JPWO2013076806A1 - 車両駆動装置 - Google Patents
車両駆動装置 Download PDFInfo
- Publication number
- JPWO2013076806A1 JPWO2013076806A1 JP2013545683A JP2013545683A JPWO2013076806A1 JP WO2013076806 A1 JPWO2013076806 A1 JP WO2013076806A1 JP 2013545683 A JP2013545683 A JP 2013545683A JP 2013545683 A JP2013545683 A JP 2013545683A JP WO2013076806 A1 JPWO2013076806 A1 JP WO2013076806A1
- Authority
- JP
- Japan
- Prior art keywords
- power
- battery
- power transmission
- wheel
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 198
- 230000001172 regenerating effect Effects 0.000 description 46
- 238000000034 method Methods 0.000 description 37
- 238000010586 diagram Methods 0.000 description 27
- 230000008929 regeneration Effects 0.000 description 22
- 238000011069 regeneration method Methods 0.000 description 22
- 230000008569 process Effects 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 13
- 230000002457 bidirectional effect Effects 0.000 description 12
- 230000007704 transition Effects 0.000 description 11
- 238000005265 energy consumption Methods 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 230000000994 depressogenic effect Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000881 depressing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011499 joint compound Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- -1 nickel metal hydride Chemical class 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/14—Preventing excessive discharging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2009—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2036—Electric differentials, e.g. for supporting steering vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/40—Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/51—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/12—Inductive energy transfer
- B60L53/122—Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
- B60L53/35—Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
- B60L53/36—Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/15—Preventing overcharging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/10—Dynamic electric regenerative braking
- B60L7/14—Dynamic electric regenerative braking for vehicles propelled by ac motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/20—Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00302—Overcharge protection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00306—Overdischarge protection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/30—AC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/40—Electrical machine applications
- B60L2220/44—Wheel Hub motors, i.e. integrated in the wheel hub
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/421—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/46—Drive Train control parameters related to wheels
- B60L2240/461—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/20—Drive modes; Transition between modes
- B60L2260/28—Four wheel or all wheel drive
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/40—The network being an on-board power network, i.e. within a vehicle
- H02J2310/48—The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
Abstract
車両駆動装置(100)は、外部電源より取得した直流電力を蓄える第1バッテリ(111)と、第1バッテリに接続され、第1バッテリの直流電力を送電する送電手段と、送電手段により送電された直流電力を受電する受電手段と、車輪のハブに装着され、車輪を駆動するインホイールモータ(M)と、車輪に設けられ、受電手段により受電した直流電力を蓄える第2バッテリ(212a)と、車輪に設けられ、第2バッテリの直流電力を交流電力に変換するインバータ(203a)と、インホイールモータの回転駆動を制御するトルク制御部(222)と、送電手段より受電手段への給電を制御する残量制御部(221)と、を備える。送電手段および受電手段は、無線あるいは有線で電力伝送する。
Description
この発明は、車両のモータへ電源を供給し車両を駆動する車両駆動装置に関する。ただし、この発明の利用は、上述した車両駆動装置には限られない。
従来、移動体である電気自動車(EV)にモータを設け、車輪を駆動する構成において、モータを車輪に設けるインホイールモータ構造とし、このモータに対する電源を車両から供給するものとして、下記の各技術が開示されている。
一つ目の技術は、車体と車輪との間の電気配線に螺旋部を設け、この螺旋部を車体とアクセルとの間に設けられたリンクに支持させる構造としている。これにより、電気配線の垂れ下がりを防止し、車輪の上下ストローク等の動作に追従できるようにしたものである(たとえば、下記特許文献1参照。)。
二つ目の技術は、インホイールモータの配線構造にかかり、ターミナル基板の配線接続部にステータコイルからの配線を接続して各相ごとに電気的に集約する構成としている。これにより、コスト低減と組付作業を容易化でき、ステータの側方に設置位置が制約される結線用ユニットを用いず、インホイールモータの車幅方向の縮小化を達成している(たとえば、下記特許文献2参照。)。
三つ目の技術は、車両には、車輪(ホイール)に近い側に、インバータ、モータ、減速機を配置している。これにより、高周波電流の経路のループの大きさを小さくして高周波電流に起因する放射ノイズの発生を抑制している(たとえば、下記特許文献3参照。)。
四つ目の技術は、車体からモータへの電線をサスペンションのキングピン中心線Kiを中心として渦巻き状に巻いた構成としている。これにより、ホイールの転舵時に渦巻き状に巻かれた部分がキングピン中心線を中心として巻き取られまたは巻き戻され、電線による転舵の妨げを防止して転舵性を高め、電線の耐久性を確保している(たとえば、下記特許文献4参照。)。
五つ目の技術は、車両から車輪のモータへ給電する電線(給電ケーブル)の接続にかかり、車両前進時のホイールの回転方向の下流側に接続端子箱を設けた構成としている。これにより、ホイールの内周面に異物が固着した状態で車両が前進した場合に、異物が給電ケーブルよりも先に端子箱に衝突して粉砕され、給電ケーブルの損傷を抑制している(たとえば、下記特許文献5参照。)。
