JPWO2012137425A1 - X-ray detector - Google Patents

X-ray detector Download PDF

Info

Publication number
JPWO2012137425A1
JPWO2012137425A1 JP2013508737A JP2013508737A JPWO2012137425A1 JP WO2012137425 A1 JPWO2012137425 A1 JP WO2012137425A1 JP 2013508737 A JP2013508737 A JP 2013508737A JP 2013508737 A JP2013508737 A JP 2013508737A JP WO2012137425 A1 JPWO2012137425 A1 JP WO2012137425A1
Authority
JP
Japan
Prior art keywords
ray detector
ray
phosphor
visible light
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013508737A
Other languages
Japanese (ja)
Inventor
太郎 白井
太郎 白井
佐藤 敏幸
敏幸 佐藤
吉牟田 利典
利典 吉牟田
足立 晋
晋 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Publication of JPWO2012137425A1 publication Critical patent/JPWO2012137425A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14663Indirect radiation imagers, e.g. using luminescent members

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Measurement Of Radiation (AREA)

Abstract

半導体厚膜7に光を照射する光照射機構として、X線を可視光に変換するシンチレータフィルム11をX線の検出面とは逆側の面に配設して備える。X線検出器1に入射されるX線をシンチレータフィルム11が可視光に変換するので、発光に要する電源や制御部を設ける必要がない。また、使用部品が少なくなり、コスト低減や組み立て作業を軽減することができる。また、シンチレータフィルム11を備えることで消費電力を低減することができる。また、シンチレータフィルム11に到達するX線強度が、分割電極(画素電極)3間で特に強くなり、必要な場所(特に画素電極間)での蛍光強度が強くなるので、感度変動を抑えることができるX線検出器1を実現することができる。As a light irradiation mechanism for irradiating the semiconductor thick film 7 with light, a scintillator film 11 for converting X-rays into visible light is provided on a surface opposite to the X-ray detection surface. Since the scintillator film 11 converts X-rays incident on the X-ray detector 1 into visible light, it is not necessary to provide a power source or a control unit required for light emission. In addition, the number of parts used is reduced, and cost reduction and assembly work can be reduced. Moreover, power consumption can be reduced by providing the scintillator film 11. In addition, the X-ray intensity reaching the scintillator film 11 is particularly strong between the divided electrodes (pixel electrodes) 3 and the fluorescence intensity is increased at a necessary place (especially between the pixel electrodes), thereby suppressing sensitivity fluctuations. A possible X-ray detector 1 can be realized.

Description

この発明は、医療分野、工業分野、さらには原子力分野等に用いられるX線検出器に係り、特に、X線に有感な半導体によってX線を電荷に直接的に変換する直接変換型のX線検出器の技術に関する。   The present invention relates to an X-ray detector used in the medical field, industrial field, nuclear power field, and the like, and more particularly, a direct conversion type X that directly converts X-rays into electric charges by a semiconductor sensitive to X-rays. It relates to the technology of line detectors.

従来のX線検出器では、分割電極(画素電極)間のスペースの領域に、X線によって発生した電荷が溜まりやすく、実効的な有感面積が変化し、感度が変動するという現象がある。さらに、X線入射の停止後に、分割電極間のスペースの領域に溜まった電荷が徐々に掃き出されて、残留出力が発生するという現象がある。これらの現象を防止するために、X線の検出中に可視光を照射する光照射機構(面発光プレート)を備えたX線検出器がある(例えば、特許文献1参照)。   In the conventional X-ray detector, there is a phenomenon that charges generated by X-rays easily accumulate in a space area between the divided electrodes (pixel electrodes), an effective sensitive area changes, and sensitivity changes. Furthermore, there is a phenomenon that after the X-ray incidence is stopped, the electric charge accumulated in the space region between the divided electrodes is gradually swept away to generate a residual output. In order to prevent these phenomena, there is an X-ray detector provided with a light irradiation mechanism (surface emitting plate) that emits visible light during detection of X-rays (see, for example, Patent Document 1).

面発光プレートを備えた場合には、面発光プレートから可視光を半導体厚膜(X線に有感な半導体)に照射することにより、X線入射前の状態でも可視光によって発生した電荷のうち一方が分割電極間のスペースの領域にすでに溜まっているので、有感面積が変化せずに感度変動は起こらない。また、X線入射が停止した後にまで可視光の照射を継続すると、分割電極間のスペースの領域に溜まった電荷が徐々に掃き出されていくことはなく、残留出力は発生しない。オン/オフスイッチや制御部によって電源を制御することで、面発光プレートからの発光を制御する。   When a surface emitting plate is provided, by irradiating a semiconductor thick film (a semiconductor sensitive to X-rays) with visible light from the surface emitting plate, out of charges generated by visible light even before the X-ray incidence. Since one side is already accumulated in the space area between the divided electrodes, the sensitive area does not change and the sensitivity does not change. Further, if the irradiation with visible light is continued until after the X-ray incidence is stopped, the charges accumulated in the space area between the divided electrodes are not gradually swept out, and no residual output is generated. The light emission from the surface light emitting plate is controlled by controlling the power supply with an on / off switch or a control unit.

