JPWO2012070441A1 - Laminated body and method for producing the same - Google Patents

Laminated body and method for producing the same Download PDF

Info

Publication number
JPWO2012070441A1
JPWO2012070441A1 JP2012545696A JP2012545696A JPWO2012070441A1 JP WO2012070441 A1 JPWO2012070441 A1 JP WO2012070441A1 JP 2012545696 A JP2012545696 A JP 2012545696A JP 2012545696 A JP2012545696 A JP 2012545696A JP WO2012070441 A1 JPWO2012070441 A1 JP WO2012070441A1
Authority
JP
Japan
Prior art keywords
group
fine cellulose
resin
anchor layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012545696A
Other languages
Japanese (ja)
Other versions
JP5928339B2 (en
Inventor
友美子 大森
友美子 大森
香朱子 今井
香朱子 今井
光晴 木村
光晴 木村
宏祐 清水
宏祐 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Publication of JPWO2012070441A1 publication Critical patent/JPWO2012070441A1/en
Application granted granted Critical
Publication of JP5928339B2 publication Critical patent/JP5928339B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/02Cellulose; Modified cellulose
    • C09D101/04Oxycellulose; Hydrocellulose
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/26Cellulose ethers
    • C09D101/28Alkyl ethers
    • C09D101/286Alkyl ethers substituted with acid radicals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D105/00Coating compositions based on polysaccharides or on their derivatives, not provided for in groups C09D101/00 or C09D103/00
    • C09D105/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/26Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/06Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/10Interconnection of layers at least one layer having inter-reactive properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/16Ethene-propene or ethene-propene-diene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31515As intermediate layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31591Next to cellulosic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • Y10T428/31779Next to cellulosic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • Y10T428/3179Next to cellulosic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/3188Next to cellulosic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

積層体(10)を、基材(1)と、基材1の一方の面に、アンカー層(2)と、カルボキシル基を有する微細セルロース繊維を含む微細セルロース繊維層(3)とから構成され、アンカー層(2)が、カルボキシル基、スルホン酸基、アミノ基または水酸基を有する樹脂を少なくとも1種類以上含むものとすることにより、密着および塗工性良く膜を形成し、また、基材と微細セルロース繊維層との経時劣化を抑えるという効果を奏する。The laminate (10) is composed of a base material (1), an anchor layer (2) on one surface of the base material 1, and a fine cellulose fiber layer (3) containing fine cellulose fibers having a carboxyl group. The anchor layer (2) contains at least one resin having a carboxyl group, a sulfonic acid group, an amino group or a hydroxyl group, thereby forming a film with good adhesion and coating properties. There is an effect of suppressing deterioration with time of the fiber layer.

Description

本発明は、コーティング剤、機能性積層材料などとして使用可能なセルロースの微細繊維により形成された積層体およびその製造方法に関する。   The present invention relates to a laminate formed of fine cellulose fibers that can be used as a coating agent, a functional laminate material, and the like, and a method for producing the laminate.

近年、環境問題への関心が高まる中、従来の石油系樹脂に対し、天然由来の澱粉やセルロース、キチンキトサンなどの各種天然多糖類とその誘導体が、バイオマス材料として注目されている。また、環境中で水と二酸化炭素にまで分解される生分解性樹脂からなる基材も注目され、市販されている。具体的には、微生物によって産生される脂肪族ポリエステルや、天然由来の澱粉やセルロース、キチンキトサンなどの各種多糖類とその誘導体、完全に化学合成により得られる生分解性樹脂や澱粉などを原料として得られた乳酸を重合したポリ乳酸などが挙げられる。   In recent years, with increasing interest in environmental issues, natural polysaccharides such as starch, cellulose and chitin chitosan and their derivatives have attracted attention as biomass materials for conventional petroleum resins. In addition, a substrate made of a biodegradable resin that can be decomposed into water and carbon dioxide in the environment has attracted attention and is commercially available. Specifically, raw materials are aliphatic polyesters produced by microorganisms, naturally occurring starches, various polysaccharides such as cellulose and chitin chitosan and their derivatives, biodegradable resins and starches obtained by completely chemical synthesis. Examples include polylactic acid obtained by polymerizing the obtained lactic acid.

これらの中でも、地球上で最も多量に生産されているセルロースは、繊維状で高い結晶性を有し、高強度、低線膨張率であり、化学的安定性や生体への安全性に優れることから注目されている。特に、微細セルロース繊維は、近年、包装材料をはじめ各種機能性材料に利用が期待され、盛んに開発が進められている。   Among these, cellulose produced in large quantities on the earth is fibrous and has high crystallinity, high strength and low linear expansion, and excellent chemical stability and safety to living bodies. Has been attracting attention. In particular, in recent years, fine cellulose fibers are expected to be used for various functional materials including packaging materials, and are actively developed.

微細セルロース繊維の製造方法として、例えば、特許文献1には、TEMPO(2,2,6,6−テトラメチルピペリジノオキシラジカル)触媒を用いて、水酸基の一部をカルボキシル基に酸化させたセルロースを媒体中に分散させて、微細セルロース繊維を得る方法が記載されている。この方法によれば、負の電荷を有するカルボキシル基の電気的反発作用を利用し、セルロースI型の結晶構造を有する微細セルロース繊維を比較的容易に得ることが可能である。   As a method for producing fine cellulose fibers, for example, in Patent Document 1, a TEMPO (2,2,6,6-tetramethylpiperidinooxy radical) catalyst is used to oxidize a part of hydroxyl groups to carboxyl groups. A method is described in which fine cellulose fibers are obtained by dispersing cellulose in a medium. According to this method, it is possible to relatively easily obtain fine cellulose fibers having a cellulose I-type crystal structure by utilizing the electrical repulsion action of a negatively charged carboxyl group.

また、特許文献2には、TEMPO酸化処理により得た酸化セルロースを水中に分散させて、平均繊維径200nm以下の微細セルロース繊維を含むガスバリア用材料を調製し、これを、PETフィルムやポリ乳酸等の基材上に塗工し、乾燥させてガスバリア性複合成形体を得る方法が記載されている。   In Patent Document 2, oxidized cellulose obtained by TEMPO oxidation treatment is dispersed in water to prepare a gas barrier material containing fine cellulose fibers having an average fiber diameter of 200 nm or less. A method is described in which a gas barrier composite molded body is obtained by coating on a base material and drying.

特開2008−1728号公報JP 2008-1728 A 特開2009−57552号公報JP 2009-57552 A

しかしながら、上記のような微細セルロース繊維の水系分散液を用いて形成された膜は、微細セルロース繊維の剛直な性質と高い弾性率、繊維形状からなる基材への接点の面積が小さいこと、および、反応性が低いことにより、基材への密着性が低いという問題がある。また、これらの微細セルロース繊維には、カルボキシル基などの極性基が導入されているものが多く、溶媒も水系が用いられるため、はじきや塗れ性、むら、塗工性に課題がある。例えば、密着性が低いと、該膜を基材への積層材料として用いる場合に、層間の剥離が生じてしまう。また、はじきや塗れ性、むら、塗工性が低いことで、連続した均一な膜面が得られず、印刷適性や加工適性が低下したり、光学特性が低下したり、塗工膜をバリア材として用いたい場合に、良好な性能が得られないといった問題がある。さらに、紙やポリ乳酸などの材料を基材に用いた場合には、天然物であるため、PETなどの石油由来の合成樹脂に比べ、化学的不安定性や低分子量分子のブリード、結晶化、表面劣化のために、より塗工の際の濡れ性や密着性が低いことが知られており、成膜後に経時で基材及び塗膜が劣化し、密着性の低下が見られることがある。したがって、微細セルロース繊維の水系分散液からなる塗液を均一に塗工し、かつ基材との密着性を確保するのは困難である上、経時での密着性・基材及び微細セルロース繊維の劣化を抑えることは困難であった。   However, the film formed by using the aqueous dispersion of fine cellulose fibers as described above has a rigid property and high elastic modulus of the fine cellulose fibers, a small area of contact with the substrate made of fiber shape, and In addition, there is a problem that adhesion to the substrate is low due to low reactivity. Further, many of these fine cellulose fibers have polar groups such as carboxyl groups introduced therein, and water-based solvents are used, so that there are problems with repelling, paintability, unevenness, and coatability. For example, when the adhesion is low, delamination occurs between the films when the film is used as a laminated material on a substrate. In addition, due to low repelling, paintability, unevenness, and coatability, a continuous and uniform film surface cannot be obtained, printability and processability are degraded, optical properties are degraded, and the coating film is barriered. When used as a material, there is a problem that good performance cannot be obtained. Furthermore, when a material such as paper or polylactic acid is used as a base material, it is a natural product, so compared to petroleum-derived synthetic resins such as PET, chemical instability and low molecular weight bleed, crystallization, Due to surface degradation, it is known that the wettability and adhesiveness during coating are lower, and the base material and coating film deteriorate over time after film formation, and the adhesiveness may be reduced. . Therefore, it is difficult to uniformly apply a coating liquid composed of an aqueous dispersion of fine cellulose fibers and to ensure adhesion with the base material. It was difficult to suppress degradation.

本発明は、上記課題に鑑みてなされたものであり、フィルム基材、特に、ポリ乳酸など天然由来材料を基材とし、天然材料である微細セルロース繊維の塗液をコーティング材料として用い、ガスバリア層、水蒸気バリア層など各種機能性材料被膜として利用する際の密着および塗工性良く膜を形成し、また、基材と微細セルロース繊維層との経時劣化を抑えることを可能にする積層材料を提供することを目的とする。   The present invention has been made in view of the above problems, and uses a film base material, in particular, a naturally-derived material such as polylactic acid as a base material, and a coating liquid of fine cellulose fibers as a natural material as a coating material, and a gas barrier layer. Provides a laminated material that forms a film with good adhesion and coating properties when used as various functional material coatings such as a water vapor barrier layer, and that can suppress deterioration over time between the substrate and the fine cellulose fiber layer The purpose is to do.

上記の課題を解決するための手段として、請求項1に記載の発明は、少なくとも、基材と、前記基材の一方の面に、アンカー層と、カルボキシル基を有する微細セルロース繊維を含む微細セルロース繊維層とをこの順に設けた積層体であって、前記アンカー層が、カルボキシル基、スルホン酸基、アミノ基または水酸基を有する樹脂を少なくとも1種類以上含むことを特徴とする積層体である。   As means for solving the above-mentioned problems, the invention according to claim 1 is a fine cellulose comprising at least a base material, an anchor layer and a fine cellulose fiber having a carboxyl group on one surface of the base material. A laminate in which a fiber layer is provided in this order, wherein the anchor layer includes at least one resin having a carboxyl group, a sulfonic acid group, an amino group, or a hydroxyl group.

また、請求項2に記載の発明は、前記微細セルロース繊維が、酸化反応によりカルボキシル基が導入された酸化セルロースであり、前記カルボキシル基の含有量が、0.1mmol/g以上5.5mmol/g以下であることを特徴とする請求項1に記載の積層体である。   In the invention according to claim 2, the fine cellulose fiber is an oxidized cellulose having a carboxyl group introduced by an oxidation reaction, and the content of the carboxyl group is 0.1 mmol / g or more and 5.5 mmol / g. It is the following, It is a laminated body of Claim 1.

また、請求項3に記載の発明は、前記微細セルロース繊維の数平均繊維径が、0.001μm以上0.200μm以下であることを特徴とする請求項2に記載の積層体である。   The invention according to claim 3 is the laminate according to claim 2, wherein the number average fiber diameter of the fine cellulose fibers is 0.001 μm or more and 0.200 μm or less.

また、請求項4に記載の発明は、前記微細セルロース繊維のカルボキシル基が、アンモニウム塩またはアミン塩を形成していることを特徴とする請求項3に記載の積層体である。   The invention according to claim 4 is the laminate according to claim 3, wherein the carboxyl group of the fine cellulose fiber forms an ammonium salt or an amine salt.

また、請求項5に記載の発明は、前記アンカー層に含まれる樹脂が、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリアクリル酸樹脂もしくはポリオレフィン樹脂またはこれらの共重合体であることを特徴とする請求項3に記載の積層体である。   The invention described in claim 5 is characterized in that the resin contained in the anchor layer is a polyester resin, a polyamide resin, a polyurethane resin, a polyacrylic acid resin, a polyolefin resin, or a copolymer thereof. Item 4. The laminate according to Item 3.

また、請求項6に記載の発明は、前記アンカー層が、カルボキシル基を有する樹脂を少なくとも含み、前記樹脂のカルボキシル基が、アンモニウム塩またはアミン塩を形成していることを特徴とする請求項3に記載の積層体である。   The invention according to claim 6 is characterized in that the anchor layer includes at least a resin having a carboxyl group, and the carboxyl group of the resin forms an ammonium salt or an amine salt. It is a laminated body as described in above.

また、請求項7に記載の発明は、前記アンカー層が、更に、カルボジイミド基、オキサゾリン基、イソシアネート基またはエポキシ基を有する反応性化合物を含むことを特徴とする請求項5に記載の積層体である。   The invention according to claim 7 is the laminate according to claim 5, wherein the anchor layer further contains a reactive compound having a carbodiimide group, an oxazoline group, an isocyanate group or an epoxy group. is there.

また、請求項8に記載の発明は、前記基材が、ポリエステル樹脂からなり、前記アンカー層が、カルボキシル基を有するポリエステル樹脂と、カルボジイミド基またはオキサゾリン基を有する反応性化合物とを含むことを特徴とする請求項7に記載の積層体である。   The invention according to claim 8 is characterized in that the base material is made of a polyester resin, and the anchor layer includes a polyester resin having a carboxyl group and a reactive compound having a carbodiimide group or an oxazoline group. The laminate according to claim 7.

また、請求項9に記載の発明は、前記基材を構成するポリエステル樹脂が、ポリ乳酸であることを特徴とする請求項8に記載の積層体である。   The invention according to claim 9 is the laminate according to claim 8, wherein the polyester resin constituting the substrate is polylactic acid.