六つ目の技術は、車両から車輪のモータへ給電する電線の支持構造にかかり、電線(三相高圧ケーブル)を一括してシースで内包してケーブル支持部材で支持し、このケーブル支持部材の支持部を車体の前後方向、幅方向および高さ方向等の任意の方向に移動可能となるように車体に設置した構成としている。これにより、車輪が凸凹路を転動するときや運転者により操舵されるときなど、モータと電源側との直線距離が変化しても、三相高圧ケーブルが支持部と共に車体の前後方向、幅方向および高さ方向に移動し、三相高圧ケーブルの撓み部分が変形することでインホイールモータとバッテリ側との直線距離の変化が吸収されて三相高圧ケーブルの耐久性を向上させている(たとえば、下記特許文献6参照。)。
しかしながら、上記の特許文献1〜6に記載の技術は、いずれも車両側のインバータと、車輪側のモータとに分離されているため、インバータと車輪の間に高電圧の大電流が流せる電源ケーブルが必要となる。
この高電圧大電流の電源ケーブルには、操舵による車輪の回転等により撓みの負荷がかかるが、径が太いためケーブルの耐久性を低下させるとともに、操舵性を高めることができない。また、車両と車輪との間のホイールスペースに太い電源ケーブルが存在するため、サスペンションと干渉しないように配線することが困難であるとともに、泥や粉塵、雨や雪等が付着しやすく、劣化しやすいため、交換等のメンテナンスに手間がかかる。
上述した課題を解決し、目的を達成するため、この発明にかかる車両駆動装置は、外部電源より取得した直流電力を蓄える第1蓄電池と、前記第1蓄電池に接続され、前記第1蓄電池の直流電力を送電する送電手段と、前記送電手段により送電された直流電力を受電する受電手段と、車輪のハブに装着され、当該車輪を駆動するインホイールモータと、前記車輪に設けられ、前記受電手段により受電した直流電力を蓄える第2蓄電池と、前記車輪に設けられ、前記第2蓄電池の直流電力を交流電力に変換するインバータと、前記インホイールモータの回転駆動を制御する駆動制御手段と、前記送電手段より前記受電手段への給電を制御する給電制御手段と、を備えることを特徴とする。
以下に添付図面を参照して、この発明にかかる車両駆動装置の好適な実施の形態を詳細に説明する。以下の説明では、各車輪にモータを備えたインホイール型の構成を例に説明する。
(実施の形態1)
実施の形態1では、モータ駆動の電力を無線により非接触に車両から車輪に電力伝送する構成である。
実施の形態1では、モータ駆動の電力を無線により非接触に車両から車輪に電力伝送する構成である。
(車両の構成)
図1は、実施の形態1にかかる車両駆動装置が搭載された車両の構成を示す概要図である。車両100は、左右の前車輪FL,FRと、左右の後車輪RL,RRを有する4輪駆動車である。これら四つの各車輪FL,FR,RL,RRのハブには、それぞれインホイール型のモータユニットM1〜M4が設けられ、独立に駆動される。
図1は、実施の形態1にかかる車両駆動装置が搭載された車両の構成を示す概要図である。車両100は、左右の前車輪FL,FRと、左右の後車輪RL,RRを有する4輪駆動車である。これら四つの各車輪FL,FR,RL,RRのハブには、それぞれインホイール型のモータユニットM1〜M4が設けられ、独立に駆動される。
これらモータユニットM1〜M4には、それぞれモータ駆動用のインバータ回路(後述する)と、第2バッテリ等が設けられ、各インバータ回路はコントローラ(ECU)101の制御に基づき、モータユニットM1〜M4を駆動する。このコントローラ101には各種情報が入力され、トルク配分された結果、各モータユニットM1〜M4に設けられたモータ(インホイールモータ)を駆動する。
コントローラ101に対する入力としては、以下がある。ハンドル102からは操舵角が入力される。アクセルペダル103からは、全トルク指令値が入力される。ブレーキペダル104からはブレーキ量が入力される。シフトブレーキ105からはシフトブレーキ量が入力される。セレクタ106からはR,N,D等のセレクトポジションが入力される。
また、各車輪FL,FR,RL,RRのモータユニットM1〜M4には、それぞれ回転速度Vを検出するセンサが設けられており、各車輪FL,FR,RL,RRの回転速度Vfl,Vfr,Vrl,Vrrがコントローラ101に入力される。
このほか、車両100には、加速度センサとヨーレートセンサ(不図示)が設けられ、検出した加速度およびヨーレートがコントローラ101に入力される。
コントローラ101は、上記の入力に基づき、各車輪FL,FR,RL,RRを駆動する。駆動のための制御信号S1〜S4は、各車輪FL,FR,RL,RRごとに適切にトルク配分され、各モータユニットM1〜M4に供給される。
また、車両100には、バッテリが搭載され、車両100全体に対して電源供給する。バッテリは、車両側に設けられ、車両外部の外部電源より取得した直流電力を蓄える第1蓄電池(第1バッテリ)111と、モータユニットM1〜M4内部に設けられ、第1バッテリ111との間で電力伝送される第2蓄電池(第2バッテリ)とからなる。各車輪FL,FR,RL,RRのモータユニットM1〜M4は、第2バッテリに蓄電された電力により駆動される。これらバッテリとしては、ニッケル水素、リチウムイオン等の二次電池や燃料電池などが適用される。また、バッテリの代わりに電気二重層キャパシタを用いても良い。図中L1〜L4が電源ラインである。
なお、回生時には、モータへの電源供給(力行)のときとは逆に、モータユニットM1〜M4によって発生した電源をバッテリ側に供給する。この回生とは、車両100を運転するドライバによるブレーキペダル104の操作や、走行中にアクセルペダル103の踏み込みを緩和することによって、モータに発生する逆起電力を用いた発電を示す。
車両側および車輪側(モータユニットM1〜M4)の電源ラインL1〜L4上には、それぞれ電圧変換部が設けられる。この電圧変換部は、車両側に設けられる第1変換器(DC−AC変換部)121(121a〜121d)と、車輪側各モータユニットM1〜M4内部に設けられるAC−DC変換部(後述する)によって構成される。車両側と車輪側には、電力を無線送電するための電力伝送アンテナ122(122a〜122d)、123(123a〜123d)が設けられる。
そして、コントローラ101は、車両側の第1バッテリ111から供給可能な電源ラインL1〜L4の各電源を、制御信号S11〜S14により、車輪別のモータユニットM1〜M4に供給制御する。この際、電源ラインL1〜L4の電源は、車両側のDC−AC変換部121(121a〜121d)により直流電力が交流電力に変換される。そして、一対の電力伝送アンテナ122(122a〜122d)、123(123a〜123d)により、車輪側のモータユニットM1〜M4に無線送電される。
そして、車輪側のモータユニットM1〜M4に設けられるAC−DC変換部により交流電力が直流電力に変換された後、第2バッテリに供給される。第2バッテリに蓄電された電力を用いて、後述するインバータ203(203a〜203d)は、モータユニットM1〜M4のモータを駆動する。
なお、上記モータユニットM1〜M4のモータの回生時には、車輪側のモータユニットM1〜M4から車両側(第1バッテリ111)に向けて電力を無線送電することができる。
(車両駆動装置の構成)
図2は、車両駆動装置の構成を示すブロック図である。車両駆動装置200は、モータへ電源を供給してモータを駆動する。また、車両100の走行状態等により、第1バッテリ111と第2バッテリ212a間での電力伝送を制御する。
図2は、車両駆動装置の構成を示すブロック図である。車両駆動装置200は、モータへ電源を供給してモータを駆動する。また、車両100の走行状態等により、第1バッテリ111と第2バッテリ212a間での電力伝送を制御する。
以下、車両100と、モータユニットM1間の電源ラインL1上の構成について説明することとし、図中添え字「a」は、電源ラインL1およびモータユニットM1に対応していることを示す。なお、他の電源ラインL2〜L4についても同様の構成であり、説明は省略する。
はじめに、電源ラインL1について、車両100から車輪側のモータユニットM1側への電源を供給する各構成について説明する。車両100側には、第1バッテリ111が設けられ、電源ラインL1を介してDC−AC変換部121aに接続されている。DC−AC変換部121aは、直流電力を交流電力に変換し、電力伝送アンテナ(送電アンテナ)122aに出力する。
車輪側のモータユニットM1には、電力伝送アンテナ122aと対の電力伝送アンテナ(受電アンテナ)123aが設けられる。この電力伝送アンテナ123aは、車両側の電力伝送アンテナ122aから送電された電力を受電する。これら電力伝送アンテナ122a,123aには、たとえば、巻回されたコイルを用いることができ、車両100と車輪のモータユニットM1との間を非接触で電力伝送できる。
電力伝送アンテナ123aで受電した電力は、第2変換器(AC−DC変換部)201aにより交流電力が直流電力に変換され、双方向チョッパ202aに出力される。双方向チョッパ202aは、双方向(正方向あるいは逆方向)への電力伝送を行うための回路である。
双方向チョッパ202aの出力は、第2バッテリ212aに出力される。これにより、車両側の第1バッテリ111の電源を車輪側の第2バッテリ212aに供給し(正方向)、第2バッテリ212aに蓄電されるとともに、インバータ203aを介してモータユニットM1内のモータMに供給され、モータMを駆動させる。
モータMの回生時には、モータMで発生した電力がインバータ203aを介して第2バッテリ212aに供給されるとともに、双方向チョッパ202a〜AC−DC変換部201a〜電力伝送アンテナ123a〜電力伝送アンテナ122a〜DC−AC変換部121a〜第1バッテリ111の経路(電源ラインL1)を介して電力伝送することができる(逆方向)。これにより、第2バッテリ212aを介して第1バッテリ111への蓄電を行うことができる。なお、AC−DC変換部201aとDC−AC変換部121aは共に双方向であるため、この場合は、AC−DC変換部201aはDC−AC変換をおこない、DC−AC変換部121aはAC−DC変換をおこなう。また、123aは送電アンテナとなり、122aは受電アンテナとなる。
車両100に設けられるコントローラ101は、受電手段への給電を制御する給電制御手段(残量制御部)221と、車輪の回転駆動を制御する駆動制御手段(トルク制御部)222とを有している。残量制御部221は、第2バッテリ212aに対する電源供給を制御する。第1バッテリ111および第2バッテリ212aのバッテリ量(バッテリ残量)は、残量制御部221が検出しており、たとえば、第2バッテリ212aのバッテリ残量が少なくなったときには、DC−AC変換部121a、AC−DC変換部201aに対し、車両100から車輪のモータユニットM1に対する電力伝送を制御信号S11を介して行う。この際、制御信号S11により双方向チョッパ202aは、車両100からモータユニットM1へ向う正方向の電力伝送を行う。