特開2004−146769号公報(図1)JP 2004-146769 A (FIG. 1)

しかしながら、このような構成を有する従来のX線検出器の場合には、上述したような発光に要する電源や制御部を設ける必要がある。   However, in the case of a conventional X-ray detector having such a configuration, it is necessary to provide a power source and a control unit required for light emission as described above.

この発明は、このような事情に鑑みてなされたものであって、発光に要する電源や制御部を要さずに、消費電力を低減することができつつ、感度変動を抑えることができるX線検出器を提供することを目的とする。   The present invention has been made in view of such circumstances. An X-ray capable of reducing power consumption and suppressing sensitivity fluctuations without requiring a power source and a control unit required for light emission. An object is to provide a detector.

この発明は、このような目的を達成するために、次のような構成をとる。
すなわち、この発明に係るX線検出器は、X線に有感な半導体と、前記半導体に可視光を照射する光照射機構とを備えたX線検出器であって、前記光照射機構は、X線を可視光に変換する蛍光体を備え、X線の検出面とは逆側の面に前記蛍光体を配設することを特徴とするものである。
In order to achieve such an object, the present invention has the following configuration.
That is, the X-ray detector according to the present invention is an X-ray detector including a semiconductor sensitive to X-rays and a light irradiation mechanism that irradiates the semiconductor with visible light, and the light irradiation mechanism includes: A phosphor that converts X-rays into visible light is provided, and the phosphor is disposed on a surface opposite to the X-ray detection surface.

[作用・効果]この発明に係るX線検出器によれば、X線検出器に入射されるX線を蛍光体が可視光に変換するので、発光に要する電源や制御部を設ける必要がない。また、使用部品が少なくなり、コスト低減や組み立て作業を軽減することができる。また、光照射機構として蛍光体をX線の検出面とは逆側の面に配設して備えることで消費電力を低減することができる。また、蛍光体に到達するX線強度が、分割電極(画素電極)間で特に強くなり、必要な場所(特に画素電極間)での蛍光高度が強くなるので、感度変動を抑えることができるX線検出器を実現することができる。   [Operation / Effect] According to the X-ray detector of the present invention, since the phosphor converts the X-rays incident on the X-ray detector into visible light, it is not necessary to provide a power source or a control unit required for light emission. . In addition, the number of parts used is reduced, and cost reduction and assembly work can be reduced. Further, the phosphor can be provided as a light irradiation mechanism on the surface opposite to the X-ray detection surface to reduce power consumption. In addition, the X-ray intensity reaching the phosphor is particularly strong between the divided electrodes (pixel electrodes), and the fluorescence height is increased at a required place (especially between the pixel electrodes), so that the sensitivity variation can be suppressed. A line detector can be realized.

この発明に係るX線検出器によれば、X線検出器に入射されるX線を蛍光体が可視光に変換するので、発光に要する電源や制御部を要さずに、消費電力を低減することができつつ、感度変動を抑えることができるX線検出器を実現することができる。   According to the X-ray detector of the present invention, since the phosphor converts the X-rays incident on the X-ray detector into visible light, power consumption is reduced without requiring a power source and a control unit required for light emission. It is possible to realize an X-ray detector that can suppress sensitivity fluctuation while being able to.

実施例に係るX線検出器の概略断面図である。It is a schematic sectional drawing of the X-ray detector which concerns on an Example. X線検出器の周囲の回路図である。It is a circuit diagram around an X-ray detector. X線検出器のシンチレータフィルムがX線を可視光に変換したときの模式図である。It is a schematic diagram when the scintillator film of an X-ray detector has converted X-rays into visible light. (a)、(b)は、図1〜図3とは別の実施形態のX線検出器の概略断面図である。(A), (b) is a schematic sectional drawing of the X-ray detector of embodiment different from FIGS. 1-3.

以下、図面を参照してこの発明の実施例を説明する。
図1は、実施例に係るX線検出器の概略断面図であり、図2は、X線検出器の周囲の回路図であり、図3は、X線検出器のシンチレータフィルムがX線を可視光に変換したときの模式図であり、図4(a)や図4(b)は、図1〜図3とは別の実施形態のX線検出器の概略断面図である。
Embodiments of the present invention will be described below with reference to the drawings.
1 is a schematic cross-sectional view of an X-ray detector according to an embodiment, FIG. 2 is a circuit diagram around the X-ray detector, and FIG. 3 is an X-ray detected by a scintillator film of the X-ray detector. FIGS. 4A and 4B are schematic cross-sectional views of an X-ray detector according to another embodiment different from FIGS. 1 to 3.

