JPWO2013015088A1 - Tower boiler - Google Patents

Tower boiler Download PDF

Info

Publication number
JPWO2013015088A1
JPWO2013015088A1 JP2013525645A JP2013525645A JPWO2013015088A1 JP WO2013015088 A1 JPWO2013015088 A1 JP WO2013015088A1 JP 2013525645 A JP2013525645 A JP 2013525645A JP 2013525645 A JP2013525645 A JP 2013525645A JP WO2013015088 A1 JPWO2013015088 A1 JP WO2013015088A1
Authority
JP
Japan
Prior art keywords
heat transfer
furnace wall
superheater
boiler
combustion gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013525645A
Other languages
Japanese (ja)
Other versions
JP5692385B2 (en
Inventor
勇太 佐藤
勇太 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2013525645A priority Critical patent/JP5692385B2/en
Publication of JPWO2013015088A1 publication Critical patent/JPWO2013015088A1/en
Application granted granted Critical
Publication of JP5692385B2 publication Critical patent/JP5692385B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G7/00Steam superheaters characterised by location, arrangement, or disposition
    • F22G7/06Steam superheaters characterised by location, arrangement, or disposition in furnace tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/40Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes arranged in a comparatively long vertical shaft, i.e. tower boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • F22G1/02Steam superheating characterised by heating method with heat supply by hot flue gases from the furnace of the steam boiler

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)

Abstract

このタワーボイラ(1)は、ボイラ本体(2)を形成し且つボイラ本体(2)内で生じる燃焼ガス(G)との間で熱交換を行う火炉壁(3)と、ボイラ本体(2)の上部に位置してボイラ本体(2)内で生じる燃焼ガス(G)との間で熱交換を行う伝熱部を備える。伝熱部は複数の過熱器(6〜8)を備え、これらの過熱器(6〜8)のうちの少なくとも最も火炉壁下部(3a)側に位置する過熱器(6,7)における伝熱管の隣接ピッチ(Pw)が、火炉壁下部(3a)から離れた側に位置する過熱器(8)における伝熱管(11)の隣接ピッチ(Pn)よりも大きく設定されている。The tower boiler (1) includes a furnace wall (3) that forms a boiler body (2) and exchanges heat with combustion gas (G) generated in the boiler body (2), and a boiler body (2). The heat transfer part which heat-exchanges with the combustion gas (G) produced in a boiler main body (2) located in the upper part of is provided. The heat transfer section includes a plurality of superheaters (6-8), and the heat transfer tubes in the superheaters (6, 7) located at least on the furnace wall lower part (3a) side among these superheaters (6-8). Is set to be larger than the adjacent pitch (Pn) of the heat transfer tubes (11) in the superheater (8) located on the side away from the furnace wall lower part (3a).

Description

本発明は、タワーボイラに関する。
本願は、2011年7月22日に日本に出願された特願2011−160529号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a tower boiler.
This application claims priority based on Japanese Patent Application No. 2011-160529 for which it applied to Japan on July 22, 2011, and uses the content here.

タワーボイラは、限られたスペースに設置されるのに適したボイラであり、例えば、特許文献1に開示されたタワーボイラがある。
このタワーボイラは、ボイラ本体と、このボイラ本体内に燃料を噴射して燃焼させるバーナと、バーナからボイラ本体内に燃料を噴射して燃焼させることで生じる燃焼ガスとの間で熱交換を行う伝熱部とを備えている。そして、ボックス形状をなす火炉壁の上部に伝熱部を構成する過熱器、再過熱器および節炭器を配置することで、ボイラのサイズ(ボイラの専有面積)の小型化を図っている。
A tower boiler is a boiler suitable for being installed in a limited space. For example, there is a tower boiler disclosed in Patent Document 1.
This tower boiler performs heat exchange between a boiler body, a burner that injects and burns fuel into the boiler body, and a combustion gas that is generated by injecting and burning fuel from the burner into the boiler body. And a heat transfer section. And the superheater which comprises a heat-transfer part, the resuperheater, and the economizer is arrange | positioned in the upper part of the furnace wall which makes a box shape, and size reduction of the size of boiler (the exclusive area of a boiler) is aimed at.