また、請求項10に記載の発明は、前記反応性化合物の分子量が、1000以上であることを特徴とする請求項7に記載の積層体である。   The invention according to claim 10 is the laminate according to claim 7, wherein the molecular weight of the reactive compound is 1000 or more.

また、請求項11に記載の発明は、前記アンカー層に含まれる樹脂の酸価が、12以上であることを特徴とする請求項7に記載の積層体である。   The invention according to claim 11 is the laminate according to claim 7, wherein the acid value of the resin contained in the anchor layer is 12 or more.

また、請求項12に記載の発明は、前記アンカー層の厚みが、3nm以上10μm以下であることを特徴とする請求項11に記載の積層体である。   The invention according to claim 12 is the laminate according to claim 11, wherein the anchor layer has a thickness of 3 nm to 10 μm.

また、請求項13に記載の発明は、少なくとも、基材と、前記基材の一方の面に、アンカー層と、カルボキシル基を有する微細セルロース繊維を含む微細セルロース繊維層とをこの順に設けた積層体の製造方法であって、前記基材の一方の面に、カルボキシル基、スルホン酸基、アミノ基または水酸基を有する樹脂を少なくとも1種類以上と、カルボジイミド基、オキサゾリン基、イソシアネート基またはエポキシ基を有する反応性化合物とを含む塗液を用いて塗膜を形成する工程と、前記塗膜を80℃以下で乾燥させて前記アンカー層を形成する工程と、前記アンカー層の上に前記微細セルロース繊維層を形成する工程とを備えることを特徴とする積層体の製造方法である。   The invention according to claim 13 is a laminate in which at least a base material and an anchor layer and a fine cellulose fiber layer containing fine cellulose fibers having a carboxyl group are provided in this order on one surface of the base material. And a carbodiimide group, an oxazoline group, an isocyanate group or an epoxy group on one surface of the substrate with at least one resin having a carboxyl group, a sulfonic acid group, an amino group or a hydroxyl group. A step of forming a coating film using a coating liquid containing a reactive compound having, a step of drying the coating film at 80 ° C. or less to form the anchor layer, and the fine cellulose fibers on the anchor layer And a step of forming a layer.

本発明によれば、環境負荷が小さい天然資源であるセルロースを有効に利用し、ガスバリア層、水蒸気バリア層など各種機能性材料被膜を形成する際に、塗工性、密着性良く基材上に形成でき、該機能性材料被膜を備える積層材料を提供できる。
特に、フィルム基材、ポリ乳酸基材などを用いても、塗工性、密着性良く基材上に形成でき、かつ、基材と微細セルロース繊維層との密着の経時劣化を抑えた積層材料を提供できる。それにより、耐候、耐熱、耐水性も向上した積層体を得ることができる。
According to the present invention, when cellulose, which is a natural resource with a small environmental load, is effectively used and various functional material films such as a gas barrier layer and a water vapor barrier layer are formed, the coating properties and adhesion are excellent on the substrate. A laminated material that can be formed and includes the functional material coating can be provided.
In particular, a laminate material that can be formed on a substrate with good coatability and adhesion even when using a film substrate, a polylactic acid substrate, etc., and that suppresses the deterioration of the adhesion between the substrate and the fine cellulose fiber layer over time. Can provide. Thereby, a laminate having improved weather resistance, heat resistance and water resistance can be obtained.

本発明の積層体の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the laminated body of this invention. 本発明の積層体の他の一実施形態を示す断面図である。It is sectional drawing which shows other one Embodiment of the laminated body of this invention.

以下、本発明に係る実施形態について説明する。
図1のように、本発明の積層体(10)は、少なくとも、基材(1)と、基材(1)の一方の面に、アンカー層(2)と、カルボキシル基を有する微細セルロース繊維を含む微細セルロース繊維層(3)とをこの順に積層して構成されている。アンカー層(2)および微細セルロース繊維層(3)は、基材(1)の両面にそれぞれ積層されていてもよい。
Embodiments according to the present invention will be described below.
As shown in FIG. 1, the laminate (10) of the present invention comprises at least a base material (1), an anchor layer (2) on one surface of the base material (1), and a fine cellulose fiber having a carboxyl group. Are laminated in this order. The anchor layer (2) and the fine cellulose fiber layer (3) may be respectively laminated on both surfaces of the substrate (1).

まず、微細セルロース繊維層(3)について説明する。微細セルロース繊維層は、少なくとも、カルボキシル基を有する微細セルロース繊維を含む。カルボキシル基を有する微細セルロース繊維は、例えば、下記の方法で製造することができる。   First, the fine cellulose fiber layer (3) will be described. The fine cellulose fiber layer includes at least fine cellulose fibers having a carboxyl group. The fine cellulose fiber which has a carboxyl group can be manufactured with the following method, for example.

(原料)
原料としては、セルロース素材を用いる。セルロース素材は、粉砕、爆砕、膨潤、精製、漂白、溶解再生、アルカリ処理などの前処理を施していてもよい。特に、セルロース素材としては、ガスバリア性の高い塗膜や強度のある塗膜を得る場合は、セルロースIの結晶構造を有する天然由来のセルロースを用いることが好ましい。原料となる天然由来のセルロースとしては、木材パルプ、非木材パルプ、綿パルプ、バクテリアセルロース、ホヤセルロースなどがある。
(material)
A cellulose material is used as a raw material. The cellulose material may be subjected to pretreatment such as pulverization, explosion, swelling, purification, bleaching, dissolution regeneration, and alkali treatment. In particular, as a cellulose material, it is preferable to use naturally-derived cellulose having a crystal structure of cellulose I when obtaining a coating film having high gas barrier properties or a strong coating film. Examples of naturally occurring cellulose as a raw material include wood pulp, non-wood pulp, cotton pulp, bacterial cellulose, and squirt cellulose.

(カルボキシル基の導入方法)
セルロースへのカルボキシル基の導入方法としては、一般的に知られる化学的な改質方法を用いることができる。カルボキシメチル化で知られるように、セルロースの水酸基をエステル化・エーテル化してカルボキシル基を導入する手法、水酸基から酸化反応によりカルボキシル基を導入する方法などを選択することができる。
特に、ガスバリア性の高い塗膜を得るためや、結晶構造を崩さずにカルボキシル基を導入するためには、中でも、ニトロキシラジカル誘導体を触媒とし、次亜ハロゲン酸塩や亜ハロゲン酸塩などを共酸化剤として用いる手法が好ましい。特に、TEMPO(2,2,6,6−テトラメチルピペリジノオキシラジカル)を触媒とし、アルカリ条件下、好ましくはpH9以上pH11以下の範囲で、次亜塩素酸ナトリウムと臭化ナトリウムを含む水系媒体中で行われるTEMPO酸化法が、試薬の入手しやすさ、コスト、反応の安定性の点から好適である。上記のTEMPO酸化法においては、反応の進行に伴いアルカリが消費されるため、随時アルカリ水溶液を添加して、系内のpHを一定に保つとよい。
(Method of introducing carboxyl group)
As a method for introducing a carboxyl group into cellulose, a generally known chemical modification method can be used. As known in carboxymethylation, a method of introducing a carboxyl group by esterifying and etherifying a hydroxyl group of cellulose, a method of introducing a carboxyl group from a hydroxyl group by an oxidation reaction, and the like can be selected.
In particular, in order to obtain a coating film with high gas barrier properties and to introduce a carboxyl group without destroying the crystal structure, a nitroxy radical derivative is used as a catalyst, and hypohalite, halite, etc. A technique used as a cooxidant is preferred. In particular, an aqueous system containing sodium hypochlorite and sodium bromide using TEMPO (2,2,6,6-tetramethylpiperidinooxy radical) as a catalyst under alkaline conditions, preferably in the range of pH 9 to pH 11 The TEMPO oxidation method performed in a medium is preferable from the viewpoint of availability of reagents, cost, and reaction stability. In the above TEMPO oxidation method, alkali is consumed as the reaction proceeds, so it is preferable to add an aqueous alkaline solution as needed to keep the pH in the system constant.

TEMPO酸化においては、セルロース分子のピラノース環(グルコース)の第6位水酸基が選択的に酸化され、アルデヒド基を経てカルボキシル基を導入することができる。また、天然セルロースを用いたTEMPO酸化においては、セルロースの構成単位である結晶性のミクロフィブリル表面にのみ酸化が起こり、結晶内部には酸化が起こらない。このため、セルロースIの結晶構造を維持したまま、微細セルロース繊維を得ることができ、生成する微細セルロース繊維は、高耐熱性、低線膨張率、高弾性率、高強度などの特性を有する。   In TEMPO oxidation, the 6-position hydroxyl group of the pyranose ring (glucose) of the cellulose molecule is selectively oxidized, and a carboxyl group can be introduced via an aldehyde group. In addition, in TEMPO oxidation using natural cellulose, oxidation occurs only on the surface of crystalline microfibrils, which is a structural unit of cellulose, and no oxidation occurs inside the crystal. For this reason, fine cellulose fibers can be obtained while maintaining the crystal structure of cellulose I, and the fine cellulose fibers to be produced have characteristics such as high heat resistance, low linear expansion coefficient, high elastic modulus, and high strength.

TEMPO酸化に用いる試薬類は、市販のものを容易に入手可能である。反応温度は0℃以上60℃以下が好適であり、1時間以上12時間以下程度で微細繊維となり、分散性を示すのに十分な量のカルボキシル基を導入できる。
TEMPO類および臭化ナトリウムは、反応の際に触媒量だけ用いればよく、反応後に回収することも可能である。また、上記の反応系では理論上の副生成物は塩化ナトリウムのみであり、廃液の処理も容易で環境への負荷が小さい。
As the reagents used for TEMPO oxidation, commercially available ones can be easily obtained. The reaction temperature is preferably 0 ° C. or more and 60 ° C. or less, and becomes a fine fiber in about 1 hour or more and 12 hours or less, and a sufficient amount of carboxyl groups can be introduced to show dispersibility.
TEMPOs and sodium bromide need only be used in a catalytic amount during the reaction, and can also be recovered after the reaction. In the above reaction system, sodium chloride is the only theoretical by-product, and the waste liquid can be easily treated with a low environmental burden.

カルボキシル基の量は、TEMPO酸化条件を適宜設定することにより調整可能である。セルロース繊維は、後述する分散処理工程を経て、カルボキシル基の電気的反発力により水系媒体中に分散することから、カルボキシル基の含有量が少なすぎると安定的に水系媒体中に分散させることができない。また、多すぎると水への親和性が増し耐水性が低下する。この観点から、カルボキシル基の含有量は、好ましくは0.1mmol/g以上5.5mmol/g以下、より好ましくは0.1mmol/g以上3.5mmol/g以下であり、さらに好ましくは0.6mmol/g以上2.5mmol/g以下である。カルボキシル基を導入する過程では、酸化反応の中間体であるアルデヒド基が生成し、最終生成物中にもアルデヒド基は残存する。アルデヒド基の含有量が多すぎると水系媒体中への分散性が低下したり、膜形成後に変色したりする原因となるため、アルデヒド基の含有量は、好ましくは0.3mmol/g以下である。   The amount of the carboxyl group can be adjusted by appropriately setting the TEMPO oxidation conditions. Cellulose fibers are dispersed in an aqueous medium by an electric repulsive force of a carboxyl group through a dispersion treatment step to be described later. Therefore, if the content of the carboxyl group is too small, the cellulose fiber cannot be stably dispersed in the aqueous medium. . On the other hand, if the amount is too large, the affinity for water increases and the water resistance decreases. In this respect, the carboxyl group content is preferably 0.1 mmol / g or more and 5.5 mmol / g or less, more preferably 0.1 mmol / g or more and 3.5 mmol / g or less, and even more preferably 0.6 mmol. / G to 2.5 mmol / g. In the process of introducing the carboxyl group, an aldehyde group that is an intermediate of the oxidation reaction is generated, and the aldehyde group remains in the final product. If the content of the aldehyde group is too large, the dispersibility in an aqueous medium is lowered or the color is changed after the film is formed. Therefore, the content of the aldehyde group is preferably 0.3 mmol / g or less. .

酸化反応は、他のアルコールを過剰量添加し、系内の共酸化剤を完全に消費させることにより停止する。添加するアルコールとしては、反応をすばやく終了させるため、メタノール、エタノール、プロパノールなどの低分子量アルコールを用いるのが望ましい。この中でも、安全性や酸化により生成する副生成物を考慮し、エタノールが好ましい。   The oxidation reaction is stopped by adding an excessive amount of other alcohol to completely consume the cooxidant in the system. As the alcohol to be added, it is desirable to use a low molecular weight alcohol such as methanol, ethanol or propanol in order to quickly terminate the reaction. Among these, ethanol is preferable in consideration of safety and by-products generated by oxidation.

(酸化セルロースの回収)
酸化反応停止後、生成した酸化セルロースは、ろ過により反応液中から回収することができる。反応停止後の酸化セルロースにおいて、カルボキシル基は、共酸化剤やpH調整用の無機アルカリに由来する金属イオンを対イオンとした塩を形成している。回収の方法としては、カルボキシル基が塩を形成したまま濾別する方法、反応液に酸を添加しpH3以下に調整しカルボン酸としてから濾別する方法、有機溶剤を添加し凝集させた後に濾別する方法がある。その中でも、ハンドリング性や収率、廃液処理の点からカルボン酸に変換し回収する方法が好適である。また、後述する微細セルロース繊維組成物調製の際にも、対イオンとして金属イオンを含有しないほうが溶剤との混和性に優れるため、カルボン酸に変換し回収する方法が好適である。
(Recovery of oxidized cellulose)
After the oxidation reaction is stopped, the produced oxidized cellulose can be recovered from the reaction solution by filtration. In the oxidized cellulose after the termination of the reaction, the carboxyl group forms a salt using a metal ion derived from a co-oxidant or an inorganic alkali for pH adjustment as a counter ion. As a recovery method, a method in which the carboxyl group is filtered while forming a salt, a method in which an acid is added to the reaction solution and the pH is adjusted to 3 or less to filter it out as a carboxylic acid, and an organic solvent is added to cause aggregation. There is another way. Among them, a method of converting to carboxylic acid and recovering it from the viewpoint of handling property, yield, and waste liquid treatment is preferable. In addition, when preparing the fine cellulose fiber composition described later, since it is more miscible with the solvent if it does not contain a metal ion as a counter ion, a method of converting it to a carboxylic acid and recovering it is preferable.