X線検出器1は、図1に示すように、ガラス基板等の透明な絶縁性基板上に薄膜トランジスタ(TFT)スイッチS(図2を参照)、電荷蓄積コンデンサCa(図2を参照)および分割電極(画素電極)3が形成されたTFT基板5上に、X線に有感な半導体厚膜7が形成され、半導体厚膜7の上面(検出面)には、電圧印加用の共通電極9が形成されている。TFT基板5の分割電極3側である裏面(すなわちX線の検出面とは逆側の面)には、シンチレータフィルム11が光学的に結合されている。なお、「光学的に結合する」場合には、TFT基板5の裏面に、シンチレータフィルム11を透明な接着剤によって接着してもよいし、TFT基板5の裏面に、シンチレータフィルム11を機械的に固定してもよい。すなわち、TFT基板5へシンチレータフィルム11からの可視光が到達する状態で配置されている限り、「光学的に結合する」接続方法については特に限定されない。このシンチレータフィルム11としては、CsI、NaIあるいはGOSなどの蛍光体で形成されている。半導体厚膜7は、この発明における半導体に相当し、シンチレータフィルム11は、この発明における蛍光体に相当し、この発明における光照射機構にも相当する。   As shown in FIG. 1, the X-ray detector 1 includes a thin film transistor (TFT) switch S (see FIG. 2), a charge storage capacitor Ca (see FIG. 2) and a division on a transparent insulating substrate such as a glass substrate. A semiconductor thick film 7 sensitive to X-rays is formed on a TFT substrate 5 on which an electrode (pixel electrode) 3 is formed. A common electrode 9 for voltage application is formed on the upper surface (detection surface) of the semiconductor thick film 7. Is formed. A scintillator film 11 is optically coupled to the back surface (that is, the surface opposite to the X-ray detection surface) of the TFT substrate 5 that is the divided electrode 3 side. In the case of “optically coupled”, the scintillator film 11 may be bonded to the back surface of the TFT substrate 5 with a transparent adhesive, or the scintillator film 11 is mechanically bonded to the back surface of the TFT substrate 5. It may be fixed. That is, as long as the visible light from the scintillator film 11 reaches the TFT substrate 5, the “optically coupled” connection method is not particularly limited. The scintillator film 11 is made of a phosphor such as CsI, NaI or GOS. The semiconductor thick film 7 corresponds to the semiconductor in the present invention, the scintillator film 11 corresponds to the phosphor in the present invention, and also corresponds to the light irradiation mechanism in the present invention.

図2に示すように、2次元状に配列された複数(図2では1つのみ図示)のゲートラインGおよびデータラインDをTFT基板5上に形成し、X線検出器1の周囲には、ゲート駆動回路13と電荷電圧変換アンプ15と画像処理部17とを設けている。ゲート駆動回路13はゲートラインGに電気的に接続されており、各ゲートラインGは同一行の薄膜トランジスタ(TFT)スイッチSに電気的に接続されている。各データラインDは同一列の薄膜トランジスタ(TFT)スイッチSに電気的に接続されており、下流側において電荷電圧変換アンプ15に電気的に接続されている。   As shown in FIG. 2, a plurality of gate lines G and data lines D (only one is shown in FIG. 2) arranged two-dimensionally are formed on the TFT substrate 5, and around the X-ray detector 1 A gate drive circuit 13, a charge-voltage conversion amplifier 15, and an image processing unit 17 are provided. The gate drive circuit 13 is electrically connected to a gate line G, and each gate line G is electrically connected to a thin film transistor (TFT) switch S in the same row. Each data line D is electrically connected to a thin film transistor (TFT) switch S in the same column, and is electrically connected to the charge voltage conversion amplifier 15 on the downstream side.

半導体厚膜7は、X線に有感な半導体であれば、特に限定されず、非晶質のアモルファスセレン(a−Se)、あるいはCdTe(テルル化カドミウム)、ZnTe(テルル化亜鉛)またはCdZnTe(テルル化カドミウム亜鉛)などで形成されている。   The semiconductor thick film 7 is not particularly limited as long as it is a semiconductor sensitive to X-rays, and is amorphous amorphous selenium (a-Se), CdTe (cadmium telluride), ZnTe (zinc telluride), or CdZnTe. (Cadmium zinc telluride) and the like.

共通電極9にバイアス電圧を印加して、X線を入射すると半導体厚膜7で電荷が生成されて、その電荷が分割電極3を介して電荷蓄積コンデンサCaに蓄積される。ゲート駆動回路13から各ゲートラインGに電圧を印加することで、薄膜トランジスタ(TFT)スイッチSをONにして、電荷蓄積コンデンサCaに蓄積されたキャリアをデータラインDに読み出す。読み出された電荷は電荷電圧変換アンプ15にて電圧に変換された状態で増幅され、画像処理部17は電圧値に対して各種の信号処理を行って、2次元状の画像を得る。   When a bias voltage is applied to the common electrode 9 and X-rays are incident, charges are generated in the semiconductor thick film 7 and the charges are accumulated in the charge storage capacitor Ca via the divided electrode 3. By applying a voltage from the gate drive circuit 13 to each gate line G, the thin film transistor (TFT) switch S is turned ON, and the carriers accumulated in the charge storage capacitor Ca are read out to the data line D. The read charge is amplified in a state converted into a voltage by the charge-voltage conversion amplifier 15, and the image processing unit 17 performs various signal processing on the voltage value to obtain a two-dimensional image.