伝熱部、例えば、過熱器は、幾重にも往復させて束ねた長い伝熱管を備え、この束ねられた状態における伝熱管の隣接ピッチ(隣接する伝熱管同士の間隔)が大きいと、過熱器の体積が大きくなる。この過熱器の大きさは、ボイラのサイズに直接影響を及ぼすことから、従来のタワーボイラにおいては、できるだけ隣接ピッチの狭い過熱器(伝熱部)を配置している。 A heat transfer section, for example, a superheater, includes long heat transfer tubes that are bundled by reciprocating multiple times, and if the adjacent pitch of the heat transfer tubes in the bundled state (interval between adjacent heat transfer tubes) is large, the superheater The volume of increases. Since the size of the superheater directly affects the size of the boiler, in the conventional tower boiler, superheaters (heat transfer portions) having a narrowest adjacent pitch as much as possible are arranged.

このように、隣接ピッチの狭い過熱器を配置すると、高い伝熱効率が得られるうえ、ボイラのサイズも小さくすることができる。しかしながら、灰を含む燃焼ガスを隣接ピッチの狭い過熱器に導入するに際して、この燃焼ガスの温度が灰の溶融点を越えている場合には、伝熱管に灰が付着して、伝熱管の隣接ピッチが狭い分だけ燃焼ガスの流動が滞り、効果的な熱交換ができなくなる。 Thus, when the superheater with a narrow adjacent pitch is arranged, high heat transfer efficiency can be obtained, and the size of the boiler can be reduced. However, when the combustion gas containing ash is introduced into a superheater with a narrow adjacent pitch, if the temperature of the combustion gas exceeds the melting point of ash, the ash adheres to the heat transfer tube and is adjacent to the heat transfer tube. As the pitch is narrow, the flow of combustion gas stagnate, and effective heat exchange cannot be performed.

このような従来のタワーボイラにおいて、過熱器の隣接する伝熱管の間に灰が詰まるのを回避するために、最も火炉壁下部に近い過熱器までの伝熱面(炉壁管を上下方向に多数配した火炉壁)の面積を大きくして相応の熱量を吸収することで、過熱器に導入する燃焼ガスの温度が灰の溶融点を超えないようにしている。 In such a conventional tower boiler, in order to avoid clogging of ash between the adjacent heat transfer tubes of the superheater, the heat transfer surface to the superheater closest to the bottom of the furnace wall (the furnace wall tube in the vertical direction) The temperature of the combustion gas introduced into the superheater does not exceed the melting point of ash by increasing the area of the many furnace walls and absorbing a corresponding amount of heat.

特開平09−243004号公報JP 09-243004 A

上記した特許文献1に開示されたタワーボイラを、プラント効率の向上を目的とした高蒸気条件(高温高圧条件)の蒸気を発生可能なタワーボイラとする場合、プラント効率の向上により燃料投入量は少なくなるが、それ以上にタワーボイラからタービンに供給する蒸気の流量が少なくなる。つまり、給水流量が少なくなるため、結果として従来の蒸気条件のタワーボイラと比較して炉壁管内を流れる水又は蒸気の温度が高くなる。また、さらなるプラント効率の向上を目的として、給水加熱器による熱回収量を増やす場合がある。この場合には、ボイラに導入される給水温度が高くなって、炉壁管内を流れる水又は蒸気の温度がさらに高くなる。 When the tower boiler disclosed in Patent Document 1 described above is a tower boiler capable of generating steam under high steam conditions (high temperature and high pressure conditions) for the purpose of improving plant efficiency, the amount of fuel input is increased by improving plant efficiency. However, the flow rate of steam supplied from the tower boiler to the turbine is further reduced. That is, since the feed water flow rate is reduced, as a result, the temperature of water or steam flowing in the furnace wall tube is higher than that of a tower boiler under conventional steam conditions. Moreover, the heat recovery amount by a feed water heater may be increased for the purpose of further improving plant efficiency. In this case, the temperature of the feed water introduced into the boiler is increased, and the temperature of water or steam flowing in the furnace wall pipe is further increased.

その一方で、高蒸気条件のタワーボイラにおいても、上記したように、最も火炉壁下に近い過熱器に導入する燃焼ガスの温度を灰の溶融点以下に下げなくてはならない。そのため、火炉壁下部の伝熱面の面積を小さくして、炉壁管内を流れる水又は蒸気の温度を下げることはできない。
つまり、火炉壁の炉壁管内を流れる水は、火炉壁で高温の水又は蒸気となった状態でボイラ本体の上部に設置したドラム或いはセパレータに向けて上昇するため、火炉壁上部における管内の蒸気温度が高くなってしまい、材料的に耐えられなくなる。
On the other hand, even in a high steam steam tower boiler, as described above, the temperature of the combustion gas introduced into the superheater closest to the bottom of the furnace wall must be lowered below the melting point of ash. Therefore, the area of the heat transfer surface below the furnace wall cannot be reduced, and the temperature of water or steam flowing in the furnace wall tube cannot be lowered.
That is, the water flowing in the furnace wall pipe of the furnace wall rises toward the drum or separator installed at the upper part of the boiler body in a state of being hot water or steam on the furnace wall. The temperature becomes high and the material becomes unbearable.