一方、残量制御部221は、モータMの回生時に、モータユニットM1から車両側へ向う逆方向の電力伝送を行う場合についても、制御信号S11を用いて行う。この場合、双方向チョッパ202aに対しては、伝送の有無を制御する。伝送を行わない制御時には、第2バッテリ212aから第1バッテリ方向への電力伝送は行わない。伝送を行う制御時には、電力伝送の方向を第2バッテリ212aから第1バッテリ111の方向に切り替える。
トルク制御部222は、全トルク指令値を走行状態に応じて各車輪FL,FR,RL,RRごとにトルク配分する。図示の右前輪FRのモータユニットM1に対しては、インバータ203aに対するトルク配分値を制御信号S1aで出力することにより行う。
また、モータユニットM1は、第2バッテリ212aの電流値および電圧値を信号S1bとしてコントローラ101に出力し、モータMの回転速度を信号S1cとしてコントローラ101に出力する。
これら制御信号S1a〜S1cと、S11は、車両100と車輪側のモータユニットM1との間で有線接続された制御線を介して伝送させる。これら制御信号S1a〜S1cと、S11については、データ送信できればよいため、制御線に細線を用いることができ、大容量の電力伝送を行うような太線を用いる必要はないため、車輪の操舵性を低下させることがない。
図3は、インバータの回路例を示す図である。インバータ203aは、第2バッテリ212aから供給される直流電力をモータMの3相交流電力に変換する。U,V,Wの各相±にそれぞれダイオード301と、駆動トランジスタ302とを設け、PWM変調により、電圧と周波数を制御した正弦波を生成してモータMの各相に供給してモータMを回転駆動する。
図4は、双方向チョッパの回路例を示す図である。双方向チョッパ202aは、一次側ハーフブリッジ回路401と、二次側ハーフブリッジ回路402と、リアクトル403とを備えている。一次側ハーフブリッジ回路401は、AC−DC変換部201aに接続されるスイッチング素子404と、ダイオード405を有している。二次側ハーフブリッジ回路402は、第2バッテリ212aに接続されるスイッチング素子406と、ダイオード407とを有している。リアクトル403は、一次側と二次側との間に接続されている。そして、スイッチング素子404,406の制御により、リアクトル403を介して一次側から二次側への正方向の電力伝送、あるいは二次側から一次側への逆方向の電力伝送を行うことができる。
上記構成により、車両100側に第1バッテリ111を設け、インバータ203aと第2バッテリ212aをモータユニットM1に内蔵して設けているため、DCの電源を車両100側から供給することにより、モータMを駆動することができる。この際、車両100と車輪のモータユニットM1との間におけるDC電力の供給は、大電流を必要としない。これは、モータの駆動には、第2バッテリ212aに蓄電されている電力を用いるためであり、大きなトルクを出力する際に必要な電力量を多少の余裕を持って第2バッテリ212aに蓄電しておけば良い。したがって、第1バッテリ111と第2バッテリ212aの間の電力伝送を連続的に行うようにしておけば、大電流を流さなくても済むのである。このため、車両100と、車輪のモータユニットM1にそれぞれ電力伝送アンテナ122a,123aを設け、非接触な無線による電力伝送を行うことができる。
(バッテリ間の電力伝送の概要)
図5は、バッテリ間の電力伝送の概要を示す図である。4輪駆動の場合、四つのモータユニットM1〜M4を有し、第1バッテリ111は、これら四つのモータユニットM1〜M4のモータMを駆動する比較的大きな容量を有するものを用いる。一方、モータユニットM1(およびM2〜M4)にそれぞれ設ける第2バッテリ212aは、単一のモータMを駆動すればよく、比較的小容量のものを用いることができ、重量を軽量化できる。
図5は、バッテリ間の電力伝送の概要を示す図である。4輪駆動の場合、四つのモータユニットM1〜M4を有し、第1バッテリ111は、これら四つのモータユニットM1〜M4のモータMを駆動する比較的大きな容量を有するものを用いる。一方、モータユニットM1(およびM2〜M4)にそれぞれ設ける第2バッテリ212aは、単一のモータMを駆動すればよく、比較的小容量のものを用いることができ、重量を軽量化できる。
第1バッテリ111と、第2バッテリ212aとの間における電力伝送は、モータユニットM1内の第2バッテリ212aの残量(現在値B1)が、常に目標残量値BS(Set)に近づくように制御する。この制御は、上記コントローラ101の残量制御部221が行う。目標残量値BSは、充電上限値BU(Upper)と充電下限値BL(Lower)との間の所定値に設定される。図中RL(Lower)は、現在値B1と充電下限値BLとの差分であり、第2バッテリ212aで使用可能な容量である。
電力の伝送方向は、上述したように双方向、すなわち正方向と逆方向がある。正方向は、第1バッテリ111→第2バッテリ212aの方向である。逆方向は、第2バッテリ212a→第1バッテリ111の方向である。
コントローラ101は、基本的には、
1.正方向への電力伝送は、力行制御時に行う。力行制御は、たとえば、アクセルペダル103の踏み込みを検出したときに行う。
2.逆方向への電力伝送は、回生制御時に行う。回生制御は、たとえば、ブレーキペダル104の踏み込みを検出したときに行う。
1.正方向への電力伝送は、力行制御時に行う。力行制御は、たとえば、アクセルペダル103の踏み込みを検出したときに行う。
2.逆方向への電力伝送は、回生制御時に行う。回生制御は、たとえば、ブレーキペダル104の踏み込みを検出したときに行う。
そして、コントローラ101(残量制御部221およびトルク制御部222)は、充電の現在値B1が第2バッテリ212aの充電上限値BUを超えないように、回生時の回生電力を制御する。また、充電の現在値B1が第2バッテリ212aの充電下限値BLを下回らないように、力行時の力行電力を制御する。
(電力伝送の制御内容)
図6は、電力伝送にかかる全体の制御内容を示すフローチャートである。コントローラ101が行う電力伝送とトルク制御の処理について示している。はじめに、コントローラ101は、モータユニットM1〜M4のセンサにより、現在の走行速度を検出する。また、アクセルペダル103とブレーキペダル104の踏み込みを検出する(ステップS701)。
図6は、電力伝送にかかる全体の制御内容を示すフローチャートである。コントローラ101が行う電力伝送とトルク制御の処理について示している。はじめに、コントローラ101は、モータユニットM1〜M4のセンサにより、現在の走行速度を検出する。また、アクセルペダル103とブレーキペダル104の踏み込みを検出する(ステップS701)。
そして、現在の走行状態と制御形態の組み合わせを特定する(ステップS702)。上記のように、
1.アクセルペダル103の踏み込みを検出したときには、力行制御と特定する。
2.ブレーキペダル104の踏み込みを検出したときには、回生制御と特定する。このほか、
3.アクセルペダル103およびブレーキペダル104の踏み込みを検出せず、かつ、車両100の速度が遅い場合には、力行制御と特定する。この場合、後述する擬似クリープトルクの制御を行う。
4.アクセルペダル103およびブレーキペダル104の踏み込みを検出せず、かつ、車両100の速度が速い場合には、回生制御と特定する。この場合、後述する擬似エンジンブレーキの制御を行う。
5.アクセルペダル103およびブレーキペダル104の踏み込みを検出せず、かつ、車両100の速度が中程度(速くなく、また遅くない速度)の場合には、制御なし(惰行運転)と特定する。
1.アクセルペダル103の踏み込みを検出したときには、力行制御と特定する。
2.ブレーキペダル104の踏み込みを検出したときには、回生制御と特定する。このほか、
3.アクセルペダル103およびブレーキペダル104の踏み込みを検出せず、かつ、車両100の速度が遅い場合には、力行制御と特定する。この場合、後述する擬似クリープトルクの制御を行う。
4.アクセルペダル103およびブレーキペダル104の踏み込みを検出せず、かつ、車両100の速度が速い場合には、回生制御と特定する。この場合、後述する擬似エンジンブレーキの制御を行う。
5.アクセルペダル103およびブレーキペダル104の踏み込みを検出せず、かつ、車両100の速度が中程度(速くなく、また遅くない速度)の場合には、制御なし(惰行運転)と特定する。
つぎに、制御形態がいずれであるかを判断する(ステップS703)。制御形態が力行制御のときには(ステップS703:力行)、力行トルク制御を行い(ステップS704)、ステップS706に移行する。制御形態が回生制御のときには(ステップS703:回生)、回生トルク制御を行い(ステップS705)、ステップS706に移行する。制御形態が惰行の場合には(ステップS703:惰行)、特に制御を行わず、ステップS706に移行する。
つぎに、ステップS706では、上述した無線による電力伝送制御を行い(ステップS706)、処理を終了する。コントローラ101は、上記の各処理を経時的に連続して行う。
(力行トルク制御について)
図7は、力行トルク制御の制御内容を示すフローチャートである。図6のステップS704に示した力行トルク制御の詳細な制御内容を示している。はじめに、コントローラ101は、モータユニットM1〜M4にそれぞれ設けられる第2バッテリ212(212a〜212d:ただし212b〜212dはモータユニットM2〜M4の第2バッテリを指し不図示)の各値を検出する(ステップS801)。
図7は、力行トルク制御の制御内容を示すフローチャートである。図6のステップS704に示した力行トルク制御の詳細な制御内容を示している。はじめに、コントローラ101は、モータユニットM1〜M4にそれぞれ設けられる第2バッテリ212(212a〜212d:ただし212b〜212dはモータユニットM2〜M4の第2バッテリを指し不図示)の各値を検出する(ステップS801)。
第2バッテリ212(212a〜212d)の充電下限値はBLとし、現在値(残量)はB1〜B4とし、現在の電圧はV1〜V4とする。モータユニットM1〜M4の第2バッテリ212a〜212dは、モータMの駆動状態に対応してそれぞれ現在値B1〜B4が異なり常に変動する。