このように構成されたX線検出器1では、X線を入射することで、図3に示すように、共通電極9,半導体厚膜7およびTFT基板5をX線が透過して、検出中にシンチレータフィルム11にX線が入射される。特に、TFT基板5を構成する基板は透明な絶縁性基板であって、本実施例ではガラス基板であるので、入射されたX線におけるX線検出器1でのX線減衰率を70%とすると、残りの30%のX線がTFT基板5を透過してシンチレータフィルム11に到達する。   In the X-ray detector 1 configured as described above, when X-rays are incident, the X-rays are transmitted through the common electrode 9, the semiconductor thick film 7 and the TFT substrate 5 as shown in FIG. X-rays are incident on the scintillator film 11. In particular, since the substrate constituting the TFT substrate 5 is a transparent insulating substrate and is a glass substrate in this embodiment, the X-ray attenuation factor at the X-ray detector 1 for incident X-rays is 70%. Then, the remaining 30% of X-rays pass through the TFT substrate 5 and reach the scintillator film 11.

X線入射時(すなわちX線の検出中)に、入射されたX線をシンチレータフィルム11が可視光Opt(図3を参照)に変換して発光する。このシンチレータフィルム11からの発光により、可視光がシンチレータフィルム11から半導体厚膜7に照射される。   When X-rays are incident (that is, during detection of X-rays), the scintillator film 11 converts the incident X-rays into visible light Opt (see FIG. 3) and emits light. Visible light is irradiated from the scintillator film 11 to the semiconductor thick film 7 by the light emission from the scintillator film 11.

なお、シンチレータフィルム11からの可視光が裏面(すなわちX線の検出面とは逆側の面)に外部に出てしまう恐れがあるので、図3に示すように、光反射シート19(図1や図2も参照)等に代表される反射部材を備えるのが好ましい。シンチレータフィルム11の裏面(X線の検出面とは逆側の面)に光反射シート19等に代表される反射部材を備えることで、可視光が裏面に外部に出ることを防止して、TFT基板5,半導体厚膜7に向けて可視光を導くことができる。   Since visible light from the scintillator film 11 may come out to the outside on the back surface (that is, the surface opposite to the X-ray detection surface), as shown in FIG. It is preferable to provide a reflecting member represented by the above. By providing a reflecting member typified by the light reflecting sheet 19 or the like on the back surface of the scintillator film 11 (the surface opposite to the X-ray detection surface), visible light is prevented from coming out to the outside, and the TFT Visible light can be guided toward the substrate 5 and the semiconductor thick film 7.

また、可視光がTFT基板5にて反射されるのを防止するために、図3に示すように、TFT基板5に反射防止コーティング21(図1や図2も参照)を施すのが好ましい。TFT基板5に反射防止コーティング21を施すことで、可視光がTFT基板5にて反射されるのを防止して、半導体厚膜7に向けて可視光を導くことができる。   In order to prevent visible light from being reflected by the TFT substrate 5, it is preferable to apply an antireflection coating 21 (see also FIG. 1 and FIG. 2) to the TFT substrate 5, as shown in FIG. By applying the antireflection coating 21 to the TFT substrate 5, visible light can be prevented from being reflected by the TFT substrate 5, and visible light can be guided toward the semiconductor thick film 7.

なお、入射されたX線は分割電極3で遮られるので、シンチレータフィルム11に到達するX線強度は、分割電極3間で特に強くなる。そして、シンチレータフィルム11からの可視光も分割電極3で遮られるので、分割電極3間での蛍光強度が強くなる。   Since the incident X-rays are blocked by the divided electrodes 3, the X-ray intensity reaching the scintillator film 11 is particularly strong between the divided electrodes 3. And since the visible light from the scintillator film 11 is also blocked by the divided electrodes 3, the fluorescence intensity between the divided electrodes 3 is increased.

