting substrates is stacked in a solid state with a heat transfer member interposed therebetween.
電力変換用の半導体スイッチング素子をケース体に内蔵する半導体パワーモジュールと、
該半導体パワーモジュールの一方の面に配置された冷却体と、
前記半導体パワーモジュールの他方の面上に支持される前記半導体スイッチング素子を駆動する発熱回路部品を含む回路部品を実装した複数の実装基板とを備え、
前記複数の実装基板のうち少なくとも互いに対向する一対の実装基板が伝熱部材及び伝熱支持板を介在させた中実状態で積層され、前記発熱回路部品の発熱を、前記伝熱部材及び前記伝熱支持板を介し、さらに前記モジュール及び前記各実装基板を囲む筐体とは独立した複数の熱伝導路を通って前記冷却体に放熱する
ことを特徴とする電力変換装置。
A semiconductor power module in which a semiconductor switching element for power conversion is built in the case body;
A cooling body disposed on one surface of the semiconductor power module;
A plurality of mounting boards mounted with circuit components including a heat generating circuit component for driving the semiconductor switching element supported on the other surface of the semiconductor power module;
A pair of mounting substrates facing each other at least among the plurality of mounting substrates are stacked in a solid state with a heat transfer member and a heat transfer support plate interposed therebetween, and heat generated by the heat generating circuit component is transferred to the heat transfer member and the heat transfer member. The power conversion device further radiates heat to the cooling body through a plurality of heat conduction paths independent of a housing surrounding the module and the mounting boards via a heat support plate.
前記一対の実装基板の一方の実装基板は、表裏両面に伝熱部材を配置したことを特徴とする請求項1又は2に記載の電力変換装置。   The power converter according to claim 1 or 2, wherein one mounting board of the pair of mounting boards has heat transfer members disposed on both front and back surfaces. 前記一対の実装基板は、前記弾性体を所定圧縮率で圧縮した状態で固定されていることを特徴とする請求項1又は2に記載の電力変換装置。   The power converter according to claim 1 or 2, wherein the pair of mounting boards are fixed in a state where the elastic body is compressed at a predetermined compression rate. 前記一対の実装基板間には、前記弾性体の圧縮率を決定する間隔調整部材が設けられていることを特徴とする請求項4に記載の電力変換装置。   The power conversion device according to claim 4, wherein an interval adjusting member that determines a compressibility of the elastic body is provided between the pair of mounting boards. 前記伝熱部材は、熱伝導性を有する絶縁体で構成されていることを特徴とする請求項1又は2に記載の電力変換装置。   The power conversion device according to claim 1, wherein the heat transfer member is formed of an insulator having thermal conductivity. 前記伝熱部材は、熱伝導性を有し且つ伸縮性を有する弾性体で構成されていることを特徴とする請求項1又は2に記載の電力変換装置。   The power conversion device according to claim 1, wherein the heat transfer member is formed of an elastic body having thermal conductivity and stretchability. 前記複数の熱伝導路は、前記伝熱支持板と前記冷却体とを連結する伝熱支持側板で構成されていることを特徴とする請求項2に記載の電力変換装置。   The power conversion device according to claim 2, wherein the plurality of heat conduction paths include a heat transfer support side plate that connects the heat transfer support plate and the cooling body. 前記伝熱支持板及び伝熱支持側板は、熱伝導率の高い金属材料で構成されていることを特徴とする請求項8に記載の電力変換装置。   The power conversion device according to claim 8, wherein the heat transfer support plate and the heat transfer support side plate are made of a metal material having high thermal conductivity.
JP2013529245A 2011-11-30 2012-11-05 Power converter Pending JPWO2013080440A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013529245A JPWO2013080440A1 (en) 2011-11-30 2012-11-05 Power converter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011263011 2011-11-30
JP2011263011 2011-11-30
JP2013529245A JPWO2013080440A1 (en) 2011-11-30 2012-11-05 Power converter

Publications (1)

Publication Number Publication Date
JPWO2013080440A1 true JPWO2013080440A1 (en) 2015-04-27

Family

ID=48534944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013529245A Pending JPWO2013080440A1 (en) 2011-11-30 2012-11-05 Power converter

Country Status (3)

Country Link
JP (1) JPWO2013080440A1 (en)
CN (1) CN103858223A (en)
WO (1) WO2013080440A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008526A (en) * 2014-06-23 2016-01-18 アイシン精機株式会社 Electric pump
CN104039119B (en) * 2014-06-24 2017-01-11 大洋电机新动力科技有限公司 IGBT (insulated gate bipolar transistor) module of motor controller and applied motor controller
JP6524023B2 (en) * 2016-06-01 2019-06-05 日立オートモティブシステムズ株式会社 Electric drive device and electric power steering device
JP2019134647A (en) * 2018-02-02 2019-08-08 株式会社豊田自動織機 Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211663A (en) * 2000-01-28 2001-08-03 Sanden Corp Motor driving inverter apparatus
JP2004282804A (en) * 2003-03-12 2004-10-07 Toshiba Corp Inverter device
JP2006121861A (en) * 2004-10-25 2006-05-11 Fuji Electric Fa Components & Systems Co Ltd Power converter
JP2010035347A (en) * 2008-07-29 2010-02-12 Hitachi Ltd Power conversion device and electric vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101942197B (en) * 2009-07-09 2012-06-27 昆山伟翰电子有限公司 Heat-conducting silicon rubber composite material and preparing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001211663A (en) * 2000-01-28 2001-08-03 Sanden Corp Motor driving inverter apparatus
JP2004282804A (en) * 2003-03-12 2004-10-07 Toshiba Corp Inverter device
JP2006121861A (en) * 2004-10-25 2006-05-11 Fuji Electric Fa Components & Systems Co Ltd Power converter
JP2010035347A (en) * 2008-07-29 2010-02-12 Hitachi Ltd Power conversion device and electric vehicle

Also Published As

Publication number Publication date
WO2013080440A1 (en) 2013-06-06
CN103858223A (en) 2014-06-11

Similar Documents

Publication Publication Date Title
JP5794306B2 (en) Power converter
WO2014020806A1 (en) Cooling structure and power converter
WO2014061178A1 (en) Cooling structure and heat generating body
WO2014057622A1 (en) Power converter
WO2013111234A1 (en) Power conversion device
WO2013088642A1 (en) Power conversion device
JP5664472B2 (en) Power converter
WO2013145508A1 (en) Power conversion apparatus
JP2010135697A (en) Lamination module structure
WO2013105166A1 (en) Power conversion apparatus
WO2013080440A1 (en) Power conversion device
WO2014125548A1 (en) Cooling structure, and power conversion device
WO2013084416A1 (en) Power converter
WO2014024361A1 (en) Cooling structure and power conversion device
WO2013084417A1 (en) Power conversion apparatus
WO2013080441A1 (en) Power conversion device
WO2014020808A1 (en) Cooling structure and power converter
JP5768902B2 (en) Power converter
WO2013080442A1 (en) Power conversion device
JP6187582B2 (en) Power converter
JP5682713B2 (en) Power converter
WO2014020807A1 (en) Cooling structure and power converter
JP5434862B2 (en) Power converter
WO2013140703A1 (en) Power conversion device
JP2017060292A (en) Electric power conversion system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141028