つぎに、アクセルペダル103の踏み込み量と、所定のトルク配分値により、各車輪(各モータユニットM1〜M4)へのトルク配分値T1〜T4を決定し、後述するモータ効率マップを用いた電力推定方法により、必要な力行電力W1〜W4を算出する(ステップS802)。
つぎに、第2バッテリ212の電力使用可能な容量RLを算出する(ステップS803)。具体的には、モータユニットM1〜M4にそれぞれ設けられる第2バッテリ212(212a〜212d)について、
使用可能な容量RL1〜RL4=現在値B1〜B4−充電下限値BL
により算出する。
使用可能な容量RL1〜RL4=現在値B1〜B4−充電下限値BL
により算出する。
つぎに、各モータユニットM1〜M4で必要な力行電力W1〜W4と、ステップS803で算出した第2バッテリ212(212a〜212d)で使用可能な容量RL1〜RL4とを比較する(ステップS804)。この結果、各モータユニットM1〜M4で必要な力行電力W1〜W4が対応する第2バッテリ212(212a〜212d)で使用可能な容量RL1〜RL4を超えた場合には(ステップS804:Yes)、力行電力が使用可能な容量RL1〜RL4以下となるように、各車輪のトルク配分値を再計算する(ステップS805)。すなわち、全トルク指令値をトルク配分する際に、残量が少ない第2バッテリ212のモータユニットへのトルク配分値を少なくし、その割合で、他のモータユニットのトルク配分値も少なくする。
一方、ステップS804で各モータユニットM1〜M4で必要な力行電力W1〜W4が対応する第2バッテリ212(212a〜212d)で使用可能な容量RL1〜RL4に収まっていれば(ステップS804:No)、ステップS805の処理を行わず、ステップS806に移行する。
そして、ステップS806では、各モータユニットM1〜M4に対するトルク配分値を用いて、力行トルク制御を行い(ステップS806)、処理を終了する。
(回生トルク制御について)
図8は、回生トルク制御の制御内容を示すフローチャートである。図6のステップS705に示した回生トルク制御の詳細な制御内容を示している。回生時には、モータMが電力を発生する。はじめに、コントローラ101は、モータユニットM1〜M4にそれぞれ設けられる第2バッテリ212(212a〜212d)の各値を検出する(ステップS901)。第2バッテリ212の充電上限値はBUとし、現在値(残量)はB1〜B4とし、現在の電圧はV1〜V4とする。
図8は、回生トルク制御の制御内容を示すフローチャートである。図6のステップS705に示した回生トルク制御の詳細な制御内容を示している。回生時には、モータMが電力を発生する。はじめに、コントローラ101は、モータユニットM1〜M4にそれぞれ設けられる第2バッテリ212(212a〜212d)の各値を検出する(ステップS901)。第2バッテリ212の充電上限値はBUとし、現在値(残量)はB1〜B4とし、現在の電圧はV1〜V4とする。
つぎに、ブレーキペダル104の踏み込み量と、所定のトルク配分値により、各車輪(各モータユニットM1〜M4)へのトルク配分値T1〜T4を決定し、後述するモータ効率マップを用いた電力推定方法により、回生電力W1〜W4を算出する(ステップS902)。
つぎに、第2バッテリ212の電力回生可能な容量RUを算出する(ステップS903)。具体的には、モータユニットM1〜M4にそれぞれ設けられる第2バッテリ212(212a〜212d)について、
回生可能な容量RU1〜RU4=充電上限値BU−現在値B1〜B4
により算出する。
回生可能な容量RU1〜RU4=充電上限値BU−現在値B1〜B4
により算出する。
つぎに、各モータユニットM1〜M4での回生電力W1〜W4と、ステップS903で算出した第2バッテリ212(212a〜212d)で回生可能な容量RUとを比較する(ステップS904)。この結果、各モータユニットM1〜M4の回生電力W1〜W4が対応する第2バッテリ212(212a〜212d)で回生可能な容量RU1〜RU4を超えた場合には(ステップS904:Yes)、回生電力が回生可能な容量RU1〜RU4以下となるように、各車輪のトルク配分値を再計算する(ステップS905)。すなわち、全トルク指令値をトルク配分する際に、残量が多い第2バッテリ212のモータユニットへのトルク配分値を少なくし、その割合で、他のモータユニットのトルク配分値も少なくする。
一方、ステップS904で各モータユニットM1〜M4の回生電力W1〜W4が対応する第2バッテリ212(212a〜212d)で回生可能な容量RU1〜RU4に収まっていれば(ステップS904:No)、ステップS905の処理を行わず、ステップS906に移行する。
そして、ステップS906では、各モータユニットM1〜M4に対するトルク配分値を用いて、回生トルク制御を行い(ステップS906)、処理を終了する。
(電力伝送の制御手順)
つぎに、上述した無線による電力伝送の制御手順について説明する。図9は、実施の形態1にかかる無線による電力伝送の制御手順の一例を示すフローチャートである。図9の説明では、モータユニットM1に設けられる第2バッテリ212aに対する電力伝送を例に説明するが、他のモータユニットM2〜M4に設けられる第2バッテリ212b〜212dについても同様の処理を行えばよい。
つぎに、上述した無線による電力伝送の制御手順について説明する。図9は、実施の形態1にかかる無線による電力伝送の制御手順の一例を示すフローチャートである。図9の説明では、モータユニットM1に設けられる第2バッテリ212aに対する電力伝送を例に説明するが、他のモータユニットM2〜M4に設けられる第2バッテリ212b〜212dについても同様の処理を行えばよい。
はじめに、コントローラ101は、第2バッテリ212aの各値を検出する(ステップS1001)。第2バッテリ212aの目標残量はBSとし、現在値(残量)はB1とし、現在の電圧はV1とする。また、モータユニットMに対する無線の電源ラインL1の最大電流をAmaxとする。この最大電流Amaxは、電源ラインL1上に設けられる無線伝送にかかる電力伝送アンテナ122a,123aのコイルや、ドライバIC等によって許容値(電流許容値)が異なる。
つぎに、電力伝送可能な上限値Cmaxと、伝送したい電力Dとを下記式により算出する(ステップS1002)。
電力伝送可能な上限値Cmax=電源ラインL1の最大電流Amax×現在の電圧V1
伝送したい電力D=BS−B1
電力伝送可能な上限値Cmax=電源ラインL1の最大電流Amax×現在の電圧V1
伝送したい電力D=BS−B1
上記の伝送したい電力Dとは、電源ラインL1上の第1バッテリ111と第2バッテリ212aとの間で電力伝送したい電力である。たとえば、力行時には、割り当てられたトルク配分値に対応して、第1バッテリ111から第2バッテリ212aへの正方向に向けてモータMを駆動するために必要な電力である。回生時には、回線電力を第1バッテリ111に伝送しようとする電力に相当する。
つぎに、電力伝送の電力値を決定する(ステップS1003)。電力伝送の電力値は、伝送したい電力Dの絶対値|D|と、電力伝送可能な上限値Cmaxとのうち、小さい方の電力値を用いて行う。このため、伝送したい電力Dの絶対値が電力伝送可能な上限値Cmaxを超えていれば(ステップS1003:Yes)、伝送したい電力Dが正の場合、電力伝送可能な上限値Cmaxを伝送する電力Dとして決定する。また、伝送したい電力Dが負の場合、電力伝送可能な上限値−Cmaxを伝送する電力Dとして決定する(ステップS1004)。
一方、ステップS1004において、伝送したい電力Dの絶対値が電力伝送可能な上限値Cmaxを超えていなければ(ステップS1003:No)、ステップS1004の処理を行わず、伝送したい電力Dをそのまま用い、ステップS1005に移行する。
そして、ステップS1005では、差分容量Dを第1バッテリ111から第2バッテリ212aに無線の電源ラインL1を介して電力伝送する。Dの値が負の場合には、回生時であるため、第2バッテリ212aから第1バッテリ111に無線の電源ラインL1を介して電力伝送する(ステップS1005)。
(力行トルク指令値について)
図10は、力行時のトルク指令値を示す図表である。アクセルペダル103の踏み込み量(横軸)に対する力行トルク指令値(縦軸)の関係を示している。コントローラ101のトルク制御部222は、図示のように、これらアクセルペダル103の踏み込み量と、力行時の全トルク指令値とは、比例する直線関係で制御するのではなく、アクセルペダル103の踏み込み量に対してはじめはなだらかに変化する曲線を有して力行トルク指令値を出力する。また、車両100の前進時に比べて後退時の力行トルク指令値は、さらになだらかとなるよう設定している。
図10は、力行時のトルク指令値を示す図表である。アクセルペダル103の踏み込み量(横軸)に対する力行トルク指令値(縦軸)の関係を示している。コントローラ101のトルク制御部222は、図示のように、これらアクセルペダル103の踏み込み量と、力行時の全トルク指令値とは、比例する直線関係で制御するのではなく、アクセルペダル103の踏み込み量に対してはじめはなだらかに変化する曲線を有して力行トルク指令値を出力する。また、車両100の前進時に比べて後退時の力行トルク指令値は、さらになだらかとなるよう設定している。
(回生トルク指令値について)
図11は、回生時のトルク指令値を示す図表である。ブレーキペダル104の踏み込み量(横軸)に対する回生トルク指令値(縦軸)の関係を示している。コントローラ101は、図示のように、ブレーキペダル104の踏み込み量に対し、回生トルク指令値は、ほぼ直線関係となるよう制御している。また、車両の前進時に比べて後退時の回生トルク指令値は、なだらかに変化するよう設定している。
図11は、回生時のトルク指令値を示す図表である。ブレーキペダル104の踏み込み量(横軸)に対する回生トルク指令値(縦軸)の関係を示している。コントローラ101は、図示のように、ブレーキペダル104の踏み込み量に対し、回生トルク指令値は、ほぼ直線関係となるよう制御している。また、車両の前進時に比べて後退時の回生トルク指令値は、なだらかに変化するよう設定している。
(擬似クリープトルクと擬似エンジンブレーキについて)
図12は、ペダルを離したときのトルク指令値を示す図表である。コントローラ101は、アクセルペダル103もブレーキペダル104も踏まれない場合、図示のように、車速に応じてトルク指令値を変えている。