この際、ボイラ本体の上部における火炉壁に、高温の蒸気に耐え得る材料、例えば、T24と呼ばれる7CrMOVTiB10−10材を用いようとしても、現状の溶接技術では火炉壁として形成することが困難である。したがって、高蒸気条件下での運用に際して火炉壁上部の管内蒸気温度が高くならないようにする技術が望まれている。 At this time, even if an attempt is made to use a material that can withstand high-temperature steam, for example, a 7CrMOVTiB10-10 material called T24, as the furnace wall in the upper part of the boiler body, it is difficult to form the furnace wall with the current welding technique. . Therefore, there is a demand for a technique for preventing the steam temperature in the pipe at the upper part of the furnace wall from becoming high during operation under high steam conditions.

本発明は、上記した従来の課題に着目してなされたもので、火炉壁に高温の蒸気に耐え得る材料を用いることなく、プラント効率の向上を目指した高蒸気条件の蒸気を発生させることができるタワーボイラの提供を目的としている。 The present invention has been made paying attention to the above-described conventional problems, and can generate steam under high steam conditions aimed at improving plant efficiency without using a material that can withstand high-temperature steam on the furnace wall. The purpose is to provide a tower boiler that can be used.

本発明に係る第一の態様は、ボイラ本体を形成し且つこのボイラ本体内で生じる燃焼ガスとの間で熱交換を行う火炉壁と、前記ボイラ本体の上部に位置して前記ボイラ本体内で生じる燃焼ガスとの聞で熱交換を行う伝熱部を備えたタワーボイラにおいて、前記伝熱部が複数の過熱器を備え、前記複数の過熱器のうちの少なくとも最も前記火炉壁下部側に位置する過熱器における伝熱管の隣接ピッチを前記火炉壁下部から離れた側に位置する過熱器における伝熱管の隣接ピッチよりも広く設定した構成としている。 A first aspect according to the present invention includes a furnace wall that forms a boiler body and exchanges heat with combustion gas generated in the boiler body, and is located in an upper portion of the boiler body and is disposed in the boiler body. In a tower boiler having a heat transfer section that exchanges heat with the generated combustion gas, the heat transfer section includes a plurality of superheaters, and is located at least on the furnace wall lower side of the plurality of superheaters. The adjacent pitch of the heat transfer tubes in the superheater is set wider than the adjacent pitch of the heat transfer tubes in the superheater located on the side away from the furnace wall lower part.

本発明に係る第2の態様は、上記した第1の態様のタワーボイラにおいて、前記複数の過熱器における伝熱管の各隣接ピッチを、前記火炉壁下部から離れるのに伴って前記過熱器毎に順次狭めてある。 According to a second aspect of the present invention, in the tower boiler according to the first aspect described above, each adjacent pitch of the heat transfer tubes in the plurality of superheaters is set for each superheater as the distance from the furnace wall lower part increases. It is narrowed sequentially.

本発明に係る第3の態様は、上記した第1または第2の態様のタワーボイラにおいて、前記複数の過熱器における伝熱管の各隣接ピッチが、伝熱管の隣接ピッチが最も狭い過熱器に前記燃焼ガスが導入されるまでに、前記燃焼ガスの温度が前記燃焼ガスに含まれる灰の溶融点以下となるよう設定されている。 According to a third aspect of the present invention, in the tower boiler according to the first or second aspect, the adjacent pitch of the heat transfer tubes in the plurality of superheaters is the superheater with the narrowest adjacent pitch of the heat transfer tubes. By the time the combustion gas is introduced, the temperature of the combustion gas is set to be equal to or lower than the melting point of the ash contained in the combustion gas.