なお、酸化セルロース中に含まれる金属イオン含有量は、様々な分析方法で調べることができるが、例えば、電子線マイクロアナライザーを用いたEPMA法、蛍光X線分析法の元素分析によって簡易的に調べることができる。塩を形成したまま濾別する方法により回収した場合、金属イオンの含有率は、5wt%以上であるのに対し、カルボン酸としてから濾別する方法により回収した場合、金属イオン含有量は、1wt%以下となる。特に、下記のような方法により酸化セルロースを洗浄した場合には、金属イオン含有量は、検出限界以下となる。   The metal ion content contained in the oxidized cellulose can be examined by various analysis methods. For example, it can be simply examined by elemental analysis using an EPMA method or an X-ray fluorescence analysis method using an electron beam microanalyzer. be able to. When recovered by the method of filtering while forming a salt, the metal ion content is 5 wt% or more, whereas when recovered by the method of filtering after carboxylic acid, the metal ion content is 1 wt. % Or less. In particular, when the oxidized cellulose is washed by the following method, the metal ion content is below the detection limit.

(洗浄)
回収した酸化セルロースは、洗浄を繰り返すことにより精製でき、触媒や副生成物である塩化ナトリウム、イオンなどの残渣を取り除くことができる。このとき、洗浄液としては水が好ましく、さらに塩酸などを用いpH3以下、より好ましくはpH1.8以下の酸性条件に調整し洗浄を行った後、水による洗浄を行うと、金属イオンを上記分析方法における検出限界量以下とすることができる。または、残存する金属イオン量をより低減させるため、酸性条件での洗浄を複数回行ってもよい。また、セルロース中に塩等が残留していると、後述の分散工程にて分散しにくくなるため、水洗浄は複数回洗浄を行うことが好ましい。
(Washing)
The recovered oxidized cellulose can be purified by repeated washing, and residues such as sodium chloride and ions that are catalysts and by-products can be removed. At this time, water is preferable as the cleaning liquid, and further, after adjusting and cleaning to acidic conditions of pH 3 or lower, more preferably pH 1.8 or lower using hydrochloric acid or the like, the metal ions are analyzed by the above analysis method. It can be made below the detection limit amount in. Alternatively, cleaning under acidic conditions may be performed a plurality of times in order to further reduce the amount of remaining metal ions. In addition, if salt or the like remains in the cellulose, it is difficult to disperse in the dispersion step described later.

次に、酸化セルロースを分散処理し、微細セルロース繊維分散液を調製する工程を説明する。   Next, the process of dispersing oxidized cellulose and preparing a fine cellulose fiber dispersion will be described.

(分散工程)
洗浄した酸化セルロースを微細化する工程としては、まず、酸化セルロースを分散媒である水系媒体に浸漬する。この時、浸漬した液のpHは、例えば、4以下となる。酸化セルロースは水系媒体に不溶であり、浸漬した時点では不均一な懸濁液となっている。
(Dispersion process)
As a step of refining the washed oxidized cellulose, first, the oxidized cellulose is immersed in an aqueous medium that is a dispersion medium. At this time, the pH of the immersed liquid is, for example, 4 or less. Oxidized cellulose is insoluble in an aqueous medium and becomes a non-uniform suspension when immersed.

酸化セルロース懸濁液において、酸化セルロースの固形分濃度は、10質量%以下が好ましく、5質量%以下がより好ましい。固形分濃度が5質量%以下、特に、3質量%以下であると、分散性、透明性が良好である。固形分濃度が10質量%を超えると、分散液の粘度が著しく上昇し、分散処理が困難になる。固形分濃度の下限は、特に限定されず、0質量%超であればよい。   In the oxidized cellulose suspension, the solid content concentration of oxidized cellulose is preferably 10% by mass or less, and more preferably 5% by mass or less. When the solid content concentration is 5% by mass or less, particularly 3% by mass or less, dispersibility and transparency are good. When solid content concentration exceeds 10 mass%, the viscosity of a dispersion liquid will raise remarkably and dispersion processing will become difficult. The minimum of solid content concentration is not specifically limited, What is necessary is just more than 0 mass%.

次に、アルカリを用いて、酸化セルロース懸濁液のpHをpH4以上pH12以下の範囲に調整する。特に、pHをpH7以上pH12以下のアルカリ性とし、カルボン酸塩を形成する。これにより、カルボキシル基同士の電気的反発が起こりやすくなるため、分散性が向上し、微細セルロース繊維を得やすくなる。ここで、pH4未満でも機械的分散処理により酸化セルロースを微細繊維化することは可能であるが、分散処理により長時間・高エネルギーを要し、得られる繊維の繊維径も本発明のものより大きくなり、分散液の透明性が劣る。一方、pH12を超えると分散処理中に酸化セルロースのβ脱離反応による低分子量化や分散液の黄変が促進されるため、製膜後の膜強度や透明性が劣る。   Next, the pH of the oxidized cellulose suspension is adjusted to a range of pH 4 or more and pH 12 or less using an alkali. In particular, the pH is made alkaline between pH 7 and pH 12 to form a carboxylate. Thereby, since electrical repulsion between carboxyl groups is likely to occur, dispersibility is improved and fine cellulose fibers are easily obtained. Here, even if the pH is less than 4, the oxidized cellulose can be made into fine fibers by mechanical dispersion treatment, but the dispersion treatment requires a long time and high energy, and the fiber diameter of the obtained fiber is larger than that of the present invention. And the transparency of the dispersion is poor. On the other hand, when the pH exceeds 12, the reduction in molecular weight due to β-elimination reaction of oxidized cellulose and the yellowing of the dispersion are promoted during the dispersion treatment, resulting in poor film strength and transparency after film formation.

アルカリとしては、種類に限定されず、水酸化ナトリウム、水酸化リチウム、水酸化カリウムなどの無機アルカリを用いることができる。または、アンモニア水または有機アルカリを用いてpHを調整することも可能である。有機アルカリとしては、各種脂肪族アミン、芳香族アミン、ジアミンなどのアミン類や水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラn−ブチルアンモニウム、水酸化ベンジルトリメチルアンモニウム、水酸化2−ヒドロキシエチルトリメチルアンモニウム、などNR4OH(Rはアルキル基、ベンジル基、フェニル基またはヒドロキシアルキル基で、4つのRが同一でも異なっていてもよい。)で表される水酸化物イオンを対イオンとする第4級アンモニウム化合物、水酸化テトラエチルホスホニウムなどの水酸化ホスホニウム化合物、水酸化オキソニウム化合物、水酸化スルホニウム化合物、などの水酸化物イオンを対イオンとする有機オニウム化合物が挙げられる。有機アルカリを用いた場合も、アルカリの種類によらず、無機アルカリを用いた場合と同様の分散処理により繊維を微細化することが可能である。   As an alkali, it is not limited to a kind, Inorganic alkalis, such as sodium hydroxide, lithium hydroxide, and potassium hydroxide, can be used. Alternatively, the pH can be adjusted using aqueous ammonia or organic alkali. Organic alkalis include various aliphatic amines, aromatic amines, amines such as diamines, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-butylammonium hydroxide, benzyltrimethylammonium hydroxide, 2-hydroxyhydroxide. NR 4 OH such as ethyltrimethylammonium, etc. (wherein R is an alkyl group, benzyl group, phenyl group or hydroxyalkyl group, and four Rs may be the same or different) Organic onium compounds having hydroxide ions such as quaternary ammonium compounds, phosphonium hydroxide compounds such as tetraethylphosphonium hydroxide, oxonium hydroxide compounds, and sulfonium hydroxide compounds as counter ions. Even when an organic alkali is used, the fiber can be refined by a dispersion treatment similar to that when an inorganic alkali is used, regardless of the type of alkali.

特に、アルカリとして有機アルカリを用いると、金属イオンを対イオンとする無機アルカリを用いた場合よりも、低エネルギー、短時間で分散処理を行うことができ、かつ最終的到達する分散液の透明性も高い。これは、有機アルカリを用いた方が対イオンのイオン径が大きいため、分散媒中で微細セルロース繊維同士をより引き離す効果が大きいためと考えられる。   In particular, when an organic alkali is used as the alkali, the dispersion treatment can be performed in a shorter energy and in a shorter time than when an inorganic alkali having a metal ion as a counter ion is used, and the finally reached transparency of the dispersion liquid. Is also expensive. This is probably because the use of organic alkali has a larger counterion ion diameter, and thus has a greater effect of separating fine cellulose fibers in the dispersion medium.

さらに、有機アルカリを用いると、有機溶剤に対する親和性が高いため、分散媒としてアルコールなどの有機溶剤を用いた際にも、微細セルロース繊維分散液を調製することができる。さらに、水系媒体中で分散処理した微細セルロース繊維分散液に、分散処理後に有機溶剤を添加することも可能である。水系媒体としては、水、または水と有機溶剤との混合溶剤が挙げられる。有機溶剤としては、例えばメタノール、エタノール、2−プロパノール(IPA)などのアルコール類、アセトン、メチルエチルケトン(MEK)などのケトン類、1,4−ジオキサン、テトラヒドロフラン(THF)などのエーテル類、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、アセトニトリル、酢酸エチル、グリセリンなどが挙げられる。これらのいずれか1種単独でも、2種以上の混合溶媒でもよい。   Furthermore, when an organic alkali is used, the affinity for an organic solvent is high, and therefore a fine cellulose fiber dispersion can be prepared even when an organic solvent such as alcohol is used as a dispersion medium. Furthermore, it is also possible to add an organic solvent to the fine cellulose fiber dispersion dispersed in an aqueous medium after the dispersion treatment. Examples of the aqueous medium include water or a mixed solvent of water and an organic solvent. Examples of the organic solvent include alcohols such as methanol, ethanol and 2-propanol (IPA), ketones such as acetone and methyl ethyl ketone (MEK), ethers such as 1,4-dioxane and tetrahydrofuran (THF), N, N -Dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), acetonitrile, ethyl acetate, glycerin and the like. Any one of these may be used alone, or two or more mixed solvents may be used.

さらに、有機アルカリを用いると、無機アルカリに比べ、微細セルロース繊維分散液の粘度とチキソ性を低下させることができ、分散処理のし易さと、後述する塗工工程での塗り易さの点で有利である。通常、微細セルロース繊維分散液はゲル状となり、高濃度化するに従い粘度が上昇するため、分散処理において大きなエネルギーが必要となり、分散処理が困難になってくるが、有機アルカリを用いると、微細セルロース繊維分散液の粘度が低下するため分散処理が容易になる。有機アルカリと溶剤の組み合わせにより、分散液の粘度特性を調整することが可能であり、塗工性も高めることができる。   Furthermore, when an organic alkali is used, the viscosity and thixotropy of the fine cellulose fiber dispersion can be reduced compared to an inorganic alkali, in terms of ease of dispersion treatment and ease of application in the coating process described below. It is advantageous. Usually, the fine cellulose fiber dispersion becomes a gel, and the viscosity increases as the concentration is increased. Therefore, a large amount of energy is required in the dispersion treatment, and the dispersion treatment becomes difficult. Since the viscosity of the fiber dispersion is lowered, the dispersion treatment is facilitated. By the combination of the organic alkali and the solvent, the viscosity characteristics of the dispersion liquid can be adjusted, and the coating property can be improved.

また、後述のように、アンカー層(2)の中に、カルボジイミド基、オキサゾリン基、エポキシ基、アミノ基などのカルボキシル基などと反応しうる化合物が含まれている場合、特に、沸点の低いアンモニア、トリエチルアミンなどの有機アルカリを微細セルロース繊維分散液のアルカリとして用いると、コーティング後の乾燥、またはその後のエージング・キュアリング処理中にアルカリが揮発し、カルボキシル基が反応性を増し、アンカー層(2)に含まれる反応性化合物との反応が進行することで、更に密着性の向上や経時劣化の防止の効果が高い。上記の理由からも、微細セルロース繊維層に含まれる微細セルロース繊維のカルボキシル基は、無機アルカリにより形成された無機塩を形成しているより、反応が進行しやすいアンモニウム塩またはアミン塩を形成していることが好ましい。ここで、アミン塩としては、トリエチルアミン塩、テトラメチルアミン塩などが挙げられる。
また、微細セルロース繊維のカルボキシル基は、塩を形成せず、カルボキシル基の状態、すなわち、「−COOH」の状態で存在していても、反応が進行しやすいため好ましい。
In addition, as described later, when the anchor layer (2) contains a compound capable of reacting with a carboxyl group such as a carbodiimide group, an oxazoline group, an epoxy group or an amino group, ammonia having a low boiling point is used. When an organic alkali such as triethylamine is used as the alkali of the fine cellulose fiber dispersion, the alkali volatilizes during the drying after coating or the subsequent aging / curing treatment, the carboxyl group increases in reactivity, and the anchor layer (2 The reaction with the reactive compound contained in) proceeds further, and the effect of further improving adhesion and preventing deterioration with time is high. For the above reason as well, the carboxyl group of the fine cellulose fiber contained in the fine cellulose fiber layer forms an ammonium salt or amine salt that is more likely to react than the inorganic salt formed by the inorganic alkali. Preferably it is. Here, examples of the amine salt include triethylamine salt and tetramethylamine salt.
Further, the carboxyl group of the fine cellulose fiber does not form a salt, and even if it exists in the carboxyl group state, that is, in the state of “—COOH”, the reaction is likely to proceed, which is preferable.