図12は、ペダルを離したときのトルク指令値を示す図表である。コントローラ101は、アクセルペダル103もブレーキペダル104も踏まれない場合、図示のように、車速に応じてトルク指令値を変えている。
そして、車速が遅い場合は、プラス(+)のトルクとして擬似クリープトルクを生成する。車速が速い場合は、マイナス(−)のトルクとして擬似エンジンブレーキを生成する。図示の例では、車速が40km/h程度以上で擬似エンジンブレーキをかけ、60km程度が最も大きなトルク値をかけるようになっている。60km/h程度以上の速度では、次第に小さなトルク値をかけるようになっている。車速が中程度の場合は(図中Nの速度領域)、トルク指令値をゼロにして惰行運転する。
また、通常モードとエコモードとを切り替えるように構成した場合、切り替えたモード別に、車速に対するトルク指令値の特性を変えてもよい。図示の例では、通常モードに比べてエコモード時には、擬似クリープトルク値を少なくし、擬似エンジンブレーキは、マイナスの大きなトルク値としている。
(モータ効率マップを用いたモータの電力推定)
つぎに、モータ効率マップを用いたモータMの消費電力(回生電力)推定について説明する。図13は、モータ効率マップを示す図表である。効率マップ1400は、モータMの回転速度−トルク特性を示すものであり、横軸は回転速度、縦軸はトルクである。コントローラ101の記憶部には、図示の4象限の効率マップ1400を予め格納しておく。
つぎに、モータ効率マップを用いたモータMの消費電力(回生電力)推定について説明する。図13は、モータ効率マップを示す図表である。効率マップ1400は、モータMの回転速度−トルク特性を示すものであり、横軸は回転速度、縦軸はトルクである。コントローラ101の記憶部には、図示の4象限の効率マップ1400を予め格納しておく。
効率マップ1400の第1〜第4象限は、それぞれ、
1.正転力行:前進中にアクセルペダルを踏んでいる状態
2.逆転力行:後退中にアクセルペダルを踏んでいる状態
3.逆転回生:後退中にブレーキペダルを踏んでいる状態
4.正転回生:前進中にブレーキペダルを踏んでいる状態
である。
1.正転力行:前進中にアクセルペダルを踏んでいる状態
2.逆転力行:後退中にアクセルペダルを踏んでいる状態
3.逆転回生:後退中にブレーキペダルを踏んでいる状態
4.正転回生:前進中にブレーキペダルを踏んでいる状態
である。
コントローラ101のトルク制御部222は、アクセルペダル103やブレーキペダル104の踏み込み量から、全トルク指令量を算出する。そして、この全トルク値を所定のトルク配分によって、各車輪のモータMごとのトルク配分値Tに配分する。
また、コントローラ101は、車両100の走行中、各モータユニットM1〜M4のセンサにより回転速度Vfl,Vfr,Vrl,Vrrを検出する。ここでは、回転速度をωとして説明する。そして、コントローラ101は、モータMについて、効率マップ1400を参照し、トルクTと回転速度ωから効率ηを得る。
そして、コントローラ101は、以下の式から、力行時の消費電力と、回生時の回生電力をそれぞれ推定する。
・力行時
効率η=(T・ω)/(V・I)
・回生時
効率η=(V・I)/(T・ω)
(V,Iは、モータMの電圧と電流、あるいはインバータ203の電圧と電流)
・力行時
効率η=(T・ω)/(V・I)
・回生時
効率η=(V・I)/(T・ω)
(V,Iは、モータMの電圧と電流、あるいはインバータ203の電圧と電流)
上記の(V・I)がモータMの力行時の消費電力、および回生時の回生電力Wに相当する。コントローラ101は、上述したように、第2バッテリ212(212a〜212d)について、現在値と、使用可能あるいは回生可能な電力量を求める。そして、使用可能あるいは回生可能な電力量と、算出した上記消費電力(回生電力)とを比較し、範囲内に収まるように、モータMに対するトルク配分値を修正する。
そして、効率マップ1400を用いることにより、より正確にモータMの消費電力(回生電力)を判断できるようになる。これにより、電力伝送時における必要な電力量(伝送したい電力D)を精度よく推定することができ、電力伝送時の電力量を正確に算出でき、効率的な電力伝送を行うことができるようになる。
効率マップ1400は、予め取得しておくに限らない。たとえば、車両100の走行中に効率マップ1400を作成してもよい。コントローラ101は、効率マップ生成部を備え、走行時にモータMの消費電力と、回転数とを取得して、上記の効率マップ1400を生成する。
このほか、予め取得した効率マップ1400を更新する構成とすることもできる。この際、
・モータMに流れる電流Iからトルク値を検出
・レゾルバ等の回転位置センサにより車輪の回転速度を検出
・第2バッテリ212aとインバータ203a間に設けた電流センサおよび電圧センサにより電流と電圧を検出し、電力を算出
コントローラ101は、上記の検出および算出によって、車両100の走行時に、記憶部に格納した効率マップ1400を随時更新していくことができる。
・モータMに流れる電流Iからトルク値を検出
・レゾルバ等の回転位置センサにより車輪の回転速度を検出
・第2バッテリ212aとインバータ203a間に設けた電流センサおよび電圧センサにより電流と電圧を検出し、電力を算出
コントローラ101は、上記の検出および算出によって、車両100の走行時に、記憶部に格納した効率マップ1400を随時更新していくことができる。
(トルク配分例)
つぎに、各車輪のモータMに対するトルク配分値の再配分例について説明する。図14は、バッテリ残量が少なくなったときのトルクの再配分例を説明する図である。コントローラ101に対し、たとえば、アクセルペダル103の踏み込みにより、全トルク指令値が100[Nm]として入力された場合を例に説明する。
つぎに、各車輪のモータMに対するトルク配分値の再配分例について説明する。図14は、バッテリ残量が少なくなったときのトルクの再配分例を説明する図である。コントローラ101に対し、たとえば、アクセルペダル103の踏み込みにより、全トルク指令値が100[Nm]として入力された場合を例に説明する。
図14中の(a)に示すように、仮に、コントローラ101のトルク制御部222が、トルク配分値として、左右の前輪を20[Nm]、左右の後輪を30[Nm]にトルク配分としたとする。
ここで、図14の(b)に示すように、左前輪FLのモータユニットM2に設けられた第2バッテリ212(212bに相当)のバッテリ残量が少なくなり、左前輪FLのモータMで16[Nm]しか出力できなくなったとする。これに対応して単に左前輪FLだけのトルクを下げてしまうと、左右の前輪の駆動力がアンバランスになり、車両100の進行の向きが変わるという影響が生じる。
このため、コントローラ101のトルク制御部222は、図14(c)に示すように、トルクの再配分を行う。すなわち、左右の前輪に対し、同じトルク16[Nm]となるようトルク配分する。また、前輪のトルクを20[Nm]から16[Nm」]に変更した割合(4/5)に対応して左右の後輪についても、同じ割合にするため、30[Nm]から24[Nm]にトルクを変更する。この場合、全トルク値は、100[Nm]から80[Nm]に変更されることになる。
上記説明では、第2バッテリ212の残量が少なくなることに基づくトルクの再配分について説明したが、バッテリ212が満充電に近い場合に、車両100の制動時(ブレーキ時)についても、同様に行う。ただし、この場合、制動力としてモータMの回生ブレーキだけでは足りなくなるため、この不足分の制動力は機械式ブレーキを併用する必要がある。
(協調ブレーキについて)
協調ブレーキとは、モータMによる回生ブレーキと、油圧制御による機械式ブレーキとを組み合わせて、必要な制動力を生成するブレーキである。回生ブレーキと機械式ブレーキの組み合わせについては、各種方法がある。
協調ブレーキとは、モータMによる回生ブレーキと、油圧制御による機械式ブレーキとを組み合わせて、必要な制動力を生成するブレーキである。回生ブレーキと機械式ブレーキの組み合わせについては、各種方法がある。
たとえば、常に、回生ブレーキと機械式ブレーキとを所定の比率でいずれも使用する方法、所定の制動量までは回生ブレーキを使用し、所定の制動量以上となると機械式ブレーキを加えて用いる方法、所定の制動量までは機械式ブレーキを使用し、所定の制動量以上となると回生ブレーキを加えて用いる方法、等がある。
図15−1は、実施の形態で用いる協調ブレーキの制御特性を示す図である。横軸は速度、縦軸は制動トルクである。モータMは、速度が低いとき回転数が小さい。したがって、図示のように、このような速度が低いときには逆起電力も小さくなるため、大きな回生ブレーキを得ることができない。
したがって、実施の形態のコントローラ101では、モータMの回生ブレーキだけではなく、回生ブレーキでは得られない不足分の制動トルクを機械式ブレーキにより得る協調ブレーキ制御を行うようにしている。図示の例では、機械式ブレーキの制動トルクは、回生ブレーキと逆の特性を有し、速度が低いほど大きく、速度が高くなるにつれて減少させている。これにより、ブレーキペダル104の踏み込み量に対応した制動トルク値を、回生ブレーキと機械式ブレーキ双方の制動力により得る。
また、第2バッテリ212の現在値が満充電に近くなって大きな回生ブレーキをかけることができない場合、コントローラ101は、低速時と同じように、回生ブレーキの制動トルクの割合を小さくし、機械式ブレーキによる制動トルクの割合を大きくして、必要な制動トルクを得るよう協調ブレーキ制御を行う。
図15−2は、実施の形態で用いる協調ブレーキのほかの制御特性を示す図である。図示の例では、回生ブレーキによって発生する電力が充電できなくなった時点で、次第に回生ブレーキによる制動トルクの割合を小さくし、逆に機械式ブレーキによる割合を大きくさせている。
以上説明したように、制動トルクをモータMによる回生ブレーキだけではなく、機械式ブレーキを併用する協調ブレーキ制御により、広範囲な速度に渡り必要な制動トルクを発生させることができ、車両100の走行を安全に行うことができるようになる。そして、第2バッテリ212の充電容量の変化により、第2バッテリ212に充電できないような状態が生じたときであっても、必要な制動トルクを得ることができるようになる。
以上説明した実施の形態1によれば、車両と車輪にそれぞれバッテリを設け、車両と車輪の間を非接触な無線により電力伝送する構成とした。これにより、車両と車輪との間に大容量の電力伝送ケーブルを設ける必要がなく、ケーブルの損傷や交換を不要にできる。また、相互のバッテリ間での電力伝送は、車輪側の第2バッテリの容量が常に目標残量値に近づくよう制御する。これにより、常時モータに対して安定な電力を供給できるようになる。