本発明に係るタワーボイラでは、火炉壁下部から離れた側に位置する伝熱管の隣接ピッチが狭い過熱器に灰を含む燃焼ガスが導入されるまでに、この燃焼ガスの温度を灰の溶融点以下に下げる必要がある。そのため、最も火炉壁下部側に位置する過熱器、すなわち、伝熱管の隣接ピッチを広くした過熱器は 燃焼ガスの温度を下げる伝熱面の役割も果たす。したがって、火炉壁下部における炉壁管を上下方向に多数配した火炉壁が吸収する熱量が相対的に少なくなって、火炉壁上部の管内蒸気温度が低く抑えられる。 In the tower boiler according to the present invention, the temperature of the combustion gas is reduced to the melting point of the ash until the combustion gas containing ash is introduced into the superheater having a narrow adjacent pitch of the heat transfer tubes located on the side away from the furnace wall lower part. It needs to be lowered below. For this reason, the superheater located closest to the bottom of the furnace wall, that is, the superheater with a wide adjacent pitch of the heat transfer tubes, also serves as a heat transfer surface that lowers the temperature of the combustion gas. Therefore, the amount of heat absorbed by the furnace wall in which a large number of furnace wall tubes in the lower part of the furnace wall are arranged in the vertical direction is relatively reduced, and the in-pipe steam temperature at the upper part of the furnace wall can be kept low.

この際、複数の過熱器における伝熱管の各隣接ピッチが、火炉壁下部から離れるに伴って過熱器毎に順次狭まるようにすれば、各過熱器において、灰による閉塞を阻止し且つボイラサイズの大型化を回避したうえで、効率の良い熱交換が可能となる。 At this time, if the adjacent pitches of the heat transfer tubes in the plurality of superheaters are gradually narrowed for each superheater as they move away from the lower part of the furnace wall, in each superheater, blockage by ash is prevented and the boiler size is reduced. Efficient heat exchange is possible while avoiding an increase in size.

本発明に係るタワーボイラにおいて、最も火炉壁下部側に位置する過熱器には、灰の溶融点を超えたガス温度の燃焼ガスが導入される。したがって、この過熱器における伝熱管の隣接ピッチを狭く設定すると、伝熱管に灰が付着することによる過熱器の閉塞が懸念される。一方、過熱器における伝熱管の隣接ピッチを広く設定すると、ボイラサイズを大きくする必然性が生じる。 In the tower boiler according to the present invention, a combustion gas having a gas temperature exceeding the melting point of ash is introduced into the superheater located closest to the furnace wall lower side. Therefore, if the adjacent pitch of the heat transfer tubes in this superheater is set narrow, there is a concern about blockage of the superheater due to ash adhering to the heat transfer tubes. On the other hand, if the adjacent pitch of the heat transfer tubes in the superheater is set wide, the necessity of increasing the boiler size arises.

したがって、最も火炉壁下部側に位置する過熱器における伝熱管の隣接ピッチは、灰による閉塞を阻止し且つボイラサイズの大型化を回避し得る値に設定される。例えば、燃焼によって生じた約1600℃の燃焼ガスを、火炉壁下部から離れた側に位置する過熱器に導入するまでに、灰の溶融点である約1200℃以下に下げる場合には、伝熱管の隣接ピッチを1000〜2000mmとすることが望ましい。この際、火炉壁下部から離れた側に位置する過熱器における伝熱管の隣接ピッチは、概ね600〜700mmになる。 Therefore, the adjacent pitch of the heat transfer tubes in the superheater located closest to the furnace wall lower side is set to a value that can prevent blockage by ash and avoid an increase in boiler size. For example, when the combustion gas of about 1600 ° C. generated by the combustion is lowered to about 1200 ° C. or less, which is the melting point of ash, before being introduced into the superheater located on the side away from the lower part of the furnace wall, It is desirable to set the adjacent pitch of 1000 to 2000 mm. Under the present circumstances, the adjacent pitch of the heat exchanger tube in the superheater located in the side away from the furnace wall lower part becomes about 600-700 mm in general.

本発明に係るタワーボイラでは、上記した構成により、火炉壁に高温の蒸気に耐え得る材料を用いることなく、すなわち、現在採用されている火炉壁の材料を変更することなく、プラント効率の向上を目指した高蒸気条件での運用を行うことが可能である。 In the tower boiler according to the present invention, the above-described configuration improves the plant efficiency without using a material that can withstand high-temperature steam for the furnace wall, that is, without changing the material of the furnace wall that is currently employed. It is possible to operate under the target high steam conditions.

本発明に係るタワーボイラの一実施形態を示す側方からの概略図である。It is the schematic from the side which shows one Embodiment of the tower boiler which concerns on this invention. 本発明に係るタワーボイラの他の実施形態を示す側方からの概略図である。It is the schematic from the side which shows other embodiment of the tower boiler which concerns on this invention.