上述の構成を備えた本実施例に係るX線検出器1によれば、X線検出器1に入射されるX線をシンチレータフィルム11が可視光に変換するので、発光に要する電源や制御部を設ける必要がない。また、使用部品が少なくなり、コスト低減や組み立て作業を軽減することができる。また、光照射機構としてシンチレータフィルム11をX線の検出面とは逆側の面に配設して備えることで消費電力を低減することができる。また、シンチレータフィルム11に到達するX線強度が、分割電極(画素電極)3間で特に強くなり、必要な場所(特に画素電極間)での蛍光強度が強くなるので、感度変動を抑えることができるX線検出器1を実現することができる。   According to the X-ray detector 1 according to the present embodiment having the above-described configuration, since the scintillator film 11 converts X-rays incident on the X-ray detector 1 into visible light, a power source and a control unit required for light emission. There is no need to provide. In addition, the number of parts used is reduced, and cost reduction and assembly work can be reduced. Moreover, power consumption can be reduced by providing the scintillator film 11 on the surface opposite to the X-ray detection surface as a light irradiation mechanism. In addition, the X-ray intensity reaching the scintillator film 11 is particularly strong between the divided electrodes (pixel electrodes) 3 and the fluorescence intensity is increased at a necessary place (especially between the pixel electrodes), thereby suppressing sensitivity fluctuations. A possible X-ray detector 1 can be realized.

上述したように、X線減衰率を70%とすると、残りの30%のX線がTFT基板5を透過してシンチレータフィルム11に到達する。蛍光変換率(輝度)は、10[cd・m−2/R・sec−1]前後の値であり、入射されたX線の線量を0.5[R・sec−1]とすると、シンチレータフィルム11からの可視光の輝度は、0.5[R・sec−1]×30%×10[cd・m−2/R・sec−1]=1.5[cd・m−2]程度になる。もし、シンチレータフィルム11からの可視光の輝度が、感度変動を抑えるのに少ない場合には、図4(a)に示すように、補助的に面発光プレート23等に代表される発光手段を用いてもよい。As described above, when the X-ray attenuation rate is 70%, the remaining 30% of X-rays pass through the TFT substrate 5 and reach the scintillator film 11. The fluorescence conversion rate (luminance) is a value around 10 [cd · m −2 / R · sec −1 ], and when the incident X-ray dose is 0.5 [R · sec −1 ], the scintillator The luminance of visible light from the film 11 is about 0.5 [R · sec −1 ] × 30% × 10 [cd · m −2 / R · sec −1 ] = 1.5 [cd · m −2 ]. become. If the luminance of visible light from the scintillator film 11 is small enough to suppress fluctuations in sensitivity, a light emitting means typified by a surface light emitting plate 23 or the like is used as an auxiliary material as shown in FIG. May be.

例えば、光照射機構は、上述のシンチレータフィルム11等に代表される蛍光体の他に、図4(a)に示すように、面発光プレート23等に代表される発光手段を備え、発光手段から可視光を発生させる。そして、シンチレータフィルム11等に代表される蛍光体からの可視光とともに、面発光プレート23等に代表される発光手段からの可視光を半導体厚膜7に照射する。図4(a)に示す構造の場合には、発光に要する電源や制御部を設ける必要があるが、シンチレータフィルム11からの可視光の分だけ消費電力を抑えることができる。   For example, the light irradiation mechanism includes, in addition to the phosphor represented by the above scintillator film 11 and the like, as shown in FIG. Generate visible light. Then, the semiconductor thick film 7 is irradiated with visible light from the light emitting means represented by the surface light-emitting plate 23 and the like together with visible light from the phosphor represented by the scintillator film 11 and the like. In the case of the structure shown in FIG. 4A, it is necessary to provide a power source and a control unit required for light emission, but power consumption can be suppressed by the amount of visible light from the scintillator film 11.

また、X線は、半導体厚膜7やTFT基板5などで散乱X線となる。この散乱X線は、本来であればノイズ成分であるが、これを有効に利用してもよい。すなわち、図4(b)に示すように、散乱X線(図中の点線を参照)を可視光に変換する散乱X線用シンチレータフィルム25を備え、X線の検出面とは逆側の面とは別の側面にも散乱X線用シンチレータフィルム25を配設してもよい。図4(b)では、半導体厚膜7の外部に透過する散乱X線や、TFT基板5の外部に透過する散乱X線を有効に利用して、半導体厚膜7の側面に散乱X線用シンチレータフィルム25を備え、TFT基板5の側面にも散乱X線用シンチレータフィルム25を備えている。散乱X線用シンチレータフィルム25は、この発明における散乱X線用蛍光体に相当する。   The X-rays become scattered X-rays at the semiconductor thick film 7 and the TFT substrate 5. Although this scattered X-ray is originally a noise component, it may be used effectively. That is, as shown in FIG. 4B, a scintillator film 25 for scattered X-rays that converts scattered X-rays (see dotted lines in the figure) into visible light is provided, and is a surface opposite to the X-ray detection surface. The scintillator film 25 for scattered X-rays may be disposed on another side surface. In FIG. 4B, the scattered X-rays transmitted to the outside of the semiconductor thick film 7 and the scattered X-rays transmitted to the outside of the TFT substrate 5 are effectively used to form the scattered X-rays on the side surface of the semiconductor thick film 7. A scintillator film 25 is provided, and a scattered X-ray scintillator film 25 is also provided on the side surface of the TFT substrate 5. The scattered X-ray scintillator film 25 corresponds to the scattered X-ray phosphor in this invention.