酸化セルロース懸濁液の分散処理の方法としては、既に知られている各種分散処理が可能である。例えば、ホモミキサー処理、回転刃つきミキサー処理、高圧ホモジナイザー処理、超高圧ホモジナイザー処理、超音波ホモジナイザー処理、ナノジナイザー処理、ディスク型レファイナー処理、コニカル型レファイナー処理、ダブルディスク型レファイナー処理、グラインダー処理、ボールミル処理、ニ軸混練機による混練処理、水中対向処理などがある。この中でも、微細化効率の面から回転刃つきミキサー処理、高圧ホモジナイザー処理、超高圧ホモジナイザー処理、超音波ホモジナイザー処理が好適である。なお、これらの処理のうち二つ以上の処理方法を組み合わせて分散を行うことも可能である。   As the method for dispersing the oxidized cellulose suspension, various known dispersion treatments can be used. For example, homomixer processing, mixer processing with rotary blade, high pressure homogenizer processing, ultra high pressure homogenizer processing, ultrasonic homogenizer processing, nanogenizer processing, disc type refiner processing, conical type refiner processing, double disc type refiner processing, grinder processing, ball mill processing , Kneading treatment by a biaxial kneader, underwater facing treatment, and the like. Among these, the mixer treatment with a rotary blade, the high-pressure homogenizer treatment, the ultra-high pressure homogenizer treatment, and the ultrasonic homogenizer treatment are preferable from the viewpoint of miniaturization efficiency. In addition, it is also possible to perform dispersion by combining two or more processing methods among these processes.

分散処理を行うと、酸化セルロース懸濁液は目視上均一な透明分散液となる。分散処理により酸化セルロースは微細化し、微細セルロース繊維となる。
分散処理後の微細セルロース繊維は、数平均繊維径(繊維の短軸方向の幅)が、好ましくは0.001μm以上0.200μm以下であり、より好ましくは0.001μm以上0.050μm以下である。微細セルロース繊維の数平均繊維径は、走査型電子顕微鏡(SEM)や原子間力顕微鏡(AFM)により確認できる。分散が不十分・不均一で、一部に繊維径の大きいものが含まれていると、微細セルロース繊維を含む塗液を製膜した際、膜の透明性や平滑性が著しく低下してしまう問題がある。
When the dispersion treatment is performed, the oxidized cellulose suspension becomes a transparent dispersion that is visually uniform. Oxidized cellulose is refined by the dispersion treatment to form fine cellulose fibers.
The fine cellulose fiber after the dispersion treatment has a number average fiber diameter (width in the minor axis direction of the fiber) of preferably 0.001 μm or more and 0.200 μm or less, more preferably 0.001 μm or more and 0.050 μm or less. . The number average fiber diameter of the fine cellulose fibers can be confirmed by a scanning electron microscope (SEM) or an atomic force microscope (AFM). If the dispersion is insufficient or non-uniform and some of the fibers have a large fiber diameter, the transparency and smoothness of the film will be significantly reduced when a coating solution containing fine cellulose fibers is formed. There's a problem.

上記の方法などで製造したカルボキシル基を有する微細セルロース繊維を含む塗液としては、上記微細セルロース繊維分散液をそのまま塗液として用いることもでき、また、公知の樹脂や溶剤を添加してもよい。また、上記の方法などで製造したカルボキシル基を有する微細セルロース繊維を単離し、公知の樹脂や溶剤を混合して、別途塗液を調製してもよい。   As a coating liquid containing a fine cellulose fiber having a carboxyl group produced by the above method or the like, the fine cellulose fiber dispersion can be used as it is, or a known resin or solvent may be added. . Moreover, the fine cellulose fiber which has the carboxyl group manufactured by said method etc. is isolated, well-known resin and a solvent may be mixed and a coating liquid may be prepared separately.

微細セルロース繊維層は、カルボキシル基を有する微細セルロース繊維を含む塗液を塗布することにより形成される。微細セルロース繊維を含む塗液を塗布する方法としては、特に限定されず、コーティング法、キャスト法等の公知の方法が利用できる。コーティング法としては、グラビアコート法、グラビアリバースコート法、ロールコート法、リバースロールコート法、マイクログラビアコート法、コンマコート法、エアナイフコート法、バーコート法、メイヤーバーコート法、ディップコート法、ダイコート法、スプレーコート法等が挙げられ、いずれの方法を用いてもよい。   A fine cellulose fiber layer is formed by apply | coating the coating liquid containing the fine cellulose fiber which has a carboxyl group. It does not specifically limit as a method of apply | coating the coating liquid containing a fine cellulose fiber, Well-known methods, such as a coating method and a casting method, can be utilized. Coating methods include gravure coating, gravure reverse coating, roll coating, reverse roll coating, micro gravure coating, comma coating, air knife coating, bar coating, Mayer bar coating, dip coating, and die coating. Method, spray coating method and the like, and any method may be used.

微細セルロース繊維層の厚みは、0.05μm以上20μm以下が好ましく、0.1μm以上2μm以下がより好ましい。微細セルロース繊維層の厚みが20μmより大きいと、加工性に劣る場合があり、微細セルロース繊維層の厚みが0.05μmより小さいと、ガスバリア性が低下するおそれがある。   The thickness of the fine cellulose fiber layer is preferably 0.05 μm or more and 20 μm or less, and more preferably 0.1 μm or more and 2 μm or less. If the thickness of the fine cellulose fiber layer is larger than 20 μm, the processability may be inferior, and if the thickness of the fine cellulose fiber layer is smaller than 0.05 μm, the gas barrier property may be lowered.

微細セルロース繊維層は、カルボキシル基を有する微細セルロース繊維のほか、無機層状化合物や有機金属化合物などの各種添加剤を含んでいてもよい。   The fine cellulose fiber layer may contain various additives such as inorganic layered compounds and organometallic compounds in addition to the fine cellulose fibers having a carboxyl group.

無機層状化合物としては、カオリナイト、ディッカイト、ナクライト、ハロイサイト、アンチゴライト、クリソタイル、パイロフィライト、モンモリロナイト、バイデライト、ヘクトライト、サポナイト、スチーブンサイト、テトラシリリックマイカ、ナトリウムテニオライト、白雲母、マーガライト、タルク、バーミキュライト、金雲母、ザンソフィライト、緑泥石などを用いることができる。これらの無機層状鉱物は天然のものでも、合成のものでも構わない。特に、無機層状化合物としては、ガスバリア性、分散性、微細セルロース繊維との混ざりやすさ、膜の凝集力の点で、モンモリロナイトであることが好ましい。これらの無機層状鉱物の配合量としては、特に限定されるものではなく、0.01%以上99%以下の範囲のうち、要求される仕様を満たす範囲内で添加することができる。特に、積層体の密着の面からは、0.01%以上67%以下の範囲であるとより好ましい。   Inorganic layered compounds include kaolinite, dickite, nacrite, halloysite, antigolite, chrysotile, pyrophyllite, montmorillonite, beidellite, hectorite, saponite, stevensite, tetrasilic mica, sodium teniolite, muscovite, marga Light, talc, vermiculite, phlogopite, xanthophyllite, chlorite and the like can be used. These inorganic layered minerals may be natural or synthetic. In particular, the inorganic layered compound is preferably montmorillonite in terms of gas barrier properties, dispersibility, ease of mixing with fine cellulose fibers, and cohesive strength of the film. The blending amount of these inorganic layered minerals is not particularly limited, and can be added within a range satisfying the required specifications within a range of 0.01% to 99%. In particular, from the viewpoint of adhesion of the laminate, it is more preferably in the range of 0.01% to 67%.

また、有機金属化合物としては、下記一般式、
M(OR)n−m
(式中、Aは炭素数1個以上10個以下の炭素主鎖1種類以上で構成され、Mは金属元素、Rはアルキル基であり、nは金属元素の酸化数、mは置換数(0≦m<n)を表す)で示される有機金属化合物または該有機金属化合物の加水分解物あるいは重合体である。具体的には、TiやZr、Siの金属アルコキシドが挙げられ、特に珪素アルコキシドが良好な性能を示す。テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン等のテトラアルコキシ体又はその重合物、トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン等のトリアルコキシ体又はその重合物、ジメトキシシラン、ジエトキシシラン等のジアルコキシ体又はその重合物、その他、C−Si結合をもつメチルトリメトキシシラン、メチルトリエトキシシラン、メチルジメトキシシラン等、又は、官能基を有するものとして、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、β(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシランなどが挙げられる。
Moreover, as an organometallic compound, the following general formula,
A m M (OR) nm
(In the formula, A is composed of one or more types of carbon main chain having 1 to 10 carbon atoms, M is a metal element, R is an alkyl group, n is an oxidation number of the metal element, and m is a substitution number ( 0 ≦ m <n)), or a hydrolyzate or polymer of the organometallic compound. Specific examples include metal alkoxides of Ti, Zr, and Si, and particularly silicon alkoxide exhibits good performance. Tetraalkoxy compounds such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane or polymers thereof, trialkoxy compounds such as trimethoxysilane, triethoxysilane, tripropoxysilane or polymers thereof, dimethoxysilane, diethoxysilane, etc. Dialkoxy or a polymer thereof, other than that, methyltrimethoxysilane having a C-Si bond, methyltriethoxysilane, methyldimethoxysilane, etc., or having a functional group, vinyltrimethoxysilane, vinyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, β (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropylto Examples include reethoxysilane and N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane.

次に、基材(1)について説明する。基材としては、特に限定されず、一般的に使用されている種々のシート状の基材(フィルム状のものを含む)のなかから、用途に応じて適宜選択して使用することができる。このような基材の材料として、たとえば、紙、板紙、ポリ乳酸、ポリブチルサクシネート等の生分解性プラスチック、ポリオレフィン樹脂(ポリエチレン、ポリプロピレン等)、ポリエステル樹脂(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ乳酸等)、ポリアミド樹脂(ナイロン−6、ナイロン−66等)、ポリ塩化ビニル樹脂、ポリイミド樹脂、これらの高分子を構成するモノマーのいずれか2種以上の共重合体等が挙げられる。基材は、帯電防止剤、紫外線吸収剤、可塑剤、滑剤、着色剤等の公知の添加剤を含有してもよい。   Next, the base material (1) will be described. It does not specifically limit as a base material, It can select and use suitably according to a use from the various sheet-like base materials (a film-form thing is included) generally used. Examples of such base materials include paper, paperboard, biodegradable plastics such as polylactic acid and polybutyl succinate, polyolefin resins (polyethylene, polypropylene, etc.), polyester resins (polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate). Phthalates, polylactic acid, etc.), polyamide resins (nylon-6, nylon-66, etc.), polyvinyl chloride resins, polyimide resins, copolymers of any two or more of these monomers. . The base material may contain known additives such as an antistatic agent, an ultraviolet absorber, a plasticizer, a lubricant, and a colorant.

特に、紙やポリ乳酸、ポリブチルサクシネートなどの生分解性プラスチック、バイオポリエチレンなど、バイオマス由来材料からできた基材を用いると、環境負荷の少ない天然物由来材料である微細セルロース繊維の利点を最大限に生かすことができるため、好ましい。   In particular, using base materials made of biomass-derived materials such as paper, polylactic acid, biodegradable plastics such as polybutyl succinate, bio-polyethylene, etc. It is preferable because it can maximize the use.

基材は、表面にコロナ処理、プラズマ処理、オゾン処理、フレーム処理等の表面処理が施されていてもよい。表面処理を施すことで、表面に積層される層(例えば、微細セルロース繊維層)との濡れ性や密着性がさらに向上する。これらの表面処理は公知の方法により実施できる。   The base material may be subjected to surface treatment such as corona treatment, plasma treatment, ozone treatment, flame treatment and the like on the surface. By performing the surface treatment, wettability and adhesion with a layer laminated on the surface (for example, a fine cellulose fiber layer) are further improved. These surface treatments can be performed by known methods.

基材の厚みは、当該積層材料の用途に応じて適宜設定できる。例えば、包装材料として用いられる場合、通常、5μm以上200μm以下の範囲内であり、10μm以上100μm以下が好ましい。コストや省資源の観点からは、10μm以上30μm以下が最も好ましい。   The thickness of the substrate can be appropriately set according to the use of the laminated material. For example, when used as a packaging material, it is usually in the range of 5 μm to 200 μm, preferably 10 μm to 100 μm. From the viewpoint of cost and resource saving, 10 μm or more and 30 μm or less is most preferable.

特に、本発明の積層体は、基材、アンカー層、微細セルロース繊維層に、カルボキシル基、スルホン酸基、アミノ基または水酸基を有しており、それらの極性同士が引き合うこと、または、アンカー層に含まれる後述の反応性化合物との反応により、密着、塗れ性、経時安定性が向上するため、基材の材料もカルボキシル基またはスルホン酸基、アミノ基または水酸基を有するものが好ましい。特に、ポリエステル樹脂が好ましい。   In particular, the laminate of the present invention has a carboxyl group, a sulfonic acid group, an amino group or a hydroxyl group in the base material, the anchor layer, and the fine cellulose fiber layer, and their polarities attract each other, or the anchor layer Since the adhesion, paintability, and stability over time are improved by the reaction with the reactive compound described later contained in the base material, the base material preferably has a carboxyl group, a sulfonic acid group, an amino group, or a hydroxyl group. In particular, a polyester resin is preferable.

また、通常のポリエステル樹脂は、末端のカルボキシル基が若干残っているのみに過ぎないが、これらのポリエステル樹脂を変性、改質し、より多くのカルボキシル基やスルホン酸基などを表面あるいは内部まで導入したポリエステル樹脂は、密着、塗れ性、経時安定性向上の効果が高く、より好ましい。また、ポリエステル樹脂の中でも、前述の環境負荷の少ない天然物由来材料である微細セルロース繊維の利点を最大限に生かすというメリットから、ポリ乳酸からなる基材を用いると、より好ましい。   In addition, ordinary polyester resins have only a few terminal carboxyl groups left, but these polyester resins are modified and modified to introduce more carboxyl groups and sulfonic acid groups to the surface or inside. The polyester resin is more preferred because it has a high effect of improving adhesion, paintability and stability over time. Further, among polyester resins, it is more preferable to use a base material made of polylactic acid because of the advantage of making the best use of the advantages of the fine cellulose fibers which are the above-mentioned natural product-derived materials with less environmental load.