以下、本発明に係るタワーボイラを図面に基づいて説明する。
図1は、本発明に係るタワーボイラの一実施形態を示している。
図1に示すように、このタワーボイラ1は、ボイラ本体2を形成する火炉壁3と、このボイラ本体2内に燃料を噴射して燃焼させるバーナ4と、このバーナ4からボイラ本体2内に燃料を噴射して燃焼させることで生じる燃焼ガスGとの間で熱交換を行う伝熱部とを備えている。燃焼ガスGとの熱交換は、ボイラ本体2の下部及び上部に位置する火炉壁下部3a及び火炉壁上部3bによっても行われる。伝熱部は、ボイラ本体2の火炉壁上部3bで囲まれる上部流路10内に配置されており、この伝熱部は、複数の過熱器5〜8、再熱器9及び図示しない節炭器とを備えている。
Hereinafter, the tower boiler concerning the present invention is explained based on a drawing.
FIG. 1 shows an embodiment of a tower boiler according to the present invention.
As shown in FIG. 1, the tower boiler 1 includes a furnace wall 3 that forms a boiler body 2, a burner 4 that injects fuel into the boiler body 2, and burns from the burner 4 into the boiler body 2. A heat transfer section that exchanges heat with the combustion gas G generated by injecting and burning the fuel. Heat exchange with the combustion gas G is also performed by the furnace wall lower part 3 a and the furnace wall upper part 3 b located at the lower part and the upper part of the boiler body 2. The heat transfer section is disposed in the upper flow path 10 surrounded by the furnace wall upper portion 3b of the boiler body 2, and the heat transfer section includes a plurality of superheaters 5 to 8, a reheater 9, and a charcoal saving (not shown). With a bowl.

このタワーボイラ1では、燃焼ガスGを上部流路10内の伝熱部、すなわち、過熱器7,6,8、再熱器9、過熱器5及び節炭器へ燃焼ガスGを流して熱交換させ、この熱交換後の燃焼ガスGをさらに下流側に配置した図示しない脱硝装置の脱硝触媒や脱硫装置等の排煙処理装置へ流して硫黄化合物や窒素化合物等の成分を除去した後、大気に放出する。 In the tower boiler 1, the combustion gas G is supplied to the heat transfer section in the upper flow path 10, that is, the superheaters 7, 6, 8, the reheater 9, the superheater 5, and the economizer to heat the combustion gas G. After exchanging and flowing the combustion gas G after this heat exchange to a flue gas treatment device such as a denitration catalyst and a desulfurization device (not shown) arranged further downstream, components such as sulfur compounds and nitrogen compounds are removed, Release into the atmosphere.

複数の過熱器5〜8のうちの最も火炉壁下部3a側に位置して火炎Fに晒される過熱器7及びこの過熱器7の下流側に位置する過熱器6を構成する各伝熱管11は、幾重にも往復させて束ねられている。さらに、図1の拡大部分に示すように、これらの過熱器6,7を構成する各伝熱管11の隣接ピッチPwは、火炉壁下部3aから離れた側に位置する過熱器8を構成する伝熱管11のピッチPnよりも広く設定してある。 Among the plurality of superheaters 5 to 8, the superheater 7 that is located closest to the furnace wall lower part 3 a and is exposed to the flame F, and each heat transfer tube 11 that constitutes the superheater 6 that is located downstream of the superheater 7 are It is bundled by reciprocating several times. Furthermore, as shown in the enlarged portion of FIG. 1, the adjacent pitch Pw of the heat transfer tubes 11 constituting these superheaters 6 and 7 is the heat transfer constituting the superheater 8 located on the side away from the furnace wall lower portion 3a. It is set wider than the pitch Pn of the heat tubes 11.

上記したように、この実施形態に係るタワーボイラ1において、火炉壁下部3aから離れた側に位置する過熱器8、すなわち、伝熱管11の隣接ピッチPnが狭い過熱器8に燃焼ガスGが導入されるまでに、この燃焼ガスGの温度を灰の溶融点以下に下げる必要がある。そのため、最も火炉壁下部3a側に位置して火炎Fに晒される過熱器7及びこれに隣接する過熱器6、すなわち、各伝熱管11の隣接ピッチPwを広くした過熱器6,7は、燃焼ガスGの温度を下げる伝熱面の役割も果たす。 As described above, in the tower boiler 1 according to this embodiment, the combustion gas G is introduced into the superheater 8 positioned on the side away from the furnace wall lower portion 3a, that is, the superheater 8 having a narrow adjacent pitch Pn of the heat transfer tubes 11. By the time, it is necessary to lower the temperature of the combustion gas G below the melting point of ash. Therefore, the superheater 7 that is located closest to the furnace wall lower part 3a and is exposed to the flame F and the superheater 6 adjacent thereto, that is, the superheaters 6 and 7 that widen the adjacent pitch Pw of the heat transfer tubes 11 are combusted. It also serves as a heat transfer surface that lowers the temperature of the gas G.