このような散乱X線用シンチレータフィルム25を備えることで、散乱X線を散乱X線用シンチレータフィルム25が可視光に変換して、散乱X線を有効に利用することができる。なお、図1〜図3と同様に、散乱X線用光反射シート27等に代表される反射部材を備え、TFT基板5や半導体厚膜7に散乱X線用反射防止コーティング29を施すのが好ましい。   By providing such a scintillator film 25 for scattered X-rays, the scattered X-ray scintillator film 25 converts the scattered X-rays into visible light so that the scattered X-rays can be used effectively. Similar to FIGS. 1 to 3, a reflection member typified by a scattered X-ray light reflection sheet 27 and the like is provided, and an antireflection coating 29 for scattered X-rays is applied to the TFT substrate 5 and the semiconductor thick film 7. preferable.

なお、半導体厚膜7の側面に散乱X線用シンチレータフィルムを備えず、TFT基板5の側面に散乱X線用シンチレータフィルム25を備えてもよい。少なくともTFT基板5の側面に散乱X線用シンチレータフィルム25を備えることで、必要な場所(特に画素電極間)での蛍光強度が強くなるという効果を奏する。散乱X線用シンチレータフィルム25を半導体厚膜7の側面に備えた場合には、散乱X線用シンチレータフィルム25からの可視光がTFT基板5で反射されるので、散乱X線用シンチレータフィルム25側の面には、TFT基板5は反射防止コーティングを必ずしも施さなくてもよい。   The scattered X-ray scintillator film 25 may not be provided on the side surface of the semiconductor thick film 7, but the scattered X-ray scintillator film 25 may be provided on the side surface of the TFT substrate 5. By providing the scattered X-ray scintillator film 25 on at least the side surface of the TFT substrate 5, the fluorescent intensity at a required place (particularly between pixel electrodes) is enhanced. When the scattered X-ray scintillator film 25 is provided on the side surface of the semiconductor thick film 7, visible light from the scattered X-ray scintillator film 25 is reflected by the TFT substrate 5. The TFT substrate 5 does not necessarily need to be provided with an antireflection coating on this surface.

この発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。   The present invention is not limited to the above-described embodiment, and can be modified as follows.

(1)上述した実施例では、反射部材は、光反射シートであったが、可視光が外部に出ることを防止する反射部材であれば、物質や形態については特に限定されない。例えば、反射剤からなる塗料を塗布してもよい。   (1) In the above-described embodiments, the reflecting member is a light reflecting sheet, but the material and form are not particularly limited as long as it is a reflecting member that prevents visible light from going outside. For example, a paint made of a reflective agent may be applied.

(2)上述した実施例では、蛍光体は、CsI、NaIあるいはGOSで形成されたシンチレータフィルムであったが、X線から可視光に変換する蛍光体であれば、物質や形態については特に限定されない。例えば蛍光体からなる素子であってもよいし、蛍光体からなる塗料を塗布してもよい。散乱X線用蛍光体においても、シンチレータフィルム(散乱X線用シンチレータフィルム25)に限定されず、蛍光体からなる素子であってもよいし、蛍光体からなる塗料を塗布してもよい。   (2) In the above-described embodiments, the phosphor is a scintillator film formed of CsI, NaI, or GOS. However, as long as the phosphor converts X-rays into visible light, the substance and form are particularly limited. Not. For example, an element made of a phosphor may be used, or a paint made of a phosphor may be applied. The scattered X-ray phosphor is not limited to the scintillator film (scattered X-ray scintillator film 25), and may be an element made of a phosphor or a coating made of a phosphor.

(3)上述した実施例では、発光手段は、図4(a)に示す面発光プレートであったが、白色光源である冷陰極管と、アクリル板の表面を微細加工した導光板とから構成される構造であってもよい。   (3) In the above-described embodiment, the light emitting means is the surface light emitting plate shown in FIG. 4A. However, the light emitting means is composed of a cold cathode tube which is a white light source and a light guide plate obtained by finely processing the surface of the acrylic plate. It may be a structure.

(4)図4(a)の構造と図4(b)の構造とを両方組み合わせてもよい。   (4) You may combine both the structure of Fig.4 (a), and the structure of FIG.4 (b).

(5)上述した実施例では、電圧印加用の共通電極9は図1および図2に示すような構造であったが、例えば支持基板と電圧印加用の共通電極とを兼用したグラファイト基板を備えた構造にもこの発明は適用することができる。   (5) In the embodiment described above, the voltage application common electrode 9 has a structure as shown in FIGS. 1 and 2, but for example, includes a support substrate and a graphite substrate that serves both as a voltage application common electrode. The present invention can also be applied to other structures.