次に、アンカー層(2)について説明する。本発明の積層体は、アンカー層を備えていることを特徴としている。これにより、微細セルロース繊維層に含まれる微細セルロース繊維が、剛直な性質であり高い弾性率を有すること、繊維形状であるため基材への接点の面積が小さいこと、および反応性が低いことにより、基材への密着性が低いという課題、また、微細セルロース繊維に用いられる分散媒が水系であることによる基材に対するはじきや塗れ性、塗工性に関する課題、さらに、基材の化学的不安定性や低分子量分子のブリード、結晶化、表面劣化のために、成膜後に経時で基材及び被膜が劣化し、密着性の低下が見られるといった課題を解決し、微細セルロース繊維の水系分散液からなる塗液を均一に塗工し、かつ基材との密着性を確保し、さらに、経時での密着性、基材及び微細セルロース繊維の劣化を抑えることが可能になる。   Next, the anchor layer (2) will be described. The laminate of the present invention is characterized by having an anchor layer. As a result, the fine cellulose fibers contained in the fine cellulose fiber layer have a rigid property and a high elastic modulus, and because of the fiber shape, the area of the contact point with the substrate is small, and the reactivity is low. The problem is that the adhesion to the substrate is low, the problem that the dispersion medium used in the fine cellulose fiber is water-based, the problem with respect to the repelling, paintability and coating property, and the chemical anxiety of the substrate A water-based dispersion of fine cellulose fibers that solves the problem of deterioration of adhesion and substrate deterioration due to qualitative and low molecular weight molecular bleeding, crystallization, and surface deterioration. It is possible to uniformly coat the coating liquid consisting of the above and to secure the adhesion to the substrate, and to suppress the adhesion with time and the deterioration of the substrate and fine cellulose fibers.

また、アンカー層には、カルボキシル基、スルホン酸基、アミノ基または水酸基を有する樹脂を少なくとも1種類以上含むことが好ましい。当該樹脂を含む場合、基材または微細セルロース繊維に存在するカルボキシル基、スルホン酸基、アミノ基または水酸基の極性同士が引き合うこと、また、アンカー層に含まれる反応性化合物と反応することにより、密着、塗れ性、経時安定性が向上する。特に、カルボキシル基を有する樹脂を含むことにより、極性同士の相互作用と、アンカー層に含まれる反応性化合物との反応による共有結合、また、それらの相乗効果により、これらの性能の向上効果が著しい。アンカー層に含まれる樹脂は、上記官能基を1種類だけ有しても、複数有してもよい。また、前述の効果を阻害しなければ、上記官能基以外の官能基を有していてもよい。   The anchor layer preferably contains at least one resin having a carboxyl group, a sulfonic acid group, an amino group or a hydroxyl group. When the resin is included, the polarities of the carboxyl group, sulfonic acid group, amino group or hydroxyl group present in the base material or fine cellulose fiber attract each other, and by reacting with the reactive compound contained in the anchor layer, the adhesion In addition, paintability and stability over time are improved. In particular, by including a resin having a carboxyl group, the effect of improving these performances is remarkable due to the interaction between polarities, the covalent bond due to the reaction with the reactive compound contained in the anchor layer, and the synergistic effect thereof. . The resin contained in the anchor layer may have only one type of functional group or a plurality of functional groups. Moreover, you may have functional groups other than the said functional group, if the above-mentioned effect is not inhibited.

これらの官能基を有する樹脂としては、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリウレタン樹脂、ポリアクリル酸樹脂もしくはポリオレフィン樹脂またはこれらの共重合体などを用いることができる。これらの樹脂は、酸変性した樹脂、酸化処理により変性した樹脂、あるいは化学改質により、上記官能基または他の官能基を導入した樹脂でもよい。これらの樹脂の中でも、特に、ポリウレタン樹脂、ポリアクリル酸樹脂、ポリエステル樹脂が、微細セルロース繊維との密着、塗れ性の向上に効果が高い。また、基材がポリエステル樹脂のとき、アンカー層にもポリエステル樹脂を用いると、極性同士の相互作用と、分子間力、アンカー層に含まれる反応性化合物との反応による共有結合、また、それらの相乗効果により、特に、各層間での密着の向上効果、経時安定性の効果が著しい。例えば、ポリ乳酸の基材を用いて、ポリ乳酸系の樹脂をアンカー層として用いる場合、特に、大抵の被膜とも密着が悪いポリ乳酸の基材にも、微細セルロース繊維層との密着を向上させることができる。上記樹脂は、アンカー層に少なくとも1種類含まれていればよく、上記樹脂を複数組み合わせて含まれていてもよい。また、前述の効果を阻害しなければ、上記樹脂以外の樹脂と組み合わせて含まれていてもよい。   As the resin having these functional groups, a polyester resin, a polyamide resin, a polyimide resin, a polyurethane resin, a polyacrylic acid resin, a polyolefin resin, or a copolymer thereof can be used. These resins may be acid-modified resins, resins modified by oxidation treatment, or resins having the above functional groups or other functional groups introduced by chemical modification. Among these resins, in particular, polyurethane resins, polyacrylic acid resins, and polyester resins are highly effective in improving adhesion and coating properties with fine cellulose fibers. In addition, when the base material is a polyester resin, if a polyester resin is also used for the anchor layer, the interaction between polarities, the intermolecular force, the covalent bond due to the reaction with the reactive compound contained in the anchor layer, and those Due to the synergistic effect, the effect of improving the adhesion between the layers and the effect of stability over time are particularly remarkable. For example, when a polylactic acid base material is used and a polylactic acid resin is used as an anchor layer, the adhesion with the fine cellulose fiber layer is improved especially on a polylactic acid base material that has poor adhesion to most coatings. be able to. The said resin should just be contained at least 1 type in the anchor layer, and may be contained combining multiple said resin. Moreover, as long as the above-mentioned effect is not inhibited, you may contain in combination with resin other than the said resin.

また、アンカー層に含まれる樹脂の酸価は、12以上が好ましく、20以上がより好ましい。酸価は、上記官能基の量や前述の効果に影響し、12より小さいと、密着性と塗れ性および経時安定性向上の効果が少ない。20以上であると、これらの効果が高い上、アンカー層に含まれる化合物との反応性も良好になり、50以上であると、反応性化合物がないあるいは少なくても極性同士の相互作用が大きく表れる。しかし、200より大きいと、耐水性およびブロッキング性にも影響を及ぼすことがあるため、12以上200以下がより好ましい。   Moreover, 12 or more are preferable and, as for the acid value of resin contained in an anchor layer, 20 or more are more preferable. The acid value affects the amount of the functional group and the above-described effects. If the acid value is less than 12, the effect of improving adhesion, paintability, and stability over time is small. If it is 20 or more, these effects are high, and the reactivity with the compound contained in the anchor layer is also good. If it is 50 or more, the interaction between polarities is large even if there is no reactive compound or there is little. appear. However, if it is larger than 200, it may affect the water resistance and blocking properties, so 12 or more and 200 or less are more preferable.

また、アンカー層に含まれる樹脂がカルボキシル基を持つ場合、そのカルボキシル基は、水酸化ナトリウムや水酸化カリウムなどの金属水酸化物、アンモニウム、ジエチルアンモニウムなどの有機アンモニウムなどを用いて各種塩を形成することができる。これらのカルボキシル基の状態は、樹脂の溶解性、溶媒の種類に大きく影響する。特に、後述の反応性化合物を含む場合、アンカー層に含まれる樹脂のカルボキシル基が、アンモニウム塩またはアミン塩を形成していると、低温で反応が進行するため好ましい。ここで、アミン塩としては、トリエチルアミン塩、テトラメチルアミン塩などが挙げられる。
また、アンカー層に含まれる樹脂のカルボキシル基は、塩を形成せず、カルボキシル基の状態、すなわち、「−COOH」の状態で存在していても、低温で反応が進行するため好ましい。
In addition, when the resin contained in the anchor layer has a carboxyl group, the carboxyl group forms various salts using metal hydroxides such as sodium hydroxide and potassium hydroxide, organic ammonium such as ammonium and diethylammonium. can do. The state of these carboxyl groups greatly affects the solubility of the resin and the type of solvent. In particular, when a reactive compound described later is included, it is preferable that the carboxyl group of the resin included in the anchor layer forms an ammonium salt or an amine salt because the reaction proceeds at a low temperature. Here, examples of the amine salt include triethylamine salt and tetramethylamine salt.
Further, the carboxyl group of the resin contained in the anchor layer is preferable because the reaction proceeds at a low temperature even when it does not form a salt and exists in the carboxyl group state, that is, in the state of “—COOH”.

また、アンカー層の厚みは、3nm以上10μm以下が好ましい。3nm未満であると、微細セルロース繊維の繊維幅よりも小さくなり、接点が少なくなることからも塗工性、経時安定性、特に密着向上の効果が殆ど現れない。一方、10μmを越えると、厚すぎて効率が悪い上、アンカー層と微細セルロース繊維層の歪みによる反りやカールが生じる。反りやカールの面からは、3nm以上5μm以下が好ましい。特に、コスト面や乾燥効率などの面から、3nm以上2μm以下がより好ましい。   The thickness of the anchor layer is preferably 3 nm or more and 10 μm or less. When the thickness is less than 3 nm, the width of the fine cellulose fiber is smaller than that of the fine cellulose fiber, and the number of contacts is reduced. On the other hand, if it exceeds 10 μm, the film is too thick and the efficiency is poor, and warping and curling occur due to distortion of the anchor layer and the fine cellulose fiber layer. From the aspect of warping and curling, 3 nm or more and 5 μm or less are preferable. In particular, 3 nm or more and 2 μm or less are more preferable in terms of cost and drying efficiency.

更に、アンカー層は、反応性化合物を含むことが好ましい。これらの反応性化合物は、アンカー層に含まれる樹脂との反応を促進し、また、微細セルロース繊維のカルボキシル基や水酸基などの官能基、更には、基材に含まれる官能基と反応することが好ましい。これらの相乗効果により、各層間での密着、塗工性、経時安定性を発揮することができる。反応性化合物としては、特に限定されないが、カルボジイミド基、オキサゾリン基、イソシアネート基、エポキシ基、アミノ基などを有する化合物が好ましく用いられる。中でも、カルボジイミド基、オキサゾリン基、イソシアネート基を含む化合物は、基材、アンカー層、微細セルロース繊維層に含まれる水酸基やカルボキシル基などとの反応を効率よく、しかも、低温度で反応することが可能なため、ポリエステルや、ポリオレフィン、特に、ポリ乳酸など熱による伸縮が大きい基材を用いる際に高い反応性を発揮する。
また、カルボジイミド基、オキサゾリン基は、室温など低温で緩やかに反応するため、ポリ乳酸などの基材とアンカー層、微細セルロース繊維との密着を経時で安定させることができる。特に、アンカー層を形成するときの乾燥温度を80℃以下の低温でとどめ、その上に微細セルロース繊維層を設けることで、アンカー層中の未反応のカルボジイミド基、オキサゾリン基が、基材や微細セルロース繊維層の劣化や密着性の低下を防ぐことができる。アンカー層を形成するときの乾燥温度は、劣化や密着性の低下を防ぐ効果が大きいことと、特に、基材として耐熱性が低いポリ乳酸などを用いる場合は、基材の変形を最小限に抑えるという面でも、60℃以下にすることがより好ましい。
Furthermore, the anchor layer preferably contains a reactive compound. These reactive compounds promote the reaction with the resin contained in the anchor layer, and may react with a functional group such as a carboxyl group or a hydroxyl group of the fine cellulose fiber, and further with a functional group contained in the substrate. preferable. Due to these synergistic effects, adhesion between layers, coating property, and stability over time can be exhibited. Although it does not specifically limit as a reactive compound, The compound which has a carbodiimide group, an oxazoline group, an isocyanate group, an epoxy group, an amino group etc. is used preferably. Above all, compounds containing carbodiimide groups, oxazoline groups, and isocyanate groups can react efficiently with hydroxyl groups and carboxyl groups contained in the base material, anchor layer, and fine cellulose fiber layer, and can react at low temperatures. Therefore, high reactivity is exhibited when using a base material which is large in expansion and contraction due to heat, such as polyester and polyolefin, particularly polylactic acid.
Moreover, since the carbodiimide group and the oxazoline group react slowly at a low temperature such as room temperature, the adhesion between the base material such as polylactic acid, the anchor layer, and the fine cellulose fiber can be stabilized over time. In particular, when the anchor layer is formed, the drying temperature is kept at a low temperature of 80 ° C. or lower, and a fine cellulose fiber layer is provided on the anchor layer so that unreacted carbodiimide groups and oxazoline groups in the anchor layer It is possible to prevent deterioration of the cellulose fiber layer and decrease in adhesion. The drying temperature when forming the anchor layer has a great effect of preventing deterioration and deterioration of adhesion, and especially when using polylactic acid with low heat resistance as the base material, the deformation of the base material is minimized. In terms of suppression, it is more preferable to set the temperature to 60 ° C. or lower.

また、これらの反応性化合物の分子量は、1000以上であることが好ましい。反応性化合物の分子量が1000より小さい場合、アンカー層が脆くなり、剛直な微細セルロス繊維からなる層や硬い基材との密着が安定せず、弱くなり易い。例えば、1000より大きい分子量の反応性化合物を用いた場合、積層体の厚み方向で見たときの最も弱い層の強度をラミネート強度として測定した時に、1.5N以上に保つことができる。
また、反応性化合物の分子量の上限は特に特定されないが、アンカー層の塗液粘度や膜強度、熱特性を考慮し、適宜調整される。
Moreover, it is preferable that the molecular weight of these reactive compounds is 1000 or more. When the molecular weight of the reactive compound is less than 1000, the anchor layer becomes brittle, and the adhesion with a layer made of rigid fine cellulosic fibers or a hard substrate is not stable and tends to be weak. For example, when a reactive compound having a molecular weight greater than 1000 is used, the strength of the weakest layer as viewed in the thickness direction of the laminate can be kept at 1.5 N or more when measured as the laminate strength.
Further, the upper limit of the molecular weight of the reactive compound is not particularly specified, but can be appropriately adjusted in consideration of the coating solution viscosity, film strength, and thermal characteristics of the anchor layer.