したがって、図示しない炉壁管を上下方向に多数配した火炉壁下部3aが吸収する熱量が少なくなって、ボイラ本体2の火炉壁上部3bにおける炉壁管内の蒸気温度が低く抑えられる。 Therefore, the amount of heat absorbed by the furnace wall lower part 3a in which a large number of furnace wall pipes (not shown) are arranged in the vertical direction is reduced, and the steam temperature in the furnace wall upper part 3b of the boiler body 2 is kept low.

このように、この実施形態に係るタワーボイラ1では、ボイラ本体2に対し投入する熱量を増やしたとしても、ボイラ本体2の火炉壁上部3bにおける炉壁管内の蒸気温度を低く抑え得る。そのため、火炉壁上部3bに高温の蒸気に耐え得る材料、例えば、T24と呼ばれる7CrMOVTiB10−10材を用いることなく、すなわち、現在採用されている炉壁材料、例えば、T12と呼ばれる13CrMO4−5材を用いて、プラント効率の向上を目指した高蒸気条件での運用を行い得る。 Thus, in the tower boiler 1 according to this embodiment, even if the amount of heat input to the boiler body 2 is increased, the steam temperature in the furnace wall pipe in the furnace wall upper portion 3b of the boiler body 2 can be kept low. Therefore, a material that can withstand high-temperature steam, for example, a 7CrMOVTiB10-10 material called T24 is used for the furnace wall upper portion 3b, that is, a furnace wall material that is currently employed, for example, a 13CrMO4-5 material called T12 is used. It can be used to operate under high steam conditions aimed at improving plant efficiency.

図2は、本発明に係るタワーボイラの他の実施形態を示している。
図2に示すように、この実施形態に係るタワーボイラ21が、先の実施形態に係るタワーボイラ1と相違するところは、複数の過熱器5〜8のうちの最も火炉壁下部3a近傍に位置する過熱器7から最も遠方に位置する過熱器8に至るまでの各伝熱管11の隣接ピッチPw,Pm,Pnが、図2の拡大部分に示すように、火炉壁下部3aから離れるのに伴って順次狭まるように設定した点にあり、他の構成は先の実施形態に係るタワーボイラ1と同じである。
FIG. 2 shows another embodiment of the tower boiler according to the present invention.
As shown in FIG. 2, the tower boiler 21 according to this embodiment is different from the tower boiler 1 according to the previous embodiment in that it is located in the vicinity of the furnace wall lower part 3 a in the plurality of superheaters 5 to 8. As the adjacent pitches Pw, Pm, and Pn of the heat transfer tubes 11 from the superheater 7 to the superheater 8 positioned farthest away from the furnace wall lower portion 3a as shown in the enlarged portion of FIG. The other configurations are the same as those of the tower boiler 1 according to the previous embodiment.

このように、最も火炉壁下部3a近傍に位層する過熱器7から最も遠方に位置する過熱器8に至るまでの各伝熱管11の隣接ピッチPw,Pm,Pnが、火炉壁下部3aから離れるのに伴って順次狭まるようにすれば、各過熱器7,6,8において、灰による閉塞を阻止し且つボイラサイズの大型化を回避したうえで、効率の良い熱交換が成される。 As described above, the adjacent pitches Pw, Pm, and Pn of the heat transfer tubes 11 from the superheater 7 layered closest to the furnace wall lower part 3a to the superheater 8 located farthest away from the furnace wall lower part 3a. If it is made to narrow sequentially with this, in each superheater 7,6,8, after blocking | blocking by ash and avoiding enlargement of a boiler size, efficient heat exchange will be achieved.