1 … X線検出器
7 … 半導体厚膜
11 … シンチレータフィルム
25 … 散乱X線用シンチレータフィルム
Opt … 可視光
DESCRIPTION OF SYMBOLS 1 ... X-ray detector 7 ... Semiconductor thick film 11 ... Scintillator film 25 ... Scintillator film for scattered X-rays Opt ... Visible light

Claims (13)

X線に有感な半導体と、
前記半導体に可視光を照射する光照射機構と
を備えたX線検出器であって、
前記光照射機構は、X線を可視光に変換する蛍光体を備え、
X線の検出面とは逆側の面に前記蛍光体を配設することを特徴とするX線検出器。
A semiconductor sensitive to X-rays,
An X-ray detector comprising: a light irradiation mechanism for irradiating the semiconductor with visible light,
The light irradiation mechanism includes a phosphor that converts X-rays into visible light,
An X-ray detector, wherein the phosphor is disposed on a surface opposite to the X-ray detection surface.
請求項1に記載のX線検出器において、
前記光照射機構は、可視光を発生させる発光手段を備え、
前記蛍光体からの可視光とともに、前記発光手段からの可視光を前記半導体に照射することを特徴とするX線検出器。
The X-ray detector according to claim 1,
The light irradiation mechanism includes a light emitting means for generating visible light,
An X-ray detector for irradiating the semiconductor with visible light from the light emitting means together with visible light from the phosphor.
請求項1または請求項2に記載のX線検出器において、
散乱X線を可視光に変換する散乱X線用蛍光体を備え、
前記X線の検出面とは逆側の面とは別の側面にも前記散乱X線用蛍光体を配設することを特徴とするX線検出器。
The X-ray detector according to claim 1 or 2,
A phosphor for scattered X-rays that converts scattered X-rays into visible light;
An X-ray detector, wherein the scattered X-ray phosphor is disposed on a side surface different from a surface opposite to the X-ray detection surface.
請求項1から請求項3のいずれかに記載のX線検出器において、
前記蛍光体はシンチレータフィルムであることを特徴とするX線検出器。
In the X-ray detector in any one of Claims 1-3,
The X-ray detector, wherein the phosphor is a scintillator film.
請求項4に記載のX線検出器において、
前記シンチレータフィルムは、CsI、NaIあるいはGOSであることを特徴とするX線検出器。
The X-ray detector according to claim 4,
The X-ray detector, wherein the scintillator film is CsI, NaI or GOS.
請求項1から請求項5のいずれかに記載のX線検出器において、
前記蛍光体のX線の検出面とは逆側の面に反射部材を備えることを特徴とするX線検出器。
The X-ray detector according to any one of claims 1 to 5,
An X-ray detector comprising a reflecting member on a surface opposite to the X-ray detection surface of the phosphor.
請求項1から請求項6のいずれかに記載のX線検出器において、
電圧印加用の共通電極を備え、
前記半導体の検出面に、前記電圧印加用の共通電極を形成することを特徴とするX線検出器。
The X-ray detector according to any one of claims 1 to 6,
With a common electrode for voltage application,
An X-ray detector, wherein a common electrode for applying voltage is formed on a detection surface of the semiconductor.
請求項7に記載のX線検出器において、
透明な絶縁性基板上に薄膜トランジスタスイッチ、電荷蓄積コンデンサおよび画素電極が形成されたTFT基板を備え、
前記TFT基板上に前記半導体を形成し、前記半導体上に前記電圧印加用の共通電極を形成することを特徴とするX線検出器。
The X-ray detector according to claim 7.
A TFT substrate having a thin film transistor switch, a charge storage capacitor, and a pixel electrode formed on a transparent insulating substrate,
An X-ray detector, wherein the semiconductor is formed on the TFT substrate, and the common electrode for voltage application is formed on the semiconductor.
請求項8に記載のX線検出器において、
前記TFT基板に反射防止コーティングを施すことを特徴とするX線検出器。
The X-ray detector according to claim 8.
An X-ray detector, wherein an antireflection coating is applied to the TFT substrate.
請求項8または請求項9に記載のX線検出器において、
前記TFT基板の下面に前記蛍光体を光学的に結合することを特徴とするX線検出器。
The X-ray detector according to claim 8 or 9,
An X-ray detector, wherein the phosphor is optically coupled to a lower surface of the TFT substrate.
請求項10に記載のX線検出器において、
前記TFT基板の下面に前記蛍光体を透明な接着剤によって接着することを特徴とするX線検出器。
The X-ray detector according to claim 10.
An X-ray detector, wherein the phosphor is bonded to a lower surface of the TFT substrate with a transparent adhesive.
請求項10または請求項11に記載のX線検出器において、
前記TFT基板の下面に前記蛍光体を機械的に固定することを特徴とするX線検出器。
The X-ray detector according to claim 10 or 11,
An X-ray detector, wherein the phosphor is mechanically fixed to a lower surface of the TFT substrate.
請求項8から請求項12のいずれかに記載のX線検出器において、
前記透明な絶縁性基板は、ガラス基板であることを特徴とするX線検出器。
The X-ray detector according to any one of claims 8 to 12,
The X-ray detector, wherein the transparent insulating substrate is a glass substrate.
JP2013508737A 2011-04-04 2012-03-15 X-ray detector Pending JPWO2012137425A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011082863 2011-04-04
JP2011082863 2011-04-04
PCT/JP2012/001830 WO2012137425A1 (en) 2011-04-04 2012-03-15 X-ray detector