さらに、電力伝送を車両の走行状態にあわせて、力行時と回生時、および各モータに対するトルク配分、および制動トルクの変化に対応して制御するため、運転の安全性を確保できるとともに、電力伝送を効率的に行えるようになる。
(実施の形態2)
実施の形態2では、モータ駆動の電力を有線により車両から車輪に電力伝送する構成である。また、この構成において、車輪側に第2バッテリと、インバータを設ける。
実施の形態2では、モータ駆動の電力を有線により車両から車輪に電力伝送する構成である。また、この構成において、車輪側に第2バッテリと、インバータを設ける。
図16は、実施の形態2にかかる車両駆動装置が搭載された車両の構成を示す概要図である。実施の形態1と同様の構成には同一の符号を付してある。実施の形態2では、第1バッテリ111から各車輪のモータユニットM1〜M4にそれぞれ設けられる第2バッテリに対して、有線で電力を伝送する。このため、図16に示す電源ラインL1〜L4上には、実施の形態1で示したDC−AC変換部121(121a〜121d)、電力伝送アンテナ122(122a〜122d),123(123a〜123d)、AC−DC変換部201(201a〜201d)を設ける必要がない。
図17は、実施の形態2にかかる車両駆動装置の構成を示すブロック図である。図17に示すように、電源ラインL1上において、車両100と車輪側のモータユニットM1との間は、有線のケーブル1800によって接続されている。そして、このモータユニットM1には、第2バッテリ212aと、インバータ203aが設けられている。
このように、車輪のモータユニットM1には、第2バッテリ212aが設けられ、インバータ203aを介してモータM駆動に必要な高電圧で大電流の電力を供給することができる。したがって、第1バッテリ111と第2バッテリ212aとの間の電源ラインL1は、これらの間をDC低電流で電力伝送させることができればよい構成としたので、たとえば、従来のような太く本数が多い3相大電流ケーブルは不要であるため、ケーブル1800に細線を用いることができる。また、ケーブル1800内部の導体はDC±用の2本でよく、ケーブル1800の導体数を少なくすることができる。このように、車両100と車輪との間に設けるケーブル1800として細線を用いることができるため、車輪の回転にあわせてケーブル1800が容易に撓み、車輪の操舵性に影響を及ぼさない。
実施の形態2におけるバッテリ間の電力伝送にかかる制御は、実施の形態1(たとえば図5〜図9)で説明した内容と同じであり、電力伝送を有線のケーブル1800を用いている点だけが異なる。なお、電力伝送の制御において、実施の形態1では、電源ラインL1上の無線の電流許容値Amaxに基づき、電力伝送可能な上限値を設定する構成としたが(図9参照)、この実施の形態2では、電源ラインL1上での有線(ケーブル1800)の電流許容値に基づき、電力伝送可能な上限値を設定する構成とすればよい。
有線のケーブル1800は、ケーブルの種類や断面積等により、流せる電流許容値が異なるため、実際に用いるケーブル1800に基づき電流許容値を設定し、電力伝送可能な上限値を設定する。
以上説明した実施の形態2によれば、車両と車輪にそれぞれバッテリを設け、車輪側に設けたバッテリで直接車輪のモータを駆動する構成とした。車両と車輪の間は有線ではあるが、バッテリ間を低電流で電力伝送できる。これにより、車両と車輪との間に大容量の電力伝送ケーブルを設ける必要がなく、ケーブルの損傷や交換を不要にできる。
また、相互のバッテリ間での電力伝送は、車輪側の第2バッテリの容量が常に目標残量値に近づくよう制御する。これにより、常時モータに対して安定な電力を供給できるようになる。
(実施の形態3)
実施の形態3では、モータ駆動の電力を無線および有線により車両から車輪に電力伝送(ハイブリッド伝送)する構成である。そして、電力伝送を常に無線と有線により行う構成(ハイブリッド伝送制御1)とするほか、通常時は有線で行い、必要時に無線による電力伝送を行う構成(ハイブリッド伝送制御2)とすることができる。すなわち、無線伝送は、有線伝送に比して電力伝送の損失が大きいため、ハイブリッド伝送制御2では、必要最低限の電力分だけ、無線による電力伝送を行う。
実施の形態3では、モータ駆動の電力を無線および有線により車両から車輪に電力伝送(ハイブリッド伝送)する構成である。そして、電力伝送を常に無線と有線により行う構成(ハイブリッド伝送制御1)とするほか、通常時は有線で行い、必要時に無線による電力伝送を行う構成(ハイブリッド伝送制御2)とすることができる。すなわち、無線伝送は、有線伝送に比して電力伝送の損失が大きいため、ハイブリッド伝送制御2では、必要最低限の電力分だけ、無線による電力伝送を行う。
図18は、実施の形態3にかかる車両駆動装置が搭載された車両の構成を示す概要図である。実施の形態1と同様の構成には同一の符号を付してある。実施の形態3では、第1バッテリ111から各車輪のモータユニットM1〜M4にそれぞれ設けられる第2バッテリに対して、無線と有線で電力を伝送可能である。
このため、図18に示す電源ラインL1〜L4上には、実施の形態1と同様にDC−AC変換部121(121a〜121d)、電力伝送アンテナ122(122a〜122d),123(123a〜123d)、AC−DC変換部201(201a〜201d)を設ける。これに加えて、バッテリ111とモータユニットM1〜M4(第2バッテリ)との間にも有線接続のケーブルを配線する。
図19は、実施の形態3にかかる車両駆動装置の構成を示すブロック図である。図19に示すように、電源ラインL1は、車両100と車輪側のモータユニットM1との間において、無線の伝送系にかかる構成と、有線の伝送系にかかる構成が並列接続されている。
無線の伝送系にかかる構成は、DC−AC変換部121(121a〜121d)、電力伝送アンテナ122(122a〜122d),123(123a〜123d)、AC−DC変換部201(201a〜201d)からなる。
有線の伝送系にかかる構成は、有線のケーブル1800であり、第1バッテリ111のDC出力を直接、第2バッテリ212aに接続するために、DC−AC変換部121aの前段と、AC−DC変換部201aの後段との間を、このケーブル1800で接続している。
そして、第1バッテリ111と第2バッテリ212aとの間の電源ラインL1は、これらの間をDC低電流で電力伝送させることができればよい構成としたので、高電圧大電流ケーブルを不要とし、ケーブル1800に細線を用いることができる。このように、車両100と車輪との間に設けるケーブル1800として細線を用いることができるため、車輪の回転にあわせてケーブル1800が容易に撓み、車輪の操舵性に影響を及ぼさない。
図20は、実施の形態3によるバッテリ間の電力伝送の概要を示す図である。実施の形態3では、実施の形態1(図5参照)において説明した、第2バッテリ212aのバッテリ量についての各項目に二つの項目を加えている。これらは、無線放電実施判断値BJ+(プラス)と、無線充電実施判断値BJ−(マイナス)であり、コントローラ101(残量制御部221)が下記に説明するハイブリッド伝送制御2による制御に用いる項目である。
無線放電実施判断値BJ+は、第2バッテリ212aの目標残量値BSと充電上限値BUとの間に設定する。また、無線充電実施判断値BJ−は、目標残量値BSと充電下限値BLとの間に設定する。
ハイブリッド伝送制御1では、実施の形態1(たとえば図6〜図9)で説明した制御内容と同じ制御に基づき、電力伝送を無線および有線の伝送系を常に併用して行えばよい。
また、ハイブリッド伝送制御2においても、実施の形態1(たとえば図6〜図8)で説明した制御内容と同じ制御に基づき、電力伝送を行う。ただし、このハイブリッド伝送制御2では、有線の伝送系を主に用い、必要時に無線の伝送系を用いる構成であるため、無線の伝送系の使用の有無を判断する処理が加わっている。具体的には、実施の形態1(図9)で説明した電力伝送の制御手順が一部異なっている。
図21は、実施の形態3にかかる無線による電力伝送の制御手順の一例を示すフローチャートである。ハイブリッド伝送制御2の無線による電力伝送の制御内容について説明する。ハイブリッド伝送制御2では、有線による電力伝送を常に行っていることを前提とし、必要時にのみ無線による電力伝送を加える形で制御している。
はじめに、コントローラ101は、第2バッテリ212aの各値を検出する(ステップS2201)。図20に示したように、第2バッテリ212aの目標残量はBSとし、現在値(残量)はB1とし、現在の電圧はV1とする。また、モータユニットMに対する無線の電源ラインL1の最大電流をAmaxとする。この最大電流Amaxは、電源ラインL1上に設けられる無線伝送にかかる電力伝送アンテナ122a,123aのコイルや、ドライバIC等によって許容値(電流許容値)が異なる。また、上限側の無線放電実施判断値BJ+と、下限側の無線充電実施判断値BJ−とを用いる。
つぎに、第2バッテリ212aの現在値B1が下限側の無線充電実施判断値BJ−未満であるか判断する(ステップS2202)。第2バッテリ212aの現在値B1が下限側の無線充電実施判断値BJ−未満であれば(ステップS2202:Yes)、下限側の無線充電実施判断値BJ−から現在値B1を引いた値を伝送したい電力Dとする(ステップS2203)。
一方、第2バッテリ212aの現在値B1が下限側の無線充電実施判断値BJ−を超えていれば(ステップS2202:No)、第2バッテリ212aの現在値B1が上限側の無線放電実施判断値BJ+を超えているか判断する(ステップS2204)。第2バッテリ212aの現在値B1が上限側の無線放電実施判断値BJ+を超えていれば(ステップS2204:Yes)、上限側の無線放電実施判断値BJ+から現在値B1を引いた値を伝送したい電力Dとする(ステップS2205)。第2バッテリ212aの現在値B1が上限側の無線放電実施判断値BJ+未満であれば(ステップS2204:No)、処理を終了する。
上記の処理により、第2バッテリ212aの現在値が、上限側の無線放電実施判断値よりも大きい場合、あるいは下限の無線充電実施判断値よりも小さい場合は、現在値との差分のみの電力を無線により電力伝送させるようにする。
上記ステップS2203,ステップS2205の処理後、電力伝送可能な上限値Cmaxを下記式により算出する(ステップS2206)。