本発明に係るタワーボイラの構成は、上記した実施形態に係るタワーボイラの構成に限定されるものではない。他の構成として、例えば最も火炉壁下部3a近傍に位層する過熱器7に隣接する過熱器6内において伝熱管11の隣接ピッチを変えてもよい。また、最も火炉壁下部3a近傍に位層する過熱器7から最も遠方に位置する過熱器8に至るまでの各伝熱管11の隣接ピッチPw,Pm,Pnを、火炉壁下部3aから離れるに従い徐々に狭めるように変化させてもよい。 The configuration of the tower boiler according to the present invention is not limited to the configuration of the tower boiler according to the above-described embodiment. As another configuration, for example, the adjacent pitch of the heat transfer tubes 11 may be changed in the superheater 6 adjacent to the superheater 7 layered most in the vicinity of the furnace wall lower part 3a. Further, the adjacent pitches Pw, Pm, Pn of the heat transfer tubes 11 from the superheater 7 layered closest to the furnace wall lower part 3a to the superheater 8 located farthest are gradually increased as the distance from the furnace wall lower part 3a increases. You may change so that it may narrow.

このタワーボイラでは、現在採用されている火炉壁の材料を変更することなく、プラント効率の向上を目指した高蒸気条件での運用を行うことが可能である。   This tower boiler can be operated under high steam conditions with the aim of improving plant efficiency without changing the currently used furnace wall material.

1,21 タワーポイラ、2 ボイラ本体、3 火炉壁、3a 火炉壁下部、3b 火炉壁上部、5〜8 過熱器(伝熱部)、9 再熱器(伝熱部)、11 伝熱管、G 燃焼ガス、Pn 火炉壁下部から離れた過熱器における伝熱管の隣接ピッチ、Pw 火炉壁下部に近い過熱器における伝熱管の隣接ピッチ、Pm 火炉壁下部から離れた過熱器及び火炉壁下部に近い過熱器の間の過熱器における伝熱管の隣接ピッチ 1,21 tower boiler, 2 boiler body, 3 furnace wall, 3a lower furnace wall, 3b upper furnace wall, 5-8 superheater (heat transfer part), 9 reheater (heat transfer part), 11 heat transfer tube, G combustion Gas, Pn Adjacent pitch of heat transfer tubes in the superheater away from the furnace wall lower part, Pw Adjacent pitch of heat transfer tubes in the superheater near the lower furnace wall, Pm Superheater away from the lower furnace wall and superheater near the lower furnace wall Adjacent pitch of heat transfer tube in superheater

Claims (3)

ボイラ本体を形成し且つこのボイラ本体内で生じる燃焼ガスとの間で熱交換を行う火炉壁と、
前記ボイラ本体の上部に位置して前記ボイラ本体内で生じる燃焼ガスとの聞で熱交換を行う伝熱部を備えたタワーボイラにおいて、
前記伝熱部が複数の過熱器を備え、
前記複数の過熱器のうちの少なくとも最も前記火炉壁下部側に位置する過熱器における伝熱管の隣接ピッチを前記火炉壁下部から離れた側に位置する過熱器における伝熱管の隣接ピッチよりも広く設定したタワーボイラ。
A furnace wall that forms a boiler body and exchanges heat with the combustion gas generated in the boiler body;
In a tower boiler provided with a heat transfer part that performs heat exchange with the combustion gas generated in the boiler body located at the upper part of the boiler body,
The heat transfer section includes a plurality of superheaters;
Of the plurality of superheaters, at least the adjacent pitch of the heat transfer tubes in the superheater located on the lower side of the furnace wall is set wider than the adjacent pitch of the heat transfer tubes in the superheater located on the side farther from the lower side of the furnace wall. Tower boiler.
前記複数の過熱器における伝熱管の各隣接ピッチを、前記火炉壁下部から離れるのに伴って前記過熱器毎に順次狭めてある請求項1に記載のタワーボイラ。 The tower boiler according to claim 1, wherein each adjacent pitch of the heat transfer tubes in the plurality of superheaters is successively narrowed for each superheater as the distance from the lower part of the furnace wall increases. 前記複数の過熱器における伝熱管の各隣接ピッチが、伝熱管の隣接ピッチが最も狭い過熱器に前記燃焼ガスが導入されるまでに、前記燃焼ガスの温度が前記燃焼ガスに含まれる灰の溶融点以下となるよう設定されている請求項1または2に記載のタワーボイラ。 As for each adjacent pitch of the heat transfer tubes in the plurality of superheaters, until the combustion gas is introduced into the superheater having the narrowest adjacent pitch of the heat transfer tubes, the temperature of the combustion gas melts the ash contained in the combustion gas. The tower boiler according to claim 1 or 2 set up to become below a point.
JP2013525645A 2011-07-22 2012-07-04 Tower boiler Active JP5692385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013525645A JP5692385B2 (en) 2011-07-22 2012-07-04 Tower boiler