Publications (1)

Publication Number Publication Date
JPWO2012137425A1 true JPWO2012137425A1 (en) 2014-07-28

Family

ID=46968841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013508737A Pending JPWO2012137425A1 (en) 2011-04-04 2012-03-15 X-ray detector

Country Status (2)

Country Link
JP (1) JPWO2012137425A1 (en)
WO (1) WO2012137425A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110176519B (en) * 2019-06-17 2021-08-06 京东方科技集团股份有限公司 Flat panel detector and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117082A (en) * 1984-07-03 1986-01-25 Toshiba Corp Radiation detector
JPS61259577A (en) * 1985-05-14 1986-11-17 Toshiba Corp Radiation detector
JPH04241458A (en) * 1991-01-14 1992-08-28 Nippon Telegr & Teleph Corp <Ntt> Semiconductor optical detector
JPH0621484A (en) * 1992-06-30 1994-01-28 Kanegafuchi Chem Ind Co Ltd Switching device
JPH06140613A (en) * 1992-10-27 1994-05-20 Hamamatsu Photonics Kk Semiconductor light detector
JPH11304931A (en) * 1998-04-24 1999-11-05 Shimadzu Corp Radiation detector
JP2007163155A (en) * 2005-12-09 2007-06-28 Canon Inc Radiation detecting device and radiation imaging system using it
JP2011054746A (en) * 2009-09-01 2011-03-17 Fujifilm Corp Imaging element and imaging device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62218887A (en) * 1986-03-20 1987-09-26 Toshiba Corp X-ray image receiving apparatus
US5563421A (en) * 1995-06-07 1996-10-08 Sterling Diagnostic Imaging, Inc. Apparatus and method for eliminating residual charges in an image capture panel
JPH11188021A (en) * 1997-12-26 1999-07-13 Shimadzu Corp X ray face sensor and radiographic device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117082A (en) * 1984-07-03 1986-01-25 Toshiba Corp Radiation detector
JPS61259577A (en) * 1985-05-14 1986-11-17 Toshiba Corp Radiation detector
JPH04241458A (en) * 1991-01-14 1992-08-28 Nippon Telegr & Teleph Corp <Ntt> Semiconductor optical detector
JPH0621484A (en) * 1992-06-30 1994-01-28 Kanegafuchi Chem Ind Co Ltd Switching device
JPH06140613A (en) * 1992-10-27 1994-05-20 Hamamatsu Photonics Kk Semiconductor light detector
JPH11304931A (en) * 1998-04-24 1999-11-05 Shimadzu Corp Radiation detector
JP2007163155A (en) * 2005-12-09 2007-06-28 Canon Inc Radiation detecting device and radiation imaging system using it
JP2011054746A (en) * 2009-09-01 2011-03-17 Fujifilm Corp Imaging element and imaging device

Also Published As

Publication number Publication date
WO2012137425A1 (en) 2012-10-11

Similar Documents

Publication Publication Date Title
JP5448877B2 (en) Radiation detector
JP2007155662A (en) Radiation detector and radiation imaging system using the same
JP3757946B2 (en) Radiation imaging device
US20060027757A1 (en) Radiation detector
JP2016524152A (en) X-ray imager with a CMOS sensor embedded in a TFT flat panel
JP2007329434A (en) Radiation imaging apparatus and radiation imaging system
US11460590B2 (en) Dual-screen digital radiography with asymmetric reflective screens
JP2012247281A (en) Radiographic apparatus, scintillator, and method for manufacturing the same
JP2012251978A (en) Radiation detection device
JP2012211866A (en) Radiation detection device
JP2010078385A (en) Radiation image detecting device
US6989539B2 (en) Flat dynamic radiation detector
US9006662B2 (en) Radiological image detection device
JP5317675B2 (en) Radiation detector and manufacturing method thereof
JP2011242261A (en) Radiation detector
JP2010011158A (en) Detection element
JP4442278B2 (en) Radiation detector
JP2013228366A (en) Radiation detector and radiation detection system
WO2012137425A1 (en) X-ray detector
JP2004151007A (en) Radiation detector
JP2014122903A (en) Radiation detector and radiation imaging device
CN105378507B (en) Radiation detector, scintillator panel, and method of manufacturing the same
JPWO2006046384A1 (en) Radiation detector
JP2012037454A (en) Radiation detector and manufacturing method thereof
JP2007147370A (en) Radiation detection device and radiation imaging system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141007