電力伝送可能な上限値Cmax=無線により電力伝送できる最大電流Amax×現在の電圧V1
電力伝送可能な上限値Cmax=無線により電力伝送できる最大電流Amax×現在の電圧V1
上記の伝送したい電力Dとは、電源ラインL1上の第1バッテリ111と第2バッテリ212aとの間で電力伝送したい電力である。たとえば、力行時には、割り当てられたトルク配分値に対応して、第1バッテリ111から第2バッテリ212aへの正方向に向けてモータMを駆動するために必要な電力である。回生時には、回線電力を第1バッテリ111に伝送しようとする電力に相当する。
つぎに、電力伝送の電力値を決定する(ステップS2207)。電力伝送の電力値は、伝送したい電力Dの絶対値|D|と、電力伝送可能な上限値Cmaxとのうち、小さい方の電力値を用いて行う。このため、伝送したい電力Dの絶対値が電力伝送可能な上限値Cmaxを超えていれば(ステップS2207:Yes)、伝送したい電力Dが正の場合、電力伝送可能な上限値Cmaxを伝送する電力Dとして決定する。また、伝送したい電力Dが負の場合、電力伝送可能な上限値−Cmaxを伝送する電力Dとして決定する。(ステップS2208)。
一方、ステップS2207において、伝送したい電力Dの絶対値が電力伝送可能な上限値Cmaxを超えていなければ(ステップS2207:No)、ステップS2208の処理を行わず、伝送したい電力Dをそのまま用い、ステップS2209に移行する。
そして、ステップS2209では、差分容量Dを第1バッテリ111から第2バッテリ212aに無線により電力伝送する。Dの値が負の場合には、第2バッテリ212aから第1バッテリ111に無線により電力伝送する(ステップS2209)。
有線に限らず無線による電力伝送を併用するのは、下記理由による。高速道路では、車輪(ステアリング)の切れ角は小さくタイヤの向きは真直ぐに近いことが多いため、一対の電力伝送アンテナ122における無線による非接触充電の効率は高い。一般道路では、タイヤの向きが曲がることが多いため、有線のケーブル1800での充電が主となるが、高出力が連続することはないので問題ない。
そして、有線のケーブル1800による第2バッテリ212(212a〜212d)の充電量の制御を実施中、現在値が目標残量値と異なる場合は、無線による電力伝送を行って、目標残量値に近づけるようにする。これにより、現在値を充電上限値や充電下限値から離した残量にできるため、過充電や過放電を防止するための力行トルクや回生トルク制限をしなくても済む。
そして、上記の無線による電力伝送の制御処理(ハイブリッド伝送制御2)によれば、無線による電力損失が無視できない場合、現在値が無線充電実行判断値を超えたときのみ、非接触充電による電力伝送を追加で実施している。これにより、無線による電力伝送量は、現在値が無線充電実施判断値あるいは無線放電実施判断値に近づくようにする。これにより、充電上限値と充電下限値に近づきにくくできるため、過充電や過放電を防止するための力行トルクや回生トルク制限の必要性が少なくなる。
つぎに、上記各実施の形態による実施例について説明する。はじめに、車両100の走行パターンと、走行エネルギについて説明する。
図22は、車両の走行パターンと走行エネルギの一例を示す図表である。たとえば、車重が1600kg、空気抵抗係数が0.2、転がり抵抗係数が0.01の4輪駆動のインホイールモータMの車両が、(a)に示すような(10−15モード)による走行を行ったとする。図中横軸は時間、縦軸は速度である。この場合の各車輪の走行抵抗(空気抵抗、加速抵抗、転がり抵抗)と走行エネルギを(b)に示す。横軸は時間、縦軸は走行抵抗、および走行エネルギである。
図23は、消費エネルギとバッテリ間伝送電力の一例を示す図表である。横軸は時間、縦軸は電力量である。(a)は、消費エネルギであり、図22(b)の走行エネルギに相当する。この(a)に示す例では、有線の細線のケーブル1800、あるいは無線による電力伝送の上限を1kWとしている。(b)には、積算した消費エネルギ量と、バッテリ間の積算した伝送電力量とを示している。このように、消費エネルギに対して、伝送電力が追従できていない。
つぎに、バッテリ間の伝送電力の違いによるバッテリ残量の推移について説明する。図24−1〜図24−4は、バッテリ間の伝送電力の違いによるバッテリ残量の推移を示す図表である。横軸は時間、縦軸は電力量である。それぞれバッテリの目標残量値BS(初期値)は40Whとしている。
図24−1は、伝送電力の上限が1kW、図24−2は、伝送電力の上限が1.5kW、図24−3は、伝送電力の上限が2kW、図24−4は、伝送電力の上限が2.5kWとしている。これらの図に示すように、伝送電力の上限が小さいほど、第2バッテリ212の残量は、目標残量値BS(40Wh)からの開きが大きくなる。一方、伝送電力の上限が大きいほど、第2バッテリ212の残量は、目標残量値BSからの開きが小さくなる。この第2バッテリ212の残量は、消費エネルギと伝送電力の差分である。
図25−1および図25−2は、伝送電力が少ない場合のバッテリ過放電状態を示す図表である。横軸は時間、縦軸は電力量である。図25−1には、消費エネルギとバッテリ間伝送電力の一例を示している。この例では、有線の細線のケーブル1800による電力伝送の上限を500Wとしている。
この場合、図25−2のバッテリ残量の推移に示すように、時期2600では、第2バッテリ212の充電下限値BLを下回る程度まで放電され過放電状態になる。このように、電力伝送の上限値が小さい場合には、有線と無線を併用した電力伝送を行う必要がある。
図26−1および図26−2は、有線と無線による電力伝送を組み合わせた場合のバッテリ状態残量の推移を示す図表である。横軸は時間、縦軸は電力量である。この例では、有線の細線のケーブル1800による電力伝送の上限を500Wとし、無線による電力伝送の上限を1kWとし、また、有線および無線による電力伝送を常に併用する、上記ハイブリッド伝送制御1の場合を示している。図26−2に示す例によれば、第2バッテリ212の過放電を防止することができる。
図27−1および図27−2は、有線と無線による電力伝送を組み合わせた場合のバッテリ状態残量の推移を示す図表である。横軸は時間、縦軸は電力量である。この例では、有線の細線のケーブル1800による電力伝送の上限を500Wとし、無線による電力伝送の上限を1kWとしている。そして、通常は、有線による電力伝送を行い、バッテリ残量が低下したときのみ無線による電力伝送を併用する、上記ハイブリッド伝送制御2の場合を示している。
図27−2に示す例では、下限側の無線充電実施判断値BJ−として、第2バッテリ212のバッテリ残量を20Whに設定している。したがって、時期2800において、第2バッテリ212のバッテリ残量が20Whを下回ったときに、無線による電力伝送を実施する。残量は20Whを下回るものの、図25−2の時期2600ほどは低下させないで済む。これにより、第2バッテリ212の過放電を防止することができる。
以上説明した実施例のように、有線あるいは無線によって伝送可能な電力が判っているとき、これらを適宜に組み合わせることにより、第2バッテリ212の過放電、および過充電を防止することができるようになる。そして、有線での電力伝送を行うとともに、必要時にのみ無線による電力伝送を行うとき、この無線による電力伝送の期間を第2バッテリ212の充電上限値および充電下限値に基づいて実施することにより、第2バッテリ212の過放電、および過充電を防止することができるようになる。
なお、本実施の形態で説明した方法は、予め用意されたプログラムをパーソナル・コンピュータやワークステーションなどのコンピュータで実行することにより実現することができる。このプログラムは、ハードディスク、フレキシブルディスク、CD−ROM、MO、DVDなどのコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行される。またこのプログラムは、インターネットなどのネットワークを介して配布することが可能な伝送媒体であってもよい。
100 車両
101 コントローラ
102 ハンドル
103 アクセルペダル
104 ブレーキペダル
105 シフトブレーキ
106 セレクタ
111 第1バッテリ
121(121a) 第1変換器(DC−AC変換部)
122(122a),123(123a) 電力伝送アンテナ
201(201a) 第2変換器(AC−DC変換部)
202a 双方向チョッパ
203a インバータ
212(212a) 第2バッテリ
221 残量制御部
222 トルク制御部
M1〜M4 モータユニット
M モータ(インホイールモータ)
L1〜L4 電源ライン
101 コントローラ
102 ハンドル
103 アクセルペダル
104 ブレーキペダル
105 シフトブレーキ
106 セレクタ
111 第1バッテリ
121(121a) 第1変換器(DC−AC変換部)
122(122a),123(123a) 電力伝送アンテナ
201(201a) 第2変換器(AC−DC変換部)
202a 双方向チョッパ
203a インバータ
212(212a) 第2バッテリ
221 残量制御部
222 トルク制御部
M1〜M4 モータユニット
M モータ(インホイールモータ)
L1〜L4 電源ライン
上述した課題を解決し、目的を達成するため、この発明にかかる車両駆動装置は、外部電源より取得した直流電力を蓄える第1蓄電池と、前記第1蓄電池に接続され、前記第1蓄電池の直流電力を送電する送電手段と、前記送電手段により送電された直流電力を受電する受電手段と、車輪のハブに装着され、当該車輪を駆動するインホイールモータと、前記車輪に設けられ、前記受電手段により受電した直流電力を蓄える第2蓄電池と、前記車輪に設けられ、前記第2蓄電池の直流電力を交流電力に変換するインバータと、前記インホイールモータの回転駆動を制御する駆動制御手段と、前記送電手段より前記受電手段への給電を制御する給電制御手段と、を備え、前記送電手段は、送電する前記直流電力を交流電力に変換する第1変換器と、当該交流電力を無線送電する送電アンテナを有し、前記受電手段は、前記交流電力を無線受電する受電アンテナと、受電する前記交流電力を前記直流電力へ変換する第2変換器を有し、前記給電制御手段は、前記送電手段より前記受電手段への無線給電を制御することを特徴とする。
Claims (6)
- 外部電源より取得した直流電力を蓄える第1蓄電池と、
前記第1蓄電池に接続され、前記第1蓄電池の直流電力を送電する送電手段と、