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011160529 2011-07-22
JP2011160529 2011-07-22
JP2013525645A JP5692385B2 (en) 2011-07-22 2012-07-04 Tower boiler
PCT/JP2012/067118 WO2013015088A1 (en) 2011-07-22 2012-07-04 Tower boiler

Publications (2)

Publication Number Publication Date
JPWO2013015088A1 true JPWO2013015088A1 (en) 2015-02-23
JP5692385B2 JP5692385B2 (en) 2015-04-01

Family

ID=47600943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013525645A Active JP5692385B2 (en) 2011-07-22 2012-07-04 Tower boiler

Country Status (3)

Country Link
EP (1) EP2735790B1 (en)
JP (1) JP5692385B2 (en)
WO (1) WO2013015088A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001227883A (en) * 2000-02-17 2001-08-24 Babcock Hitachi Kk Heat exchanger
JP2008304178A (en) * 2007-05-09 2008-12-18 Hitachi Ltd Coal burning boiler, and combustion method of coal burning boiler
JP2010525219A (en) * 2007-04-27 2010-07-22 ▲偉▼忠 ▲馮▼ New turbine generator unit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB497208A (en) * 1937-07-21 1938-12-14 Fried Krupp Germaniawerft Ag Improvements in or relating to water tube boilers
GB524052A (en) * 1938-01-21 1940-07-29 Babcock & Wilcox Ltd Improvements in or relating to water tube boilers with superheaters
GB546763A (en) * 1941-03-28 1942-07-29 Babcock & Wilcox Ltd Improvements in tubulous boilers
DE2114897A1 (en) * 1971-03-27 1972-10-12 Babcock & Wilcox Ag Arrangement of cross-flow heating pipe bundles in steam-heated intermediate superheaters
DE2144847A1 (en) * 1971-09-03 1973-03-15 Kawasaki Heavy Ind Ltd HEATING SURFACE OF A FLUE GAS BOILER FOR METAL FRESH OVEN
JPS63243603A (en) * 1987-03-30 1988-10-11 バブコツク日立株式会社 Shifter among heat transfer tube group
JPH02178502A (en) * 1988-12-29 1990-07-11 Hirakawa Tekkosho:Kk Boiler with water tube group
JPH09243004A (en) 1996-03-06 1997-09-16 Ishikawajima Harima Heavy Ind Co Ltd Tower boiler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001227883A (en) * 2000-02-17 2001-08-24 Babcock Hitachi Kk Heat exchanger
JP2010525219A (en) * 2007-04-27 2010-07-22 ▲偉▼忠 ▲馮▼ New turbine generator unit
JP2008304178A (en) * 2007-05-09 2008-12-18 Hitachi Ltd Coal burning boiler, and combustion method of coal burning boiler

Also Published As

Publication number Publication date
EP2735790B1 (en) 2021-01-13
JP5692385B2 (en) 2015-04-01
EP2735790A1 (en) 2014-05-28
WO2013015088A1 (en) 2013-01-31
EP2735790A4 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
US8096268B2 (en) Municipal solid waste fuel steam generator with waterwall furnace platens
JP5142735B2 (en) Coal fired boiler
JPWO2014175216A1 (en) Heat transfer tube in fluidized bed boiler and fluidized bed boiler
JP5198658B2 (en) Boiler furnace for power plant
JP6056371B2 (en) Boiler system
JP5456071B2 (en) Once-through evaporator
JP4847213B2 (en) Once-through exhaust heat recovery boiler
JP5692385B2 (en) Tower boiler
US10495393B2 (en) System and method for improving the performance of a heat recovery steam generator
FI126377B (en) A thermal device, its use and a method for heating a heat transfer medium
JP5287856B2 (en) boiler
JP4463825B2 (en) Once-through boiler
KR102445936B1 (en) Circulating Fluidized Bed Boiler
JP5144447B2 (en) Boiler equipment
JP5788167B2 (en) Heat exchanger and vacuum water heater
CN110056848B (en) High-temperature high-pressure flue gas waste heat utilization system
JP2017089909A (en) Economizer, boiler, and repair method of heat exchanger tube
JP2006010110A (en) Heat exchanger
JP6373058B2 (en) Tube group boiler
WO2014141770A1 (en) Boiler system
JP2009222304A (en) Once-through exhaust heat recovery boiler
JP2019143917A (en) Evaporator, waste heat recovery boiler with the same, and evaporator modification method
JP2008076020A (en) Once-through exhaust heat recovery boiler
JP2012241937A (en) Tower boiler
JP2008267685A (en) Boiler

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150119

R151 Written notification of patent or utility model registration

Ref document number: 5692385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250