本発明の積層体(10)は、アンカー層(2)、微細セルロース繊維層(3)のほかに、必要に応じて、無機蒸着層や熱溶着可能な熱可塑性樹脂層など各種機能層を有してもよい。   In addition to the anchor layer (2) and the fine cellulose fiber layer (3), the laminate (10) of the present invention has various functional layers such as an inorganic vapor deposition layer and a heat-sealable thermoplastic resin layer as necessary. May be.

無機蒸着層は、積層体のガスバリア性、水蒸気バリア性をさらに向上させるために設ける層であり、例えば、酸化アルミニウム、酸化マグネシウム、酸化ケイ素などからなる。無機蒸着層の形成方法としては、真空蒸着法、スパッタリング法、プラズマ気相成長法などが挙げられる。無機蒸着層は、微細セルロース繊維層の表面に設けることが好ましい。   An inorganic vapor deposition layer is a layer provided in order to further improve the gas barrier property of a laminated body, and water vapor | steam barrier property, for example, consists of aluminum oxide, magnesium oxide, silicon oxide, etc. Examples of the method for forming the inorganic vapor deposition layer include a vacuum vapor deposition method, a sputtering method, and a plasma vapor deposition method. The inorganic vapor deposition layer is preferably provided on the surface of the fine cellulose fiber layer.

また、熱溶着可能な熱可塑性樹脂層は、本発明の積層体を用いて袋状包装体などを形成する際に、密封層として設けられるものである。図2に、本発明の熱可塑性樹脂層を設けた積層体(20)を示す。熱可塑性樹脂層(5)は、基材(1)の一方の面にアンカー層(2)を介して積層された微細セルロース繊維層(3)上に、接着層(4)を介して積層される。   Further, the heat-sealable thermoplastic resin layer is provided as a sealing layer when a bag-like package or the like is formed using the laminate of the present invention. FIG. 2 shows a laminate (20) provided with the thermoplastic resin layer of the present invention. The thermoplastic resin layer (5) is laminated via the adhesive layer (4) on the fine cellulose fiber layer (3) laminated via the anchor layer (2) on one surface of the substrate (1). The

熱可塑性樹脂層(5)としては、例えば、ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸エステル共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸エステル共重合体またはそれらの金属架橋物等の樹脂からなる熱溶着可能なフィルムが用いられる。
微細セルロース繊維層上への熱可塑性樹脂層の形成方法としては、熱可塑性樹脂層であるフィルムを、2液硬化型ウレタン樹脂などの接着剤を用いて、微細セルロース繊維層の表面に貼り合わせるドライラミネート法等を用いることが一般的であるが、コーティング、ノンソルベントラミネート、ウェットラミネート、押し出しラミネートなどいずれも公知の方法により積層することもできる。
このように、熱可塑性樹脂層は、微細セルロース繊維層の表面に、接着層を介して設けることが好ましい。また、微細セルロース繊維層と熱可塑性樹脂層との間には、接着層のほかに、印刷層など他の層を設けてもよい。
Examples of the thermoplastic resin layer (5) include polyethylene, polypropylene, ethylene-vinyl acetate copolymer, ethylene-methacrylic acid copolymer, ethylene-methacrylic acid ester copolymer, ethylene-acrylic acid copolymer, ethylene. A heat-weldable film made of a resin such as an acrylic ester copolymer or a metal cross-linked product thereof is used.
As a method for forming the thermoplastic resin layer on the fine cellulose fiber layer, a film that is a thermoplastic resin layer is bonded to the surface of the fine cellulose fiber layer using an adhesive such as a two-component curable urethane resin. A laminating method or the like is generally used, but any of coating, non-solvent laminating, wet laminating, extrusion laminating and the like can be laminated by a known method.
Thus, the thermoplastic resin layer is preferably provided on the surface of the fine cellulose fiber layer via the adhesive layer. In addition to the adhesive layer, other layers such as a printing layer may be provided between the fine cellulose fiber layer and the thermoplastic resin layer.

以下実施例、比較例について説明する。なお、本発明はこれら実施例により限定されるものではない。   Examples and comparative examples will be described below. In addition, this invention is not limited by these Examples.

(酸化セルロースの調製方法1)
セルロースとして汎用的に入手可能な針葉樹漂白パルプを用いた。
セルロース60g(絶乾質量換算)を蒸留水1000gに加え撹拌し、膨潤させた後ミキサーにより解繊した。ここに、蒸留水2200gと、予め蒸留水400gに溶解させたTEMPOを0.6g、臭化ナトリウム6gの溶液を加え、2mol/L濃度の次亜塩素酸ナトリウム水溶液172gを滴下により添加し、酸化反応を開始した。反応温度は常に20℃以下に維持した。反応中は系内のpHが低下するが、0.5NのNaOH水溶液を逐次添加し、pH10に調整した。そして、4時間反応させた時点で、エタノール60gを添加し、反応を停止した。続いて、反応液に0.5NのHClを滴下しpHを2まで低下させた。ナイロンメッシュを用いてこの反応液をろ過し、固形分をさらに水で数回洗浄し、反応試薬や副生成物を除去し、固形分濃度7%の水を含有した酸化セルロース1を得た。
(Preparation method 1 of oxidized cellulose)
Softwood bleached pulp, which is widely available as cellulose, was used.
60 g of cellulose (in terms of absolute dry mass) was added to 1000 g of distilled water, stirred and swollen, and then defibrated with a mixer. To this, 2200 g of distilled water and 0.6 g of TEMPO previously dissolved in 400 g of distilled water and 6 g of sodium bromide were added, and 172 g of a 2 mol / L sodium hypochlorite aqueous solution was added dropwise to oxidize. The reaction was started. The reaction temperature was always kept below 20 ° C. During the reaction, the pH in the system was lowered, but a 0.5 N NaOH aqueous solution was sequentially added to adjust the pH to 10. And when it was made to react for 4 hours, ethanol 60g was added and reaction was stopped. Subsequently, 0.5N HCl was added dropwise to the reaction solution to lower the pH to 2. This reaction solution was filtered using a nylon mesh, the solid content was further washed several times with water, the reaction reagent and by-products were removed, and the oxidized cellulose 1 containing water with a solid content concentration of 7% was obtained.

(酸化セルロースの調製方法2)
反応温度を30℃とする以外は、調製方法1と同様の調製方法により、酸化セルロース2を得た。
(Preparation method 2 of oxidized cellulose)
Oxidized cellulose 2 was obtained by the same preparation method as Preparation Method 1 except that the reaction temperature was 30 ° C.

(官能基の導入量の測定)
絶乾質量換算で0.2gの凍結乾燥した酸化セルロースをビーカーに量りとり蒸留水を加えて60gとした。0.1MのNaCl水溶液を0.5mL加え、0.5Mの塩酸でpHを2とした後0.5MのNaOH水溶液を滴下して伝導度測定を行った。測定はpHが11程度になるまで続けた。弱酸の中和段階に相当する部分がカルボキシル基量となるので、得られた伝導度曲線からNaOHの添加量を読み取ると、酸化セルロース1および2のカルボキシル基の含有量は、それぞれ1.6mmol/g、2.5mmol/gであった。
(Measurement of the amount of functional groups introduced)
0.2 g of freeze-dried oxidized cellulose in terms of absolute dry mass was weighed into a beaker, and distilled water was added to make 60 g. 0.5 mL of 0.1 M NaCl aqueous solution was added, the pH was adjusted to 2 with 0.5 M hydrochloric acid, and 0.5 M NaOH aqueous solution was dropped to conduct conductivity measurement. The measurement was continued until the pH reached about 11. Since the portion corresponding to the neutralization stage of the weak acid is the amount of carboxyl groups, when the amount of NaOH added is read from the obtained conductivity curve, the content of carboxyl groups in oxidized celluloses 1 and 2 is 1.6 mmol / g, 2.5 mmol / g.

次に、絶乾質量換算で2g湿潤酸化セルロースに0.5Mの酢酸20mLと蒸留水60mLと亜塩素酸ナトリウム1.8gを加えpH4に調整し48時間反応させた。この後、上記と同様の手法でカルボキシル基の含有量を測定したところ、それぞれ1.8mmol/g、2.6mmol/gであった。これより、アルデヒド基の含有量は、それぞれ0.2mmol/g、0.1mmol/gと算出できた。酸化セルロース1および2のカルボキシル基の含有量およびアルデヒド基の含有量を表1に示す。   Next, 20 g of 0.5 M acetic acid, 60 mL of distilled water and 1.8 g of sodium chlorite were added to 2 g of wet oxidized cellulose in terms of absolute dry mass, adjusted to pH 4 and reacted for 48 hours. Thereafter, when the carboxyl group content was measured by the same method as described above, it was 1.8 mmol / g and 2.6 mmol / g, respectively. From this, the aldehyde group content could be calculated as 0.2 mmol / g and 0.1 mmol / g, respectively. Table 1 shows the carboxyl group content and aldehyde group content of oxidized celluloses 1 and 2.

Figure 2012070441
Figure 2012070441

(微細セルロース繊維分散液1の調製)
上記により調製した固形分濃度7%の酸化セルロース1を57.14g(固形分4g)に蒸留水と、0.1Nのアンモニア水溶液を加え、pH10の酸化セルロース懸濁液400gとした。調製した懸濁液を回転刃つきミキサーにて60分間処理し、微細セルロース繊維分散液1を得た。
(Preparation of fine cellulose fiber dispersion 1)
Distilled water and 0.1N ammonia aqueous solution were added to 57.14 g (solid content 4 g) of the oxidized cellulose 1 having a solid content concentration of 7% prepared as described above to obtain 400 g of oxidized cellulose suspension having a pH of 10. The prepared suspension was processed for 60 minutes with a mixer equipped with a rotary blade to obtain a fine cellulose fiber dispersion 1.

(微細セルロース繊維分散液2の調製)
上記により調製した固形分濃度7%の酸化セルロース1を57.14g(固形分4g)に蒸留水と0.5N水酸化ナトリウム水溶液を加え、pH6.8の酸化セルロース懸濁液400gとした。調製した懸濁液を高圧ホモジナイザーにて処理し、微細セルロース分散液2を得た。
(Preparation of fine cellulose fiber dispersion 2)
Distilled water and 0.5N sodium hydroxide aqueous solution were added to 57.14 g (solid content 4 g) of the oxidized cellulose 1 having a solid content concentration of 7% prepared as described above to obtain 400 g of oxidized cellulose suspension having a pH of 6.8. The prepared suspension was treated with a high-pressure homogenizer to obtain a fine cellulose dispersion 2.

(微細セルロース分散液3の調製)
上記により調製した固形分濃度7%の酸化セルロース2を57.14g(固形分4g)に蒸留水と無機層状鉱物(モンモリロナイト)を固形分で2g、0.5N水酸化ナトリウム水溶液を加え、pH8の酸化セルロース懸濁液400gとした。調製した懸濁液を回転刃つきミキサーにて20分間処理し、微細セルロース繊維分散液3を得た。
(Preparation of fine cellulose dispersion 3)
To 57.14 g (solid content 4 g) of oxidized cellulose 2 having a solid content concentration of 7% prepared above, 2 g of distilled water and inorganic layered mineral (montmorillonite) were added in solid content, and 0.5N sodium hydroxide aqueous solution was added. 400 g of oxidized cellulose suspension was used. The prepared suspension was treated with a mixer with a rotary blade for 20 minutes to obtain a fine cellulose fiber dispersion 3.

微細セルロース分散液1から3の調製で用いた酸化セルロース、アルカリ、添加剤を表2に示す。また、微細セルロース分散液1から3に含まれる微細セルロース繊維の数平均繊維径を原子間力顕微鏡(AFM)で観測した高さの20点の平均から求めた。その結果も併せて表2に示す。   Table 2 shows the oxidized cellulose, alkali and additives used in the preparation of the fine cellulose dispersions 1 to 3. Further, the number average fiber diameter of the fine cellulose fibers contained in the fine cellulose dispersions 1 to 3 was obtained from an average of 20 points of the height observed with an atomic force microscope (AFM). The results are also shown in Table 2.

Figure 2012070441
Figure 2012070441

(アンカー層形成用塗液)
下記樹脂1〜7と下記添加剤1〜3の組み合わせにより、樹脂100重量部に対し添加剤10重量部を混合し、アンカー層を形成するための塗液(アンカー層形成用塗液)1〜10を調製した。アンカー層形成用塗液における樹脂1〜7と添加剤1〜3の組み合わせ、用いた溶媒および固形分濃度を表3に示す。
(Coating solution for anchor layer formation)
By combining the following resins 1 to 7 and the following additives 1 to 3, 10 parts by weight of the additive is mixed with 100 parts by weight of the resin to form an anchor layer (coating liquid for forming an anchor layer) 1 to 1 10 was prepared. Table 3 shows the combinations of resins 1 to 7 and additives 1 to 3 in the anchor layer forming coating solution, the solvent used, and the solid content concentration.

[樹脂1〜7]
樹脂1・・・ポリエスター WR−961
(カルボキシル基含有ポリエステル、アンモニウム塩型、酸価60−70)
日本合成化学製
樹脂2・・・ポリエスター WR−901
(硫酸ナトリウム基含有ポリエステル、酸価5以下)
日本合成化学製
樹脂3・・・アローベース SB−1010
(カルボキシル基含有酸変性ポリオレフィン、アンモニウム塩型、
酸価12以上)
ユニチカ製
樹脂4・・・NT−ハイラミック
(ポリウレタン)
大日精化製
樹脂5・・・バイロエコール BE−600
(ポリ乳酸)
東洋紡績製
樹脂6・・・キトサン
大日精化製
樹脂7・・・ダイヤナール BR−107
(アクリル)
三菱レイヨン製
[Resin 1-7]
Resin 1 ... Polyester WR-961
(Carboxyl group-containing polyester, ammonium salt type, acid value 60-70)
Nippon Synthetic Chemical Co., Ltd. Resin 2 Polyester WR-901
(Sodium sulfate group-containing polyester, acid value of 5 or less)
Nippon Synthetic Chemical Co., Ltd. Resin 3 ... Arrow Base SB-1010
(Carboxyl group-containing acid-modified polyolefin, ammonium salt type,
Acid value 12 or more)
Unitika Resin 4 NT-Hilamic
(Polyurethane)
Made by Dainichi Seika Co., Ltd. Resin 5: Bye Ecole BE-600
(Polylactic acid)
Toyobo resin 6 ... chitosan
Dainichi Seisaku Co., Ltd. Resin 7… Dianar BR-107
(acrylic)
Made by Mitsubishi Rayon

[添加剤1〜3]
添加剤1・・・SV−02
(水溶性ポリカルボジイミド 分子量1000以上)
日清紡製
添加剤2・・・エポクロスWS−500
(オキサゾリン 分子量70000)
日本触媒製
添加剤3・・・タケネートA65
(イソシアネート)
三井化学製
添加剤4・・・EX614
(エポキシ)
ナガセケムテックス製
[Additives 1-3]
Additive 1 ... SV-02
(Water-soluble polycarbodiimide, molecular weight 1000 or more)
Nisshinbo additive 2 ... Epocross WS-500
(Oxazoline molecular weight 70000)
Nippon Shokubai additive 3 ... Takenate A65
(Isocyanate)
Mitsui Chemicals additive 4 ... EX614
(Epoxy)
Made by Nagase ChemteX

Figure 2012070441
Figure 2012070441

<実施例1〜9>
基材として、表面をコロナ処理した厚み25μmのポリ乳酸フィルムを用意した。基材のコロナ処理面上に、アンカー層形成用塗液1〜9をバーコーターを用いて塗布した後、60℃で20分間乾燥処理することにより、厚み約0.2μmのアンカー層を形成した。
アンカー層上に、微細セルロース繊維分散液1をバーコーターを用いて塗布した後、60℃で20分間乾燥処理することにより、厚み約0.2μmの微細セルロース繊維層を形成した。
さらに、微細セルロース繊維層上に、ウレタンポリオール系接着剤を用いて、ドライラミネートにより、熱溶着可能な熱可塑性樹脂層である厚み70μmのポリプロピレンフィルムを貼り合わせて、基材/アンカー層/微細セルロース繊維層/接着層/熱可塑性樹脂層の積層体を得た。
<Examples 1-9>
A 25 μm thick polylactic acid film having a corona-treated surface was prepared as a substrate. On the corona-treated surface of the base material, anchor layer forming coating solutions 1 to 9 were applied using a bar coater, and then dried at 60 ° C. for 20 minutes to form an anchor layer having a thickness of about 0.2 μm. .
On the anchor layer, the fine cellulose fiber dispersion 1 was applied using a bar coater and then dried at 60 ° C. for 20 minutes to form a fine cellulose fiber layer having a thickness of about 0.2 μm.
Further, a polypropylene film having a thickness of 70 μm, which is a thermoplastic resin layer that can be heat-welded, is bonded to the fine cellulose fiber layer by dry lamination using a urethane polyol-based adhesive, and a base material / anchor layer / fine cellulose. A laminate of fiber layer / adhesive layer / thermoplastic resin layer was obtained.

<実施例10〜12>
基材として、表面をコロナ処理した厚み25μmのポリエチレンテレフタレートフィルムを用意した。基材のコロナ処理面上に、アンカー層形成用塗液2、3、4をバーコーターを用いて塗布した後、80℃で20分間乾燥処理することにより、厚み約0.2μmのアンカー層を形成した。
アンカー層上に、微細セルロース繊維分散液2をバーコーターを用いて塗布した後、100℃で20分間乾燥処理することにより、厚み約0.2μmの微細セルロース繊維層を形成した。
さらに、微細セルロース繊維層上に、ウレタンポリオール系接着剤を用いて、ドライラミネートにより、熱可塑性樹脂層である厚み70μmのポリプロピレンフィルムを貼り合わせて、基材/アンカー層/微細セルロース繊維層/接着層/熱可塑性樹脂層の積層体を得た。
<Examples 10 to 12>
As a substrate, a polyethylene terephthalate film having a thickness of 25 μm and a corona-treated surface was prepared. On the corona-treated surface of the base material, the anchor layer forming coating solutions 2, 3, and 4 are applied using a bar coater, and then dried at 80 ° C. for 20 minutes to form an anchor layer having a thickness of about 0.2 μm. Formed.
On the anchor layer, the fine cellulose fiber dispersion 2 was applied using a bar coater and then dried at 100 ° C. for 20 minutes to form a fine cellulose fiber layer having a thickness of about 0.2 μm.
Further, a polypropylene film having a thickness of 70 μm, which is a thermoplastic resin layer, is bonded to the fine cellulose fiber layer by dry lamination using a urethane polyol-based adhesive, and the base material / anchor layer / fine cellulose fiber layer / adhesion. A layer / thermoplastic resin layer laminate was obtained.

<実施例13>
基材として、表面をコロナ処理した厚み20μmの延伸ポリプロピレンフィルムを用意した。基材のコロナ処理面上に、アンカー層形成用塗液4をバーコーターを用いて塗布した後、80℃で20分間乾燥処理することにより、厚み約1μmのアンカー層を形成した。
アンカー層上に、微細セルロース繊維分散液3をバーコーターを用いて塗布した後、80℃で20分間乾燥処理することにより、厚み約0.5μmの微細セルロース繊維層を形成した。
さらに、微細セルロース繊維層上に、ウレタンポリオール系接着剤を用いて、ドライラミネートにより、熱可塑性樹脂層である厚み70μmのポリプロピレンフィルムを貼り合わせて、基材/アンカー層/微細セルロース繊維層/接着層/熱可塑性樹脂層の積層体を得た。
<Example 13>
A stretched polypropylene film having a thickness of 20 μm whose surface was corona-treated was prepared as a substrate. On the corona-treated surface of the substrate, the anchor layer-forming coating solution 4 was applied using a bar coater, and then dried at 80 ° C. for 20 minutes to form an anchor layer having a thickness of about 1 μm.
On the anchor layer, the fine cellulose fiber dispersion 3 was applied using a bar coater, and then dried at 80 ° C. for 20 minutes to form a fine cellulose fiber layer having a thickness of about 0.5 μm.
Further, a polypropylene film having a thickness of 70 μm, which is a thermoplastic resin layer, is bonded to the fine cellulose fiber layer by dry lamination using a urethane polyol-based adhesive, and the base material / anchor layer / fine cellulose fiber layer / adhesion. A layer / thermoplastic resin layer laminate was obtained.

<比較例1>
基材のコロナ処理面上にアンカー層を形成せず、直接微細セルロース繊維分散液1をバーコーターを用いて塗布した以外は、実施例1〜9と同様にして積層体を得た。
<Comparative Example 1>
A laminate was obtained in the same manner as in Examples 1 to 9 except that the anchor layer was not formed on the corona-treated surface of the substrate and the fine cellulose fiber dispersion 1 was directly applied using a bar coater.

<比較例2>
アンカー層形成用塗液として、アンカー層形成用塗液9を用いた以外は、実施例10〜12と同様にして積層体を得た。なお、アンカー層形成用塗液10は塗工性が悪く、形成したアンカー層に直接微細セルロース繊維分散液を塗布することが困難であったため、アンカー層表面にコロナ処理を過剰に加え、その後微細セルロース繊維層を設けた。
<Comparative example 2>
A laminate was obtained in the same manner as in Examples 10 to 12 except that the anchor layer forming coating solution 9 was used as the anchor layer forming coating solution. In addition, since the coating liquid 10 for anchor layer formation was poor in coating properties and it was difficult to apply the fine cellulose fiber dispersion directly to the formed anchor layer, an excessive amount of corona treatment was added to the anchor layer surface, and then the fine coating was performed. A cellulose fiber layer was provided.

[塗工性評価]
実施例1〜13および比較例1、2の積層体を作製する際の、微細セルロース繊維分散液を塗布する工程において、実施例1〜13では、微細セルロース繊維分散液の塗れ性が良好で、特にはじきやムラ等が観察されることはなかった。また、比較例2では、アンカー層表面にコロナ処理を過剰に加えたため、微細セルロース繊維分散液の塗れ性はある程度良好であった。
一方、比較例1では、塗れ性が悪く、微細セルロース繊維分散液のはじきやムラが目視で観察できた。
[Coating property evaluation]
In the process of applying the fine cellulose fiber dispersion when preparing the laminates of Examples 1 to 13 and Comparative Examples 1 and 2, in Examples 1 to 13, the wettability of the fine cellulose fiber dispersion is good. In particular, no repelling or unevenness was observed. In Comparative Example 2, since the corona treatment was excessively applied to the anchor layer surface, the wettability of the fine cellulose fiber dispersion was good to some extent.
On the other hand, in Comparative Example 1, the wettability was poor, and the repelling and unevenness of the fine cellulose fiber dispersion could be visually observed.

[通常条件での酸素透過度測定]
積層体の酸素透過度(cm/m/day/atm)を、25℃、40%RH雰囲気下で、酸素透過度測定装置MOCON OX−TRAN 2/21(モダンコントロール社製)を用いて測定することで、通常条件下での酸素バリア性を評価した。
[Measurement of oxygen permeability under normal conditions]
The oxygen permeability (cm 3 / m 2 / day / atm) of the laminate was measured using an oxygen permeability measuring apparatus MOCON OX-TRAN 2/21 (manufactured by Modern Control Co., Ltd.) at 25 ° C. and 40% RH atmosphere. By measuring, the oxygen barrier property under normal conditions was evaluated.

[高湿度条件での水蒸気透過率測定]
積層体の水蒸気透過度(g/m/day)を、40℃、90%RH雰囲気下で、JIS Z0208に準拠し、カップ法により測定することで、高湿度条件での水蒸気バリア性を評価した。
[Measurement of water vapor transmission rate under high humidity conditions]
The water vapor permeability (g / m 2 / day) of the laminate is measured by the cup method in accordance with JIS Z0208 in an atmosphere of 40 ° C. and 90% RH, thereby evaluating water vapor barrier properties under high humidity conditions. did.

[密着性試験]
積層体を幅15mm長さ100mmの短冊状に切りとり、剥離速度300mm/min.におけるT型剥離強度を測定した。
[Adhesion test]
The laminate was cut into strips having a width of 15 mm and a length of 100 mm, and a peeling rate of 300 mm / min. T-type peel strength was measured.

[経時安定性試験]
積層体を40℃90%の環境下で1週間保管し、前述の密着性試験の方法と同様に密着性を評価した。
[Stability test over time]
The laminate was stored for 1 week in an environment of 40 ° C. and 90%, and the adhesion was evaluated in the same manner as in the adhesion test method described above.

以上の評価結果を表4に示す。   The above evaluation results are shown in Table 4.

Figure 2012070441
Figure 2012070441

以上の結果から、本発明の積層体は、塗れ性や塗工性が良好で、微細セルロース繊維層がムラになることなく、均一な膜を形成することができるため、外観も良好で、酸素透過率および水蒸気透過率が小さく、良好なバリア性を示したといえる。
また、密着性に関しても、実施例のものは良好な結果を示しており、経時安定性に関しても良好な結果を示した。また、これらの効果は、アンカー層に反応性化合物が含まれるもの、アンカー層形成用塗液の塗布後の乾燥温度を60℃以下で加工したものほど大きい結果となった。
From the above results, the laminate of the present invention has good coatability and coatability, and can form a uniform film without unevenness of the fine cellulose fiber layer. It can be said that the permeability and water vapor permeability were small, and good barrier properties were exhibited.
Moreover, the thing of the Example also showed the favorable result regarding the adhesiveness, and also showed the favorable result regarding the temporal stability. In addition, these effects were larger as the anchor layer contained a reactive compound, and those processed at a drying temperature of 60 ° C. or less after application of the anchor layer forming coating solution.

本発明の積層体は、食品や医薬品をはじめとする包装材料分野において、内容物を保護するために、包装材料を透過する酸素や水蒸気などの気体を遮断するフィルムやシート、または、ボトルなどの成形物等に用いることができる。   The laminate of the present invention is used in the field of packaging materials such as foods and pharmaceuticals, in order to protect the contents, such as films and sheets that block gas such as oxygen and water vapor that permeate the packaging material, bottles, etc. It can be used for molded products.

1・・・基材
2・・・アンカー層
3・・・微細セルロース繊維層
4・・・接着層
5・・・熱可塑性樹脂層
10、20・・・積層体
DESCRIPTION OF SYMBOLS 1 ... Base material 2 ... Anchor layer 3 ... Fine cellulose fiber layer 4 ... Adhesive layer 5 ... Thermoplastic resin layer 10, 20 ... Laminate

Claims (13)

少なくとも、基材と、前記基材の一方の面に、アンカー層と、カルボキシル基を有する微細セルロース繊維を含む微細セルロース繊維層とをこの順に設けた積層体であって、
前記アンカー層が、カルボキシル基、スルホン酸基、アミノ基または水酸基を有する樹脂を少なくとも1種類以上含むことを特徴とする積層体。
At least a base material, and a laminated body in which an anchor layer and a fine cellulose fiber layer containing fine cellulose fibers having a carboxyl group are provided in this order on one surface of the base material,
The laminated body, wherein the anchor layer contains at least one resin having a carboxyl group, a sulfonic acid group, an amino group, or a hydroxyl group.
前記微細セルロース繊維が、酸化反応によりカルボキシル基が導入された酸化セルロースであり、前記カルボキシル基の含有量が、0.1mmol/g以上5.5mmol/g以下であることを特徴とする請求項1に記載の積層体。   2. The fine cellulose fiber is oxidized cellulose into which carboxyl groups are introduced by an oxidation reaction, and the content of the carboxyl groups is 0.1 mmol / g or more and 5.5 mmol / g or less. The laminated body as described in. 前記微細セルロース繊維の数平均繊維径が、0.001μm以上0.200μm以下であることを特徴とする請求項2に記載の積層体。   The number average fiber diameter of the said fine cellulose fiber is 0.001 micrometer or more and 0.200 micrometer or less, The laminated body of Claim 2 characterized by the above-mentioned. 前記微細セルロース繊維のカルボキシル基が、アンモニウム塩またはアミン塩を形成していることを特徴とする請求項3に記載の積層体。   The laminate according to claim 3, wherein the carboxyl group of the fine cellulose fiber forms an ammonium salt or an amine salt. 前記アンカー層に含まれる樹脂が、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリアクリル酸樹脂もしくはポリオレフィン樹脂またはこれらの共重合体であることを特徴とする請求項3に記載の積層体。   4. The laminate according to claim 3, wherein the resin contained in the anchor layer is a polyester resin, a polyamide resin, a polyurethane resin, a polyacrylic acid resin, a polyolefin resin, or a copolymer thereof. 前記アンカー層が、カルボキシル基を有する樹脂を少なくとも含み、前記樹脂のカルボキシル基が、アンモニウム塩またはアミン塩を形成していることを特徴とする請求項3に記載の積層体。   The laminate according to claim 3, wherein the anchor layer includes at least a resin having a carboxyl group, and the carboxyl group of the resin forms an ammonium salt or an amine salt. 前記アンカー層が、更に、カルボジイミド基、オキサゾリン基、イソシアネート基またはエポキシ基を有する反応性化合物を含むことを特徴とする請求項5に記載の積層体。   The laminate according to claim 5, wherein the anchor layer further contains a reactive compound having a carbodiimide group, an oxazoline group, an isocyanate group or an epoxy group. 前記基材が、ポリエステル樹脂からなり、前記アンカー層が、カルボキシル基を有するポリエステル樹脂と、カルボジイミド基またはオキサゾリン基を有する反応性化合物とを含むことを特徴とする請求項7に記載の積層体。   The laminate according to claim 7, wherein the base material is made of a polyester resin, and the anchor layer includes a polyester resin having a carboxyl group and a reactive compound having a carbodiimide group or an oxazoline group. 前記基材を構成するポリエステル樹脂が、ポリ乳酸であることを特徴とする請求項8に記載の積層体。   The laminate according to claim 8, wherein the polyester resin constituting the base material is polylactic acid. 前記反応性化合物の分子量が、1000以上であることを特徴とする請求項7に記載の積層体。   The laminated body according to claim 7, wherein the molecular weight of the reactive compound is 1000 or more. 前記アンカー層に含まれる樹脂の酸価が、12以上であることを特徴とする請求項7に記載の積層体。   The laminate according to claim 7, wherein an acid value of the resin contained in the anchor layer is 12 or more. 前記アンカー層の厚みが、3nm以上10μm以下であることを特徴とする請求項11に記載の積層体。   The laminate according to claim 11, wherein the anchor layer has a thickness of 3 nm to 10 μm. 少なくとも、基材と、前記基材の一方の面に、アンカー層と、カルボキシル基を有する微細セルロース繊維を含む微細セルロース繊維層とをこの順に設けた積層体の製造方法であって、
前記基材の一方の面に、カルボキシル基、スルホン酸基、アミノ基または水酸基を有する樹脂を少なくとも1種類以上と、カルボジイミド基、オキサゾリン基、イソシアネート基またはエポキシ基を有する反応性化合物とを含む塗液を用いて塗膜を形成する工程と、
前記塗膜を80℃以下で乾燥させて前記アンカー層を形成する工程と、
前記アンカー層の上に前記微細セルロース繊維層を形成する工程と
を備えることを特徴とする積層体の製造方法。
At least a base material, and a manufacturing method of a laminate in which an anchor layer and a fine cellulose fiber layer containing fine cellulose fibers having a carboxyl group are provided in this order on one surface of the base material,
On one surface of the substrate, a coating containing at least one kind of resin having a carboxyl group, a sulfonic acid group, an amino group or a hydroxyl group and a reactive compound having a carbodiimide group, an oxazoline group, an isocyanate group or an epoxy group. Forming a coating film using the liquid;
Drying the coating film at 80 ° C. or less to form the anchor layer;
And a step of forming the fine cellulose fiber layer on the anchor layer.
JP2012545696A 2010-11-25 2011-11-16 Laminated body and method for producing the same Active JP5928339B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010262204 2010-11-25
JP2010262204 2010-11-25
PCT/JP2011/076368 WO2012070441A1 (en) 2010-11-25 2011-11-16 Laminate and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2012070441A1 true JPWO2012070441A1 (en) 2014-05-19
JP5928339B2 JP5928339B2 (en) 2016-06-01

Family

ID=46145787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012545696A Active JP5928339B2 (en) 2010-11-25 2011-11-16 Laminated body and method for producing the same

Country Status (6)

Country Link
US (1) US9404016B2 (en)
EP (1) EP2644371B1 (en)
JP (1) JP5928339B2 (en)
KR (1) KR101956393B1 (en)
CN (1) CN103052499B (en)
WO (1) WO2012070441A1 (en)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090016988A1 (en) 2005-11-21 2009-01-15 Buckley J Thomas Modified Pore-Forming Protein Toxins and Use Thereof
JP6021822B2 (en) * 2011-12-16 2016-11-09 三井化学東セロ株式会社 Gas barrier resin composition and gas barrier composite film
JP6175753B2 (en) * 2012-10-16 2017-08-09 凸版印刷株式会社 Laminated body and method for producing the same
JP6313755B2 (en) * 2013-05-08 2018-04-18 日本製紙株式会社 Paper barrier packaging materials
CN103421214A (en) * 2013-07-04 2013-12-04 南京林业大学 Method for preparing crop straw reinforced starch plastics through C6 oxidation
JP5823599B2 (en) 2013-12-26 2015-11-25 花王株式会社 Fine cellulose fiber composite
JP2015183096A (en) * 2014-03-24 2015-10-22 凸版印刷株式会社 Coating agent, barrier film, packaging film and manufacturing method of coating agent
JP6686880B2 (en) * 2014-04-22 2020-04-22 王子ホールディングス株式会社 Composite and method for producing the same
GB2529904A (en) * 2014-09-08 2016-03-09 Innovia Films Ltd Laminated structure
JP6664166B2 (en) * 2014-11-28 2020-03-13 日東電工株式会社 Adhesive sheet for portable electronic devices
CN107849153B (en) * 2015-06-30 2020-11-06 比勒鲁迪克斯那斯公司 Oxygen barrier based on modified cellulose fibres
JP6701807B2 (en) * 2015-09-18 2020-05-27 王子ホールディングス株式会社 Laminate
EP3351374B1 (en) * 2015-09-18 2021-11-03 Oji Holdings Corporation Laminate
JP6773775B2 (en) * 2015-10-29 2020-10-21 テトラ ラバル ホールディングス アンド ファイナンス エス エイ Barrier films or sheets, laminated packaging materials containing barrier films or sheets and packaging containers made from them
WO2017094595A1 (en) 2015-11-30 2017-06-08 王子ホールディングス株式会社 Sheet and sheet manufacturing method
JP6764111B2 (en) * 2015-12-09 2020-09-30 富士通株式会社 Method of forming a coating film containing cellulose nanofibers
JP7052356B2 (en) * 2016-01-20 2022-04-12 王子ホールディングス株式会社 Laminated body and manufacturing method of the laminated body
US10195826B2 (en) 2016-03-11 2019-02-05 Solutia Inc. Cellulose ester multilayer interlayers
US10293584B2 (en) 2016-03-11 2019-05-21 Solutia Inc. Cellulose ester multilayer interlayers
US10293585B2 (en) 2016-03-11 2019-05-21 Solutia Inc. Cellulose ester multilayer interlayers
US10293583B2 (en) 2016-03-11 2019-05-21 Solutia Inc. Cellulose ester multilayer interlayers
US10300682B2 (en) 2016-03-11 2019-05-28 Solutia Inc. Cellulose ester multilayer interplayers
US10293579B2 (en) 2016-03-11 2019-05-21 Solutia Inc. Cellulose ester multilayer interlayers
US10293580B2 (en) 2016-03-11 2019-05-21 Solutia Inc. Cellulose ester multilayer interlayers
US10293582B2 (en) 2016-03-11 2019-05-21 Solutia Inc. Cellulose ester multilayer interlayers
JP6907600B2 (en) * 2017-03-02 2021-07-21 王子ホールディングス株式会社 Laminated sheet
SE1750411A1 (en) * 2017-04-03 2018-10-04
KR101877703B1 (en) * 2018-01-24 2018-07-12 충남대학교산학협력단 Manufacturing method of eco-friendly food packaging films using sea squirt shell protein and polylactic acid
KR20200110780A (en) 2018-02-23 2020-09-25 오지 홀딩스 가부시키가이샤 Method for producing fibrous cellulose-containing film, resin composition, film and laminate
JP6560778B1 (en) * 2018-03-07 2019-08-14 第一工業製薬株式会社 Coating composition and method for producing the same
JP6560779B1 (en) * 2018-03-07 2019-08-14 第一工業製薬株式会社 COATING COMPOSITION AND PROCESS FOR PRODUCING THE SAME
JP7138459B2 (en) * 2018-03-20 2022-09-16 株式会社きもと Functional material
NL2021326B1 (en) * 2018-03-29 2019-10-07 Huhtamaki Molded Fiber Tech Bv Biodegradable and compostable food packaging unit from a moulded pulp material with a cellulose-base laminate layer, and method for manufacturing such food packaging unit
CA3098812A1 (en) * 2018-05-02 2019-11-07 Toyo Seikan Group Holdings, Ltd. Nanocellulose-containing product and method for producing the same
JP7186410B2 (en) * 2018-05-17 2022-12-09 パナソニックIpマネジメント株式会社 How to use adhesive or adhesive sheet
JP7008190B2 (en) * 2018-05-17 2022-01-25 パナソニックIpマネジメント株式会社 Adhesive or adhesive sheets and laminates
JP7057218B2 (en) * 2018-05-22 2022-04-19 第一工業製薬株式会社 Laminate
JP6708274B1 (en) * 2019-02-12 2020-06-10 王子ホールディングス株式会社 Method for producing fibrous cellulose-containing coating, resin composition, coating and laminate
KR20230003231A (en) * 2020-05-19 2023-01-05 오지 홀딩스 가부시키가이샤 Microfibrillar cellulose, dispersion, sheet, laminated sheet, laminate, and method for producing microfibrous cellulose
CN112251879B (en) * 2020-10-26 2022-05-06 宁波丰茂远东橡胶有限公司 Wear-resistant tear-resistant die-pressing poly V-belt and preparation method thereof
WO2023067282A1 (en) * 2021-10-21 2023-04-27 Hexcel Reinforcements Reinforcing material comprising a porous layer made of a reactive thermoplastic polymer and associated methods
FR3128398B1 (en) * 2021-10-21 2024-01-26 Hexcel Reinforcements Reinforcement material comprising a porous layer of a reactive thermoplastic polymer and associated methods
FR3128399A1 (en) * 2021-10-21 2023-04-28 Hexcel Reinforcements Process for manufacturing composite parts from a reinforcing material comprising a porous layer of a reactive thermoplastic polymer and a thermosetting resin
CN116622268B (en) * 2023-04-11 2024-02-23 湖南大学 Cellulose nanocrystalline super-hydrophilic coating, preparation method and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306346A (en) * 2002-04-11 2003-10-28 Nippon Paint Co Ltd Method for improving impact resistance of glass or mirror and method for preventing scattering on breakage
JP2010184999A (en) * 2009-02-12 2010-08-26 Toppan Printing Co Ltd Coating agent and molded product
JP2011207042A (en) * 2010-03-30 2011-10-20 Kao Corp Method of manufacturing gas barrier laminate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3527656A (en) * 1967-06-26 1970-09-08 Du Pont Anchor coated regenerated cellulose film
JPS61287740A (en) * 1985-06-15 1986-12-18 三菱油化株式会社 Thermoplastic halogen contained resin laminate
CN101272904B (en) * 2005-09-26 2012-12-19 尤尼吉可株式会社 Gas barrier multilayer body and article
JP4998981B2 (en) 2006-06-20 2012-08-15 国立大学法人 東京大学 Fine cellulose fiber
US20080000603A1 (en) * 2006-06-29 2008-01-03 Neogi Amar N Covalent Bonding of Carboxylated Cellulose Fiber Webs
CN101772516B (en) * 2007-08-07 2012-10-10 花王株式会社 Gas barrier material
JP5616056B2 (en) * 2008-12-26 2014-10-29 花王株式会社 Method for producing film-shaped molded body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306346A (en) * 2002-04-11 2003-10-28 Nippon Paint Co Ltd Method for improving impact resistance of glass or mirror and method for preventing scattering on breakage
JP2010184999A (en) * 2009-02-12 2010-08-26 Toppan Printing Co Ltd Coating agent and molded product
JP2011207042A (en) * 2010-03-30 2011-10-20 Kao Corp Method of manufacturing gas barrier laminate

Also Published As

Publication number Publication date
EP2644371A1 (en) 2013-10-02
US20130260143A1 (en) 2013-10-03
JP5928339B2 (en) 2016-06-01
CN103052499A (en) 2013-04-17
CN103052499B (en) 2016-01-20
US9404016B2 (en) 2016-08-02
KR101956393B1 (en) 2019-03-08
WO2012070441A1 (en) 2012-05-31
EP2644371A4 (en) 2017-06-28
EP2644371B1 (en) 2020-08-05
KR20130140627A (en) 2013-12-24

Similar Documents

Publication Publication Date Title
JP5928339B2 (en) Laminated body and method for producing the same
JP5765331B2 (en) Fine cellulose fiber dispersion and process for producing the same, cellulose film and laminate
JP6175753B2 (en) Laminated body and method for producing the same
JP5704165B2 (en) Film-forming composition and sheet
EP2551104B1 (en) Gas barrier laminate and packaging material
JP5879674B2 (en) Sheet manufacturing method
JP6107658B2 (en) Film-forming composition, laminate, film, sheet substrate, packaging material, and method for producing film-forming composition
JP4816848B2 (en) Coating agent and laminated material using the coating agent
JP6287061B2 (en) Method for producing gas barrier packaging material precursor
JP2012149114A (en) Film-forming composition, sheet and packaging material
JP2014196400A (en) Gas barrier layer formation material, production method thereof and gas barrier laminate
JP5640698B2 (en) Laminated body and method for producing the same
JP2018060765A (en) Lithium ion secondary battery exterior packaging material
JP5195969B2 (en) Laminated material using coating agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R150 Certificate of patent or registration of utility model

Ref document number: 5928339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250