前記送電手段により送電された直流電力を受電する受電手段と、
車輪のハブに装着され、当該車輪を駆動するインホイールモータと、
前記車輪に設けられ、前記受電手段により受電した直流電力を蓄える第2蓄電池と、
前記車輪に設けられ、前記第2蓄電池の直流電力を交流電力に変換するインバータと、
前記インホイールモータの回転駆動を制御する駆動制御手段と、
前記送電手段より前記受電手段への給電を制御する給電制御手段と、
を備えることを特徴とする車両駆動装置。 - 前記送電手段は、送電する前記直流電力を交流電力に変換する第1変換器と、当該交流電力を無線送電する送電アンテナを有し、
前記受電手段は、前記交流電力を無線受電する受電アンテナと、受電する前記交流電力を前記直流電力へ変換する第2変換器を有し、
前記給電制御手段は、
前記送電手段より前記受電手段への無線給電を制御すること
を特徴とする請求項1に記載の車両駆動装置。 - 前記送電手段および前記受電手段は、ケーブルで接続されており、
前記給電制御手段は、前記送電手段より前記受電手段への前記ケーブルによる給電を制御すること
を特徴とする請求項1に記載の車両駆動装置。 - 前記第1蓄電池に接続され、前記第1蓄電池の直流電力を送電する第2の送電手段と、
前記第2の送電手段にケーブルで接続され、前記第2の送電手段により送電された直流電力を受電し、前記第2蓄電池へ送電する第2の受電手段と、をさらに備え、
前記給電制御手段は、前記送電手段より前記受電手段への無線給電、および前記第2の送電手段より前記第2の受電手段への前記ケーブルによる給電を制御すること
を特徴とする請求項2に記載の車両駆動装置。 - 前記給電制御手段は、
前記第2の送電手段より前記第2の受電手段に対し通常は、前記ケーブルによる給電を行い、
前記第2の蓄電池が過放電あるいは過充電になると判断した場合には、前記送電手段より前記受電手段への無線給電を併用して行うこと
を特徴とする請求項4に記載の車両駆動装置。 - 前記第2蓄電池の直流電力を前記第1蓄電池へ送電する逆送電手段と、
前記逆送電手段の給電を制御する逆給電制御手段と、をさらに備えること
を特徴とする請求項1に記載の車両駆動装置。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/076870 WO2013076806A1 (ja) | 2011-11-22 | 2011-11-22 | 車両駆動装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2013076806A1 true JPWO2013076806A1 (ja) | 2015-04-27 |
JP5739548B2 JP5739548B2 (ja) | 2015-06-24 |
Family
ID=48469287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013545683A Active JP5739548B2 (ja) | 2011-11-22 | 2011-11-22 | 車両駆動装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5739548B2 (ja) |
WO (1) | WO2013076806A1 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014201054A1 (de) * | 2014-01-22 | 2015-07-23 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Betreiben einer Batterie, insbesondere einer Lithium Ionen Batterie, in einem Verbraucher |
KR101961218B1 (ko) * | 2014-03-07 | 2019-03-22 | 고쿠리츠다이가쿠호우진 도쿄다이가쿠 | 인휠 모터 시스템 |
JP6836243B2 (ja) * | 2017-04-21 | 2021-02-24 | 東洋電機製造株式会社 | 電力変換装置 |
US11001263B2 (en) | 2018-03-07 | 2021-05-11 | Toyota Jidosha Kabushiki Kaisha | Braking force control system, device, and method |
JP7310102B2 (ja) * | 2018-03-07 | 2023-07-19 | トヨタ自動車株式会社 | 制動力制御システム、制御装置、マネージャ、方法、プログラム、アクチュエータシステム、および車両 |
JP7146168B2 (ja) * | 2018-03-20 | 2022-10-04 | マツダ株式会社 | 車両駆動装置 |
JP7451944B2 (ja) * | 2019-11-06 | 2024-03-19 | 株式会社デンソー | 電気自動車 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006160033A (ja) * | 2004-12-06 | 2006-06-22 | Nissan Motor Co Ltd | 車輪への給電構造 |
JP2006174548A (ja) * | 2004-12-14 | 2006-06-29 | Takenaka Komuten Co Ltd | コードレス電力伝送のための集電車輪 |
JP2010226880A (ja) * | 2009-03-24 | 2010-10-07 | Denso Corp | ナビゲーション装置,電気自動車の駆動用モータ制御システム及び駆動用モータの制御方法 |
JP2011195097A (ja) * | 2010-03-23 | 2011-10-06 | Aisin Seiki Co Ltd | 車両用駆動装置 |
-
2011
- 2011-11-22 JP JP2013545683A patent/JP5739548B2/ja active Active
- 2011-11-22 WO PCT/JP2011/076870 patent/WO2013076806A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006160033A (ja) * | 2004-12-06 | 2006-06-22 | Nissan Motor Co Ltd | 車輪への給電構造 |
JP2006174548A (ja) * | 2004-12-14 | 2006-06-29 | Takenaka Komuten Co Ltd | コードレス電力伝送のための集電車輪 |
JP2010226880A (ja) * | 2009-03-24 | 2010-10-07 | Denso Corp | ナビゲーション装置,電気自動車の駆動用モータ制御システム及び駆動用モータの制御方法 |
JP2011195097A (ja) * | 2010-03-23 | 2011-10-06 | Aisin Seiki Co Ltd | 車両用駆動装置 |
Also Published As
Publication number | Publication date |
---|---|
WO2013076806A1 (ja) | 2013-05-30 |
JP5739548B2 (ja) | 2015-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5739548B2 (ja) | 車両駆動装置 | |
JP5775605B2 (ja) | 車両駆動装置 | |
CN103269898B (zh) | 电动车辆及其控制方法 | |
JP4965751B1 (ja) | トルク配分装置、トルク配分方法、トルク配分値生成方法およびプログラム | |
JP5348334B2 (ja) | 電動車両の電源装置およびその制御方法 | |
JP4749428B2 (ja) | 車両独立駆動式車両の駆動力制御装置 | |
JP5830449B2 (ja) | 電動車駆動システム | |
JP5822951B2 (ja) | 車両駆動装置 | |
WO2012111160A1 (ja) | トルク配分装置、トルク配分方法、トルク配分値生成方法およびプログラム | |
US20150200613A1 (en) | Electric vehicle and control method of electric vehicle | |
WO2014101838A1 (en) | Driving system of electric vehicle and method for controlling same | |
JP5705333B2 (ja) | 車両駆動装置 | |
JP7081958B2 (ja) | 車両電源システム | |
KR20120064068A (ko) | 전기 자동차 | |
JP5771284B2 (ja) | 車両駆動装置 | |
CN103843219B (zh) | 电动车辆的电源系统及其控制方法 | |
JP5353365B2 (ja) | 車両システム | |
JP5822946B2 (ja) | 車両駆動装置 | |
JP5771285B2 (ja) | 車両駆動装置 | |
WO2019181030A1 (ja) | 複合蓄電システム | |
JP2012171616A (ja) | トルク配分装置およびトルク配分方法 | |
JP2011223791A (ja) | 車両用回転電機の制御装置 | |
KR20110048859A (ko) | 차량의 모터 토크 제어 방법 | |
JP2012125051A (ja) | 電気自動車の電源制御装置 | |
JP5096623B2 (ja) | トルク配分装置およびトルク配分方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150331 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150423 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5739548 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |