JPWO2012060390A1 - Coating composition and coating film forming method - Google Patents

Coating composition and coating film forming method Download PDF

Info

Publication number
JPWO2012060390A1
JPWO2012060390A1 JP2012541885A JP2012541885A JPWO2012060390A1 JP WO2012060390 A1 JPWO2012060390 A1 JP WO2012060390A1 JP 2012541885 A JP2012541885 A JP 2012541885A JP 2012541885 A JP2012541885 A JP 2012541885A JP WO2012060390 A1 JPWO2012060390 A1 JP WO2012060390A1
Authority
JP
Japan
Prior art keywords
group
coating composition
parts
acrylate
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012541885A
Other languages
Japanese (ja)
Other versions
JP5762435B2 (en
Inventor
近藤 充
充 近藤
祐一 稲田
祐一 稲田
玄児 今井
玄児 今井
洵平 橋本
洵平 橋本
正春 石黒
正春 石黒
靖洋 富崎
靖洋 富崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP2012541885A priority Critical patent/JP5762435B2/en
Publication of JPWO2012060390A1 publication Critical patent/JPWO2012060390A1/en
Application granted granted Critical
Publication of JP5762435B2 publication Critical patent/JP5762435B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0861Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers
    • C08G18/0871Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers the dispersing or dispersed phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8141Unsaturated isocyanates or isothiocyanates masked
    • C08G18/815Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen
    • C08G18/8158Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen
    • C08G18/8175Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen with esters of acrylic or alkylacrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

本発明が解決すべき課題は、塗装工程における加熱温度の低温化及び加熱時間の短縮が可能であり、さらに耐擦り傷性、耐衝撃性、耐汚染性に優れる塗膜を得ることができる塗料組成物を提供することである。本発明は、カプロラクトン変性ヒドロキシアルキル(メタ)アクリレート(a1)とポリイソシアネート化合物(a2)とを反応させることにより得られ、かつ300〜3,800の範囲のイソシアネート当量を有するラジカル重合性不飽和基含有化合物(A)、非水分散型樹脂(B)及び光重合開始剤(C)を含有することを特徴とする塗料組成物を提供する。The problem to be solved by the present invention is that the coating composition can reduce the heating temperature and shorten the heating time in the coating process, and can obtain a coating film excellent in scratch resistance, impact resistance and stain resistance. Is to provide things. The present invention is a radically polymerizable unsaturated group obtained by reacting a caprolactone-modified hydroxyalkyl (meth) acrylate (a1) with a polyisocyanate compound (a2) and having an isocyanate equivalent weight in the range of 300 to 3,800. Provided is a coating composition comprising a containing compound (A), a non-aqueous dispersion type resin (B) and a photopolymerization initiator (C).

Description

[関連出願の相互参照]
本出願は、2010年11月5日に出願された、日本国特許出願第2010−248371号明細書(その開示全体が参照により本明細書中に援用される)に基づく優先権を主張する。
[Cross-reference of related applications]
This application claims priority based on Japanese Patent Application No. 2010-248371 filed on Nov. 5, 2010, the entire disclosure of which is incorporated herein by reference.

本発明は、塗装工程における加熱温度の低温化及び加熱時間の短縮が可能であり、さらに耐擦り傷性、耐衝撃性及び耐汚染性に優れる塗膜を得ることができる塗料組成物及び塗膜形成方法に関する。   The present invention can reduce the heating temperature and shorten the heating time in the coating process, and can further provide a coating composition and a coating film formation that can obtain a coating film excellent in scratch resistance, impact resistance, and contamination resistance. Regarding the method.

二輪車、自動車、コンテナ等の車両の車体には、電着塗膜、中塗り塗膜、ベース塗膜等が必要に応じて形成された後に、クリヤ塗膜が形成される。クリヤ塗膜は、一般的に、水酸基含有アクリル樹脂等の熱硬化性官能基含有樹脂及びメラミン樹脂等の架橋剤を含有する熱硬化性塗料組成物、酸基含有樹脂及びエポキシ基含有樹脂を含有する熱硬化性塗料組成物等を塗装後、加熱硬化する塗膜形成方法により形成される。この塗膜形成方法によれば、付着性、塗膜硬度等の塗膜性能に優れた塗膜を形成することができる。   A clear coating film is formed on an automobile body such as a motorcycle, an automobile, or a container after an electrodeposition coating film, an intermediate coating film, a base coating film, and the like are formed as necessary. Clear coatings generally contain a thermosetting coating composition containing a thermosetting functional group-containing resin such as a hydroxyl group-containing acrylic resin and a crosslinking agent such as a melamine resin, an acid group-containing resin, and an epoxy group-containing resin. It is formed by a coating film forming method in which a thermosetting coating composition or the like is applied and then heated and cured. According to this coating film forming method, a coating film excellent in coating film performance such as adhesion and coating film hardness can be formed.

近年、塗装工程においては省エネルギー化及び生産性向上が要求されている。それにともなって、低温での硬化が可能な塗料組成物、短時間での硬化が可能な塗料組成物が期待されている。しかし、上記熱硬化性塗料組成物は、一般的な塗装工程において、通常、140℃の加熱温度、20〜40分間の加熱時間が必要であり、省エネルギー化及び生産性向上の要求を満足するものではない。   In recent years, energy saving and productivity improvement are required in the painting process. Accordingly, coating compositions that can be cured at a low temperature and coating compositions that can be cured in a short time are expected. However, the thermosetting coating composition usually requires a heating temperature of 140 ° C. and a heating time of 20 to 40 minutes in a general coating process, and satisfies the requirements for energy saving and productivity improvement. is not.

特許文献1には、加熱時間を短縮する発明として、紫外線硬化可能な多官能(メタ)アクリレート、多価アルコールモノ(メタ)アクリレート重合体、及びポリイソシアネート化合物を含有する紫外線硬化性且つ熱硬化性の塗料組成物の発明が開示されている。さらに、この塗料組成物を被塗物に塗装後、紫外線照射し、次いで30分間加熱硬化して塗膜を形成する方法が開示されている。しかしながら、この方法では、加熱時間の短縮ができなかった。また、耐擦り傷性の点で満足するものではなかった。   In Patent Document 1, as an invention for shortening the heating time, an ultraviolet curable and thermosetting material containing an ultraviolet curable polyfunctional (meth) acrylate, a polyhydric alcohol mono (meth) acrylate polymer, and a polyisocyanate compound is disclosed. An invention of a coating composition is disclosed. Furthermore, a method is disclosed in which a coating film is formed by applying this coating composition to an article to be coated, irradiating with ultraviolet rays, and then heat-curing for 30 minutes. However, this method cannot shorten the heating time. Further, it was not satisfactory in terms of scratch resistance.

他に、特許文献2には、(メタ)アクリロイル基と遊離イソシアネート基とを含むウレタン(メタ)アクリレート、場合により前記ウレタン(メタ)アクリレート以外のポリイソシアネート、遊離基重合を開始する紫外線開始剤、及びイソシアネート反応性基を含む化合物を含有する塗料組成物の発明が開示されている。さらに、この塗料組成物を支持体に塗布し、紫外線照射による重合と、次いでNCO基とイソシアネート反応性基の反応により塗料を硬化させることを特徴とする塗膜形成方法が開示されている。この方法は、耐擦り傷性、耐候性の点で満足するものではなかった。   In addition, Patent Document 2 includes a urethane (meth) acrylate containing a (meth) acryloyl group and a free isocyanate group, optionally a polyisocyanate other than the urethane (meth) acrylate, an ultraviolet initiator that initiates free radical polymerization, And an invention of a coating composition containing a compound containing an isocyanate-reactive group. Furthermore, a coating film forming method is disclosed in which the coating composition is applied to a support, and the coating is cured by polymerization by ultraviolet irradiation, and then by a reaction between an NCO group and an isocyanate-reactive group. This method was not satisfactory in terms of scratch resistance and weather resistance.

他に、特許文献3には、被塗物上にベース塗料組成物を塗装してベース塗膜を形成し、次にウェットオンウェット工程でクリヤ塗料組成物を塗装してクリヤ塗膜を形成し、同時に焼付け又は硬化する前に、クリヤ塗膜に高エネルギー放射線を照射する複層塗膜形成方法が開示されている。   In addition, Patent Document 3 discloses that a base coating composition is applied on an object to form a base coating film, and then a clear coating composition is applied in a wet-on-wet process to form a clear coating film. Also disclosed is a method for forming a multilayer coating film in which a clear coating film is irradiated with high-energy radiation before baking or curing at the same time.

この複層塗膜形成方法におけるクリヤ塗料組成物は熱的に硬化する成分及びラジカル重合性二重結合を含む成分を含有し、かつ熱的に硬化する成分には実質的にラジカル重合性二重結合を含まないことを特徴としている。しかしながら、この方法は、加熱温度を低下することができなかった。さらに、耐擦り傷性の点で満足するものではなかった。   The clear coating composition in this method of forming a multi-layer coating film contains a thermally curable component and a component containing a radical polymerizable double bond, and the thermally curable component is substantially free of radical polymerizable double components. It is characterized by not including bonds. However, this method could not lower the heating temperature. Furthermore, it was not satisfactory in terms of scratch resistance.

また、特許文献4には有機溶剤型熱硬化性塗料に、不飽和基を有する非水系ポリマーディスパージョン、光重合開始剤および必要に応じて光増感剤を含有してなる塗料組成物が開示されている。この塗料組成物では、高固形分化された塗料においてもタレの発生、塗膜のズリ落ち減少、金属フレーク状顔料の配向不良等の問題を解決する点で利点がある。しかしながら、耐擦り傷性、耐衝撃性、耐汚染性の点で満足するものではなかった。   Patent Document 4 discloses a coating composition comprising an organic solvent-type thermosetting paint, a non-aqueous polymer dispersion having an unsaturated group, a photopolymerization initiator, and, if necessary, a photosensitizer. Has been. This coating composition is advantageous in that it solves problems such as sagging, reduction of slippage of the coating film, and poor orientation of the metal flake pigment even in highly solidified coatings. However, it was not satisfactory in terms of scratch resistance, impact resistance, and contamination resistance.

また、特許文献5には1分子中に3個のイソシアネート基を有する化合物に、1分子中に1個の水酸基と1個以上の(メタ)アクリロイル基を有する化合物を、総水酸基数/総イソシアネート基数<1の比で反応させて得られる化合物、ガラス転移温度−50〜0℃、水酸基価50〜350mgKOH/gのアクリル共重合体、およびラジカル重合開始剤を含有する塗料組成物の発明が開示されている。しかしながら、この発明では耐候性と耐擦り傷性の点で満足するものではなかった。   Patent Document 5 discloses a compound having three isocyanate groups in one molecule, a compound having one hydroxyl group and one or more (meth) acryloyl groups in one molecule, the total number of hydroxyl groups / total isocyanate. Disclosed is an invention of a coating composition containing a compound obtained by reacting at a ratio of the number of groups <1, a glass transition temperature of −50 to 0 ° C., an acrylic copolymer having a hydroxyl value of 50 to 350 mgKOH / g, and a radical polymerization initiator. Has been. However, this invention is not satisfactory in terms of weather resistance and scratch resistance.

特開昭63−113085号公報JP-A-63-113085 特開平11−263939号公報JP 11-263939 A 特表2001−524868号公報JP-T-2001-524868 特開2000−230007号公報JP 2000-230007 A 特開2008−208205号公報JP 2008-208205 A

本発明は上記事情に鑑みてなされたものであり、塗膜硬化にかかる加熱温度の低温化、塗装設備等の縮小化、加熱時間短縮化に伴うCO削減等が可能であり、さらに耐擦り傷性、耐衝撃性及び耐汚染性に優れる塗膜を得ることができる塗料組成物及び塗膜形成方法を提供することを課題とする。The present invention has been made in view of the above circumstances, and it is possible to reduce the heating temperature required for coating film curing, to reduce the coating equipment, etc., to reduce CO 2 due to the shortening of the heating time, etc. It is an object of the present invention to provide a coating composition and a method for forming a coating film that can obtain a coating film having excellent properties, impact resistance, and stain resistance.

本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、特定のラジカル重合性不飽和基含有化合物(A)、非水分散型樹脂(B)及び光重合開始剤(C)を含有する塗料組成物を用いることによって、上記課題を解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the specific radical polymerizable unsaturated group-containing compound (A), non-aqueous dispersion resin (B) and photopolymerization initiator (C). The present inventors have found that the above-mentioned problems can be solved by using a coating composition containing selenium, and have completed the present invention.

即ち、本発明は、以下の項を提供する:
項1.カプロラクトン変性ヒドロキシアルキル(メタ)アクリレート(a1)とポリイソシアネート化合物(a2)とを反応させることにより得られ、かつ300〜3,800の範囲のイソシアネート当量を有するラジカル重合性不飽和基含有化合物(A)、非水分散型樹脂(B)及び光重合開始剤(C)を含有することを特徴とする塗料組成物。
That is, the present invention provides the following items:
Item 1. Radical polymerizable unsaturated group-containing compound (A) obtained by reacting caprolactone-modified hydroxyalkyl (meth) acrylate (a1) with polyisocyanate compound (a2) and having an isocyanate equivalent weight in the range of 300 to 3,800 ), A non-aqueous dispersion resin (B) and a photopolymerization initiator (C).

項2.非水分散型樹脂(B)が、高分子重合体よりなる分散安定剤を存在させ、該分散安定剤及び重合性不飽和単量体(b1)は溶解するが、該重合性不飽和単量体から形成される重合体は実質的に溶解しない有機液体中で、該重合性不飽和単量体が重合反応することにより得られる重合体微粒子(i)の分散液であって、該分散安定剤がエポキシ基、カルボキシル基、水酸基、イソシアナト基及びアルコキシシリル基から選ばれる少なくとも1種の化学反応性基を有するものである請求項1に記載の塗料組成物。   Item 2. The non-aqueous dispersion type resin (B) contains a dispersion stabilizer made of a polymer, and the dispersion stabilizer and the polymerizable unsaturated monomer (b1) dissolve, but the polymerizable unsaturated monomer. The polymer formed from the body is a dispersion of polymer fine particles (i) obtained by the polymerization reaction of the polymerizable unsaturated monomer in an organic liquid that does not substantially dissolve, The coating composition according to claim 1, wherein the agent has at least one chemically reactive group selected from an epoxy group, a carboxyl group, a hydroxyl group, an isocyanato group, and an alkoxysilyl group.

項3.非水分散型樹脂(B)が重合性不飽和基を有している請求項1又は2に記載の塗料組成物。   Item 3. The coating composition according to claim 1 or 2, wherein the non-aqueous dispersion resin (B) has a polymerizable unsaturated group.

項4.非水分散型樹脂(B)の重合性不飽和基当量が660〜10,000である請求項1〜3のいずれか1項に記載の塗料組成物。   Item 4. The coating composition according to any one of claims 1 to 3, wherein the polymerizable unsaturated group equivalent of the non-aqueous dispersion resin (B) is 660 to 10,000.

項5.上記非水分散型樹脂(B)の分散安定剤部分の化学反応性基と反応しうる相補的化学反応性基を有する重合性不飽和化合物(b2)を反応させて、該非水分散型樹脂(B)における重合体微粒子(i)の分散安定剤部分に重合性不飽和基を導入してなることを特徴とする請求項1〜4のいずれか1項に記載の塗料組成物。   Item 5. The non-aqueous dispersion resin (B2) is reacted with a polymerizable unsaturated compound (b2) having a complementary chemically reactive group capable of reacting with the chemically reactive group of the dispersion stabilizer portion of the non-aqueous dispersion resin (B). The coating composition according to any one of claims 1 to 4, wherein a polymerizable unsaturated group is introduced into the dispersion stabilizer portion of the polymer fine particles (i) in B).

項6.非水分散型樹脂(B)における重合微粒子の平均粒子径が、50〜500nmである請求項1〜5のいずれか1項に記載の塗料組成物。   Item 6. The coating composition according to any one of claims 1 to 5, wherein the average particle size of the polymer particles in the non-aqueous dispersion resin (B) is 50 to 500 nm.

項7.塗料組成物の総固形分100質量部に対して非水分散型樹脂(B)を固形分で1〜50質量部含有する請求項1〜6のいずれか1項に記載の塗料組成物。   Item 7. The coating composition according to any one of claims 1 to 6, comprising 1 to 50 parts by mass of the non-aqueous dispersion resin (B) in solids with respect to 100 parts by mass of the total solids of the coating composition.

項8.さらに、前記化合物(A)以外のイソシアネート化合物(D)を含有する請求項1〜7のいずれか1項に記載の塗料組成物。   Item 8. Furthermore, the coating composition of any one of Claims 1-7 containing isocyanate compounds (D) other than the said compound (A).

項9.さらに、水酸基含有樹脂(E)を含有する請求項1〜8のいずれか1項に記載の塗料組成物。   Item 9. Furthermore, the coating composition of any one of Claims 1-8 containing hydroxyl-containing resin (E).

項10.水酸基含有樹脂(E)のガラス転移点温度が0℃以上である請求項9に記載の塗料組成物。   Item 10. The coating composition according to claim 9, wherein the glass transition temperature of the hydroxyl group-containing resin (E) is 0 ° C. or higher.

項11.さらに、前記化合物(A)以外のラジカル重合性不飽和基含有化合物(F)を含有する請求項1〜10のいずれか1項に記載の塗料組成物。   Item 11. Furthermore, the coating composition of any one of Claims 1-10 containing radically polymerizable unsaturated group containing compound (F) other than the said compound (A).

項12.被塗物上に、活性水素基を含有する樹脂及び着色顔料を含有するベース塗料組成物を塗装してベース塗膜を形成する工程、
次いで請求項1〜11のいずれか1項に記載の塗料組成物を塗装してクリヤ塗膜を形成する工程、ならびに活性エネルギー線の照射及び加熱を行なう工程、を含む複層塗膜形成方法。
Item 12. Applying a base coating composition containing a resin containing an active hydrogen group and a color pigment on an object to be coated to form a base coating film;
Next, a method for forming a multilayer coating film, comprising: a step of coating the coating composition according to any one of claims 1 to 11 to form a clear coating film; and a step of irradiating and heating active energy rays.

項13.請求項12に記載の塗膜形成方法によって得られた塗装物品。   Item 13. The coated article obtained by the coating-film formation method of Claim 12.

本発明によれば、塗装工程における加熱温度の低下及び加熱時間の短縮が可能であり、さらに耐擦り傷性及び耐候性に優れる塗膜を形成しうる塗料組成物を得ることができる。また、被塗物上に当該塗料組成物を塗装して、ベース塗膜を形成し、次いで特定の塗料組成物をクリヤ塗膜として塗装してクリヤ塗膜を形成し、さらに活性エネルギー線の照射及び加熱を行う複層塗膜形成方法を用いることにより付着性及び仕上り外観が優れた複層塗膜を得ることができる。   According to the present invention, it is possible to obtain a coating composition that can reduce the heating temperature and shorten the heating time in the coating process, and can form a coating film having excellent scratch resistance and weather resistance. Also, the coating composition is applied onto the object to be coated to form a base coating film, and then a specific coating composition is applied as a clear coating film to form a clear coating film, and further irradiated with active energy rays. And the multilayer coating film excellent in adhesiveness and finished appearance can be obtained by using the multilayer coating-film formation method which heats.

本発明の塗料組成物による塗膜は、化合物(A)と非水分散型樹脂(B)の相乗効果により、塗膜の架橋密度が向上することで耐擦り傷性に優れ、かつ衝撃緩和能も向上したことで耐衝撃性に優れる塗膜を形成できる。さらに、これらの機能を備える塗膜であることから、塗膜に微視的な傷が付き難いため、耐汚染性に優れる塗膜を形成しうる塗料組成物を提供できる。   The coating film by the coating composition of the present invention has excellent scratch resistance and improved impact relaxation ability by improving the crosslinking density of the coating film due to the synergistic effect of the compound (A) and the non-aqueous dispersion resin (B). By improving, a coating film excellent in impact resistance can be formed. Furthermore, since it is a coating film provided with these functions, since a microscopic damage | wound is hard to attach to a coating film, the coating composition which can form the coating film which is excellent in stain resistance can be provided.

本発明は、カプロラクトン変性ヒドロキシアルキル(メタ)アクリレート(A)とポリイソシアネート化合物とを反応させることにより得られ、かつ300〜3,800の範囲のイソシアネート当量を有するラジカル重合性不飽和基含有化合物(A)[以下、単に「化合物(A)」と称することがある。]及び非水分散型樹脂(B)、及び光重合開始剤(C)を含有する塗料組成物に関する。   The present invention is a radically polymerizable unsaturated group-containing compound obtained by reacting caprolactone-modified hydroxyalkyl (meth) acrylate (A) with a polyisocyanate compound and having an isocyanate equivalent weight in the range of 300 to 3,800 ( A) [hereinafter sometimes referred to simply as “compound (A)”. ] And a non-aqueous dispersion type resin (B), and the coating composition containing a photoinitiator (C).

さらに、被塗物上に、ベース塗料組成物を塗装してベース塗膜を形成し、次いで該塗料組成物を塗装して塗膜を形成し、次いで活性エネルギー線の照射及び加熱を行なう塗膜形成方法に関する。以下、本発明の塗料組成物及び塗膜形成方法について詳細に説明する。   Further, a base coating composition is applied onto an object to be coated to form a base coating, and then the coating composition is applied to form a coating, followed by irradiation with active energy rays and heating. It relates to a forming method. Hereinafter, the coating composition and the coating film forming method of the present invention will be described in detail.

[塗料組成物]
化合物(A)
化合物(A)は、カプロラクトン変性ヒドロキシアルキル(メタ)アクリレート(a1)とポリイソシアネート化合物(a2)とを反応させることにより得られ、かつイソシアネート当量が300〜3,800の範囲にある化合物である。
[Coating composition]
Compound (A)
Compound (A) is a compound obtained by reacting caprolactone-modified hydroxyalkyl (meth) acrylate (a1) with polyisocyanate compound (a2) and having an isocyanate equivalent weight in the range of 300 to 3,800.

この化合物(A)は、活性エネルギー線の照射による硬化性に優れ、さらには低温(具体的には、常温〜100℃)での硬化性に優れる。このことにより塗装工程における加熱温度の低温化及び加熱時間の短縮化が可能になる。また、この化合物(A)を含む塗料組成物から得られる塗膜は、耐擦り傷性及び耐候性に優れる。   This compound (A) is excellent in curability by irradiation with active energy rays, and further excellent in curability at a low temperature (specifically, normal temperature to 100 ° C.). This makes it possible to lower the heating temperature and shorten the heating time in the painting process. Moreover, the coating film obtained from the coating composition containing this compound (A) is excellent in scratch resistance and weather resistance.

カプロラクトン変性ヒドロキシアルキル(メタ)アクリレート(a1)
本発明において、カプロラクトン変性ヒドロキシアルキル(メタ)アクリレート(a1)は、以下の一般式で表される化合物を示す。
Caprolactone-modified hydroxyalkyl (meth) acrylate (a1)
In the present invention, caprolactone-modified hydroxyalkyl (meth) acrylate (a1) represents a compound represented by the following general formula.

Figure 2012060390
Figure 2012060390

(式中、Rは水素原子又はメチル基を示し、Rは炭素数2〜6のアルキレン基を示し、mは3〜8の整数を示し、nは1〜5の整数を示す)(In the formula, R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkylene group having 2 to 6 carbon atoms, m represents an integer of 3 to 8, and n represents an integer of 1 to 5)

かかるカプロラクトン変性ヒドロキシアルキル(メタ)アクリレート(a1)としては、例えば、以下の一般式(I)で表される化合物が挙げられる:  Examples of such caprolactone-modified hydroxyalkyl (meth) acrylate (a1) include compounds represented by the following general formula (I):

Figure 2012060390
Figure 2012060390

(式(I)中、Rは水素原子又はメチル基を示し、Rは炭素数2〜6のアルキレン基を示し、nは1〜5である)。(In formula (I), R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkylene group having 2 to 6 carbon atoms, and n is 1 to 5).

カプロラクトン変性ヒドロキシアルキル(メタ)アクリレートは、具体的には、「プラクセルFA−1」、「プラクセルFA−2」、「プラクセルFA−2D」、「プラクセルFA−3」、「プラクセルFA−4」、「プラクセルFA−5」、「プラクセルFM−1」、「プラクセルFM−2」、「プラクセルFM−2D」、「プラクセルFM−3」、「プラクセルFM−4」、「プラクセルFM−5」(いずれもダイセル化学社製、商品名)等を挙げることができる。なかでも、活性エネルギー線硬化性の点から、一般式(I)において、Rが水素原子であり、Rがエチレン基であるカプロラクトン変性ヒドロキシエチルアクリレートが好ましい。同様に活性エネルギー線硬化性の点から、一般式(I)において、nが1〜3の範囲であるカプロラクトン変性ヒドロキシエチルアクリレートが好ましい。Specifically, the caprolactone-modified hydroxyalkyl (meth) acrylate includes “Placcel FA-1”, “Placcel FA-2”, “Placcel FA-2D”, “Placcel FA-3”, “Placcel FA-4”, “Placcel FA-5”, “Plaxel FM-1”, “Plaxel FM-2”, “Plaxel FM-2D”, “Plaxel FM-3”, “Plaxel FM-4”, “Plaxel FM-5” (any Can also be mentioned by Daicel Chemical Industries, trade name). Of these, caprolactone-modified hydroxyethyl acrylate in which R 1 is a hydrogen atom and R 2 is an ethylene group in the general formula (I) is preferable from the viewpoint of active energy ray curability. Similarly, in terms of active energy ray curability, caprolactone-modified hydroxyethyl acrylate in which n is in the range of 1 to 3 in general formula (I) is preferable.

ポリイソシアネート化合物(a2)
一方、ポリイソシアネート化合物(a2)は、1分子中に2個以上のイソシアネート基を有する化合物である。例えば、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ダイマー酸ジイソシアネート、リジンジイソシアネート等の脂肪族ポリイソシアネート系化合物及びこれらのポリイソシアネートのビューレットタイプ付加物又はイソシアヌレート環付加物;イソホロンジイソシアネート、4,4’−メチレンビス(シクロヘキシルイソシアネート)、メチルシクロヘキサン−2,4−ジイソシアネート、メチルシクロヘキサン−2,6−ジイソシアネート、1,3−ジ(イソシアナトメチル)シクロヘキサン、1,4−ジ(イソシアナトメチル)シクロヘキサン、1,4−シクロヘキサンジイソシアネート、1,3−シクロペンタンジイソシアネート、1,2−シクロヘキサンジイソシアネート等の脂環族ジイソシアネート系化合物及びこれらのポリイソシアネートのビューレットタイプ付加物及びイソシアヌレート環付加物;キシリレンジイソシアネート、メタキシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、トリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、1,5−ナフタレンジイソシアネート、1,4−ナフタレンジイソシアネート、4,4’−トルイジンジイソシアネート、4,4’−ジフェニルエーテルジイソシアネート、m−フェニレンジイソシアネート、p−フェニレンジイソシアネート、4,4’−ビフェニレンジイソシアネート、3,3’−ジメチル−4,4’−ビフェニレンジイソシアネート、ビス(4−イソシアナトフェニル)スルホン、イソプロピリデンビス(4−フェニルイソシアネート)等の芳香族ジイソシアネート化合物及びこれらのポリイソシアネートのビューレットタイプ付加物又はイソシアヌレート環付加物;トリフェニルメタン−4,4’,4’’−トリイソシアネート、1,3,5−トリイソシアナトベンゼン、2,4,6−トリイソシアナトトルエン、4,4’−ジメチルジフェニルメタン−2,2’,5,5’−テトライソシアネート等の1分子中に3個以上のイソシアネート基を有するポリイソシアネート系化合物及びこれらのポリイソシアネートのビューレットタイプ付加物又はイソシアヌレート環付加物;エチレングリコール、プロピレングリコール、1,4−ブチレングリコール、ジメチロールプロピオン酸、ポリアルキレングリコール、トリメチロールプロパン、ヘキサントリオール等のポリオールの水酸基にイソシアネート基が過剰量となる比率でポリイソシアネート化合物を反応させてなるウレタン化付加物及びこれらのポリイソシアネートのビューレットタイプ付加物又はイソシアヌレート環付加物等が挙げられる。これらは1種又は2種以上の混合物として使用できる。なかでも、塗膜の耐候性の点から、脂肪族ポリイソシアネート系化合物のイソシアヌレート環付加物が好ましく、ヘキサメチレンジイソシアネートのイソシアヌレート環付加物が特に好ましい。
Polyisocyanate compound (a2)
On the other hand, the polyisocyanate compound (a2) is a compound having two or more isocyanate groups in one molecule. For example, aliphatic polyisocyanate compounds such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, dimer acid diisocyanate, lysine diisocyanate, and burette type adducts or isocyanurate cycloadducts of these polyisocyanates; isophorone diisocyanate, 4,4 ′ -Methylenebis (cyclohexyl isocyanate), methylcyclohexane-2,4-diisocyanate, methylcyclohexane-2,6-diisocyanate, 1,3-di (isocyanatomethyl) cyclohexane, 1,4-di (isocyanatomethyl) cyclohexane, 1 , 4-cyclohexane diisocyanate, 1,3-cyclopentane diisocyanate, 1,2-cyclohexane diisocyanate, etc. Nate compounds and burette-type adducts and isocyanurate cycloadducts of these polyisocyanates; xylylene diisocyanate, metaxylylene diisocyanate, tetramethyl xylylene diisocyanate, tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 1, 5-naphthalene diisocyanate, 1,4-naphthalene diisocyanate, 4,4′-toluidine diisocyanate, 4,4′-diphenyl ether diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4′-biphenylene diisocyanate, 3,3 ′ -Dimethyl-4,4'-biphenylene diisocyanate, bis (4-isocyanatophenyl) sulfone, isopropylidenebis (4-phenylisocyanate) Aromatic biisocyanate compounds, such as poly (isocyanates) and the like, and burette-type or isocyanurate cycloadducts of these polyisocyanates; triphenylmethane-4,4 ′, 4 ″ -triisocyanate, 1,3,5-tri Polyisocyanate having three or more isocyanate groups in one molecule such as isocyanatobenzene, 2,4,6-triisocyanatotoluene, 4,4′-dimethyldiphenylmethane-2,2 ′, 5,5′-tetraisocyanate Isocyanate compounds and burette type adducts or isocyanurate cycloadducts of these polyisocyanates; ethylene glycol, propylene glycol, 1,4-butylene glycol, dimethylolpropionic acid, polyalkylene glycol, trimethylolpropane, hexanetriol, etc. Polyols Isocyanate group to a hydroxyl group is a urethane adduct obtained by reacting a polyisocyanate compound and biuret type adducts of these polyisocyanate or isocyanurate ring adducts, and the like in a ratio to be excess. These can be used as one or a mixture of two or more. Among these, from the viewpoint of the weather resistance of the coating film, an isocyanurate cycloadduct of an aliphatic polyisocyanate compound is preferable, and an isocyanurate cycloadduct of hexamethylene diisocyanate is particularly preferable.

前記カプロラクトン変性ヒドロキシアルキル(メタ)アクリレート(a1)とポリイソシアネート化合物(a2)との反応は、ヒドロキシ基含有化合物とポリイソシアネート化合物とを反応させる際の、公知の方法によって行なうことができる。   The reaction of the caprolactone-modified hydroxyalkyl (meth) acrylate (a1) and the polyisocyanate compound (a2) can be performed by a known method when the hydroxy group-containing compound and the polyisocyanate compound are reacted.

前記カプロラクトン変性ヒドロキシアルキル(メタ)アクリレート(a1)及びポリイソシアネート化合物(a2)の配合割合は、得られる(A)成分のイソシアネート当量が上記範囲内となれば特に限定されない。   The blending ratio of the caprolactone-modified hydroxyalkyl (meth) acrylate (a1) and the polyisocyanate compound (a2) is not particularly limited as long as the isocyanate equivalent of the component (A) to be obtained is within the above range.

上記反応は、通常有機溶液中で行なうことができる。有機溶剤としては、トルエン、キシレン等の芳香族炭化水素系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチル等のエステル系溶剤等が挙げられる。これらは1種又は2種以上の混合物として使用できる。反応温度は、常温〜100℃であるのが好ましく、反応時間は1〜10時間であるのが好ましい。   The above reaction can usually be carried out in an organic solution. Examples of organic solvents include aromatic hydrocarbon solvents such as toluene and xylene, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, and ester solvents such as ethyl acetate, propyl acetate, isobutyl acetate, and butyl acetate. Can be mentioned. These can be used as one or a mixture of two or more. The reaction temperature is preferably from room temperature to 100 ° C., and the reaction time is preferably from 1 to 10 hours.

上記反応においては、必要に応じてジブチルスズジラウレート、ジブチルスズジエチルヘキソエート、ジブチルスズサルファイト等の触媒を使用してもよい。触媒の添加量は、反応原料の総量100質量部に対して0.01〜1質量部であるのが好ましく、0.1〜0.5質量部であるのがより好ましい。また、ハイドロキノンモノメチルエーテル等の重合禁止剤を使用してもよい。重合禁止剤の添加量は、反応原料の総量100質量部に対して0.01〜1質量部であるのが好ましい。   In the above reaction, a catalyst such as dibutyltin dilaurate, dibutyltin diethylhexoate or dibutyltin sulfite may be used as necessary. The addition amount of the catalyst is preferably 0.01 to 1 part by mass and more preferably 0.1 to 0.5 part by mass with respect to 100 parts by mass of the total amount of reaction raw materials. A polymerization inhibitor such as hydroquinone monomethyl ether may be used. It is preferable that the addition amount of a polymerization inhibitor is 0.01-1 mass part with respect to 100 mass parts of total amounts of a reaction raw material.

ラジカル重合性不飽和基含有化合物(A)は、イソシアネート基を有するため、カプロラクトン変性ヒドロキシアルキル(メタ)アクリレートとポリイソシアネート化合物との反応における両者の混合比は、通常、ポリイソシアネート化合物のイソシアネート基がカプロラクトン変性ヒドロキシアルキル(メタ)アクリレートのヒドロキシル基に対して当量比で過剰(イソシアネート基/ヒドロキシキル基>1.0)となる混合比である。そして、混合比を調節することでラジカル重合性不飽和基含有化合物(A)のイソシアネート当量を調節することができる。   Since the radically polymerizable unsaturated group-containing compound (A) has an isocyanate group, the mixing ratio in the reaction of the caprolactone-modified hydroxyalkyl (meth) acrylate with the polyisocyanate compound is usually that of the isocyanate group of the polyisocyanate compound. The mixing ratio is an excess (isocyanate group / hydroxykyl group> 1.0) in an equivalent ratio with respect to the hydroxyl group of caprolactone-modified hydroxyalkyl (meth) acrylate. And the isocyanate equivalent of a radically polymerizable unsaturated group containing compound (A) can be adjusted by adjusting a mixing ratio.

上記化合物(A)は300〜3,800の範囲のイソシアネート当量を有する。化合物(A)が上記範囲のイソシアネート基を有することにより、本発明の塗料組成物は低温での硬化性に優れる。化合物(A)のイソシアネート当量は、塗膜の耐擦り傷性の点から400〜3,000の範囲が好ましく、500〜3,000の範囲がより好ましい。   The compound (A) has an isocyanate equivalent weight in the range of 300 to 3,800. When the compound (A) has an isocyanate group within the above range, the coating composition of the present invention is excellent in curability at low temperatures. The isocyanate equivalent of the compound (A) is preferably in the range of 400 to 3,000, more preferably in the range of 500 to 3,000, from the viewpoint of scratch resistance of the coating film.

また、化合物(A)がイソシアネート基を有することにより、化合物(A)は非水分散型樹脂(B)が活性水素基を有する場合にこれと化学反応性基(x)と反応して強靭な塗膜を形成することができる。   Further, since the compound (A) has an isocyanate group, the compound (A) reacts with the chemically reactive group (x) when the non-aqueous dispersion type resin (B) has an active hydrogen group, and is strong. A coating film can be formed.

イソシアネート当量を、上記範囲にすることにより、耐擦り傷性に優れる複層塗膜が得られるとともに、化合物(A)がベース塗膜へ染み込みにくく、付着性と仕上り外観の両方が良好な複層塗膜を得ることができる。   By setting the isocyanate equivalent within the above range, a multilayer coating film having excellent scratch resistance is obtained, and the compound (A) is difficult to penetrate into the base coating film, and both the adhesion and the finished appearance are good. A membrane can be obtained.

特に、ベース塗料組成物が光輝顔料を含有する塗料組成物の場合、化合物(A)がベース塗膜へ染み込みにくいことにより、ベース塗膜中の光輝顔料の配向が乱れることが抑えられ、得られる複層塗膜の仕上り外観は良好となる。   In particular, when the base coating composition is a coating composition containing a bright pigment, it is possible to prevent the compound (A) from being soaked into the base coating film, thereby preventing the orientation of the bright pigment in the base coating film from being disturbed. The finished appearance of the multilayer coating film is good.

ここで、本明細書において、イソシアネート当量とは、イソシアネート基1個あたりのモル質量をいう。当該化合物の分子量をM、当該化合物1分子中に含まれるイソシアネート基の数をνとすると、イソシアネート当量は、M/νで表される。当該イソシアネート当量は、ジブチルアミンを用いた逆滴定により測定することができる。逆滴定は、試料に過剰のジブチルアミンを加えて反応させ、滴定指示薬としてブロモフェノールブルーを用い残余のジブチルアミンを塩酸水溶液で滴定することにより行なう。   Here, in this specification, an isocyanate equivalent means the molar mass per isocyanate group. When the molecular weight of the compound is M and the number of isocyanate groups contained in one molecule of the compound is ν, the isocyanate equivalent is represented by M / ν. The isocyanate equivalent can be measured by back titration using dibutylamine. The reverse titration is performed by adding an excess of dibutylamine to the sample and reacting, and using bromophenol blue as a titration indicator to titrate the remaining dibutylamine with an aqueous hydrochloric acid solution.

さらに化合物(A)は、不飽和基当量が300〜2,000であることが好ましい。より好ましくは500〜1,000である。不飽和基当量がこれら範囲であると、より耐擦り傷性及び耐候性に優れる塗膜を得ることができる。   Furthermore, the compound (A) preferably has an unsaturated group equivalent of 300 to 2,000. More preferably, it is 500-1,000. When the unsaturated group equivalent is within these ranges, it is possible to obtain a coating film having more excellent scratch resistance and weather resistance.

ここで、本明細書において、不飽和基当量とは、不飽和基1個あたりのモル質量をいう。当該化合物のg分子量をM、当該化合物1分子中に含まれる不飽和基の数をσとすると、不飽和基当量はM/σで表される。当該不飽和基当量は、ラジカル重合性不飽和基にドデシルメルカプタンを付加し、残余のドデシルメルカプタンをヨウ素溶液で逆滴定することにより測定することができる。   Here, in this specification, an unsaturated group equivalent means the molar mass per unsaturated group. When the g molecular weight of the compound is M and the number of unsaturated groups contained in one molecule of the compound is σ, the unsaturated group equivalent is expressed by M / σ. The unsaturated group equivalent can be measured by adding dodecyl mercaptan to a radical polymerizable unsaturated group and back titrating the remaining dodecyl mercaptan with an iodine solution.

ここで化合物(A)の分子量は特に限定されない。好ましくは重量平均分子量が500〜2,000であり、より好ましくは800〜1,500である。重量平均分子量がこれら範囲であることは、取扱い易い塗料粘度にできる点で意義がある。   Here, the molecular weight of the compound (A) is not particularly limited. The weight average molecular weight is preferably 500 to 2,000, more preferably 800 to 1,500. It is significant that the weight average molecular weight is within these ranges in that the viscosity of the paint can be easily handled.

本発明において重量平均分子量は、溶媒としてテトラヒドロフランを使用し、ゲルパーミエーションクロマトグラフ装置として、「HLC−8120GPC」(商品名、東ソー社製)を使用し、カラムとして、「TSKgel G−4000HXL」を1本、「TSKgel G3000HXL」を2本、及び「TSKgel G2000HXL」を1本(商品名、いずれも東ソー社製)の計4本を使用し、検出器として、示差屈折率計を使用し、移動相:テトラヒドロフラン、測定温度:40℃、流速:1mL/分の条件下で行ったものである。In the present invention, the weight average molecular weight uses tetrahydrofuran as a solvent, “HLC-8120GPC” (trade name, manufactured by Tosoh Corporation) as a gel permeation chromatograph, and “TSKgel G-4000H XL ” as a column. one and two the "TSKgel G3000H XL" and "TSKgel G2000H XL" the one (trade name, all manufactured by Tosoh Corp.) using four, as a detector, using a differential refractometer Mobile phase: tetrahydrofuran, measurement temperature: 40 ° C., flow rate: 1 mL / min.

非水分散型樹脂(B)
本発明において用いられる非水分散型樹脂(B)は、有機液体中に、該有機液体に実質的に溶解しない重合体微粒子(i)が分散している樹脂を示す。非水分散型樹脂(B)は、必要に応じて分散安定剤の存在下で、有機液体中で、単量体を重合することにより得ることができる。ここで、有機液体には、該分散安定剤及び重合性不飽和単量体(b1)は溶解するが、該重合性不飽和単量体から形成される重合体は実質的に溶解しない。上記のように、非水分散型樹脂(B)は重合体微粒子(i)が分散している樹脂であるため、非水分散型樹脂(B)は、非水系重合体微粒子分散液(B)と示すこともできる。以下、非水分散型樹脂(B)を「NAD」(Non Aqueous Dispersion)と略称することがある。「NAD」は、以下の製造方法によって製造することができる。
Non-aqueous dispersion type resin (B)
The non-aqueous dispersion type resin (B) used in the present invention is a resin in which polymer fine particles (i) that are not substantially dissolved in the organic liquid are dispersed in the organic liquid. The non-aqueous dispersion type resin (B) can be obtained by polymerizing a monomer in an organic liquid in the presence of a dispersion stabilizer as necessary. Here, although the dispersion stabilizer and the polymerizable unsaturated monomer (b1) are dissolved in the organic liquid, the polymer formed from the polymerizable unsaturated monomer is not substantially dissolved. As described above, since the non-aqueous dispersion resin (B) is a resin in which the polymer fine particles (i) are dispersed, the non-aqueous dispersion resin (B) is a non-aqueous polymer fine particle dispersion (B). It can also be shown. Hereinafter, the non-aqueous dispersion type resin (B) may be abbreviated as “NAD” (Non Aqueous Dispersion). “NAD” can be manufactured by the following manufacturing method.

上記工程で用いられる分散安定剤としては、非水分散型樹脂の分野で使用されている高分子重合体よりなるものを挙げることができ、該分散安定剤は化学反応性基(x)を有することが望ましい。化学反応性基(x)の代表例としては、エポキシ基、カルボキシル基、水酸基、イソシアナト基、アルコキシシリル基、アルコキシメチル基、アミノ基、カルボン酸無水基、β−ケトエステル基等を挙げることができる。なかでもエポキシ基、カルボキシル基、水酸基、イソシアナト基、アルコキシシリル基が好適である。   Examples of the dispersion stabilizer used in the above step include those made of a high molecular polymer used in the field of non-aqueous dispersion type resins, and the dispersion stabilizer has a chemically reactive group (x). It is desirable. Representative examples of the chemically reactive group (x) include an epoxy group, a carboxyl group, a hydroxyl group, an isocyanato group, an alkoxysilyl group, an alkoxymethyl group, an amino group, a carboxylic anhydride group, and a β-ketoester group. . Of these, an epoxy group, a carboxyl group, a hydroxyl group, an isocyanato group, and an alkoxysilyl group are preferable.

上記分散安定剤としては、例えば下記のものを例示することができる;
例示(1):12−ヒドロキシステアリン酸等の、水酸基含有脂肪酸自己縮合ポリエステルのカルボキシル基の一部にグリシジル(メタ)アクリレートを付加して分子中に約0.5〜1.5(例えば、約1.0個)の重合性二重結合を導入してなる水酸基含有ポリエステルマクロマー。
Examples of the dispersion stabilizer include the following:
Illustrative (1): Glycidyl (meth) acrylate is added to a part of the carboxyl group of a hydroxyl group-containing fatty acid self-condensed polyester such as 12-hydroxystearic acid to give about 0.5 to 1.5 (for example, about 1.0) a hydroxyl group-containing polyester macromer introduced with a polymerizable double bond.

例示(2):上記例示(1)のポリエステルマクロマーと、グリシジルメタクリレート等のエポキシ基含有重合性不飽和単量体と、メチルメタクリレート等のその他の重合性不飽和単量体とを共重合してなる共重合体のエポキシ基の一部に、(メタ)アクリル酸を付加して重合性二重結合を導入した水酸基含有ポリエステル/アクリルグラフト櫛型ポリマー。   Example (2): A polyester macromer of Example (1) above, an epoxy group-containing polymerizable unsaturated monomer such as glycidyl methacrylate, and another polymerizable unsaturated monomer such as methyl methacrylate are copolymerized. A hydroxyl group-containing polyester / acrylic graft comb polymer in which a polymerizable double bond is introduced by adding (meth) acrylic acid to a part of the epoxy group of the copolymer.

例示(3):長鎖重合性不飽和単量体及び化学反応性基を有する重合性不飽和単量体を含む単量体混合物を共重合することにより得られる化学反応性基含有アクリル系共重合体(当該実施形態において、化学反応性基としては、例えば、エポキシ基、水酸基、カルボキシル基等が挙げられる)。長鎖重合性不飽和単量体としては、例えば(メタ)アクリル酸n−オクチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル等が挙げられる。化学反応性基を有する重合性不飽和単量体としては、例えばグリシジル(メタ)アクリレート、(メタ)アクリル酸、2−ヒドロキシエチル(メタ)アクリレート等が挙げられる。;   Example (3): A chemically reactive group-containing acrylic copolymer obtained by copolymerizing a monomer mixture containing a long-chain polymerizable unsaturated monomer and a polymerizable unsaturated monomer having a chemically reactive group Polymer (in this embodiment, examples of the chemically reactive group include an epoxy group, a hydroxyl group, and a carboxyl group). Examples of the long-chain polymerizable unsaturated monomer include n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, and the like. Examples of the polymerizable unsaturated monomer having a chemically reactive group include glycidyl (meth) acrylate, (meth) acrylic acid, 2-hydroxyethyl (meth) acrylate, and the like. ;

例示(4):上記例示(3)で得られたアクリル系共重合体の化学反応性基の一部に該化学反応性基と反応する官能基を有する重合性不飽和単量体を反応させて分子中に平均して約0.5〜1.5(例えば、約1.0個)の重合性二重結合を導入した化学反応性基含有アクリル系共重合体。該化学反応性基と反応する官能基を有する重合性不飽和単量体(以下、官能性不飽和単量体とする)としては、例えば、(メタ)アクリル酸、グリシジル(メタ)アクリレート、イソシアナト基含有重合性不飽和単量体、水酸基含有重合性不飽和単量体等が挙げられる。   Example (4): A polymerizable unsaturated monomer having a functional group that reacts with the chemically reactive group is allowed to react with a part of the chemically reactive group of the acrylic copolymer obtained in Example (3) above. A chemically reactive group-containing acrylic copolymer having an average of about 0.5 to 1.5 (for example, about 1.0) polymerizable double bonds introduced into the molecule. Examples of the polymerizable unsaturated monomer having a functional group that reacts with the chemically reactive group (hereinafter referred to as a functional unsaturated monomer) include (meth) acrylic acid, glycidyl (meth) acrylate, and isocyanato. Examples thereof include a group-containing polymerizable unsaturated monomer and a hydroxyl group-containing polymerizable unsaturated monomer.

本発明において、重合性二重結合とは、ラジカル重合しうる不飽和基に含まれる炭素−炭素間二重結合を意味する。ここで、重合性不飽和基としては、例えば、ビニル基、(メタ)アクリロイル基、(メタ)アクリルアミド基、ビニルエーテル基、アリル基等が挙げられる。   In the present invention, the polymerizable double bond means a carbon-carbon double bond contained in an unsaturated group capable of radical polymerization. Here, examples of the polymerizable unsaturated group include a vinyl group, a (meth) acryloyl group, a (meth) acrylamide group, a vinyl ether group, and an allyl group.

上記した分散安定剤の中でも特に好適な分散安定剤は、脂肪族炭化水素系有機溶剤等の比較的低極性の有機溶剤に溶解可能であって、しかも本願の課題を達成できるものであり、このような条件を満たす分散安定剤としては、分子量、ガラス転移温度、極性(ポリマーのSP値)、水酸基価、酸価等を容易に調整することができる、前記例示(3)、前記例示(4)のアクリル系共重合体が有利であり、なかでも重合体微粒子(i)とグラフト可能な重合性二重結合を有する前記例示(4)のアクリル系共重合体が好適である。   Among the above-mentioned dispersion stabilizers, particularly preferred dispersion stabilizers are those that can be dissolved in a relatively low polarity organic solvent such as an aliphatic hydrocarbon-based organic solvent, and can achieve the object of the present application. As the dispersion stabilizer that satisfies such conditions, the molecular weight, glass transition temperature, polarity (SP value of the polymer), hydroxyl value, acid value, etc. can be easily adjusted. Examples (3) and (4) The acrylic copolymer of (4) having an polymerizable double bond that can be grafted to the polymer fine particles (i) is preferable.

なお非水分散型樹脂(B)における分散安定剤は、化学反応性基(x)を有することが望ましく、化学反応性基(x)としては、重合性二重結合以外の上記例示(1)、例示(2)、例示(3)及び例示(4)において分散安定剤が有することができる化学反応性基を挙げることができる。   The dispersion stabilizer in the non-aqueous dispersion type resin (B) preferably has a chemically reactive group (x), and the chemically reactive group (x) is exemplified above except for the polymerizable double bond (1). In the examples (2), (3) and (4), there can be mentioned chemically reactive groups which the dispersion stabilizer can have.

また本発明における分散安定剤は、化学反応性基(x)を1分子中に平均1個以上、好ましくは1〜50個含有することができ、数平均分子量が一般に1,000〜50,000、好ましくは3,000〜20,000の範囲にあり、ガラス転移温度が−20〜60℃の範囲であることが適当である。また、分散安定剤における化学反応性基(x)の濃度は、0.02〜8.0モル/kg、さらに好ましくは0.5〜6.0モル/kgの範囲内であることが好適である。   Further, the dispersion stabilizer in the present invention can contain one or more, preferably 1 to 50, of chemically reactive groups (x) in one molecule, and the number average molecular weight is generally 1,000 to 50,000. , Preferably, it is in the range of 3,000 to 20,000, and the glass transition temperature is in the range of -20 to 60 ° C. The concentration of the chemically reactive group (x) in the dispersion stabilizer is preferably in the range of 0.02 to 8.0 mol / kg, more preferably 0.5 to 6.0 mol / kg. is there.

分散安定剤が、上記例示(3)又は例示(4)によるものである場合、原料となる単量体は、官能性不飽和単量体と非官能性不飽和単量体とに分類することもできる。なお重合体微粒子(i)は、重合性不飽和単量体(b1)を重合して得られるビニル系樹脂(アクリル系樹脂を包含する)である。該重合性不飽和単量体(b1)は、特に制限されるものではなく、官能性不飽和単量体であっても、非官能性不飽和単量体であってもよい。   When the dispersion stabilizer is according to the above example (3) or example (4), the monomer as the raw material is classified into a functional unsaturated monomer and a non-functional unsaturated monomer. You can also. The polymer fine particles (i) are vinyl resins (including acrylic resins) obtained by polymerizing the polymerizable unsaturated monomer (b1). The polymerizable unsaturated monomer (b1) is not particularly limited, and may be a functional unsaturated monomer or a non-functional unsaturated monomer.

ここで、上記分散安定剤が上記例示(3)又は例示(4)である場合の分散安定剤を構成する重合性不飽和単量体として、前記官能性不飽和単量体は、例えば、グリシジル(メタ)アクリレート、アクリル酸、メタクリル酸、2−ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、イソシアナトエチル(メタ)アクリレート、m−イソプロペニル−α,α−ジメチルベンジルイソシアネート、γ−メタクリロイルオキシプロピルトリメトキシシラン、アミノエチル(メタ)アクリレート、無水マレイン酸、アセトアセトキシエチル(メタ)アクリレート等を挙げることができる。   Here, as the polymerizable unsaturated monomer constituting the dispersion stabilizer when the dispersion stabilizer is exemplified (3) or (4), the functional unsaturated monomer is, for example, glycidyl. (Meth) acrylate, acrylic acid, methacrylic acid, 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, isocyanatoethyl (meth) acrylate, m-isopropenyl-α, α -Dimethylbenzyl isocyanate, (gamma) -methacryloyloxypropyl trimethoxysilane, aminoethyl (meth) acrylate, maleic anhydride, acetoacetoxyethyl (meth) acrylate, etc. can be mentioned.

非官能性不飽和単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジルメタクリレート等のアクリル酸又はメタクリル酸のエステル化合物;ビスコート3F、ビスコート3MF、ビスコート8F、ビスコート8MF(以上いずれも大阪有機化学社製、商品名)、パーフルオロシクロヘキシル(メタ)アクリレート、フッ化ビニル等の含フッ素ビニル系単量体;N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、N,N−ジエチルメタクリルアミド等の含窒素ビニル系単量体;ビニルエチルエーテル、ビニルブチルエーテル等のビニルエーテル系単量体;スチレン、α−メチルスチレン、ビニルトルエン等の芳香族ビニル単量体;アクリロニトリル、メタクリロニトリル、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート等を挙げることができる。本発明において、語尾の「(メタ)アクリレート」は、アクリレート又はメタクリレートを意味するものとする。   Examples of the non-functional unsaturated monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and octyl (meth) acrylate. , Ester compounds of acrylic acid or methacrylic acid such as lauryl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl methacrylate; biscoat 3F, biscoat 3MF, biscoat 8F, biscoat 8MF ( All of these are made by Osaka Organic Chemical Co., Ltd., trade name), fluorinated vinyl monomers such as perfluorocyclohexyl (meth) acrylate, vinyl fluoride; N, N-dimethylaminoethyl (meth) acrylate Nitrogen-containing vinyl monomers such as N, N-diethylaminoethyl (meth) acrylate and N, N-diethylmethacrylamide; vinyl ether monomers such as vinyl ethyl ether and vinyl butyl ether; styrene, α-methyl styrene, vinyl Examples thereof include aromatic vinyl monomers such as toluene; acrylonitrile, methacrylonitrile, divinylbenzene, ethylene glycol di (meth) acrylate, and the like. In the present invention, “(meth) acrylate” at the end means acrylate or methacrylate.

重合体微粒子(i)を構成する重合性不飽和単量体としては、例えば、上記に列挙した官能性不飽和単量体及び非官能性不飽和単量体を挙げることができる。   Examples of the polymerizable unsaturated monomer constituting the polymer fine particles (i) include the above-mentioned functional unsaturated monomers and non-functional unsaturated monomers.

上記非官能性単量体としては、例示(3)又は例示(4)の分散安定剤を形成する場合は、なかでもエステルのアルキル部分の炭素数が3個(プロピル)以上、好ましくは6個(ヘキシル)以上のアクリル酸又はメタクリル酸のエステル化合物を主体とするものが好適であり、一方、重合体微粒子(i)を形成する場合には、なかでもスチレン、アクリロニトリル及びエステルのアルキル部分の炭素数が4個(ブチル)以下のメタアクリル酸のエステル化合物が挙げられ、この中でも特にメチルメタクリレートが好適である。   As the non-functional monomer, in the case of forming the dispersion stabilizer of Example (3) or Example (4), among them, the alkyl part of the ester has 3 (propyl) or more carbon atoms, preferably 6 (Hexyl) or higher ester compounds of acrylic acid or methacrylic acid are preferred. On the other hand, when forming polymer fine particles (i), carbon of styrene, acrylonitrile and the alkyl part of ester is particularly preferred. An ester compound of methacrylic acid having a number of 4 (butyl) or less can be mentioned, and among these, methyl methacrylate is particularly preferable.

また重合体微粒子(i)内は塗料の貯蔵安定性の点から内部架橋していてもよい。上記官能性不飽和単量体の一部として、例えば2種の相互に反応する化学反応性基を有する単量体を使用し、その化学反応性基を互いに反応させて化学結合を形成させる(例えば、アクリル酸とグリシジルメタクリレートとを使用して反応させることによって、又はジビニルベンゼンの多ビニル化合物を使用する)ことによって、得られる重合体微粒子を内部架橋させることができる。   The polymer fine particles (i) may be internally cross-linked from the viewpoint of storage stability of the paint. As a part of the functional unsaturated monomer, for example, a monomer having two mutually reactive chemically reactive groups is used, and the chemically reactive groups are reacted with each other to form a chemical bond ( For example, the polymer fine particles obtained can be internally crosslinked by reacting with acrylic acid and glycidyl methacrylate, or by using a polyvinyl compound of divinylbenzene.

上記工程における分散安定剤と、重合体微粒子(i)の合成に使用される重合性不飽和単量体(b1)との配合比率は、両成分の固形分合計を基準にして、分散安定剤/重合性不飽和単量体(b1)の質量比で、一般に5/95〜70/30、好ましくは10/90〜60/40の範囲内である。   The blending ratio of the dispersion stabilizer in the above step and the polymerizable unsaturated monomer (b1) used for the synthesis of the polymer fine particles (i) is based on the total solid content of both components. The mass ratio of / polymerizable unsaturated monomer (b1) is generally in the range of 5/95 to 70/30, preferably 10/90 to 60/40.

上記工程において、重合反応に際して使用される有機溶剤は、分散安定剤及び重合体微粒子(i)を形成する重合性不飽和単量体(b1)は溶解するが、該重合性不飽和単量体から形成される重合体微粒子は実質的に溶解しないものであり、極性の小さいものが好ましく、例えば、VM&Pナフサ、ミネラルスピリット、ソルベント灯油、芳香族ナフサ、ソルベントナフサ等の比較的溶解力の小さい脂肪族系又は芳香族系炭化水素系化合物;n−ブタン、n−ヘキサン、n−ヘプタン、n−オクタン、イソノナン、n−デカン、n−ドデカン等の脂肪族炭化水素系化合物;シクロペンタン、シクロヘキサン、シクロブタン等の脂環式炭化水素系化合物等が用いられる。必要に応じて、極性溶剤であるエステル系、エーテル系、ケトン系、アルコール系等の溶剤を少量の割合で併用することもできる。   In the above step, the organic solvent used in the polymerization reaction dissolves the dispersion stabilizer and the polymerizable unsaturated monomer (b1) forming the polymer fine particles (i), but the polymerizable unsaturated monomer. The polymer fine particles formed from the above are substantially insoluble and preferably have a low polarity. For example, fats having relatively low dissolving power such as VM & P naphtha, mineral spirit, solvent kerosene, aromatic naphtha, solvent naphtha, etc. Aliphatic or aromatic hydrocarbon compounds; aliphatic hydrocarbon compounds such as n-butane, n-hexane, n-heptane, n-octane, isononane, n-decane, n-dodecane; cyclopentane, cyclohexane, An alicyclic hydrocarbon-based compound such as cyclobutane is used. If necessary, polar solvents such as esters, ethers, ketones and alcohols can be used in a small proportion.

重合性不飽和単量体(b1)を重合体微粒子(i)に重合するに際しては、重合開始剤を配合して、重合温度を0〜150℃、好ましくは50〜110℃とし、重合時間を通常2〜10時間とすることが好ましい。   In polymerizing the polymerizable unsaturated monomer (b1) into the polymer fine particles (i), a polymerization initiator is added, the polymerization temperature is set to 0 to 150 ° C., preferably 50 to 110 ° C., and the polymerization time is set. Usually, it is preferably 2 to 10 hours.

上記重合開始剤としては、例えば、過酸化ベンゾイル、過酸化ラウロイル、過酸化カプロイル、t−ブチルパーオクトエート、過酸化ジアセチル等の有機過酸化物;アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル、ジメチルα,α’−アゾイソブチレート等のアゾ系開始剤;ジイソプロピルペルオキシジカルボネート等のジアルキルペルオキシジカルボネート;及びレドックス系開始剤等を挙げることができる。重合開始剤の濃度は、重合性不飽和単量体に対して0.01〜10質量%、より好ましくは0.1〜5質量%の範囲内であることが好適である。   Examples of the polymerization initiator include organic peroxides such as benzoyl peroxide, lauroyl peroxide, caproyl peroxide, t-butyl peroctoate, and diacetyl peroxide; azobisisobutyronitrile and azobisdimethylvaleronitrile. And azo initiators such as dimethyl α, α′-azoisobutyrate; dialkylperoxydicarbonates such as diisopropylperoxydicarbonate; and redox initiators. The concentration of the polymerization initiator is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass with respect to the polymerizable unsaturated monomer.

本発明で用いる非水分散型樹脂(B)(「NAD」)は、上述の通り得られる重合体微粒子分散液における、該分散安定剤部分にさらに重合性不飽和基を導入した「NAD」であってもよい。   The non-aqueous dispersion resin (B) (“NAD”) used in the present invention is “NAD” in which a polymerizable unsaturated group is further introduced into the dispersion stabilizer portion in the polymer fine particle dispersion obtained as described above. There may be.

重合性不飽和基を導入した「NAD」は、上述のようにして得られる非水分散型樹脂(B)の該分散安定剤部分が有する化学反応性基(x)と相互に反応しうる相補的化学反応性基(y)を有する重合性不飽和化合物(b2)を反応させることにより製造される。   “NAD” into which a polymerizable unsaturated group has been introduced is complementary that can react with the chemically reactive group (x) of the dispersion stabilizer part of the non-aqueous dispersion resin (B) obtained as described above. It is produced by reacting a polymerizable unsaturated compound (b2) having a chemically chemically reactive group (y).

上記化学反応性基(x)と相補的反応性基(y)との組合せのうち、なかでもエポキシ基とカルボキシル基、水酸基とイソシアネート基、アルコキシシリル基と水酸基から選ばれる組合せが好適である。   Among the combinations of the chemically reactive group (x) and the complementary reactive group (y), a combination selected from an epoxy group and a carboxyl group, a hydroxyl group and an isocyanate group, and an alkoxysilyl group and a hydroxyl group is preferable.

化学反応性基(x)と相補的反応性基(y)とは、必ずしもそれぞれ1種である必要はなく、相互に反応しない基であれば、分散安定剤部分及び重合体微粒子(i)部分のそれぞれに2種以上の反応性基を存在させてもよく、また相互に反応する基であっても、通常の条件下では、非常に反応性の低い基の組合せであれば、分散安定剤部分及び重合体微粒子(i)部分のそれぞれに共存させることができる。   The chemically reactive group (x) and the complementary reactive group (y) do not necessarily have to be one each, and if they are groups that do not react with each other, the dispersion stabilizer part and the polymer fine particle (i) part Two or more kinds of reactive groups may be present in each of these, and even if they are groups that react with each other, a dispersion stabilizer can be used as long as it is a combination of groups that are very reactive under normal conditions. It can coexist in each of the part and the polymer fine particle (i) part.

上記相補的反応性基(y)を有する重合性不飽和化合物(b2)の具体例としては、グリシジル(メタ)アクリレート、3,4−エポキシシクロヘキシルメチル(メタ)アクリレート、アリルグリシジルエーテル等のエポキシ基含有化合物;アクリル酸、メタクリル酸、マレイン酸、イタコン酸等のカルボキシル基含有化合物;2−ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、N−メチロールアクリルアミド、アリルアルコール等の水酸基含有化合物;シアノアクリレート、2−イソシアナトエチル(メタ)アクリレート、m−イソプロペニル−α,α−ジメチルベンジルイソシアネート等のイソシアナト基含有化合物;γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリエトキシシラン、ビニルトリエトキシシラン等のアルコキシシリル基含有化合物;N−メトキシメチルアクリルアミド、N−ブトキシメチルアクリルアミド等のアルコキシメチル基含有化合物;アミノエチル(メタ)アクリレート、アミノプロピル(メタ)アクリレート等のアミノ基含有化合物;無水マレイン酸、無水イタコン酸等のカルボン酸無水基含有化合物;アセトアセトキシエチル(メタ)アクリレート等のβ−ケトエステル基含有化合物等を挙げることができる。   Specific examples of the polymerizable unsaturated compound (b2) having the complementary reactive group (y) include epoxy groups such as glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, and allyl glycidyl ether. Containing compounds; carboxyl group-containing compounds such as acrylic acid, methacrylic acid, maleic acid, and itaconic acid; 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, N-methylolacrylamide, allyl Hydroxyl-containing compounds such as alcohols; isocyanato group-containing compounds such as cyanoacrylate, 2-isocyanatoethyl (meth) acrylate, m-isopropenyl-α, α-dimethylbenzyl isocyanate; γ-methacryloyloxypropylate Alkoxysilyl group-containing compounds such as methoxysilane, γ-acryloyloxypropyltrimethoxysilane, γ-methacryloyloxypropyltriethoxysilane, vinyltriethoxysilane; alkoxymethyl groups such as N-methoxymethylacrylamide and N-butoxymethylacrylamide Compounds; amino group-containing compounds such as aminoethyl (meth) acrylate and aminopropyl (meth) acrylate; carboxylic acid anhydride group-containing compounds such as maleic anhydride and itaconic anhydride; β-ketoesters such as acetoacetoxyethyl (meth) acrylate Examples thereof include a group-containing compound.

上記分散安定剤部分への重合性不飽和基の導入反応は、組合せる化学反応性基(x)と相補的反応性基(y)とが反応する条件下で、(x)と(y)の種類等に応じて適宜行なうことができる。   The introduction reaction of the polymerizable unsaturated group into the dispersion stabilizer portion is carried out under the condition that the chemically reactive group (x) to be combined and the complementary reactive group (y) react with each other (x) and (y) Depending on the type and the like, it can be appropriately performed.

上記重合性不飽和基の導入反応における相補的反応性基(y)を有する重合性不飽和化合物(b2)の量は、分散安定剤中の化学反応性基(x)1モルに対して、該重合性不飽和化合物中の相補的反応性基(y)が0.1〜1.5モル、好ましくは0.5〜1.0モルとなる範囲内であることが好適である。また、重合体微粒子分散液の樹脂中の重合性不飽和基当量は、低温硬化性及び被層塗膜の仕上り性の点から不飽和基当量が660〜10,000、さらに好ましくは1,000〜2,000となる範囲が好適である。   The amount of the polymerizable unsaturated compound (b2) having a complementary reactive group (y) in the introduction reaction of the polymerizable unsaturated group is based on 1 mol of the chemically reactive group (x) in the dispersion stabilizer. It is suitable that the complementary reactive group (y) in the polymerizable unsaturated compound is in the range of 0.1 to 1.5 mol, preferably 0.5 to 1.0 mol. In addition, the polymerizable unsaturated group equivalent in the resin of the polymer fine particle dispersion is preferably 660 to 10,000, more preferably 1,000 from the viewpoint of low temperature curability and finish of the coated film. A range of ~ 2,000 is preferred.

非水分散型樹脂(B)は、塗膜の耐衝撃性と仕上り性の点から、平均粒子径が50〜500nmであることが好ましい。粒子径の測定は、[サブミクロン粒度分布測定装置「COULTER N4型」(ベックマン・コールター社製)](以下、同様)によって行った。   The non-aqueous dispersion resin (B) preferably has an average particle diameter of 50 to 500 nm from the viewpoint of impact resistance and finish of the coating film. The particle size was measured by a [submicron particle size distribution measuring device “COULTER N4 type” (manufactured by Beckman Coulter)] (hereinafter the same).

光重合開始剤(C)
本発明の塗料組成物に用いる光重合開始剤(C)としては、活性エネルギー線を吸収してラジカルを発生する開始剤であれば特に限定されることなく使用できる。
Photopolymerization initiator (C)
As a photoinitiator (C) used for the coating composition of this invention, if it is an initiator which absorbs an active energy ray and generate | occur | produces a radical, it can be used without being specifically limited.

前記光重合開始剤としては、例えばベンジル、ジアセチル等のα−ジケトン化合物;ベンゾイン等のアシロイン化合物;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル等のアシロインエーテル化合物;チオキサントン、2,4−ジエチルチオキサントン、2−イソプロピルチオキサントン、チオキサントン−4−スルホン酸等のチオキサントン化合物;ベンゾフェノン、4,4’−ビス(ジメチルアミノ)ベンゾフェノン、4,4’−ビス(ジエチルアミノ)ベンゾフェノン等のベンゾフェノン化合物;ミヒラーケトン化合物;アセトフェノン、2−(4−トルエンスルホニルオキシ)−2−フェニルアセトフェノン、p−ジメチルアミノアセトフェノン、α,α’−ジメトキシアセトキシベンゾフェノン、2,2’−ジメトキシ−2−フェニルアセトフェノン、p−メトキシアセトフェノン、2−メチル〔4−(メチルチオ)フェニル〕−2−モルフォリノ−1−プロパノン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタン−1−オン、α−イソヒドロキシイソブチルフェノン、α,α’−ジクロル−4−フェノキシアセトフェノン、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン等のアセトフェノン化合物;2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(アシル)フォスフィンオキサイド等のアシルフォスフィンオキサイド化合物;アントラキノン、1,4−ナフトキノン等のキノン化合物;フェナシルクロライド、トリハロメチルフェニルスルホン、トリス(トリハロメチル)−s−トリアジン等のハロゲン化合物;ジ−t−ブチルパーオキサイド等の過酸化物等が挙げられる。これらは1種又は2種以上の混合物として使用できる。   Examples of the photopolymerization initiator include α-diketone compounds such as benzyl and diacetyl; acyloin compounds such as benzoin; acyloin ether compounds such as benzoin methyl ether, benzoin ethyl ether and benzoin isopropyl ether; thioxanthone and 2,4-diethyl Thioxanthone compounds such as thioxanthone, 2-isopropylthioxanthone, thioxanthone-4-sulfonic acid; benzophenone compounds such as benzophenone, 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone; Michler's ketone compound; Acetophenone, 2- (4-toluenesulfonyloxy) -2-phenylacetophenone, p-dimethylaminoacetophenone, α, α'-dimethoxyacetoxybenzof Non, 2,2′-dimethoxy-2-phenylacetophenone, p-methoxyacetophenone, 2-methyl [4- (methylthio) phenyl] -2-morpholino-1-propanone, 2-benzyl-2-dimethylamino-1- Acetophenone compounds such as (4-morpholinophenyl) -butan-1-one, α-isohydroxyisobutylphenone, α, α′-dichloro-4-phenoxyacetophenone, 1-hydroxy-cyclohexyl-phenyl-ketone; 2,4 Acylphosphine oxide compounds such as 1,6-trimethylbenzoyldiphenylphosphine oxide and bis (acyl) phosphine oxide; quinone compounds such as anthraquinone and 1,4-naphthoquinone; phenacyl chloride, trihalomethylphenylsulfone, tris (to Halomethyl) -s-halogen compounds such as triazine; peroxides such as di -t- butyl peroxide and the like. These can be used as one or a mixture of two or more.

光重合開始剤(C)の市販品としては、例えば、イルガキュア 184(IRGACURE 184)、イルガキュア 261、イルガキュア 500、イルガキュア 651、イルガキュア 907、イルガキュア CGI 1700(チバ スペシャルティ ケミカルズ社製、商品名、IRGACURE\イルガキュアは登録商標)、ダロキュア 1173(Darocur 1173)、ダロキュア 1116、ダロキュア 2959、ダロキュア 1664、ダロキュア 4043(メルクジャパン社製、商品名、Darocur\ダロキュアは登録商標)、KAYACURE MBP(カヤキュアー MBP)、KAYACURE DETX S、KAYACURE DMBI、KAYACURE EPA、KAYACURE OA(日本化薬社製、商品名、KAYACURE\カヤキュアーは登録商標)、VICURE 10(ビキュアー 10)、ビキュアー 55〔ストウファー社(STAUFFER Co.,LTD.)製、商品名〕、TRIGONAL(登録商標)P1(トリゴナル P1)〔アクゾ社(AKZO Co.,LTD.)製、商品名〕、SANDORAY 1000(サンドレイ 1000)〔サンドズ社(SANDOZ Co.,LTD.)製、商品名〕、DEAP(ディープ)〔アプジョン社(APJOHN Co., LTD.)製、商品名〕、QUANTACURE PDO(カンタキュア PDO)、カンタキュア ITX、カンタキュア EPD〔ウォードブレキンソプ社(WARD BLEKINSOP Co., LTD.)製、商品名〕等を挙げることができる。   Examples of commercially available photopolymerization initiators (C) include Irgacure 184, Irgacure 261, Irgacure 500, Irgacure 651, Irgacure 907, Irgacure CGI 1700 (trade name, IRGACURE \ Irgacure \ Is a registered trademark), Darocur 1173 (Darocur 1173), Darocur 1116, Darocur 2959, Darocur 1664, Darocur 4043 (Merck Japan, trade name, Darocur \ Darocur is a registered trademark), KYACURE MBP (Kayacure MBP), KAXACURE DE , KAYACURE DMBI, KAYACURE EPA, KAYACURE OA (manufactured by Nippon Kayaku Co., Ltd., trade name, KAYACURE \ Kayacure is a registered trademark), VICURE 10 (Bicure 10), Vicure 55 [Product name, manufactured by STAUFFER Co., LTD.], TRIGONAL (registered trademark) P1 (Trigonal P1) [product name, manufactured by AKZO Co., LTD.], SANDORAY 1000 (Sandray 1000) [Sands (SANDOZ Co., LTD.), Product name], DEAP (Deep) (APJOHN Co., LTD., Product name), QUANTACURE PDO (Kantacure PDO), KantaCure ITX, KantaCure EPD [Trade name] manufactured by WARD BLEKINSOP Co., LTD.

イソシアネート化合物(D)
本発明の塗料組成物は、さらに化合物(A)以外のイソシアネート化合物(D)を含有することができる。
Isocyanate compound (D)
The coating composition of the present invention can further contain an isocyanate compound (D) other than the compound (A).

イソシアネート化合物(D)は、分子中にイソシアネート基を有する化合物であって、上記化合物(A)の原料であるポリイソシアネート化合物(a2)の説明において例示したポリイソシアネート化合物が挙げられる。なかでも、塗膜の耐候性の点から脂肪族ポリイソシアネート化合物のイソシアヌレート環付加物が好ましく、ヘキサメチレンジイソシアネートのイソシアヌレート環付加物が特に好ましい。   The isocyanate compound (D) is a compound having an isocyanate group in the molecule, and examples thereof include the polyisocyanate compounds exemplified in the description of the polyisocyanate compound (a2) which is a raw material of the compound (A). Of these, isocyanurate cycloadducts of aliphatic polyisocyanate compounds are preferred from the viewpoint of the weather resistance of the coating film, and isocyanurate cycloadducts of hexamethylene diisocyanate are particularly preferred.

水酸基含有樹脂(E)
本発明の塗料組成物は、さらに、化合物(B)以外の水酸基含有樹脂(E)を含有することができる。水酸基含有樹脂(E)は、1分子中に少なくとも1個の水酸基を有する樹脂である。水酸基含有樹脂(E)としては、例えば、水酸基を有する、ポリエステル樹脂、アクリル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、エポキシ樹脂、アルキド樹脂等の樹脂が挙げられる。これらはそれぞれ単独でもしくは2種以上組み合わせて使用することができる。なかでも、水酸基含有樹脂(E)は、得られる塗膜の耐候性の点から水酸基含有アクリル樹脂であることが好ましい。
Hydroxyl-containing resin (E)
The coating composition of the present invention can further contain a hydroxyl group-containing resin (E) other than the compound (B). The hydroxyl group-containing resin (E) is a resin having at least one hydroxyl group in one molecule. Examples of the hydroxyl group-containing resin (E) include resins having a hydroxyl group, such as polyester resins, acrylic resins, polyether resins, polycarbonate resins, polyurethane resins, epoxy resins, and alkyd resins. These can be used alone or in combination of two or more. Especially, it is preferable that a hydroxyl-containing resin (E) is a hydroxyl-containing acrylic resin from the point of the weather resistance of the coating film obtained.

水酸基含有アクリル樹脂は、通常、水酸基含有重合性不飽和単量体及び該水酸基含有重合性不飽和単量体と共重合可能な他の重合性不飽和単量体を、それ自体既知の方法、例えば、有機溶媒中での溶液重合法、水中でのエマルション重合法等の方法により共重合せしめることによって製造することができる。   The hydroxyl group-containing acrylic resin is usually a hydroxyl group-containing polymerizable unsaturated monomer and another polymerizable unsaturated monomer copolymerizable with the hydroxyl group-containing polymerizable unsaturated monomer, a method known per se, For example, it can be produced by copolymerization by a method such as a solution polymerization method in an organic solvent or an emulsion polymerization method in water.

水酸基含有重合性不飽和単量体は、1分子中に水酸基及び重合性不飽和結合をそれぞれ1個以上有する化合物であって、具体的には、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート等の(メタ)アクリル酸と炭素数2〜8の2価アルコールとのモノエステル化物;該(メタ)アクリル酸と炭素数2〜8の2価アルコールとのモノエステル化物のε−カプロラクトン変性体;N−ヒドロキシメチル(メタ)アクリルアミド;アリルアルコール、さらに、分子末端が水酸基であるポリオキシエチレン鎖を有する(メタ)アクリレート等を挙げることができる。   The hydroxyl group-containing polymerizable unsaturated monomer is a compound having at least one hydroxyl group and one polymerizable unsaturated bond in one molecule. Specifically, for example, 2-hydroxyethyl (meth) acrylate, 2 A monoesterified product of (meth) acrylic acid such as hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate and a dihydric alcohol having 2 to 8 carbon atoms; Ε-caprolactone modified product of monoesterified product of (meth) acrylic acid and dihydric alcohol having 2 to 8 carbon atoms; N-hydroxymethyl (meth) acrylamide; allyl alcohol, and polyoxyethylene chain whose molecular terminal is a hydroxyl group (Meth) acrylate etc. which have can be mentioned.

また、水酸基含有重合性不飽和単量体と共重合可能な他の重合性不飽和単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、i−プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート、tert−ブチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、n−オクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、トリデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、「イソステアリルアクリレート」(商品名、大阪有機化学工業社製)、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、t−ブチルシクロヘキシル(メタ)アクリレート、シクロドデシル(メタ)アクリレート等のアルキル又はシクロアルキル(メタ)アクリレート;イソボルニル(メタ)アクリレート等のイソボルニル基を有する重合性不飽和単量体;アダマンチル(メタ)アクリレート等のアダマンチル基を有する重合性不飽和単量体;スチレン、α−メチルスチレン、ビニルトルエン等のビニル芳香族化合物;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2−メトキシエトキシ)シラン、γ−(メタ)アクリロイルオキシプロピルトリメトキシシラン、γ−(メタ)アクリロイルオキシプロピルトリエトキシシラン等のアルコキシシリル基を有する重合性不飽和単量体;パーフルオロブチルエチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート等のパーフルオロアルキル(メタ)アクリレート;フルオロオレフィン等のフッ素化アルキル基を有する重合性不飽和単量体;マレイミド基等の光重合性官能基を有する重合性不飽和単量体;N−ビニルピロリドン、エチレン、ブタジエン、クロロプレン、プロピオン酸ビニル、酢酸ビニル等のビニル化合物;(メタ)アクリル酸、マレイン酸、クロトン酸、β−カルボキシエチルアクリレート等のカルボキシル基含有重合性不飽和単量体;(メタ)アクリロニトリル、(メタ)アクリルアミド、N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリルアミド、グリシジル(メタ)アクリレートとアミン化合物との付加物等の含窒素重合性不飽和単量体;アリル(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート等の重合性不飽和基を1分子中に2個以上有する重合性不飽和単量体;グリシジル(メタ)アクリレート、β−メチルグリシジル(メタ)アクリレート、3,4−エポキシシクロヘキシルメチル(メタ)アクリレート、3,4−エポキシシクロヘキシルエチル(メタ)アクリレート、3,4−エポキシシクロヘキシルプロピル(メタ)アクリレート、アリルグリシジルエーテル等のエポキシ基含有重合性不飽和単量体;分子末端がアルコキシ基であるポリオキシエチレン鎖を有する(メタ)アクリレート;2−アクリルアミド−2−メチルプロパンスルホン酸、アリルスルホン酸、スチレンスルホン酸ナトリウム塩、スルホエチルメタクリレート及びそのナトリウム塩又はアンモニウム塩等のスルホン酸基を有する重合性不飽和単量体;2−アクリロイルオキシエチルアシッドホスフェート、2−メタクリロイルオキシエチルアシッドホスフェート、2−アクリロイルオキシプロピルアシッドホスフェート、2−メタクリロイルオキシプロピルアシッドホスフェート等のリン酸基を有する重合性不飽和単量体;2−ヒドロキシ−4−(3−メタクリロイルオキシ−2−ヒドロキシプロポキシ)ベンゾフェノン、2−ヒドロキシ−4−(3−アクリロイルオキシ−2−ヒドロキシプロポキシ)ベンゾフェノン、2,2’−ジヒドロキシ−4−(3−メタクリロイルオキシ−2−ヒドロキシプロポキシ)ベンゾフェノン、2,2’−ジヒドロキシ−4−(3−アクリロイルオキシ−2−ヒドロキシプロポキシ)ベンゾフェノン、2−(2’−ヒドロキシ−5’−メタクリロイルオキシエチルフェニル)−2H−ベンゾトリアゾール等の紫外線吸収性官能基を有する重合性不飽和単量体;4−(メタ)アクリロイルオキシ−1,2,2,6,6−ペンタメチルピペリジン、4−(メタ)アクリロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−シアノ−4−(メタ)アクリロイルアミノ−2,2,6,6−テトラメチルピペリジン、1−(メタ)アクリロイル−4−(メタ)アクリロイルアミノ−2,2,6,6−テトラメチルピペリジン、1−(メタ)アクリロイル−4−シアノ−4−(メタ)アクリロイルアミノ−2,2,6,6−テトラメチルピペリジン、4−クロトノイルオキシ−2,2,6,6−テトラメチルピペリジン、4−クロトノイルアミノ−2,2,6,6−テトラメチルピペリジン、1−クロトノイル−4−クロトノイルオキシ−2,2,6,6−テトラメチルピペリジン等の紫外線安定性重合性不飽和単量体;アクロレイン、ダイアセトンアクリルアミド、ダイアセトンメタクリルアミド、アセトアセトキシエチルメタクリレート、ホルミルスチロール、4〜7個の炭素原子を有するビニルアルキルケトン(例えば、ビニルメチルケトン、ビニルエチルケトン、ビニルブチルケトン)等のカルボニル基を有する重合性不飽和単量体化合物等が挙げられ、これらはそれぞれ単独でもしくは2種以上組み合わせて使用することができる。   Examples of the other polymerizable unsaturated monomer copolymerizable with the hydroxyl group-containing polymerizable unsaturated monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, tert-butyl (meth) acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, 2- Ethylhexyl (meth) acrylate, nonyl (meth) acrylate, tridecyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, “isostearyl acrylate” (trade name, manufactured by Osaka Organic Chemical Industry Co., Ltd.), cyclohexyl (meta) ) Acrylate, methylcyclohexyl ( A) alkyl, cycloalkyl (meth) acrylate such as acrylate, t-butylcyclohexyl (meth) acrylate, cyclododecyl (meth) acrylate; polymerizable unsaturated monomer having an isobornyl group such as isobornyl (meth) acrylate; adamantyl Polymerizable unsaturated monomers having an adamantyl group such as (meth) acrylate; vinyl aromatic compounds such as styrene, α-methylstyrene, vinyltoluene; vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) ) Polymerizable unsaturated monomers having alkoxysilyl groups such as silane, γ- (meth) acryloyloxypropyltrimethoxysilane, γ- (meth) acryloyloxypropyltriethoxysilane; perfluorobutylethyl (meth) Perfluoroalkyl (meth) acrylates such as acrylate and perfluorooctylethyl (meth) acrylate; polymerizable unsaturated monomers having a fluorinated alkyl group such as fluoroolefin; polymerization having a photopolymerizable functional group such as a maleimide group Unsaturated monomers; vinyl compounds such as N-vinylpyrrolidone, ethylene, butadiene, chloroprene, vinyl propionate and vinyl acetate; carboxyl groups such as (meth) acrylic acid, maleic acid, crotonic acid and β-carboxyethyl acrylate Containing polymerizable unsaturated monomer: (meth) acrylonitrile, (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylamide, glycidyl (meth) acrylate and amine Such as adducts with compounds Nitrogen polymerizable unsaturated monomer; polymerizable unsaturated monomer having two or more polymerizable unsaturated groups in one molecule such as allyl (meth) acrylate and 1,6-hexanediol di (meth) acrylate; Glycidyl (meth) acrylate, β-methylglycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, 3,4-epoxycyclohexylethyl (meth) acrylate, 3,4-epoxycyclohexylpropyl (meth) acrylate , Epoxy group-containing polymerizable unsaturated monomers such as allyl glycidyl ether; (meth) acrylate having a polyoxyethylene chain whose molecular terminal is an alkoxy group; 2-acrylamido-2-methylpropanesulfonic acid, allylsulfonic acid, Styrene sulfonic acid sodium salt, sulfoethyl Polymerizable unsaturated monomers having a sulfonic acid group such as tacrylate and its sodium salt or ammonium salt; 2-acryloyloxyethyl acid phosphate, 2-methacryloyloxyethyl acid phosphate, 2-acryloyloxypropyl acid phosphate, 2-methacryloyl Polymerizable unsaturated monomers having a phosphate group such as oxypropyl acid phosphate; 2-hydroxy-4- (3-methacryloyloxy-2-hydroxypropoxy) benzophenone, 2-hydroxy-4- (3-acryloyloxy- 2-hydroxypropoxy) benzophenone, 2,2′-dihydroxy-4- (3-methacryloyloxy-2-hydroxypropoxy) benzophenone, 2,2′-dihydroxy-4- (3-acryloyloxy) Polymerizable unsaturated monomer having an ultraviolet absorbing functional group such as 2-hydroxypropoxy) benzophenone, 2- (2′-hydroxy-5′-methacryloyloxyethylphenyl) -2H-benzotriazole; 4- (meta ) Acryloyloxy-1,2,2,6,6-pentamethylpiperidine, 4- (meth) acryloyloxy-2,2,6,6-tetramethylpiperidine, 4-cyano-4- (meth) acryloylamino- 2,2,6,6-tetramethylpiperidine, 1- (meth) acryloyl-4- (meth) acryloylamino-2,2,6,6-tetramethylpiperidine, 1- (meth) acryloyl-4-cyano- 4- (meth) acryloylamino-2,2,6,6-tetramethylpiperidine, 4-crotonoyloxy-2,2,6,6 UV-stable polymerizability of tetramethylpiperidine, 4-crotonoylamino-2,2,6,6-tetramethylpiperidine, 1-crotonoyl-4-crotonoyloxy-2,2,6,6-tetramethylpiperidine, etc. Unsaturated monomer; acrolein, diacetone acrylamide, diacetone methacrylamide, acetoacetoxyethyl methacrylate, formyl styrene, vinyl alkyl ketone having 4 to 7 carbon atoms (for example, vinyl methyl ketone, vinyl ethyl ketone, vinyl butyl) Examples thereof include polymerizable unsaturated monomer compounds having a carbonyl group such as ketone), and these can be used alone or in combination of two or more.

水酸基含有樹脂(E)は、低温での硬化性の点、及び得られる塗膜の耐水性の点から、一般に30〜300mgKOH/g、特に40〜250mgKOH/g、さらに特に50〜200mgKOH/gの範囲内の水酸基価を有することが好ましい。   The hydroxyl group-containing resin (E) is generally 30 to 300 mgKOH / g, particularly 40 to 250 mgKOH / g, more particularly 50 to 200 mgKOH / g, from the viewpoint of curability at low temperature and the water resistance of the resulting coating film. It preferably has a hydroxyl value within the range.

水酸基含有樹脂(E)は、化合物(A)との反応性を高める点からカルボキシル基等の酸基を有していることが好ましい。   The hydroxyl group-containing resin (E) preferably has an acid group such as a carboxyl group from the viewpoint of increasing the reactivity with the compound (A).

水酸基含有樹脂(E)は、1〜25mgKOH/g、特に1〜20mgKOH/gの範囲内の酸価を有することが好ましい。   The hydroxyl group-containing resin (E) preferably has an acid value in the range of 1 to 25 mgKOH / g, particularly 1 to 20 mgKOH / g.

水酸基含有樹脂(E)は、一般に3,000〜100,000、特に4,000〜50,000、さらに特に5,000〜30,000の範囲内の重量平均分子量を有することが好ましい。   The hydroxyl group-containing resin (E) generally has a weight average molecular weight in the range of 3,000 to 100,000, particularly 4,000 to 50,000, more preferably 5,000 to 30,000.

水酸基含有樹脂(E)は、耐擦り傷性及び耐候性の点からガラス転移点温度が0℃以上、特に3℃〜50℃の範囲であることが好ましい。   The hydroxyl group-containing resin (E) preferably has a glass transition temperature of 0 ° C. or higher, particularly 3 ° C. to 50 ° C. from the viewpoint of scratch resistance and weather resistance.

ここで、ガラス転移温度(℃)は、静的ガラス転移温度とし、例えば示差走査熱量計「DSC−50Q型」(島津製作所製、商品名)を用いて、試料を測定カップにとり、真空吸引して完全に溶剤を除去した後、3度/分の昇温速度で−100度〜100度の範囲で熱量変化を測定し、低温側における最初のベースラインの変化点をガラス転移温度とした。   Here, the glass transition temperature (° C.) is a static glass transition temperature. For example, using a differential scanning calorimeter “DSC-50Q type” (manufactured by Shimadzu Corporation, trade name), a sample is taken into a measuring cup and vacuumed. After the solvent was completely removed, the change in calorie was measured in the range of -100 degrees to 100 degrees at a temperature increase rate of 3 degrees / minute, and the first baseline change point on the low temperature side was taken as the glass transition temperature.

ラジカル重合性不飽和基含有化合物(F)
本発明の塗料組成物には、さらに化合物(A)以外のラジカル重合性不飽和基含有化合物(F)を含有することができる。
Radical polymerizable unsaturated group-containing compound (F)
The coating composition of the present invention may further contain a radical polymerizable unsaturated group-containing compound (F) other than the compound (A).

その他ラジカル重合性不飽和基含有化合物(F)としては、単官能ラジカル重合性不飽和基含有化合物、多官能ラジカル重合性不飽和基含有化合物が挙げられる。   Other examples of the radical polymerizable unsaturated group-containing compound (F) include a monofunctional radical polymerizable unsaturated group-containing compound and a polyfunctional radical polymerizable unsaturated group-containing compound.

単官能ラジカル重合性不飽和基含有化合物としては、例えば、一価アルコールと(メタ)アクリル酸とのエステル化物等が挙げられる。具体的には、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、ネオペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、N−アクリロイルオキシエチルヘキサヒドロフタルイミド等が挙げられる。また、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等の水酸基含有(メタ)アクリレート;アクリル酸、メタクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、2−カルボキシエチル(メタ)アクリレート、2−カルボキシプロピル(メタ)アクリレート、5−カルボキシペンチル(メタ)アクリレート等のカルボキシル基含有(メタ)アクリレート;グリシジル(メタ)アクリレート、アリルグリシジルエーテル等のグリシジル基含有ラジカル重合性不飽和基含有化合物;スチレン、α−メチルスチレン、ビニルトルエン、α−クロルスチレン等のビニル芳香族化合物;N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、N−t−ブチルアミノエチル(メタ)アクリレート等の含窒素アルキル(メタ)アクリレート;アクリルアミド、メタクリルアミド、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド、N−メトキシメチル(メタ)アクリルアミド、N−ブトキシメチル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジメチルアミノプロピル(メタ)アクリルアミド、N,N−ジメチルアミノエチル(メタ)アクリルアミド等の重合性アミド化合物等が挙げられる。   Examples of the monofunctional radical polymerizable unsaturated group-containing compound include esterified products of monohydric alcohol and (meth) acrylic acid. Specifically, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (Meth) acrylate, neopentyl (meth) acrylate, cyclohexyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, N-acryloyloxyethylhexahydro Examples include phthalimide. Also, for example, hydroxyl-containing (meth) acrylates such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate; acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid Carboxyl group-containing (meth) acrylates such as 2-carboxyethyl (meth) acrylate, 2-carboxypropyl (meth) acrylate and 5-carboxypentyl (meth) acrylate; glycidyl groups such as glycidyl (meth) acrylate and allyl glycidyl ether -Containing radically polymerizable unsaturated group-containing compounds; vinyl aromatic compounds such as styrene, α-methylstyrene, vinyltoluene, α-chlorostyrene; N, N-dimethylaminoethyl (meth) acrylate, N, N-die Nitrogen-containing alkyl (meth) acrylates such as tilaminoethyl (meth) acrylate and Nt-butylaminoethyl (meth) acrylate; acrylamide, methacrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, N, Examples thereof include polymerizable amide compounds such as N-dimethylaminoethyl (meth) acrylamide.

多官能ラジカル重合性不飽和基含有化合物としては、例えば、多価アルコールと(メタ)アクリル酸とのエステル化物等が挙げられる。具体的には、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ビスフェノールAエチレンオキサイド変性ジ(メタ)アクリレート等のジ(メタ)アクリレート化合物;グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンプロピレンオキサイド変性トリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ε−カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート等のトリ(メタ)アクリレート化合物;ペンタエリスリトールテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート化合物;その他、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。さらに、ウレタン(メタ)アクリレート樹脂、エポキシ(メタ)アクリレート樹脂、ポリエステル(メタ)アクリレート樹脂等が挙げられる。ウレタン(メタ)アクリレート樹脂は、例えばポリイソシアネート化合物、ヒドロキシルアルキル(メタ)アクリレート及びポリオール化合物を原料として用い、イソシアネート基に対してヒドロキシル基が等モル量もしくは過剰になるような量で反応させて得ることができる。これらラジカル重合性不飽和基含有化合物は単独で又は2種以上組合せて使用することができる。   Examples of the polyfunctional radical polymerizable unsaturated group-containing compound include esterified products of polyhydric alcohol and (meth) acrylic acid. Specifically, for example, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, 1,3-butanediol di (meth) Acrylate, 1,4-butanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, glycerin di (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol di (meth) acrylate, Dipentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, pentaerythritol di (meth) acrylate, bisphenol A ethylene oxide modified di (meth) acrylate, etc. Meth) acrylate compounds; glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane propylene oxide modified tri (meth) acrylate, trimethylolpropane ethylene oxide modified tri (meth) acrylate, pentaerythritol tri (meth) ) Acrylate, ε-caprolactone-modified tris (acryloxyethyl) isocyanurate and other tri (meth) acrylate compounds; penta (erythritol) tetra (meth) acrylate and other tetra (meth) acrylate compounds; other dipentaerythritol penta (meth) acrylates And dipentaerythritol hexa (meth) acrylate. Furthermore, urethane (meth) acrylate resin, epoxy (meth) acrylate resin, polyester (meth) acrylate resin and the like can be mentioned. The urethane (meth) acrylate resin is obtained, for example, by using a polyisocyanate compound, a hydroxylalkyl (meth) acrylate, and a polyol compound as raw materials and reacting them in an amount such that the hydroxyl group is equimolar or excessive with respect to the isocyanate group. be able to. These radically polymerizable unsaturated group-containing compounds can be used alone or in combination of two or more.

なお、ラジカル重合性不飽和基含有化合物は、塗膜の耐擦り傷性の点から、3官能以上のラジカル重合性不飽和基含有化合物を含むことが好ましい。   The radical polymerizable unsaturated group-containing compound preferably contains a trifunctional or higher functional radical polymerizable unsaturated group-containing compound from the viewpoint of scratch resistance of the coating film.

なお、ラジカル重合性不飽和基含有化合物は、低温硬化性の点から、水酸基を有するラジカル重合性不飽和基含有化合物を含むことが好ましい。   In addition, it is preferable that the radically polymerizable unsaturated group containing compound contains the radically polymerizable unsaturated group containing compound which has a hydroxyl group from a low temperature curability point.

なお、ラジカル重合性不飽和基含有化合物は、低温硬化性及び複層塗膜の仕上り性の点から、不飽和基当量が100〜5,000であることが好ましい。より好ましくは500〜3,000である。   The radical polymerizable unsaturated group-containing compound preferably has an unsaturated group equivalent of 100 to 5,000 from the viewpoint of low temperature curability and finish of the multilayer coating film. More preferably, it is 500-3,000.

その他の成分
本発明の塗料組成物は、さらに必要に応じて、硬化触媒、増粘剤、消泡剤、防錆剤、可塑剤、有機溶剤、表面調整剤、沈降防止剤等の通常の塗料用添加剤をそれぞれ単独でもしくは2種以上組み合わせて含有することができる。
Other components The coating composition of the present invention may further comprise a normal coating material such as a curing catalyst, a thickener, an antifoaming agent, a rust inhibitor, a plasticizer, an organic solvent, a surface conditioner, an anti-settling agent, etc. Additives can be used alone or in combination of two or more.

本発明の塗料組成物は、有機溶剤型塗料組成物及び水性塗料組成物のいずれであってもよいが、貯蔵安定性等の観点から、有機溶剤型塗料組成物であることが好適である。なお、本明細書において、水性塗料組成物は溶媒の主成分が水である塗料であり、有機溶剤型塗料組成物は溶媒として実質的に水を含有しない塗料である。   The coating composition of the present invention may be either an organic solvent-type coating composition or a water-based coating composition, but is preferably an organic solvent-type coating composition from the viewpoint of storage stability and the like. In the present specification, the water-based coating composition is a coating in which the main component of the solvent is water, and the organic solvent-type coating composition is a coating that does not substantially contain water as a solvent.

有機溶剤型塗料の場合に使用される有機溶剤は特に限定されない。具体的には、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルアミルケトン、エチルイソアミルケトン、ジイソブチルケトン、メチルへキシルケトン等のケトン系化合物;酢酸エチル、酢酸ブチル、安息香酸メチル、プロピオン酸メチル等のエステル系化合物;テトラヒドロフラン、ジオキサン、ジメトキシエタン等のエーテル系化合物;プロピレングリコールモノメチルエーテルアセテート、3−メトキシブチルアセテート等のグリコールエーテル系化合物;芳香族炭化水素系化合物、脂肪族炭化水素系化合物等が挙げられる。   The organic solvent used in the case of the organic solvent type paint is not particularly limited. Specifically, for example, ketone compounds such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl amyl ketone, ethyl isoamyl ketone, diisobutyl ketone, methyl hexyl ketone; ethyl acetate, butyl acetate, methyl benzoate, methyl propionate Ester compounds such as tetrahydrofuran, dioxane and dimethoxyethane; glycol ether compounds such as propylene glycol monomethyl ether acetate and 3-methoxybutyl acetate; aromatic hydrocarbon compounds and aliphatic hydrocarbon compounds Is mentioned.

本発明の塗料組成物中における上記各成分の含有量は、特に限定されないが、次に述べる範囲が塗料の安定性および塗膜性能の点から好ましい。   The content of each of the above components in the coating composition of the present invention is not particularly limited, but the following range is preferable from the viewpoint of coating stability and coating film performance.

化合物(A)含有量(固形分含有量)は、特に限定されないが、好ましくは、塗料組成物中の固形分100質量部に対して1〜90質量部であり、より好ましくは10〜85質量部である。これら範囲は、耐擦り傷性及び耐候性の点で意義がある。   Although content (solid content) of a compound (A) is not specifically limited, Preferably, it is 1-90 mass parts with respect to 100 mass parts of solid content in a coating composition, More preferably, it is 10-85 mass. Part. These ranges are significant in terms of scratch resistance and weather resistance.

非水分散型樹脂(B)の含有量(固形分含有量)は、特に限定されないが、好ましくは、本発明の塗料組成物中の固形分100質量部に対して、1〜50質量部であり、より好ましくは1.5〜48質量部である。これら範囲は、塗料の貯蔵安定性、塗膜の耐衝撃性の点で意義がある。   The content (solid content) of the non-aqueous dispersion resin (B) is not particularly limited, but is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the solid content in the coating composition of the present invention. Yes, more preferably 1.5 to 48 parts by mass. These ranges are significant in terms of the storage stability of the paint and the impact resistance of the coating film.

光重合開始剤(C)の含有量(固形分含有量)は、特に限定されないが、好ましくは、本発明の塗料組成物中の固形分100質量部に対して、1〜10質量部であり、より好ましくは2〜6質量部である。   Although content (solid content) of a photoinitiator (C) is not specifically limited, Preferably, it is 1-10 mass parts with respect to 100 mass parts of solid content in the coating composition of this invention. More preferably, it is 2 to 6 parts by mass.

イソシアネート化合物(D)の含有量(固形分含有量)は、好ましくは、本発明の塗料組成物中の固形分100質量部に対して、30質量部以下であり、より好ましくは3〜25質量部である。これら範囲は、塗膜の耐酸性、低温硬化性の点で意義がある。   The content (solid content) of the isocyanate compound (D) is preferably 30 parts by mass or less, more preferably 3 to 25 masses with respect to 100 parts by mass of the solid content in the coating composition of the present invention. Part. These ranges are significant in terms of acid resistance and low-temperature curability of the coating film.

水酸基含有樹脂(E)の含有量(固形分含有量)は、好ましくは、本発明の塗料組成物中の固形分100質量部に対して、70質量部以下であり、より好ましくは5〜60質量部である。これら範囲は、耐擦り傷性及び耐候性の点で意義がある。   The content (solid content) of the hydroxyl group-containing resin (E) is preferably 70 parts by mass or less, more preferably 5 to 60 with respect to 100 parts by mass of the solid content in the coating composition of the present invention. Part by mass. These ranges are significant in terms of scratch resistance and weather resistance.

ラジカル重合性不飽和基含有樹脂(F)の含有量(固形分含有量)は、好ましくは、本発明の塗料組成物中の固形分100質量部に対して、30質量部以下である。これら範囲は、低温硬化性の点で意義がある。   The content (solid content) of the radical polymerizable unsaturated group-containing resin (F) is preferably 30 parts by mass or less with respect to 100 parts by mass of the solid content in the coating composition of the present invention. These ranges are significant in terms of low-temperature curability.

本発明において、化合物(A)と非水分散型樹脂(B)の塗料組成物中の使用比が、両成分の合計固形分量に基づいて、前者/後者の質量比で99/1〜50/50であり、より好ましくは97/3〜52/48である。これらの範囲は、塗膜の耐擦り傷性および耐衝撃性、耐汚染性の点で意義がある。   In the present invention, the ratio of the compound (A) and the non-aqueous dispersion resin (B) in the coating composition is 99/1 to 50 / in mass ratio of the former / the latter based on the total solid content of both components. 50, more preferably 97/3 to 52/48. These ranges are significant in terms of scratch resistance, impact resistance and stain resistance of the coating film.

また、化合物(A)、非水分散型樹脂(B)及び必要により配合されるイソシアネート化合物(D)の配合割合は、化合物(A)及び必要により配合されるイソシアネート化合物(D)の有するイソシアネート基の合計量と非水分散型樹脂(B)が水酸基を有している場合、当量比でNCO/OH=0.20〜2.80となる範囲が好ましく、0.25〜2.00となる範囲がより好ましい。これらの範囲は、塗膜の耐擦り傷性及び耐候性の点で意義がある。   Moreover, the compounding ratio of the compound (A), the non-aqueous dispersion resin (B) and the isocyanate compound (D) blended as required is the isocyanate group of the compound (A) and the isocyanate compound (D) blended as necessary. In the case where the total amount of N and the non-aqueous dispersion resin (B) has a hydroxyl group, the range where the equivalent ratio is NCO / OH = 0.20 to 2.80 is preferable, and is 0.25 to 2.00. A range is more preferred. These ranges are significant in terms of scratch resistance and weather resistance of the coating film.

イソシアネート化合物(D)が塗料組成物に含有される場合、化合物(A)及びイソシアネート化合物(D)の配合割合は、化合物(A)の有するイソシアネート基とイソシアネート化合物(D)の有するイソシアネート基とが、当量比で化合物(A)のNCO/イソシアネート化合物(D)のNCO=0.10〜7.50となる範囲が好ましく、0.20〜4.00となる範囲がより好ましい。これら範囲は、塗膜の耐酸性の点で意義がある。   When the isocyanate compound (D) is contained in the coating composition, the compounding ratio of the compound (A) and the isocyanate compound (D) is such that the isocyanate group that the compound (A) has and the isocyanate group that the isocyanate compound (D) has. The equivalent ratio of NCO of the compound (A) / NCO of the isocyanate compound (D) is preferably 0.10 to 7.50, and more preferably 0.20 to 4.00. These ranges are significant in terms of acid resistance of the coating film.

[塗膜形成方法]
本発明の塗料組成物による塗膜形成方法は、被塗物上に後述するベース塗料組成物を塗装してベース塗膜を形成し、該ベース塗膜上に、本発明の塗料組成物を塗装して塗膜を形成し、さらに活性エネルギー線の照射及び加熱を行なう方法である。なお本発明の塗料組成物は、耐擦り傷性、耐衝撃性、耐汚染性に優れる塗膜を形成できることから、最上層に塗装されるクリヤ塗料として使用することが好ましい。以下、本発明の好ましい実施形態として、本発明の塗料組成物をクリヤ塗料として用いる場合について記載する。本発明の塗料組成物をベース塗料として用いる場合も下記に準じて行なうことができる。
[Coating film forming method]
The method for forming a coating film by using the coating composition of the present invention comprises forming a base coating film by coating a base coating composition described later on an object to be coated, and coating the coating composition of the present invention on the base coating film. Then, a coating film is formed, and further, irradiation with active energy rays and heating are performed. In addition, since the coating composition of this invention can form the coating film which is excellent in abrasion resistance, impact resistance, and stain resistance, it is preferable to use it as a clear coating applied to the uppermost layer. Hereinafter, the case where the coating composition of the present invention is used as a clear coating is described as a preferred embodiment of the present invention. When the coating composition of the present invention is used as a base coating, it can be carried out according to the following.

被塗物
被塗物は特に限定されない。例えば、鉄、アルミニウム、真鍮、銅、ステンレス鋼、ブリキ、亜鉛メッキ鋼、合金化亜鉛(Zn−Al、Zn−Ni、Zn−Fe等)メッキ鋼等の金属材料;ポリエチレン樹脂、ポリプロピレン樹脂、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂、ポリアミド樹脂、アクリル樹脂、塩化ビニリデン樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、エポキシ樹脂等の樹脂、各種のFRP等のプラスチック材料;ガラス、セメント、コンクリート等の無機材料;木材;繊維材料(紙、布等)等を挙げることができ、なかでも金属材料及びプラスチック材料が好適である。
The object to be coated is not particularly limited. For example, metal materials such as iron, aluminum, brass, copper, stainless steel, tinplate, galvanized steel, alloyed zinc (Zn-Al, Zn-Ni, Zn-Fe, etc.) plated steel; polyethylene resin, polypropylene resin, acrylonitrile -Butadiene-styrene (ABS) resin, polyamide resin, acrylic resin, vinylidene chloride resin, polycarbonate resin, polyurethane resin, epoxy resin and other plastic materials such as various FRPs; glass, cement, concrete and other inorganic materials; wood A fiber material (paper, cloth, etc.) and the like, among which a metal material and a plastic material are suitable.

また、塗膜形成方法が適用される被塗物の用途としては、特に制限されず、例えば、乗用車、トラック、オートバイ、バス等の自動車車体の外板部;自動車部品;携帯電話、オーディオ機器等の家庭電気製品の外板部等を挙げることができ、なかでも自動車車体の外板部及び自動車部品が好ましい。   In addition, the use of the object to which the coating film forming method is applied is not particularly limited. For example, an outer plate portion of an automobile body such as a passenger car, a truck, a motorcycle, or a bus; an automobile part; a mobile phone, an audio device, etc. And the like. Among them, the outer plate portion of an automobile body and automobile parts are preferable.

被塗物は、上記金属材料又はそれから成形された車体等の金属表面に、例えば、リン酸塩処理、クロメート処理、ジルコニウム処理、複合酸化物処理等の表面処理が施されたものであってもよい。また、被塗物は、上記金属材料、車体等に各種電着塗膜、水性又は有機溶剤型の中塗塗膜の未硬化又は硬化塗膜等を形成したものであってもよく、さらに必要に応じて予備加熱(プレヒート)を施したものであってもよい。   The object to be coated may be obtained by subjecting the metal surface of the metal material or a vehicle body formed from the metal material to a surface treatment such as phosphate treatment, chromate treatment, zirconium treatment, or complex oxide treatment. Good. Further, the object to be coated may be one obtained by forming various electrodeposition coatings, water-based or organic solvent-type intermediate coatings or cured coatings on the metal material, the vehicle body, etc. Accordingly, preheating may be performed.

また、被塗物は、上記プラスチック材料に、水性又は有機溶剤型プライマー塗膜の未硬化又は硬化塗膜であってもよく、さらに必要に応じて予備加熱(プレヒート)を施したものであってもよい。   Further, the object to be coated may be an uncured or cured film of an aqueous or organic solvent-type primer coating on the plastic material, and further subjected to preheating (preheating) as necessary. Also good.

ここで熱乾燥炉の焼付け回数及びエネルギー消費量を抑える省工程及び省エネルギーの面から、上記プライマー塗料は有機溶剤型プライマーを用いて予備加熱(プレヒート)を施さず、かつプライマー塗膜上に塗装されるベース塗料組成物は、水性塗料を用いることが望ましい。次いで、ベース塗料組成物について述べる。   Here, from the viewpoint of saving process and energy saving to reduce the number of times of baking and energy consumption in the heat drying furnace, the above primer coating is not preheated (preheated) using an organic solvent type primer and is applied onto the primer coating. It is desirable to use a water-based paint as the base paint composition. Next, the base coating composition will be described.

ベース塗料組成物
ベース塗料組成物は、活性水素基を含有する樹脂及び着色顔料を含有する。活性水素基を含有する樹脂の有する活性水素基としては、水酸基、ヒドロキシフェニル基、アミノ基等が挙げられる。本発明においては耐候性の点から水酸基含有樹脂が好ましい。水酸基含有樹脂としては、例えば、水酸基含有アクリル樹脂、水酸基含有ポリエステル樹脂、水酸基含有ポリウレタン樹脂、水酸基含有ポリエーテル樹脂等が挙げられる。なかでも、耐候性の点から水酸基含有アクリル樹脂が好ましい。
Base coating composition The base coating composition contains a resin containing active hydrogen groups and a color pigment. Examples of the active hydrogen group possessed by the resin containing the active hydrogen group include a hydroxyl group, a hydroxyphenyl group, and an amino group. In the present invention, a hydroxyl group-containing resin is preferable from the viewpoint of weather resistance. Examples of the hydroxyl group-containing resin include a hydroxyl group-containing acrylic resin, a hydroxyl group-containing polyester resin, a hydroxyl group-containing polyurethane resin, and a hydroxyl group-containing polyether resin. Of these, a hydroxyl group-containing acrylic resin is preferred from the viewpoint of weather resistance.

水酸基含有アクリル樹脂としては、前述の「水酸基含有樹脂(E)」の項で列挙した水酸基含有重合性不飽和モノマー及び該水酸基含有重合性不飽和モノマーと共重合可能な他の重合性不飽和モノマーと同様のモノマーを前述の方法で共重合せしめることによって製造することができる。   Examples of the hydroxyl group-containing acrylic resin include the hydroxyl group-containing polymerizable unsaturated monomer listed in the above-mentioned “Hydroxyl group-containing resin (E)” and other polymerizable unsaturated monomers copolymerizable with the hydroxyl group-containing polymerizable unsaturated monomer. It can be produced by copolymerizing the same monomer with the method described above.

ベース塗料組成物に用いる場合、水酸基を有する樹脂の水酸基価は、0.5〜200mgKOH/gの範囲が好ましい。0.5mgKOH/g未満では付着性、硬度が低下し、一方200mgKOH/gを超えると得られる複層塗膜の耐水性が低下する恐れがあるために好ましくない。   When used for the base coating composition, the hydroxyl value of the resin having a hydroxyl group is preferably in the range of 0.5 to 200 mgKOH / g. If it is less than 0.5 mgKOH / g, adhesion and hardness are lowered, while if it exceeds 200 mgKOH / g, the water resistance of the resulting multilayer coating film may be lowered, which is not preferable.

また、ベース塗料組成物に用いる場合、水酸基を有する樹脂は、一般に1,000〜200,000、特に2,000〜100,000の範囲内の重量平均分子量を有することが好ましい。   Moreover, when using for a base coating composition, it is preferable that the resin which has a hydroxyl group generally has a weight average molecular weight within the range of 1,000-200,000, especially 2,000-100,000.

また、ベース塗料組成物に用いる場合、水酸基を有する樹脂は、耐候性と耐擦り傷性の点から、ガラス転移点温度が0度以上、特に3〜50度の範囲内であることが好ましい。   Moreover, when using for a base coating composition, it is preferable that resin which has a hydroxyl group has the glass transition point temperature in the range of 0 degree or more, especially 3-50 degree | times from the point of a weather resistance and an abrasion resistance.

着色顔料としては、アルミニウムペースト、パール粉、グラファイト、MIO等の光輝顔料、チタン白、フタロシアニンブルー、カーボンブラック等が挙げられ、必要に応じて、体質顔料を配合してもよい。着色顔料の配合量は特に限定されないが、例えば、ベース塗料中の固形分100質量部に対して、1〜150質量部の範囲が好ましく、より好ましくは1〜100質量部の範囲である。   Examples of the color pigment include aluminum pigments, pearl powder, graphite, bright pigments such as MIO, titanium white, phthalocyanine blue, and carbon black. If necessary, extender pigments may be blended. Although the compounding quantity of a color pigment is not specifically limited, For example, the range of 1-150 mass parts is preferable with respect to 100 mass parts of solid content in a base coating material, More preferably, it is the range of 1-100 mass parts.

ベース塗料組成物には、硬化剤が配合されていてもよい。硬化剤としては、通常、活性水素基を含有する樹脂中の活性水素基と反応し得る架橋性官能基を有する化合物を使用することができる。そのような硬化剤としては、例えば、アミノ樹脂、ポリイソシアネート化合物、ブロック化ポリイソシアネート化合物等を好適に用いることできる。硬化剤は、それぞれ単独でもしくは2種以上組み合わせて使用することができる。   The base coating composition may contain a curing agent. As the curing agent, a compound having a crosslinkable functional group that can react with an active hydrogen group in a resin containing an active hydrogen group is usually used. As such a curing agent, for example, amino resins, polyisocyanate compounds, blocked polyisocyanate compounds and the like can be suitably used. A hardening | curing agent can be used individually or in combination of 2 or more types, respectively.

アミノ樹脂としては、例えば、メラミン、尿素、ベンゾグアナミン、アセトグアナミン、ステログアナミン、スピログアナミン、ジシアンジアミド等のアミノ成分とアルデヒドとの反応によって得られる部分もしくは完全メチロール化アミノ樹脂が挙げられる。アミノ樹脂としては、メラミン樹脂が好ましい。   Examples of the amino resin include a partial or completely methylolated amino resin obtained by reacting an amino component such as melamine, urea, benzoguanamine, acetoguanamine, steroguanamine, spiroguanamine, dicyandiamide and the aldehyde. As the amino resin, a melamine resin is preferable.

メラミン樹脂としては市販品を用いることができ、市販品としては、例えば、「サイメル202」、「サイメル203」、「サイメル238」、「サイメル251」、「サイメル303」、「サイメル323」、「サイメル324」、「サイメル325」、「サイメル327」、「サイメル350」、「サイメル385」、「サイメル1156」、「サイメル1158」、「サイメル1116」、「サイメル1130」(以上、日本サイテックインダストリーズ社製、CYMEL\サイメルは登録商標)、「ユーバン120」、「ユーバン20HS」、「ユーバン20SE60」、「ユーバン2021」、「ユーバン2028」、「ユーバン28−60」(以上、三井化学社製、ユ−バン\U−VANは登録商標)等が挙げられる。   A commercially available product can be used as the melamine resin. Examples of the commercially available products include “Cymel 202”, “Cymel 203”, “Cymel 238”, “Cymel 251”, “Cymel 303”, “Cymel 323”, “ Cymel 324, Cymel 325, Cymel 327, Cymel 350, Cymel 385, Cymel 1156, Cymel 1158, Cymel 1116, Cymel 1130 (Nippon Cytec Industries, Inc.) CYMEL / Cymel is a registered trademark), “Uban 120”, “Uban 20HS”, “Uban 20SE60”, “Uban 2021”, “Uban 2028”, “Uban 28-60” (above, manufactured by Mitsui Chemicals, Ltd. -Van \ U-VAN is a registered trademark).

メラミン樹脂はそれぞれ単独でもしくは2種以上組み合わせて使用することができる。ポリイソシアネート化合物は、1分子中に2個以上のイソシアネート基を有する化合物である。   Melamine resins can be used alone or in combination of two or more. The polyisocyanate compound is a compound having two or more isocyanate groups in one molecule.

ブロック化ポリイソシアネート化合物は、上記ポリイソシアネート化合物のイソシアネート基にブロック剤を付加することによって得られるものであり、加熱により該ブロック剤が解離してイソシアネート基が再生することにより、水酸基と反応することができる。該ブロック剤の解離温度は通常約60〜約140度、好ましくは約70〜約120度の範囲内にあることが好適である。   The blocked polyisocyanate compound is obtained by adding a blocking agent to the isocyanate group of the polyisocyanate compound, and reacts with a hydroxyl group by dissociating the blocking agent upon heating to regenerate the isocyanate group. Can do. The dissociation temperature of the blocking agent is usually within the range of about 60 to about 140 degrees, preferably about 70 to about 120 degrees.

ベース塗料組成物における硬化剤の含有量は、耐候性の点から、活性水素基を含有する樹脂及び硬化剤の合計100質量部に対して、1〜70質量部、特に1〜60質量部、さらに特に1〜50質量部の範囲内にあることが好適である。ベース塗料組成物には、必要に応じて紫外線吸収剤、光安定剤、酸化防止剤、表面調整剤、顔料分散剤、硬化触媒等の塗料用添加剤を配合することができる。ベース塗料組成物は、有機溶剤型塗料組成物及び水性塗料組成物のいずれであってもよい。塗装工程における揮発性有機化合物(VOC)を低減できる点から、ベース塗料組成物は、水性塗料組成物であることが好ましい。   The content of the curing agent in the base coating composition is from 1 to 70 parts by mass, particularly from 1 to 60 parts by mass with respect to 100 parts by mass in total of the resin containing the active hydrogen group and the curing agent in terms of weather resistance More particularly, it is preferable to be in the range of 1 to 50 parts by mass. In the base coating composition, additives for coatings such as an ultraviolet absorber, a light stabilizer, an antioxidant, a surface conditioner, a pigment dispersant, and a curing catalyst can be blended as necessary. The base coating composition may be either an organic solvent-type coating composition or an aqueous coating composition. From the viewpoint that volatile organic compounds (VOC) in the coating process can be reduced, the base coating composition is preferably an aqueous coating composition.

ベース塗膜の形成
ベース塗膜は、被塗物上にベース塗料組成物を塗装して形成される。ベース塗料組成物は、塗装時において、固形分含有率を通常15質量%以上、特に20〜35質量%の範囲内とし、さらに、その粘度を20〜40秒/フォードカップ#4/20度の範囲内に調整しておくことが好ましい。
Formation of base coating film The base coating film is formed by coating a base coating composition on an object to be coated. The base coating composition has a solid content of usually 15% by mass or more, particularly 20 to 35% by mass, and further has a viscosity of 20 to 40 seconds / Ford Cup # 4/20 degrees. It is preferable to adjust within the range.

塗装方法は特に限定されず、例えば、エアスプレー、エアレススプレー、回転霧化塗装機、浸漬塗装、刷毛等により塗装することができる。塗装の際、静電印加を行ってもよい。ベース塗料組成物を塗装して形成されるベース塗膜の膜厚は、通常、硬化塗膜に基づいて3〜30μm、特に7〜25μm、さらに特に10〜20μmの範囲内であることが好ましい。   The coating method is not particularly limited, and for example, the coating can be performed by air spray, airless spray, rotary atomizer, dip coating, brush or the like. Electrostatic application may be performed during coating. The film thickness of the base coating film formed by applying the base coating composition is usually preferably in the range of 3 to 30 μm, particularly 7 to 25 μm, more particularly 10 to 20 μm based on the cured coating film.

形成されたベース塗膜上には、その上に本発明によるクリヤ塗料が塗装される。ベース塗膜は、その塗膜上に塗料組成物が塗装される際に、硬化していてもよく、又は未硬化であってもよい。   On the formed base coating film, the clear paint according to the present invention is applied. The base coating film may be cured when the coating composition is applied onto the coating film, or may be uncured.

ベース塗膜を硬化させるためには通常加熱を行なう。加熱条件としては、例えば、80〜150℃の温度で、5〜30分間の時間が挙げられる。未硬化の場合には、ベース塗膜の揮発分を低くする又は揮発分を除去するために、予備加熱(プレヒート)、エアブローを行なうことができる。プレヒートは、通常、塗装された被塗物を乾燥炉内で、50〜110℃、好ましくは60〜90℃の温度で1〜30分間直接的又は間接的に加熱することにより行なうことができる。   Heating is usually performed to cure the base coating film. Examples of the heating conditions include a time of 5 to 30 minutes at a temperature of 80 to 150 ° C. When uncured, preliminary heating (preheating) and air blowing can be performed to lower the volatile content of the base coating film or remove the volatile content. The preheating can be usually performed by directly or indirectly heating the coated object to be coated in a drying furnace at a temperature of 50 to 110 ° C., preferably 60 to 90 ° C. for 1 to 30 minutes.

また、エアブローは、通常、被塗物の塗装面に常温又は25℃〜80℃の温度に加熱された空気を吹き付けることにより行なうことができる。   Moreover, air blow can be normally performed by spraying the air heated to normal temperature or the temperature of 25 to 80 degreeC on the coating surface of the to-be-coated object.

クリヤ塗膜の形成
クリヤ塗料を塗装する方法は、特に限定されるものではない。例えば、エアスプレー、エアレススプレー、回転霧化塗装機、浸漬塗装、刷毛等により塗装することができる。塗装の際、静電印加を行ってもよい。塗装膜厚は、硬化膜厚で通常10〜100μm、好ましくは10〜50μm範囲内とすることができる。
Formation of clear paint film The method of applying the clear paint is not particularly limited. For example, it can be applied by air spray, airless spray, rotary atomizing coater, dip coating, brush or the like. Electrostatic application may be performed during coating. The coating film thickness is usually 10 to 100 μm, preferably 10 to 50 μm in terms of cured film thickness.

塗装後には、塗装直後の塗膜の揮発分を減少させる又は揮発分を除去するために、予備加熱(プレヒート)、エアブローを行なうことができる。プレヒートは、通常、塗装された被塗物を乾燥炉内で、50〜110℃、好ましくは60〜90℃の温度で1〜30分間直接的又は間接的に加熱することにより行なうことができる。また、エアブローは、通常、被塗物の塗装面に常温又は25℃〜80℃の温度に加熱された空気を吹き付けることにより行なうことができる。   After coating, preliminary heating (preheating) and air blowing can be performed to reduce the volatile content of the coating film immediately after coating or to remove the volatile content. The preheating can be usually performed by directly or indirectly heating the coated object to be coated in a drying furnace at a temperature of 50 to 110 ° C., preferably 60 to 90 ° C. for 1 to 30 minutes. Moreover, air blow can be normally performed by spraying the air heated to normal temperature or the temperature of 25 to 80 degreeC on the coating surface of the to-be-coated object.

クリヤ塗料を硬化させる際には、加熱及び活性エネルギー線照射を行なう。加熱及び活性エネルギー線照射の順序は特に限定されず、加熱の後に活性エネルギー線照射を行ってもよく、活性エネルギー線照射の後に加熱を行ってもよく、加熱と活性エネルギー線照射とを同時に行ってもよい。   When curing the clear paint, heating and active energy ray irradiation are performed. The order of heating and active energy ray irradiation is not particularly limited, and active energy ray irradiation may be performed after heating, heating may be performed after active energy ray irradiation, and heating and active energy ray irradiation are performed simultaneously. May be.

また、上記の加熱と活性エネルギー線照射とを同時に行なう際には、活性エネルギー線の照射源からの熱(例えばランプが発する熱)を熱源としてもよい。さらに、加熱の後に活性エネルギー線照射を行なう際には、被塗物が熱を帯びた状態(余熱を持った状態)で活性エネルギー線照射を行ってもよい。   Moreover, when performing said heating and active energy ray irradiation simultaneously, it is good also considering the heat (for example, the heat | fever which a lamp | ramp emits) from the irradiation source of an active energy ray as a heat source. Furthermore, when the active energy ray irradiation is performed after the heating, the active energy ray irradiation may be performed in a state in which the object to be coated is heated (a state having residual heat).

加熱条件は特に限定されるものではない。例えば、50〜140℃の温度で1〜60分間加熱することができる。本発明において、クリヤ塗料は、低温での熱硬化性を有しており、高い温度(例えば100℃以上)で加熱せずとも耐擦り傷性、耐候性、耐汚染性、耐衝撃性等の所望の性能が得られることから、50〜100℃の温度で加熱することが好ましい。また、クリヤ塗料は、活性エネルギー線でも硬化するため、長い時間で加熱せずとも耐擦り傷性、耐候性等の所望の性能が得られることから、1〜30分間加熱することが好ましく、1〜20分間加熱することがより好ましい。   The heating conditions are not particularly limited. For example, it can be heated at a temperature of 50 to 140 ° C. for 1 to 60 minutes. In the present invention, the clear paint has thermosetting properties at a low temperature, and it is desired to have scratch resistance, weather resistance, stain resistance, impact resistance, etc. without heating at a high temperature (for example, 100 ° C. or higher). Therefore, it is preferable to heat at a temperature of 50 to 100 ° C. In addition, since the clear paint is cured even by active energy rays, it is preferable to heat for 1 to 30 minutes because desired performance such as scratch resistance and weather resistance can be obtained without heating for a long time. It is more preferable to heat for 20 minutes.

上記活性エネルギー線としては、例えば紫外線、可視光線、レーザー光(近赤外線、可視光レーザー、紫外線レーザー等)が挙げられる。その照射量は、通常100〜5,000mJ/cm、好ましくは300〜3,000mJ/cmの範囲内が好ましい。また、活性エネルギー線の照射源としては、従来から使用されているもの、例えば超高圧、高圧、中圧、低圧の水銀灯、FusionUV社製無電極ランプ、ケミカルランプ、カーボンアーク灯、キセノン灯、メタルハライド灯、蛍光灯、タングステン灯、太陽光等の各光源により得られる光源、紫外カットフィルターによりカットした可視領域の光線、可視領域に発振線を持つ各種レーザー等が使用できる。また、パルス発光型の活性エネルギー線照射装置も使用できる。Examples of the active energy ray include ultraviolet light, visible light, and laser light (near infrared light, visible light laser, ultraviolet laser, etc.). Its dose is usually 100~5,000mJ / cm 2, preferably preferably in the range of 300~3,000mJ / cm 2. As the active energy ray irradiation source, conventionally used ones such as ultra-high pressure, high pressure, medium pressure, low pressure mercury lamp, FusionUV electrodeless lamp, chemical lamp, carbon arc lamp, xenon lamp, metal halide A light source obtained from each light source such as a lamp, a fluorescent lamp, a tungsten lamp, and sunlight, a light beam in a visible region cut by an ultraviolet cut filter, and various lasers having an oscillation line in the visible region can be used. In addition, a pulsed emission type active energy ray irradiation apparatus can be used.

以下、実施例を挙げて本発明をさらに詳細に説明する。尚、「部」及び「%」は、別記しない限り「質量部」及び「質量%」を示す。   Hereinafter, the present invention will be described in more detail with reference to examples. “Part” and “%” indicate “part by mass” and “% by mass” unless otherwise specified.

水酸基含有アクリル樹脂エマルションの製造
(製造例1) 水酸基含有アクリル樹脂エマルション
温度計、サーモスタット、撹拌器、還流冷却器及び滴下装置を備えた反応容器に脱イオン水130部及びアクアロンKH−10(注1)0.52部を仕込み、窒素気流中で撹拌混合し、80℃に昇温した。次いで下記のモノマー乳化物(1)のうちの全量の1%量及び6%過硫酸アンモニウム水溶液5.3部を反応容器内に導入し80℃で15分間保持した。その後、残りのモノマー乳化物(1)を3時間かけて、同温度に保持した反応容器内に滴下し、滴下終了後1時間熟成を行なった。その後、下記のモノマー乳化物(2)を1時間かけて滴下し、1時間熟成した。その後、5%ジメチルエタノールアミン水溶液40部を当該反応容器に徐々に加えながら30℃まで冷却した。得られた反応液を100メッシュのナイロンクロスで濾過しながら排出して、平均粒子径100nm[サブミクロン粒度分布測定装置「COULTER N4型」(ベックマン・コールター社製)を用いて、脱イオン水で希釈し20℃で測定した。]、固形分30%、酸価33mgKOH/g、水酸基価25mgKOH/gの水酸基含有アクリル樹脂エマルションを得た。
Production of hydroxyl-containing acrylic resin emulsion (Production Example 1) Hydroxyl-containing acrylic resin emulsion 130 parts of deionized water and Aqualon KH-10 (Note 1) in a reaction vessel equipped with a thermometer, thermostat, stirrer, reflux condenser and dropping device ) 0.52 part was charged, stirred and mixed in a nitrogen stream, and heated to 80 ° C. Next, 1% of the total amount of the following monomer emulsion (1) and 5.3 parts of a 6% aqueous ammonium persulfate solution were introduced into the reaction vessel and maintained at 80 ° C. for 15 minutes. Then, the remaining monomer emulsion (1) was dripped in the reaction container hold | maintained at the same temperature over 3 hours, and it age | cure | ripened for 1 hour after completion | finish of dripping. Thereafter, the following monomer emulsion (2) was added dropwise over 1 hour and aged for 1 hour. Thereafter, 40 parts of a 5% dimethylethanolamine aqueous solution was gradually added to the reaction vessel and cooled to 30 ° C. The obtained reaction solution was discharged while being filtered through a 100 mesh nylon cloth, and the average particle size was 100 nm [submicron particle size distribution measuring device “COULTER N4 type” (manufactured by Beckman Coulter, Inc.) Diluted and measured at 20 ° C. A hydroxyl group-containing acrylic resin emulsion having a solid content of 30%, an acid value of 33 mgKOH / g, and a hydroxyl value of 25 mgKOH / g was obtained.

(注1)アクアロンKH−10: ポリオキシエチレンアルキルエーテル硫酸塩エステルアンモニウム塩:第一工業製薬社製、有効成分97%。   (Note 1) Aqualon KH-10: Polyoxyethylene alkyl ether sulfate ester ammonium salt: 97% active ingredient manufactured by Daiichi Kogyo Seiyaku Co., Ltd.

モノマー乳化物(1): 脱イオン水42部、アクアロンKH−10(注1参照)0.72部、メチレンビスアクリルアミド2.1部、スチレン2.8部、メチルメタクリレート16.1部、エチルアクリレート28部及びn−ブチルアクリレート21部を混合攪拌して、モノマー乳化物(1)を得た。   Monomer emulsion (1): 42 parts deionized water, 0.72 parts Aqualon KH-10 (see Note 1), 2.1 parts methylenebisacrylamide, 2.8 parts styrene, 16.1 parts methyl methacrylate, ethyl acrylate 28 parts and 21 parts of n-butyl acrylate were mixed and stirred to obtain a monomer emulsion (1).

モノマー乳化物(2): 脱イオン水18部、アクアロンKH−10(注1参照) 0.31部、過硫酸アンモニウム0.03部、メタクリル酸5.1部、2−ヒドロキシエチルアクリレート5.1部、スチレン3部、メチルメタクリレート6部、エチルアクリレート1.8部及びn−ブチルアクリレート9部を混合攪拌して、モノマー乳化物(2)を得た。   Monomer emulsion (2): Deionized water 18 parts, Aqualon KH-10 (see Note 1) 0.31 parts, ammonium persulfate 0.03 parts, methacrylic acid 5.1 parts, 2-hydroxyethyl acrylate 5.1 parts Then, 3 parts of styrene, 6 parts of methyl methacrylate, 1.8 parts of ethyl acrylate and 9 parts of n-butyl acrylate were mixed and stirred to obtain a monomer emulsion (2).

水酸基含有ポリエステル樹脂の製造
(製造例2) 水酸基含有ポリエステル樹脂溶液(PE1)の製造
温度計、サーモスタット、攪拌装置、還流冷却器及び水分離器を備えた反応容器に、トリメチロールプロパン109部、1,6−ヘキサンジオール141部、ヘキサヒドロ無水フタル酸126部及びアジピン酸120部を仕込み、160℃〜230℃の間を3時間かけて昇温させた後、230℃で4時間縮合反応させた。次いで、得られた縮合反応生成物にカルボキシル基を付加するために、さらに無水トリメリット酸38.3部を加え、170℃で30分間反応させた後、2−エチル−1−ヘキサノールで希釈し、酸価が46mgKOH/g、水酸基価が150mgKOH/g、固形分70%、重量平均分子量が6,400である水酸基含有ポリエステル樹脂溶液(PE1)を得た。
Production of hydroxyl group-containing polyester resin (Production Example 2) Production of hydroxyl group-containing polyester resin solution (PE1) In a reaction vessel equipped with a thermometer, thermostat, stirrer, reflux condenser and water separator, 109 parts of trimethylolpropane, 1 , 6-hexanediol, 126 parts of hexahydrophthalic anhydride and 120 parts of adipic acid were added and the temperature was raised between 160 ° C. and 230 ° C. over 3 hours, followed by condensation at 230 ° C. for 4 hours. Next, in order to add a carboxyl group to the obtained condensation reaction product, 38.3 parts of trimellitic anhydride was further added, reacted at 170 ° C. for 30 minutes, and then diluted with 2-ethyl-1-hexanol. Thus, a hydroxyl group-containing polyester resin solution (PE1) having an acid value of 46 mgKOH / g, a hydroxyl value of 150 mgKOH / g, a solid content of 70%, and a weight average molecular weight of 6,400 was obtained.

(製造例3) 水酸基含有ポリエステル樹脂溶液(PE2)の製造
希釈溶剤の2−エチル−1−ヘキサノールを、エチレングリコールモノn−ブチルエーテルに変更する以外は、製造例2と同様にして、水酸基含有ポリエステル樹脂溶液(PE2)を得た。
(Production Example 3) Production of hydroxyl group-containing polyester resin solution (PE2) A hydroxyl group-containing polyester was produced in the same manner as in Production Example 2 except that 2-ethyl-1-hexanol as a dilution solvent was changed to ethylene glycol mono-n-butyl ether. A resin solution (PE2) was obtained.

光輝性顔料濃厚液の製造
(製造例4) 光輝性顔料濃厚液(P1)の製造
攪拌混合容器内において、アルミニウム顔料ペースト「GX−180A」(旭化成メタルズ社製、金属含有量74%)19部、2−エチル−1−ヘキサノール35部、リン酸基含有樹脂溶液(注2)8部及び2−(ジメチルアミノ)エタノール0.2部を均一に混合して、光輝性顔料濃厚液(P1)を得た。
Production of glitter pigment concentrate (Production Example 4) Production of glitter pigment concentrate (P1) 19 parts of aluminum pigment paste “GX-180A” (Asahi Kasei Metals Co., Ltd., metal content 74%) in a stirring and mixing vessel , 35 parts of 2-ethyl-1-hexanol, 8 parts of a phosphoric acid group-containing resin solution (Note 2) and 0.2 part of 2- (dimethylamino) ethanol were mixed uniformly to give a bright pigment concentrate (P1) Got.

(注2)リン酸基含有樹脂溶液: 温度計、サーモスタット、撹拌器、還流冷却器及び滴下装置を備えた反応容器にメトキシプロパノール27.5部及びイソブタノール27.5部の混合溶剤を入れ、110℃に加熱し、スチレン25部、n−ブチルメタクリレート27.5部、「イソステアリルアクリレート」(商品名、大阪有機化学工業社製、分岐高級アルキルアクリレート)20部、4−ヒドロキシブチルアクリレート7.5部、リン酸基含有重合性モノマー(注3)15部、2−メタクリロイルオキシエチルアシッドホスフェート12.5部、イソブタノール10部及びt−ブチルパーオキシオクタノエート4部からなる混合物121.5部を4時間かけて上記混合溶剤に加え、さらにt−ブチルパーオキシオクタノエート0.5部及びイソプロパノール20部からなる混合物を1時間滴下した。その後、1時間攪拌熟成して固形分50%のリン酸基含有樹脂溶液を得た。本樹脂のリン酸基による酸価は83mgKOH/g、4−ヒドロキシブチルアクリレートに由来する水酸基価は29mgKOH/g、重量平均分子量は10,000であった。   (Note 2) Phosphate group-containing resin solution: A mixed solvent of 27.5 parts of methoxypropanol and 27.5 parts of isobutanol is placed in a reaction vessel equipped with a thermometer, a thermostat, a stirrer, a reflux condenser and a dropping device. 6. Heat to 110 ° C., 25 parts of styrene, 27.5 parts of n-butyl methacrylate, 20 parts of “isostearyl acrylate” (trade name, Osaka Organic Chemical Industries, Ltd., branched higher alkyl acrylate), 4-hydroxybutyl acrylate Mixture 121.5 consisting of 5 parts, 15 parts of a phosphoric acid group-containing polymerizable monomer (Note 3), 12.5 parts of 2-methacryloyloxyethyl acid phosphate, 10 parts of isobutanol and 4 parts of t-butylperoxyoctanoate Is added to the above mixed solvent over 4 hours, and 0.5 parts of t-butylperoxyoctanoate is added. A mixture of finely Isopropanol 20 parts was added dropwise for 1 hour. Thereafter, the mixture was aged and stirred for 1 hour to obtain a phosphate group-containing resin solution having a solid content of 50%. The acid value due to the phosphoric acid group of this resin was 83 mgKOH / g, the hydroxyl value derived from 4-hydroxybutyl acrylate was 29 mgKOH / g, and the weight average molecular weight was 10,000.

(注3)リン酸基含有重合性モノマー: 温度計、サーモスタット、撹拌器、還流冷却器及び滴下装置を備えた反応容器にモノブチルリン酸57.5部及びイソブタノール41部を入れ、90℃に昇温後、グリシジルメタクリレート42.5部を2時間かけて滴下した後、さらに1時間攪拌熟成した。その後、イソプロパノ−ル59部を加えて、固形分50%のリン酸基含有重合性モノマー溶液を得た。得られたモノマーのリン酸基による酸価は285mgKOH/gであった。   (Note 3) Phosphoric acid group-containing polymerizable monomer: Into a reaction vessel equipped with a thermometer, thermostat, stirrer, reflux condenser and dropping device, put 57.5 parts of monobutyl phosphate and 41 parts of isobutanol and raise the temperature to 90 ° C. After warming, 42.5 parts of glycidyl methacrylate was added dropwise over 2 hours, followed by stirring and aging for another hour. Thereafter, 59 parts of isopropanol was added to obtain a phosphate group-containing polymerizable monomer solution having a solid content of 50%. The acid value due to the phosphate group of the obtained monomer was 285 mgKOH / g.

(製造例5) 光輝性顔料濃厚液(P2)の製造
2−エチル−1−ヘキサノール35部を、エチレングリコールモノn−ブチルエーテル35部に変更する以外は、製造例4と同様にして、光輝性顔料濃厚液(P2)を得た。
(Production Example 5) Production of glitter pigment concentrate (P2) The same glitter as in Production Example 4 except that 35 parts of 2-ethyl-1-hexanol was changed to 35 parts of ethylene glycol mono-n-butyl ether. A pigment concentrate (P2) was obtained.

ベース塗料組成物の製造
(製造例6) ベース塗料組成物No.1の製造
製造例1で得られた水酸基含有アクリル樹脂エマルション150部、製造例2で得られた水酸基含有ポリエステル樹脂溶液(PE1)64部、製造例4で得られた光輝性顔料濃厚液(P1)62部及び「サイメル202」(商品名、日本サイテックインダストリーズ社製、メラミン樹脂、固形分80%)12.5部を均一に混合し、更に、脱イオン水及び2−(ジメチルアミノ)エタノールを加えてpH8.0、固形分23%のベース塗料組成物No.1を得た。
Production of Base Paint Composition (Production Example 6) Production of 1 150 parts of the hydroxyl group-containing acrylic resin emulsion obtained in Production Example 1, 64 parts of the hydroxyl group-containing polyester resin solution (PE1) obtained in Production Example 2, and the glitter pigment concentrate obtained in Production Example 4 (P1) ) 62 parts and 12.5 parts of “Cymel 202” (trade name, manufactured by Nippon Cytec Industries, Inc., melamine resin, solid content 80%) were mixed uniformly, and deionized water and 2- (dimethylamino) ethanol were further added. In addition, the base coating composition No. having a pH of 8.0 and a solid content of 23% was used. 1 was obtained.

(製造例7) ベース塗料組成物No.2の製造
製造例1で得られた水酸基含有アクリル樹脂エマルション150部、製造例3で得られた水酸基含有ポリエステル樹脂溶液(PE2)64部、製造例5で得られた光輝性顔料濃厚液(P2)62部及び「サイメル202」12.5部を均一に混合し、更に、脱イオン水及び2−(ジメチルアミノ)エタノールを加えてpH8.0、固形分23%のベース塗料組成物No.2を得た。
(Production Example 7) Base coating composition No. Production of 2 150 parts of the hydroxyl group-containing acrylic resin emulsion obtained in Production Example 1, 64 parts of the hydroxyl group-containing polyester resin solution (PE2) obtained in Production Example 3, and the bright pigment concentrate (P2) obtained in Production Example 5 ) 62 parts and 12.5 parts of “Cymel 202” were further mixed, and further deionized water and 2- (dimethylamino) ethanol were added to form a base coating composition No. having a pH of 8.0 and a solid content of 23%. 2 was obtained.

化合物(A)の製造
(製造例8) 化合物(A−1)溶液の製造
攪拌機、温度計、還流冷却器、及び滴下装置を備えた反応容器に、メトキシプロピルアセテート33.8部、ヘキサメチレンジイソシアネートのイソシアヌレート環付加物(NCO含量21%)50.0部、ジブチルスズジラウレート0.02部、及びハイドロキノンモノメチルエーテル0.2部の混合物を仕込んだ。該混合物を攪拌しながら、50℃まで加熱した。続いて、混合物の温度が60℃を超えないようにしながら、プラクセルFA−2D(商品名、ダイセル化学社製、一般式(I)においてRが水素原子であり、Rがエチレン基であり、nが2であるカプロラクトン変性ヒドロキシエチルアクリレート)85.2部を8時間かけて滴下し、混合物を60℃で更に1時間撹拌して、固形分80%の化合物(A−1)溶液を得た。得られた化合物(A−1)のイソシアネート当量は2,731、不飽和基当量は546、重量平均分子量は1,366であった。
Production of Compound (A) (Production Example 8) Production of Compound (A-1) Solution In a reaction vessel equipped with a stirrer, thermometer, reflux condenser and dropping device, 33.8 parts of methoxypropyl acetate, hexamethylene diisocyanate A mixture of 50.0 parts of an isocyanurate cycloadduct (NCO content 21%), 0.02 part of dibutyltin dilaurate, and 0.2 part of hydroquinone monomethyl ether was charged. The mixture was heated to 50 ° C. with stirring. Subsequently, Plaxel FA-2D (trade name, manufactured by Daicel Chemical Industries, General Formula (I), R 1 is a hydrogen atom, and R 2 is an ethylene group while the temperature of the mixture does not exceed 60 ° C. , 85.2 parts of caprolactone-modified hydroxyethyl acrylate wherein n is 2) is added dropwise over 8 hours, and the mixture is further stirred at 60 ° C. for 1 hour to obtain a compound (A-1) solution having a solid content of 80%. It was. The isocyanate equivalent of the obtained compound (A-1) was 2,731, the unsaturated group equivalent was 546, and the weight average molecular weight was 1,366.

(製造例9〜16)
製造例8において、配合を表1に記載の配合にした以外は、製造例8と同様にして、化合物(A−2)〜(A−7)及び(A’−1)および(A’−2)溶液を得た。得られた化合物のイソシアネート当量、不飽和基当量、及び重量平均分子量を表1に示した。
(Production Examples 9 to 16)
In Production Example 8, compounds (A-2) to (A-7) and (A′-1) and (A′−) were obtained in the same manner as in Production Example 8, except that the formulation was changed to the formulation shown in Table 1. 2) A solution was obtained. Table 1 shows the isocyanate equivalent, unsaturated group equivalent, and weight average molecular weight of the obtained compound.

Figure 2012060390
Figure 2012060390

(注4)プラクセルFA−1:商品名、ダイセル化学社製、一般式(I)においてRが水素原子であり、Rがエチレン基であり、nが1であるカプロラクトン変性ヒドロキシエチルアクリレート。(Note 4) Plaxel FA-1: trade name, manufactured by Daicel Chemical Industries, caprolactone-modified hydroxyethyl acrylate in which R 1 is a hydrogen atom, R 2 is an ethylene group, and n is 1 in the general formula (I).

(注5)プラクセルFM−3:商品名、ダイセル化学社製、一般式(I)においてRがメチル基であり、Rがエチレン基であり、nが3であるカプロラクトン変性ヒドロキシエチルメタクリレート。(Note 5) Plaxel FM-3: trade name, manufactured by Daicel Chemical Industries, caprolactone-modified hydroxyethyl methacrylate in which R 1 is a methyl group, R 2 is an ethylene group, and n is 3 in the general formula (I).

非水分散型樹脂(B)の製造
(製造例17) 分散安定剤[I]の製造
反応容器中にキシレン69部を配合し、125℃に加熱、保持し、この中に下記の単量体及び重合開始剤の混合物を4時間かけて滴下し、滴下後2時間熟成を行ってアクリル樹脂ワニスを得た。
2−エチルヘキシルメタクリレート 30部
グリシジルメタクリレート 60部
n−ブチルアクリレート 10部
t−ブチルパーオキサイド 4.6部
得られたアクリル樹脂ワニスは固形分60%で、樹脂の数平均分子量は約3,800であった。
Production of non-aqueous dispersion resin (B) (Production Example 17) Production of dispersion stabilizer [I] In a reaction vessel, 69 parts of xylene was blended and heated to 125 ° C., and the following monomers were contained therein. And the mixture of the polymerization initiator was dripped over 4 hours, and it age | cure | ripened for 2 hours after dripping, and obtained the acrylic resin varnish.
2-ethylhexyl methacrylate 30 parts glycidyl methacrylate 60 parts n-butyl acrylate 10 parts t-butyl peroxide 4.6 parts The resulting acrylic resin varnish had a solid content of 60% and the number average molecular weight of the resin was about 3,800. It was.

上記のようにして得られた固形分60%アクリル樹脂ワニス167部に、アクリル酸0.9部、4−tert−ブチルピロカテコール0.01部及びジメチルアミノエタノール0.1部を加えて125℃で3時間撹拌して固形分約60%の分散安定剤溶液[I]を得た。分散安定剤中に導入された重合性二重結合の数は、樹脂酸価の測定から、1分子当り平均して約1.0個であった。   To 167 parts of the acrylic resin varnish 60% solid content obtained as described above, 0.9 part of acrylic acid, 0.01 part of 4-tert-butylpyrocatechol and 0.1 part of dimethylaminoethanol were added at 125 ° C. For 3 hours to obtain a dispersion stabilizer solution [I] having a solid content of about 60%. The number of polymerizable double bonds introduced into the dispersion stabilizer was about 1.0 on average per molecule from the measurement of the resin acid value.

(製造例18) 分散安定剤[II]の製造
反応容器中にキシレン69部を配合し、125℃に加熱、保持し、この中に下記の単量体及び重合開始剤の混合物を4時間かけて滴下し、滴下後2時間熟成を行ってアクリル樹脂ワニス(α)を得た。
2−エチルヘキシルメタクリレート 30部
2−ヒドロキシエチルアクリレート 30部
n−ブチルアクリレート 40部
t−ブチルパーオキサイド 4.6部
得られたアクリル樹脂ワニス(α)は固形分60%で、樹脂の数平均分子量は約3,800であった。
(Production Example 18) Production of Dispersion Stabilizer [II] 69 parts of xylene was blended in a reaction vessel, heated to 125 ° C and held, and a mixture of the following monomer and polymerization initiator was added to this over 4 hours. After the dropping, aging was performed for 2 hours to obtain an acrylic resin varnish (α).
2-ethylhexyl methacrylate 30 parts 2-hydroxyethyl acrylate 30 parts n-butyl acrylate 40 parts t-butyl peroxide 4.6 parts The resulting acrylic resin varnish (α) has a solid content of 60%, and the number average molecular weight of the resin is About 3,800.

上記のようにして得られた固形分60%アクリル樹脂ワニス(α)167部に、2−イソシアナトエチルメタクリレート2.6部及び4−tert−ブチルピロカテコール0.01部を加えて125℃で3時間撹拌して固形分約60%の分散安定剤溶液[II]を得た。分散安定剤中に導入された重合性二重結合の数は、樹脂酸価の測定から、1分子当り平均して約1.0個であった。   To 167 parts of 60% solid acrylic resin varnish (α) obtained as described above, 2.6 parts of 2-isocyanatoethyl methacrylate and 0.01 part of 4-tert-butylpyrocatechol were added at 125 ° C. The mixture was stirred for 3 hours to obtain a dispersion stabilizer solution [II] having a solid content of about 60%. The number of polymerizable double bonds introduced into the dispersion stabilizer was about 1.0 on average per molecule from the measurement of the resin acid value.

(製造例19) 分散安定剤[III]の製造
製造例18で得られたアクリル樹脂ワニス(α)167部に、γ−メタクリロイルオキシプロピルトリメトキシシラン2.6部及び4−tert−ブチルピロカテコール0.01部を加えて125℃で3時間撹拌して固形分約60%の分散安定剤溶液[III]を得た。分散安定剤中に導入された重合性二重結合の数は、樹脂酸価の測定から、1分子当り平均して約1.0個であった。
(Production Example 19) Production of Dispersion Stabilizer [III] To 167 parts of the acrylic resin varnish (α) obtained in Production Example 18, 2.6 parts of γ-methacryloyloxypropyltrimethoxysilane and 4-tert-butylpyrocatechol 0.01 part was added and stirred at 125 ° C. for 3 hours to obtain a dispersion stabilizer solution [III] having a solid content of about 60%. The number of polymerizable double bonds introduced into the dispersion stabilizer was about 1.0 on average per molecule from the measurement of the resin acid value.

(製造例20) 非水分散型樹脂(B−1)の製造
反応容器中に、上記製造例17で得た固形分約60%の分散安定剤[I]83.3部、ヘプタン100部及びキシレン16.2部を配合し、還流温度で下記単量体及び重合開始剤の混合物を4時間かけて滴下し、滴下後2時間熟成を行って固形分50%の微粒子分散液を得た。
スチレン 10部
メチルメタクリレート 24部
メチルアクリレート 10部
2−ヒドロキシエチルアクリレート 56部
2,2’−アゾビスイソブチロニトリル 1.5部
得られた微粒子分散液の分散微粒子の粒子径は、平均粒子径[サブミクロン粒度分布測定装置「COULTER N4型」(ベックマン・コールター社製)](以下、同様)として約250nmであった。 別の反応容器中に、上記のようにして得られた固形分約50%の微粒子分散液200部及びアクリル酸10部を仕込み、還流温度で6時間反応させて、分散微粒子の分散安定剤部分に重合性不飽和基を導入した非水分散型樹脂(B−1)(固形分約52%)を得た。得られた重合体微粒子分散液の樹脂中の重合性不飽和基当量は、769であった。
(Production Example 20) Production of non-aqueous dispersion resin (B-1)
In a reaction vessel, 83.3 parts of a dispersion stabilizer [I] having a solid content of about 60% obtained in Production Example 17 above, 100 parts of heptane and 16.2 parts of xylene were blended, and the following monomers and A mixture of polymerization initiators was added dropwise over 4 hours, followed by aging for 2 hours to obtain a fine particle dispersion having a solid content of 50%.
Styrene 10 parts methyl methacrylate 24 parts methyl acrylate 10 parts 2-hydroxyethyl acrylate 56 parts 2,2′-azobisisobutyronitrile 1.5 parts The particle size of the dispersed fine particles of the obtained fine particle dispersion is the average particle size [Submicron particle size distribution measuring device “COULTER N4 type” (manufactured by Beckman Coulter, Inc.)] (hereinafter the same), about 250 nm. In a separate reaction vessel, 200 parts of the fine particle dispersion having a solid content of about 50% and 10 parts of acrylic acid obtained as described above were charged and reacted at reflux temperature for 6 hours to obtain a dispersion stabilizer part of the dispersed fine particles. A non-aqueous dispersion resin (B-1) (solid content of about 52%) having a polymerizable unsaturated group introduced therein was obtained. The polymerizable unsaturated group equivalent in the resin of the obtained polymer fine particle dispersion was 769.

(製造例21) 非水分散型樹脂(B−2)の製造
反応容器中に、上記製造例18で得た固形分約60%の分散安定剤(II)83.3部、ヘプタン100部及びキシレン16.2部を配合し、還流温度で下記単量体及び重合開始剤の混合物を4時間かけて滴下し、滴下後2時間熟成を行って固形分約50%の微粒子分散液を得た。
スチレン 10部
メチルメタクリレート 22部
メチルアクリレート 10部
メタクリル酸 2部
グリシジルメタクリレート 56部
2,2’−アゾビスイソブチロニトリル 1.5部
得られた微粒子分散液の分散微粒子の粒子径は、平均粒子径として約250nmであった。
(Production Example 21) Production of non-aqueous dispersion resin (B-2) In a reaction vessel, 83.3 parts of dispersion stabilizer (II) having a solid content of about 60% obtained in Production Example 18 above, 100 parts of heptane, and 16.2 parts of xylene was blended, and a mixture of the following monomer and polymerization initiator was added dropwise at reflux temperature over 4 hours, followed by aging for 2 hours to obtain a fine particle dispersion having a solid content of about 50%. .
Styrene 10 parts methyl methacrylate 22 parts methyl acrylate 10 parts methacrylic acid 2 parts glycidyl methacrylate 56 parts 2,2′-azobisisobutyronitrile 1.5 parts The diameter was about 250 nm.

別の反応容器中に、上記のようにして得られた固形分約50%の微粒子分散液200部及び2−イソシアナトエチルメタクリレート10部を仕込み、還流温度で6時間反応させて、分散微粒子の分散安定剤部分に重合性二重結合を導入した非水分散型樹脂(B−2)(固形分約52%)を得た。得られた重合体微粒子分散液の樹脂中の重合性不飽和基当量は、1,250であった。   In a separate reaction vessel, 200 parts of the fine particle dispersion having a solid content of about 50% and 10 parts of 2-isocyanatoethyl methacrylate obtained as described above were charged, and reacted at reflux temperature for 6 hours. A non-aqueous dispersion type resin (B-2) (solid content: about 52%) in which a polymerizable double bond was introduced into the dispersion stabilizer portion was obtained. The polymerizable unsaturated group equivalent in the resin of the obtained polymer fine particle dispersion was 1,250.

(製造例22) 非水分散型樹脂(B−3)の製造
反応容器中に、上記製造例19で得た固形分約60%の分散安定剤[III]83.3部、ヘプタン100部及びキシレン16.2部を配合し、還流温度で下記単量体及び重合開始剤の混合物を4時間かけて滴下し、滴下後2時間熟成を行って固形分約50%の微粒子分散液を得た。
スチレン 10部
メチルメタクリレート 22部
メチルアクリレート 10部
グリシジルメタクリレート 56部
2,2’−アゾビスイソブチロニトリル 1.5部
得られた微粒子分散液の分散微粒子の粒子径は、平均粒子径として約250nmであった。
(Production Example 22) Production of non-aqueous dispersion type resin (B-3) In a reaction vessel, 83.3 parts of a dispersion stabilizer [III] of about 60% solid content obtained in Production Example 19 above, 100 parts of heptane, and 16.2 parts of xylene was blended, and a mixture of the following monomer and polymerization initiator was added dropwise at reflux temperature over 4 hours, followed by aging for 2 hours to obtain a fine particle dispersion having a solid content of about 50%. .
Styrene 10 parts methyl methacrylate 22 parts methyl acrylate 10 parts glycidyl methacrylate 56 parts 2,2′-azobisisobutyronitrile 1.5 parts The average particle diameter of the dispersed fine particles of the obtained fine particle dispersion is about 250 nm. Met.

別の反応容器中に、上記のようにして得られた固形分約50%の微粒子分散液200部及びγ−メタクリロイルオキシプロピルトリメトキシシラン10部を仕込み、還流温度で6時間反応させて、分散微粒子の分散安定剤部分に重合性二重結合を導入した非水分散型樹脂(B−3)(固形分約52%)を得た。得られた重合体微粒子分散液樹脂中の重合性不飽和基当量は、1,250であった。   In a separate reaction vessel, 200 parts of the fine particle dispersion having a solid content of about 50% obtained as described above and 10 parts of γ-methacryloyloxypropyltrimethoxysilane were charged and reacted at reflux temperature for 6 hours to disperse. A non-aqueous dispersion type resin (B-3) (solid content: about 52%) in which a polymerizable double bond was introduced into the dispersion stabilizer portion of the fine particles was obtained. The polymerizable unsaturated group equivalent in the obtained polymer fine particle dispersion resin was 1,250.

(製造例23) 非水分散型樹脂(B−4)の製造
(分散安定剤部分に重合性不飽和基を有さない非水分散型樹脂の製造)
反応容器中に、上記製造例17で得た固形分約60%の分散安定剤溶液[I]83.3部、ヘプタン100部及びキシレン16.2部を配合し、還流温度で下記単量体及び重合開始剤の混合物を4時間かけて滴下し、滴下後2時間熟成を行って固形分約50%の非水分散型樹脂(B−4)を得た。
スチレン 10部
メチルメタクリレート 24部
メチルアクリレート 10部
2−ヒドロキシエチルアクリレート 56部
2,2’−アゾビスイソブチロニトリル 1.5部
得られた微粒子分散液の分散微粒子の粒子径は、平均粒子径として約250nmであった。
(Production Example 23) Production of non-aqueous dispersion type resin (B-4) (Production of non-aqueous dispersion type resin having no polymerizable unsaturated group in the dispersion stabilizer portion)
In a reaction vessel, 83.3 parts of a dispersion stabilizer solution [I] having a solid content of about 60% obtained in Production Example 17 above, 100 parts of heptane and 16.2 parts of xylene were blended, and the following monomers were added at reflux temperature. And the mixture of the polymerization initiator was dripped over 4 hours, and it aged 2 hours after dripping, and obtained non-aqueous dispersion-type resin (B-4) about 50% of solid content.
Styrene 10 parts methyl methacrylate 24 parts methyl acrylate 10 parts 2-hydroxyethyl acrylate 56 parts 2,2′-azobisisobutyronitrile 1.5 parts The particle size of the dispersed fine particles of the obtained fine particle dispersion is the average particle size And about 250 nm.

水酸基含有樹脂(E)の製造
(製造例24) 水酸基含有アクリル樹脂溶液(E−1)の製造
攪拌機、温度計、還流冷却器、及び滴下装置を備えた反応容器に、キシレン80部を仕込み、窒素ガスを吹き込みながら100℃で攪拌し、この中に
スチレン 10部
メチルメタクリレート 40部
i−ブチルメタクリレート 8部
n−ブチルアクリレート 20部
2−ヒドロキシエチルアクリレート 20部
アクリル酸 2部
2,2’−アゾビスイソブチロニトリル 4部
の混合物を3時間かけて均一速度で滴下し、さらに同温度で2時間熟成した。その後、さらにキシレン10部及び2,2’−アゾビスイソブチロニトリル0.5部の混合物を1時間かけて反応容器に滴下し、滴下終了後1時間熟成させ、固形分55%の水酸基含有アクリル樹脂溶液(E−1)を得た。得られた水酸基含有アクリル樹脂の酸価は15.6mgKOH/g、水酸基価は96.6mgKOH/g、重量平均分子量は20,000、ガラス転移点温度は14.6℃であった。
Production of hydroxyl group-containing resin (E) (Production Example 24) Production of hydroxyl group-containing acrylic resin solution (E-1)
A reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, and a dropping device was charged with 80 parts of xylene and stirred at 100 ° C. while blowing nitrogen gas, and styrene 10 parts methyl methacrylate 40 parts i-butyl methacrylate. 8 parts n-butyl acrylate 20 parts 2-hydroxyethyl acrylate 20 parts acrylic acid 2 parts 2,2′-azobisisobutyronitrile A mixture of 4 parts is added dropwise at a uniform rate over 3 hours, and 2 parts at the same temperature. Aged for hours. Thereafter, a mixture of 10 parts of xylene and 0.5 part of 2,2′-azobisisobutyronitrile was added dropwise to the reaction vessel over 1 hour, and aged for 1 hour after completion of the addition, containing a hydroxyl group having a solid content of 55%. An acrylic resin solution (E-1) was obtained. The resulting hydroxyl group-containing acrylic resin had an acid value of 15.6 mgKOH / g, a hydroxyl value of 96.6 mgKOH / g, a weight average molecular weight of 20,000, and a glass transition temperature of 14.6 ° C.

(製造例25) 水酸基含有アクリル樹脂溶液(E−2)の製造
攪拌機、温度計、還流冷却器、及び滴下装置を備えた反応容器に、キシレン80部を仕込み、窒素ガスを吹き込みながら100℃で攪拌し、この中に
スチレン 10部
メチルメタクリレート 40部
i−ブチルメタクリレート 8部
n−ブチルアクリレート 10部
2−ヒドロキシエチルアクリレート 30部
アクリル酸 2部
2,2’−アゾビスイソブチロニトリル 4部
の混合物を3時間かけて均一速度で滴下し、さらに同温度で2時間熟成した。その後、さらにキシレン10部及び2,2’−アゾビスイソブチロニトリル0.5部の混合物を1時間かけて反応容器に滴下し、滴下終了後1時間熟成させ、固形分55%の水酸基含有アクリル樹脂溶液(E−2)を得た。得られた水酸基含有アクリル樹脂の酸価は15.6mgKOH/g、水酸基価は144.9mgKOH/g、重量平均分子量は20,000、ガラス転移点温度は13.6℃であった。
(Production Example 25) Production of hydroxyl group-containing acrylic resin solution (E-2)
A reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, and a dropping device was charged with 80 parts of xylene and stirred at 100 ° C. while blowing nitrogen gas, and styrene 10 parts methyl methacrylate 40 parts i-butyl methacrylate. 8 parts n-butyl acrylate 10 parts 2-hydroxyethyl acrylate 30 parts acrylic acid 2 parts 2,2'-azobisisobutyronitrile A mixture of 4 parts is added dropwise at a uniform rate over 3 hours, and 2 parts at the same temperature. Aged for hours. Thereafter, a mixture of 10 parts of xylene and 0.5 part of 2,2′-azobisisobutyronitrile was added dropwise to the reaction vessel over 1 hour, and aged for 1 hour after completion of the addition, containing a hydroxyl group having a solid content of 55%. An acrylic resin solution (E-2) was obtained. The resulting hydroxyl group-containing acrylic resin had an acid value of 15.6 mg KOH / g, a hydroxyl value of 144.9 mg KOH / g, a weight average molecular weight of 20,000, and a glass transition temperature of 13.6 ° C.

(製造例26) 水酸基含有アクリル樹脂(E−3)の製造
攪拌機、温度計、還流冷却器、及び滴下装置を備えた反応容器に、キシレン80部を仕込み、窒素ガスを吹き込みながら100℃で攪拌し、この中に
スチレン 10部
メチルメタクリレート 33部
i−ブチルメタクリレート 8部
n−ブチルアクリレート 27部
2−ヒドロキシエチルアクリレート 20部
アクリル酸 2部
2,2’−アゾビスイソブチロニトリル 4部
の混合物を3時間かけて均一速度で滴下し、さらに同温度で2時間熟成した。その後、さらにキシレン10部及び2,2’−アゾビスイソブチロニトリル0.5部の混合物を1時間かけて反応容器に滴下し、滴下終了後1時間熟成させ、不揮発分55%の水酸基含有アクリル樹脂(E−3)溶液を得た。得られた水酸基含有アクリル樹脂(E−3)の酸価は15.6mgKOH/g、水酸基価は96.6mgKOH/g、重量平均分子量は20,000、ガラス転移点温度は3.9℃であった。
(Production Example 26) Production of hydroxyl group-containing acrylic resin (E-3) In a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, and a dropping device, 80 parts of xylene were charged and stirred at 100 ° C while blowing nitrogen gas. Styrene 10 parts methyl methacrylate 33 parts i-butyl methacrylate 8 parts n-butyl acrylate 27 parts 2-hydroxyethyl acrylate 20 parts acrylic acid 2 parts 2,2′-azobisisobutyronitrile 4 parts Was dripped at a uniform rate over 3 hours and further aged at the same temperature for 2 hours. Thereafter, a mixture of 10 parts of xylene and 0.5 part of 2,2′-azobisisobutyronitrile was added dropwise to the reaction vessel over 1 hour, and aged for 1 hour after completion of the addition, containing a hydroxyl group having a nonvolatile content of 55%. An acrylic resin (E-3) solution was obtained. The obtained hydroxyl group-containing acrylic resin (E-3) had an acid value of 15.6 mgKOH / g, a hydroxyl value of 96.6 mgKOH / g, a weight average molecular weight of 20,000, and a glass transition temperature of 3.9 ° C. It was.

(製造例27) 水酸基含有アクリル樹脂(E−4)の製造
攪拌機、温度計、還流冷却器、及び滴下装置を備えた反応容器に、キシレン80部を仕込み、窒素ガスを吹き込みながら100℃で攪拌し、この中に
スチレン 20部
メチルメタクリレート 40部
i−ブチルメタクリレート 18部
2−ヒドロキシエチルアクリレート 20部
アクリル酸 2部
2,2’−アゾビスイソブチロニトリル 4部
の混合物を3時間かけて均一速度で滴下し、さらに同温度で2時間熟成した。その後、さらにキシレン10部及び2,2’−アゾビスイソブチロニトリル0.5部の混合物を1時間かけて反応容器に滴下し、滴下終了後1時間熟成させ、不揮発分55%の水酸基含有アクリル樹脂(E−4)溶液を得た。得られた水酸基含有アクリル樹脂(E−4)の酸価は15.6mgKOH/g、水酸基価は96.6mgKOH/g、重量平均分子量は20,000であった。ガラス転移点温度は45.6℃であった。
(Production Example 27) Production of hydroxyl group-containing acrylic resin (E-4) In a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, and a dropping device, 80 parts of xylene were charged and stirred at 100 ° C while blowing nitrogen gas. In this, a mixture of styrene 20 parts methyl methacrylate 40 parts i-butyl methacrylate 18 parts 2-hydroxyethyl acrylate 20 parts acrylic acid 2 parts 2,2′-azobisisobutyronitrile 4 parts uniformly over 3 hours The solution was added dropwise at a rate and aged at the same temperature for 2 hours. Thereafter, a mixture of 10 parts of xylene and 0.5 part of 2,2′-azobisisobutyronitrile was added dropwise to the reaction vessel over 1 hour, and aged for 1 hour after completion of the addition, containing a hydroxyl group having a nonvolatile content of 55%. An acrylic resin (E-4) solution was obtained. The obtained hydroxyl group-containing acrylic resin (E-4) had an acid value of 15.6 mgKOH / g, a hydroxyl value of 96.6 mgKOH / g, and a weight average molecular weight of 20,000. The glass transition temperature was 45.6 ° C.

(製造例28) 水酸基含有アクリル樹脂(E−5)の製造
攪拌機、温度計、還流冷却器、及び滴下装置を備えた反応容器に、キシレン80部を仕込み、窒素ガスを吹き込みながら100℃で攪拌し、この中に
スチレン 10部
メチルメタクリレート 20部
i−ブチルメタクリレート 8部
n−ブチルアクリレート 40部
2−ヒドロキシエチルアクリレート 20部
アクリル酸 2部
2,2’−アゾビスイソブチロニトリル 4部
の混合物を3時間かけて均一速度で滴下し、さらに同温度で2時間熟成した。その後、さらにキシレン10部及び2,2’−アゾビスイソブチロニトリル0.5部の混合物を1時間かけて反応容器に滴下し、滴下終了後1時間熟成させ、不揮発分55%の水酸基含有アクリル樹脂(E−5)溶液を得た。得られた水酸基含有アクリル樹脂(E−5)の酸価は15.6mgKOH/g、水酸基価は96.6mgKOH/g、重量平均分子量は20,000であった。ガラス転移点温度は−14.0℃であった。
(Production Example 28) Production of hydroxyl group-containing acrylic resin (E-5) In a reaction vessel equipped with a stirrer, thermometer, reflux condenser, and dropping device, 80 parts of xylene were charged and stirred at 100 ° C while blowing nitrogen gas. In this, a mixture of styrene 10 parts methyl methacrylate 20 parts i-butyl methacrylate 8 parts n-butyl acrylate 40 parts 2-hydroxyethyl acrylate 20 parts acrylic acid 2 parts 2,2′-azobisisobutyronitrile 4 parts Was dripped at a uniform rate over 3 hours and further aged at the same temperature for 2 hours. Thereafter, a mixture of 10 parts of xylene and 0.5 part of 2,2′-azobisisobutyronitrile was added dropwise to the reaction vessel over 1 hour, and aged for 1 hour after completion of the addition, containing a hydroxyl group having a nonvolatile content of 55%. An acrylic resin (E-5) solution was obtained. The obtained hydroxyl group-containing acrylic resin (E-5) had an acid value of 15.6 mgKOH / g, a hydroxyl value of 96.6 mgKOH / g, and a weight average molecular weight of 20,000. The glass transition temperature was -14.0 ° C.

ウレタンアクリレート(F−1)の製造
(製造例29)
温度計、サーモスタット、撹拌機、還流冷却器及び空気吹込装置を備え付けた反応容器に、
イソホロンジイソシアネート 888部
2−ヒドロキシエチルアクリレート 464部
ハイドロキノンモノメチルエーテル 0.7部
を仕込み、反応容器内に空気を吹き込みながら、80℃に昇温し、その温度に5時間保ち、加えた2−ヒドロキシエチルアクリレートが実質的に全て反応したのを確認した後、
ペンタエリスリトール 136部
酢酸ブチル 372部
ジブチルチンジラウレート 0.2部
を添加してさらに80℃に保持し、イソホロンジイソシアネートが実質的に全て反応したのを確認して冷却し、不揮発分80%のウレタンアクリレート樹脂(F−1)溶液を得た。得られたウレタンアクリレート樹脂(F−1)の不飽和基当量は372であった。
Production of urethane acrylate (F-1) (Production Example 29)
In a reaction vessel equipped with a thermometer, thermostat, stirrer, reflux condenser and air blowing device,
Isophorone diisocyanate 888 parts 2-hydroxyethyl acrylate 464 parts Hydroquinone monomethyl ether 0.7 part was charged, and the temperature was raised to 80 ° C. while blowing air into the reaction vessel. After confirming that all of the acrylate had reacted,
Pentaerythritol 136 parts Butyl acetate 372 parts Dibutyltin dilaurate 0.2 part is added and kept at 80 ° C, and after confirming that all the isophorone diisocyanate has reacted substantially, it is cooled and urethane acrylate having a non-volatile content of 80% A resin (F-1) solution was obtained. Unsaturated group equivalent of the obtained urethane acrylate resin (F-1) was 372.

塗料組成物の製造
(実施例1) 塗料組成物 No.1の製造
製造例8で得られた化合物(A−1)80%溶液67.13部(固形分53.7部)、製造例20で得られた非水分散型樹脂(B−1)52%溶液89.0部(固形分46.3部)、ダロキュア(登録商標) 1173(商品名、メルクジャパン社製、光重合開始剤)3.0部、及びTINUVIN(登録商標) 384(商品名、チバ スペシャルティ ケミカルズ社製、紫外線吸収剤)2.0部を均一に混合し、さらに酢酸ブチルで固形分を調整して、固形分50%の塗料組成物No.1を得た。
Production of coating composition (Example 1) Coating composition No. Production of 1 67.13 parts of the 80% solution of the compound (A-1) obtained in Production Example 8 (solid content 53.7 parts), non-aqueous dispersion type resin (B-1) 52 obtained in Production Example 20 % Solution 89.0 parts (solid content 46.3 parts), Darocur (registered trademark) 1173 (trade name, manufactured by Merck Japan, photopolymerization initiator), and TINUVIN (registered trademark) 384 (trade name) , Ciba Specialty Chemicals Co., Ltd., UV absorber) was uniformly mixed, and the solid content was adjusted with butyl acetate. 1 was obtained.

塗料組成物No.1における(A)成分のイソシアネート基(NCO)の合計量と(B)成分の水酸基(OH)との当量比は、NCO/OH=0.11である。   Coating composition No. The equivalent ratio of the total amount of the isocyanate groups (NCO) of the component (A) in 1 and the hydroxyl group (OH) of the component (B) is NCO / OH = 0.11.

(実施例2〜11、比較例1〜5) 塗料組成物No.2〜No.16
実施例1において、各成分の配合を表2に示す配合とする以外実施例1と同様にして、実施例2〜11、比較例1〜5の固形分50%の塗料組成物No.2〜No.16を得た。なお表2の配合量は、固形分の配合量を示す。
(Examples 2 to 11 and Comparative Examples 1 to 5) 2-No. 16
In Example 1, the composition of each component was changed to the composition shown in Table 2, and in the same manner as Example 1, the coating composition No. 2-No. 16 was obtained. In addition, the compounding quantity of Table 2 shows the compounding quantity of solid content.

Figure 2012060390
Figure 2012060390

(注6)「−」は、イソシアネート基が確認されなかったことを示す。   (Note 6) “-” indicates that an isocyanate group was not confirmed.

(実施例12) 塗料組成物 No.17の製造
製造例8で得られた化合物(A−1)80%溶液63.9部(固形分51.1部)、製造例20で得られた非水分散型樹脂(B−1)52%溶液84.8部(固形分44.1部)、ダロキュア(登録商標) 1173を3.0部、ヘキサメチレンジイソシアネートのイソシアヌレート環付加物(NCO含量21%)4.8部、及びTINUVIN(登録商標) 384を2.0部均一に混合し、さらに固形分が50%となるように酢酸ブチルを加えて、固形分50%の塗料組成物No.17を得た。
(Example 12) Coating composition No. Production of 17 Compound (A-1) 80% solution obtained in Production Example 8 (63.9 parts) (solid content 51.1 parts), Non-aqueous dispersion resin (B-1) 52 obtained in Production Example 20 % Solution 84.8 parts (solid content 44.1 parts), Darocur® 1173 3.0 parts, hexamethylene diisocyanate isocyanurate cycloadduct (NCO content 21%) 4.8 parts, and TINUVIN ( (Registered trademark) 384 was uniformly mixed, and butyl acetate was further added so that the solid content was 50%. 17 was obtained.

塗料組成物No.17における(A)成分及び(D)成分のイソシアネート基(NCO)の合計量と(B)成分の水酸基(OH)との当量比は、NCO/OH=0.28であり、(A)成分の有するイソシアネート基(NCO)と(D)成分の有するイソシアネート基(NCO)との当量比は、(A)成分のNCO/(D)成分のNCO=0.65である。   Coating composition No. The equivalent ratio of the total amount of isocyanate groups (NCO) in component (A) and component (D) in 17 to the hydroxyl group (OH) in component (B) is NCO / OH = 0.28, and component (A) The equivalent ratio of the isocyanate group (NCO) possessed by and the isocyanate group (NCO) possessed by the component (D) is NCO of the component (A) / NCO of the component (D) = 0.65.

(実施例13〜23、比較例6〜9) 塗料組成物No.18〜No.32の製造
実施例12において、各成分の配合を表3に示す配合とする以外は実施例12と同様にして、製造例50〜64の固形分50%の塗料組成物No.18〜No.32を得た。なお表3の配合量は、固形分の配合量を示す。
(Examples 13 to 23, Comparative Examples 6 to 9) Coating composition No. 18-No. Production of No. 32 In Example 12, except that the blending of each component was changed to the blending shown in Table 3, the coating composition No. 50 having a solid content of 50% in Production Examples 50 to 64 was prepared in the same manner as in Example 12. 18-No. 32 was obtained. In addition, the compounding quantity of Table 3 shows the compounding quantity of solid content.

Figure 2012060390
Figure 2012060390

(実施例24) 塗料組成物 No.33
製造例8で得られた化合物(A−1)80%溶液29.8部(固形分23.8部)、製造例20で得られた非水分散型樹脂(B−1)52%溶液9.2部(固形分4.8部)、ダロキュア(登録商標) 1173 3.0部、ヘキサメチレンジイソシアネートのイソシアヌレート環付加物(NCO含量21%)11.9部、製造例24で得られた水酸基含有樹脂(E−1)80%溶液74.4部(固形分59.5部)、TINUVIN(登録商標) 384 2.0部を均一に混合し、さらに固形分が50%となるように酢酸ブチルを加えて、固形分50%の塗料組成物No.33を得た。塗料組成物No.33における(A)成分及び(D)成分のイソシアネート基(NCO)の合計量と(B)成分の水酸基(OH)との当量比は、NCO/OH=0.66であり、(A)成分の有するイソシアネート基(NCO)と(D)成分の有するイソシアネート基(NCO)との当量比は、(A)成分のNCO/(D)成分のNCO=0.12である。
(Example 24) Coating composition No. 33
Compound (A-1) 80% solution 29.8 parts (solid content 23.8 parts) obtained in Production Example 8 and non-aqueous dispersion type resin (B-1) 52% solution 9 obtained in Production Example 20 9 2 parts (solid content 4.8 parts), DAROCURE (registered trademark) 1173 3.0 parts, hexamethylene diisocyanate isocyanurate cycloadduct (NCO content 21%) 11.9 parts, obtained in Production Example 24 Hydroxyl-containing resin (E-1) 80% solution 74.4 parts (solid content 59.5 parts) and TINUVIN (registered trademark) 384 2.0 parts are mixed uniformly, and the solid content is further 50%. By adding butyl acetate, the coating composition no. 33 was obtained. Coating composition No. The equivalent ratio of the total amount of isocyanate groups (NCO) in component (A) and component (D) in 33 to the hydroxyl group (OH) in component (B) is NCO / OH = 0.66, and component (A) The equivalent ratio of the isocyanate group (NCO) of the component (D) to the isocyanate group (NCO) of the component (D) is NCO of the component (A) / NCO of the component (D) = 0.12.

(実施例25〜44、比較例10〜13) 塗料組成物No.34〜57
実施例24において、各成分の配合を表4及び表5に示す配合とする以外は実施例24と同様にして、実施例25〜44、比較例10〜13の固形分50%の塗料組成物No.34〜57を得た。なお表4及び表5の配合量は、固形分の配合量を示す。
(Examples 25-44, Comparative Examples 10-13) Coating composition No. 34-57
In Example 24, a coating composition having a solid content of 50% in Examples 25 to 44 and Comparative Examples 10 to 13 was used in the same manner as in Example 24 except that the composition of each component was as shown in Tables 4 and 5. No. 34-57 were obtained. In addition, the compounding quantity of Table 4 and Table 5 shows the compounding quantity of solid content.

Figure 2012060390
Figure 2012060390

Figure 2012060390
Figure 2012060390

(実施例45) 塗料組成物No.58
製造例8で得られた化合物(A−1)80%溶液25.6部(固形分20.5部)、製造例17で得られた非水分散型樹脂(B−1)52%溶液5.0部(固形分2.6部)、ダロキュア(登録商標) 1173 3.0部、ヘキサメチレンジイソシアネートのイソシアヌレート環付加物(NCO含量21%)10.3部、製造例24で得られた水酸基含有樹脂(E−1)80%溶液64.1部(固形分51.3部)、TINUVIN(登録商標) 384 2.0部、製造例29で得られたウレタンアクリレート樹脂(F−1)80%溶液19.3部(不揮発分15.4部)を均一に混合し、さらに固形分が50%となるように酢酸ブチルを加えて、固形分50%の塗料組成物No.58を得た。塗料組成物No.58における(A)成分及び(D)成分のイソシアネート基(NCO)の合計量と(B)成分の水酸基(OH)との当量比は、NCO/OH=0.70であり、(A)成分の有するイソシアネート基(NCO)と(D)成分の有するイソシアネート基(NCO)との当量比は、(A)成分のNCO/(D)成分のNCO=0.12である。
(Example 45) Coating composition No. 58
Compound (A-1) 80% solution 25.6 parts (solid content 20.5 parts) obtained in Production Example 8 and non-aqueous dispersion type resin (B-1) 52% solution 5 obtained in Production Example 17 0.03 (solid content 2.6 parts), Darocur (registered trademark) 1173 3.0 parts, hexamethylene diisocyanate isocyanurate cycloadduct (NCO content 21%) 10.3 parts, obtained in Production Example 24 Hydroxyl-containing resin (E-1) 80% solution 64.1 parts (solid content 51.3 parts), TINUVIN (registered trademark) 384 2.0 parts, urethane acrylate resin (F-1) obtained in Production Example 29 19.3 parts of an 80% solution (15.4 parts of non-volatile content) were uniformly mixed, and butyl acetate was further added so that the solid content was 50%. 58 was obtained. Coating composition No. 58, the equivalent ratio of the total amount of isocyanate groups (NCO) of component (A) and component (D) to hydroxyl group (OH) of component (B) is NCO / OH = 0.70, and component (A) The equivalent ratio of the isocyanate group (NCO) of the component (D) to the isocyanate group (NCO) of the component (D) is NCO of the component (A) / NCO of the component (D) = 0.12.

(実施例46〜77、比較例14〜17) 塗料組成物No.59〜94
実施例45において、各成分の配合を表6及び表7に示す配合とする以外は実施例45と同様にして、実施例46〜77、比較例14〜17の固形分50%の塗料組成物No.59〜94を得た。なお表6及び表7の配合量は、固形分の配合量を示す。
(Examples 46-77, Comparative Examples 14-17) Coating composition No. 59-94
In Example 45, the coating composition having a solid content of 50% in Examples 46 to 77 and Comparative Examples 14 to 17 was used in the same manner as in Example 45 except that the composition of each component was as shown in Tables 6 and 7. No. 59-94 were obtained. In addition, the compounding quantity of Table 6 and Table 7 shows the compounding quantity of solid content.

Figure 2012060390
Figure 2012060390

Figure 2012060390
Figure 2012060390

被塗物Aの作製
脱脂及びりん酸亜鉛処理した冷延鋼板(JISG3020、大きさ400×300×0.8mm)にカチオン電着塗料「エレクロンGT−10」(商品名:関西ペイント株式会社製、エポキシ樹脂ポリアミン系カチオン樹脂に硬化剤としてブロックポリイソシアネート化合物を使用したもの)を硬化塗膜に基づいて膜厚20μmになるように電着塗装し、170℃で20分間加熱して架橋硬化させて電着塗膜を得た。
Preparation of coating material A Cold- rolled steel sheet (JIS G3020, size 400 × 300 × 0.8 mm) subjected to degreasing and zinc phosphate treatment and cationic electrodeposition coating “ELECRON GT-10” (trade name: manufactured by Kansai Paint Co., Ltd.) An epoxy resin polyamine-based cationic resin using a block polyisocyanate compound as a curing agent) is electrodeposited so as to have a film thickness of 20 μm based on the cured coating film, and heated at 170 ° C. for 20 minutes to be crosslinked and cured. An electrodeposition coating was obtained.

得られた電着塗面に、中塗塗料「ルーガベークTP−65−2(白塗色)」(関西ペイント株式会社製、ポリエステル樹脂・メラミン樹脂系、有機溶剤型)をエアスプレーにて硬化塗膜に基づいて膜厚30μmになるように塗装し、140℃で30分間加熱して架橋硬化させて、中塗塗膜を形成した塗板を被塗物Aとした。   On the obtained electrodeposition coating surface, an intermediate coating “Lugabake TP-65-2 (white coating color)” (manufactured by Kansai Paint Co., Ltd., polyester resin / melamine resin type, organic solvent type) is cured by air spray. Was coated to a film thickness of 30 μm, heated at 140 ° C. for 30 minutes to be crosslinked and cured, and a coated plate on which an intermediate coating film was formed was designated as an article A to be coated.

被塗物Bの作製
ポリプロピレンNX−280AK(三菱油化株式会社製、板厚3.2mm)をトリクロルエタン蒸気脱脂1分間行なった後に80℃で10分乾燥させた。次いで、プライマーとして「ソフレックスNo.1000」(関西ペイント株式会社製、ポリオレフィン含有導電有機溶剤型プライマー塗料)を乾燥膜厚15μm塗装し、常温で3分間セッティングを行って被塗物とした。
Preparation of Coating Object B Polypropylene NX-280AK (manufactured by Mitsubishi Oil Chemical Co., Ltd., plate thickness 3.2 mm) was subjected to trichloroethane vapor degreasing for 1 minute and then dried at 80 ° C. for 10 minutes. Next, “SOFLEX No. 1000” (manufactured by Kansai Paint Co., Ltd., polyolefin-containing conductive organic solvent primer primer) was applied as a primer with a dry film thickness of 15 μm and set at room temperature for 3 minutes to prepare an article to be coated.

被塗物Cの作製
ポリプロピレンNX−280AK(三菱油化株式会社製、板厚3.2mm)をトリクロルエタン蒸気脱脂1分間行なった後に80℃で10分乾燥させた。次いで、プライマーとして「アスカレックス#2850」(商品名、関西ペイント社製、ポリオレフィン含有導電水性プライマー塗料)を乾燥膜厚15μm塗装し、室温で5分間セッティングを行って被塗物とした。
Preparation of article C Polypropylene NX-280AK (manufactured by Mitsubishi Oil Chemical Co., Ltd., plate thickness: 3.2 mm) was subjected to trichloroethane vapor degreasing for 1 minute and then dried at 80 ° C. for 10 minutes. Next, “ASCALEX # 2850” (trade name, manufactured by Kansai Paint Co., Ltd., polyolefin-containing conductive water-based primer paint) was applied as a primer with a dry film thickness of 15 μm, and setting was performed at room temperature for 5 minutes to prepare an article to be coated.

被塗物Dの作製
ポリプロピレンNX−280AK(三菱油化株式会社製、板厚3.2mm)をトリクロルエタン蒸気脱脂1分間行なった後に80℃で10分乾燥させた。次いで、プライマーとして「アスカレックス#2850」(商品名、関西ペイント社製、ポリオレフィン含有導電水性プライマー塗料)を乾燥膜厚15μm塗装し、80℃で3分間の予備加熱(プレヒート)を行って被塗物とした。
Preparation of article D Polypropylene NX-280AK (manufactured by Mitsubishi Oil Chemical Co., Ltd., plate thickness: 3.2 mm) was subjected to trichloroethane vapor degreasing for 1 minute and then dried at 80 ° C. for 10 minutes. Next, “Ascalex # 2850” (trade name, manufactured by Kansai Paint Co., Ltd., polyolefin-containing conductive water-based primer paint) is applied as a primer with a dry film thickness of 15 μm and pre-heated at 80 ° C. for 3 minutes (preheating) to be coated. It was a thing.

複層塗膜形成方法
(実施例78)
上記被塗物Aに製造例6で得たベース塗料組成物No.1を、回転霧化型塗装機を用いて、乾燥膜厚が15μmとなるように塗装し、80℃で3分間プレヒートを行なった。次いで、実施例1で得た塗料組成物No.1をクリヤ塗料として、乾燥膜厚が20μmとなるようエアスプレー塗装した。続いて、50℃で3分間プレヒートした後、超高圧水銀灯を用い1,500mJ/cmの照射量で活性エネルギー線を照射した。続いて90℃で10分間乾燥させて試験板を得た。
Method for forming multilayer coating film (Example 78)
The base coating composition No. obtained in Production Example 6 was applied to the article A to be coated. 1 was coated using a rotary atomizing coating machine so that the dry film thickness was 15 μm, and preheated at 80 ° C. for 3 minutes. Subsequently, the coating composition No. obtained in Example 1 was used. 1 was used as a clear paint, and air spray coating was performed so that the dry film thickness was 20 μm. Then, after preheating at 50 degreeC for 3 minute (s), the active energy ray was irradiated with the irradiation amount of 1,500 mJ / cm < 2 > using the ultra high pressure mercury lamp. Subsequently, it was dried at 90 ° C. for 10 minutes to obtain a test plate.

なお試験板作製までの加熱工程回数(電着塗膜、中塗塗膜、ベース塗膜、及びクリヤ塗料のプレヒート及び加熱乾燥の合計)5回であった。得られた試験板について評価に供した評価結果を表8に示す。   The number of heating steps until preparation of the test plate was 5 times (total of pre-heated and heat-dried electrodeposition coating, intermediate coating, base coating, and clear coating). Table 8 shows the evaluation results used for the evaluation of the obtained test plate.

(実施例79〜166、比較例18〜34)
実施例78において、ベース塗料組成物及び塗料組成物を表8〜表13に記載のベース塗料組成物及び塗料組成物とした以外は、実施例78と同様に試験板を作製し、各種評価に供した。評価結果を表8〜表13に示した。
(Examples 79-166, Comparative Examples 18-34)
In Example 78, a test plate was prepared in the same manner as in Example 78 except that the base coating composition and the coating composition were changed to the base coating composition and the coating composition described in Tables 8 to 13, and were used for various evaluations. Provided. The evaluation results are shown in Tables 8 to 13.

Figure 2012060390
Figure 2012060390

Figure 2012060390
Figure 2012060390

Figure 2012060390
Figure 2012060390

Figure 2012060390
Figure 2012060390

Figure 2012060390
Figure 2012060390

Figure 2012060390
Figure 2012060390

被塗物B〜Dの検討結果
(実施例167、176、185)
前記被塗物Bに、ベース塗料組成物として「ソフレックス#420シルバー」(関西ペイント(株)製、商品名、ポリエステルウレタン系1液型有機溶剤系メタリック塗料)を乾燥膜厚15μmになるように静電塗装し、室温で3分間セッティングした。
Examination results of articles B to D (Examples 167, 176, 185)
“Soflex # 420 Silver” (trade name, polyester urethane-based one-component organic solvent-based metallic paint manufactured by Kansai Paint Co., Ltd.) as a base coating composition is applied to the object B to have a dry film thickness of 15 μm. Was electrostatically coated and set at room temperature for 3 minutes.

次いで、実施例48で得た塗料組成物No.61をクリヤ塗料として乾燥膜厚が20μmとなるようエアスプレー塗装した。続いて、50℃で3分間プレヒート(予備加熱)した後、超高圧水銀灯を用い1,500mJ/cmの照射量で活性エネルギー線を照射した。続いて90℃で10分間乾燥させて試験板を得た(実施例167)。Next, the coating composition No. obtained in Example 48 was used. 61 was used as a clear paint and air spray coating was applied so that the dry film thickness was 20 μm. Subsequently, after preheating (preheating) at 50 ° C. for 3 minutes, an active energy ray was irradiated with an irradiation amount of 1,500 mJ / cm 2 using an ultrahigh pressure mercury lamp. Subsequently, it was dried at 90 ° C. for 10 minutes to obtain a test plate (Example 167).

塗料組成物No.61に代えて実施例52で得た塗料組成物No.65を用いる以外、上記実施例167と同様にして試験版を得た(実施例176)。塗料組成物No.61に代えて実施例53で得た塗料組成物No.66を用いる以外、上記実施例167と同様にして試験版を得た(実施例185)。   Coating composition No. The coating composition No. obtained in Example 52 instead of No. 61 was used. A test plate was obtained in the same manner as in Example 167 except that 65 was used (Example 176). Coating composition No. The coating composition No. obtained in Example 53 instead of No. 61 was used. A test plate was obtained in the same manner as in Example 167 except that 66 was used (Example 185).

(実施例168、177、186)
前記被塗物Bに、ベース塗料組成物として「ソフレックス#420シルバー」(関西ペイント(株)製、商品名、ポリエステルウレタン系1液型有機溶剤系メタリック塗料)を乾燥膜厚15μmになるように静電塗装し、80℃で3分間のプレヒート(予備加熱)を行った。これらの工程以外は、実施例167、176及び185と同様にして試験板を得た。
(Examples 168, 177, 186)
“Soflex # 420 Silver” (trade name, polyester urethane-based one-component organic solvent-based metallic paint manufactured by Kansai Paint Co., Ltd.) as a base coating composition is applied to the object B to have a dry film thickness of 15 μm. And pre-heated (preliminary heating) at 80 ° C. for 3 minutes. A test plate was obtained in the same manner as in Examples 167, 176 and 185 except for these steps.

(実施例169、178、187)
前記被塗物Bに、製造例6で得たベース塗料組成物No.1を、乾燥膜厚が15μmとなるように静電塗装し、80℃で3分間プレヒート(予備加熱)を行った。これらの工程以外は、実施例167、176及び185と同様にして試験板を得た。
(Examples 169, 178, 187)
The base coating composition No. obtained in Production Example 6 was applied to the article B to be coated. 1 was electrostatically coated so that the dry film thickness was 15 μm, and preheated (preliminary heating) at 80 ° C. for 3 minutes. A test plate was obtained in the same manner as in Examples 167, 176 and 185 except for these steps.

(実施例170、179、188)
前記被塗物Cに、ベース塗料組成物として「ソフレックス#420シルバー」(関西ペイント(株)製、商品名、ポリエステルウレタン系1液型有機溶剤系メタリック塗料)を乾燥膜厚15μmになるように静電塗装し、室温で3分間セッティングした。これらの工程以外は、実施例167、176及び185と同様にして試験板を得た。
(Examples 170, 179, 188)
A “SOFLEX # 420 Silver” (trade name, polyester urethane-based one-component organic solvent-based metallic paint manufactured by Kansai Paint Co., Ltd.) as a base coating composition is applied to the object C to have a dry film thickness of 15 μm. Was electrostatically coated and set at room temperature for 3 minutes. A test plate was obtained in the same manner as in Examples 167, 176 and 185 except for these steps.

(実施例171、180、189)
前記被塗物Cに、ベース塗料組成物として「ソフレックス#420シルバー」(関西ペイント(株)製、商品名、ポリエステルウレタン系1液型有機溶剤系メタリック塗料)を乾燥膜厚15μmになるように静電塗装し、80℃で3分間のプレヒート(予備加熱)を行った。これらの工程以外は、実施例167、176及び185と同様にして試験板を得た。
(Examples 171, 180, 189)
A “SOFLEX # 420 Silver” (trade name, polyester urethane-based one-component organic solvent-based metallic paint manufactured by Kansai Paint Co., Ltd.) as a base coating composition is applied to the object C to have a dry film thickness of 15 μm. And pre-heated (preliminary heating) at 80 ° C. for 3 minutes. A test plate was obtained in the same manner as in Examples 167, 176 and 185 except for these steps.

(実施例172、181、190)
前記被塗物Cに、製造例6で得たベース塗料組成物No.1を乾燥膜厚が15μmとなるように静電塗装し、80℃で3分間のプレヒート(予備加熱)を行った。これらの工程以外は、実施例167、176及び185と同様にして試験板を得た。
(Examples 172, 181, 190)
The base coating composition No. obtained in Production Example 6 was applied to the article C to be coated. 1 was electrostatically coated so that the dry film thickness was 15 μm, and preheating (preheating) was performed at 80 ° C. for 3 minutes. A test plate was obtained in the same manner as in Examples 167, 176 and 185 except for these steps.

(実施例173、182、191)
前記被塗物Dに、ベース塗料組成物として「ソフレックス#420シルバー」(関西ペイント(株)製、商品名、ポリエステルウレタン系1液型有機溶剤系メタリック塗料)を乾燥膜厚15μmになるように静電塗装し、室温で3分間セッティングした。これらの工程以外は、実施例167、176及び185と同様にして試験板を得た。
(Examples 173, 182 and 191)
“Soflex # 420 Silver” (trade name, polyester urethane-based one-component organic solvent-based metallic paint manufactured by Kansai Paint Co., Ltd.) as a base coating composition is applied to the object D to have a dry film thickness of 15 μm. Was electrostatically coated and set at room temperature for 3 minutes. A test plate was obtained in the same manner as in Examples 167, 176 and 185 except for these steps.

(実施例174、183、192)
前記被塗物Dに、ベース塗料組成物として「ソフレックス#420シルバー」(関西ペイント(株)製、商品名、ポリエステルウレタン系1液型有機溶剤系メタリック塗料)を乾燥膜厚15μmになるように静電塗装し、80℃で3分間プレヒート(予備加熱)を行った。これらの工程以外は、実施例167、176及び185と同様にして試験板を得た。
(Examples 174, 183, 192)
“Soflex # 420 Silver” (trade name, polyester urethane-based one-component organic solvent-based metallic paint manufactured by Kansai Paint Co., Ltd.) as a base coating composition is applied to the object D to have a dry film thickness of 15 μm. And pre-heated (preliminary heating) at 80 ° C. for 3 minutes. A test plate was obtained in the same manner as in Examples 167, 176 and 185 except for these steps.

(実施例175、184、193)
前記被塗物Dに、製造例6で得たベース塗料組成物No.1を乾燥膜厚15μmになるように静電塗装し、80℃で3分間のプレヒート(予備加熱)を行った。これらの工程以外は、実施例167、176及び185と同様にして試験板を得た。実施例167〜193の塗料内容及び試験結果を表14に示す。
(Examples 175, 184, 193)
The base coating composition No. obtained in Production Example 6 was applied to the article D to be coated. 1 was electrostatically coated so as to have a dry film thickness of 15 μm, and preheating (preheating) was performed at 80 ° C. for 3 minutes. A test plate was obtained in the same manner as in Examples 167, 176 and 185 except for these steps. Table 14 shows the paint contents and test results of Examples 167 to 193.

Figure 2012060390
Figure 2012060390

試験方法
(注7)耐溶剤性:
試験板の塗膜面に、アセトンを浸み込ませたガーゼにて塗膜面に荷重約1kg/cmの圧力をかけて、跡がつくまで約5cmの長さの間を往復させて回数を数え、下記基準により耐溶剤性を評価した:
S:200回往復でも全く跡がつかないもの
A:100〜200回往復で跡がつくもの
B:50〜99回往復で跡がつくもの
C:49回往復以下で跡がつくもの。
Test method (Note 7) Solvent resistance:
Apply a load of about 1 kg / cm 2 to the coating surface of the test plate with gauze soaked in acetone and reciprocate between about 5 cm length until a mark is made. The solvent resistance was evaluated according to the following criteria:
S: No trace even after 200 round trips A: No trace after 100-200 round trips B: No trace after 50-99 round trips C: No trace after 49 round trips

(注8)付着性:
試験板の塗膜面にJIS K 5600−5−6(1990)に準じて塗膜に2mm×2mmのゴバン目100個を作り、その面に粘着テープを貼着し、急激に剥がした後に、塗面に残ったゴバン目塗膜の数を評価した:
S:残存個数/全体個数=100個/100個で縁欠けなし
A:残存個数/全体個数=100個/100個で縁欠けあり
B:残存個数/全体個数=99個〜90個/100個
C:残存個数/全体個数=89個以下/100個。
(Note 8) Adhesion:
After making 100 2mm x 2mm gobang eyes on the coating film according to JIS K 5600-5-6 (1990) on the coating surface of the test plate, sticking an adhesive tape on the surface and peeling it off rapidly, The number of goby eye coatings remaining on the paint surface was evaluated:
S: Remaining number / total number = 100/100, no edge missing A: Remaining number / total number = 100/100, no edge missing B: Remaining number / total number = 99 to 90/100 C: Remaining number / total number = 89 or less / 100.

(注9)仕上り性:
各試験板について下記目視評価及び光沢測定により仕上り性を評価した:
<目視評価>
各試験板を目視にて観察し、メタリックムラの発生度合を下記基準で評価した:
S:メタリックムラがほとんど認められず、極めて優れた塗膜外観を有する
A:メタリックムラがわずかに認められるが、優れた塗膜外観を有する
B:メタリックムラが認められ、塗膜外観がやや劣る
C:メタリックムラが多く認められ、塗膜外観が劣る。
<光沢測定>
JIS K5600−4−7(1999)の鏡面光沢度(60度)に準じて各塗面の光沢度を測定した。測定した光沢度を下記基準により評価した:
S:鏡面光沢度が90以上
A:鏡面光沢度が70以上90未満
B:鏡面光沢度が50以上70未満
C:鏡面光沢度が50未満。
(Note 9) Finishability:
The finish was evaluated for each test plate by the following visual evaluation and gloss measurement:
<Visual evaluation>
Each test plate was visually observed, and the degree of occurrence of metallic unevenness was evaluated according to the following criteria:
S: Almost no metallic unevenness is observed and the coating film has an extremely excellent appearance. A: Although metallic unevenness is slightly observed, the coating film has an excellent coating appearance. B: The metallic unevenness is recognized and the coating film appearance is slightly inferior. C: Many metallic irregularities are observed, and the coating film appearance is poor.
<Gloss measurement>
The glossiness of each coated surface was measured according to the specular glossiness (60 degrees) of JIS K5600-4-7 (1999). The measured gloss was evaluated according to the following criteria:
S: Specular gloss is 90 or more A: Specular gloss is 70 or more and less than 90 B: Specular gloss is 50 or more and less than 70 C: Specular gloss is less than 50

(注10)耐擦り傷性:
各試験板について、ASTM D1044に準じて、テーバー磨耗試験(磨耗輪CF−10P、荷重500g、100回転)を行った。試験前後の塗膜について、JIS K5600−4−7(1999)の鏡面光沢度(60度)に準じて各塗面の光沢度を測定した。試験前の光沢度に対する試験後の光沢度を光沢保持率(%)として求め、下記基準により評価した:
S:光沢保持率90%以上
A:光沢保持率80%以上90%未満
B:光沢保持率60%以上80%未満
C:光沢保持率60%未満。
(Note 10) Scratch resistance:
Each test plate was subjected to a Taber abrasion test (abrasion wheel CF-10P, load 500 g, 100 revolutions) in accordance with ASTM D1044. About the coating film before and behind a test, the glossiness of each coating surface was measured according to the specular glossiness (60 degree | times) of JISK5600-4-7 (1999). The glossiness after the test relative to the glossiness before the test was determined as a gloss retention (%) and evaluated according to the following criteria:
S: Gloss retention 90% or more A: Gloss retention 80% or more and less than 90% B: Gloss retention 60% or more and less than 80% C: Gloss retention 20% or less.

(注11)耐候性:
各試験板について、JIS K 5600−7−8(1999)に準拠して、サンシャインウェザオメーターを用いて2000時間の耐候性試験を行った。試験後の試験板について、外観及び付着性を評価した:
<外観(耐候試験後)>
S:塗膜表面に異常が認められず、初期と試験後における試験板において、JIS Z 8730に準拠する色差△Eが0.3未満である
A:僅かな黄変が認められるがワレの発生がなく、初期と試験後における試験板において、JIS Z 8730に準拠する△Eが0.3以上かつ0.5未満であり、製品とした場合に問題がないレベル
B:塗膜に黄変が認められるがワレの発生がなく、初期と試験後における試験板において、JIS Z 8730に準拠する色差△Eが0.5以上かつ0.8未満である
C:塗膜の黄変が認められ、初期と試験後における試験板において、JIS Z 8730に準拠する色差△Eが0.8以上であるか、もしくはワレが生じているもの。
<付着性(耐候試験後)>
各塗面にJIS K 5600−5−6(1990)に準じて塗膜に2mm×2mmのゴバン目100個を作り、その面に粘着テープを貼着し、急激に剥がした後に、塗面に残ったゴバン目塗膜の数を評価した:
S:残存個数/全体個数=100個/100個で縁欠けなし
A:残存個数/全体個数=100個/100個で縁欠けあり
B:残存個数/全体個数=99個〜90個/100個
C:残存個数/全体個数=89個以下/100個。
(Note 11) Weather resistance:
Each test plate was subjected to a 2000-hour weather resistance test using a sunshine weatherometer in accordance with JIS K 5600-7-8 (1999). The appearance and adhesion of the test plate after the test was evaluated:
<Appearance (after weathering test)>
S: No abnormality is observed on the surface of the coating film, and the color difference ΔE based on JIS Z 8730 is less than 0.3 in the initial and post-test test plates. A: Slight yellowing is observed but cracking occurs. No, there is no problem when the product is a product in which ΔE conforming to JIS Z 8730 is 0.3 or more and less than 0.5 in the test plate in the initial stage and after the test. Although cracking is not observed, the color difference ΔE based on JIS Z 8730 is 0.5 or more and less than 0.8 in the test plate at the initial stage and after the test. C: Yellowing of the coating film is recognized, In the test plate at the initial stage and after the test, the color difference ΔE based on JIS Z 8730 is 0.8 or more, or cracking occurs.
<Adhesion (after weathering test)>
After making 100 2mm x 2mm gobangs on the coated surface according to JIS K 5600-5-6 (1990) on each coated surface, affixing adhesive tape to the surface and removing it rapidly, The number of remaining gobang eyes was evaluated:
S: Remaining number / total number = 100/100, no edge missing A: Remaining number / total number = 100/100, no edge missing B: Remaining number / total number = 99 to 90/100 C: Remaining number / total number = 89 or less / 100.

(注12)耐酸性:
各塗膜表面に1%硫酸水溶液を0.5mL滴下して、温度20℃、相対湿度65%の雰囲気下に24時間放置した後に、塗膜表面をガーゼで拭取り、外観を目視評価した:
S:塗膜表面の異常がまったくないもの
A:塗膜表面にわずかに跡がみられるが、水洗すると消えるもの
B:塗膜表面に変色又は少し白化が認められるもの
C:塗膜表面の変色又は白化が著しいもの。
(Note 12) Acid resistance:
0.5 mL of 1% sulfuric acid aqueous solution was dropped on the surface of each coating film and left in an atmosphere of a temperature of 20 ° C. and a relative humidity of 65% for 24 hours, and then the coating film surface was wiped with gauze and the appearance was visually evaluated:
S: No abnormalities on the coating film surface A: Slight traces on the coating film surface but disappear when washed with water B: Discoloration or slight whitening observed on the coating film surface C: Discoloration of the coating film surface Or it is markedly whitened.

(注13)耐衝撃性:
デュポン式衝撃試験機を用いて、撃心の直径1/2インチ、落錘高さ20cm、測定雰囲気20℃の条件で試験を行ない、衝撃を受けた凸凹部を目視で評価した:
S:裏表面とも異常なし
A:裏面に細かな亀裂が少しみられる
B:裏表面とも細かな亀裂が少しみられる
C:裏表面とも大きなワレがみられる。
(Note 13) Impact resistance:
Using a DuPont impact tester, the test was performed under the conditions of a diameter of 1/2 inch of hitting point, a height of falling weight of 20 cm, and a measurement atmosphere of 20 ° C., and the impacted convex and concave portions were visually evaluated:
S: No abnormality on the back surface A: Some small cracks are seen on the back surface B: Some small cracks are seen on the back surface C: Large cracks are seen on the back surface.

(注14)耐汚染性:
試験板に泥土、カーボンブラック、鉱油及びクレーの混合物からなる汚染物質をネルに付着させて各試験塗板の塗面に軽くこすりつけた。これを20℃で75%RHの恒温恒湿室中に24時間放置後、塗面を流水で洗浄し、塗膜の汚染度を塗板の明度差(ΔL)により下記の基準により評価した。ΔL値が小さいほど耐汚染性は良好である。ΔLは以下の式により算出した:
ΔL=(耐汚染性試験前のL値)−(耐汚染性試験後のL値)
L値の測定はコニカミノルタ製CR400(商品名、三刺激値直読式色彩計 D65光源 2°視野 拡散照明垂直受光(d/0))を用いて行なった。なお、上記L値はCIE 1976 L表色系に基づく値である:
Sは、ΔL<0.2、
Aは、0.2≦ΔL<1、
Bは、1≦ΔL<2、
Cは、2≦ΔL。
(Note 14) Contamination resistance:
A pollutant composed of a mixture of mud, carbon black, mineral oil and clay was adhered to the test plate and rubbed lightly on the coating surface of each test coating plate. This was left for 24 hours in a constant temperature and humidity chamber at 20 ° C. and 75% RH, and then the coated surface was washed with running water, and the degree of contamination of the coated film was evaluated according to the following criteria based on the lightness difference (ΔL) of the coated plate. The smaller the ΔL value, the better the stain resistance. ΔL was calculated by the following formula:
ΔL = (L value before stain resistance test) − (L value after stain resistance test)
The L value was measured using CR400 manufactured by Konica Minolta (trade name, tristimulus value direct-reading color meter D65 light source 2 ° field of view, diffuse illumination vertical light reception (d / 0)). The L value is a value based on the CIE 1976 L * a * b * color system:
S is ΔL <0.2,
A is 0.2 ≦ ΔL <1,
B is 1 ≦ ΔL <2,
C is 2 ≦ ΔL.

(注15)貯蔵安定性:
塗料組成物を40℃の恒温室に1ヶ月密閉貯蔵した後、塗装し各試験板の上記方法で仕上り性を評価した。初期と比較して仕上り性が良好なものを〇とした。
(Note 15) Storage stability:
The coating composition was hermetically stored in a constant temperature room at 40 ° C. for 1 month, and then painted and evaluated for finish by the above method for each test plate. Those with good finish compared to the initial stage were marked with “〇”.

(注16)加熱工程回数:
水性プライマー塗料のプレヒート、ベース塗料組成物のプレヒート、クリヤ塗料組成物のプレヒート及び加熱乾燥において、加熱回数合計を省エネルギー性の目安とした。
(Note 16) Number of heating steps:
In the preheating of the water-based primer coating, the preheating of the base coating composition, the preheating of the clear coating composition, and heat drying, the total number of heating was used as a measure of energy saving.

(注17)総合評価:
本発明が属する自動車車体の塗装に関する技術分野においては、耐溶剤性、付着性、仕上り性、耐擦り傷性、耐候性、耐酸性、耐衝撃性、耐汚染性及び貯蔵安定性の全ての性能が優れていることが重要である。従って、下記の基準にて、各塗料の総合評価を行った:
S:耐溶剤性、付着性、仕上り性(目視)、仕上り性(光沢)、耐擦り傷性、耐候性(外観)、耐候性(付着性)、耐酸性及び耐汚染性の全てがSである;
A:上記項目の全てがS又はAであり、かつ少なくとも1つがAである;
B:上記項目の全てがS、A又はBであり、かつ少なくとも1つがBである;
C:上記項目の全てがS、A、B又はCであり、かつ少なくとも1つがCである。
(Note 17) Overall evaluation:
In the technical field relating to the painting of automobile bodies to which the present invention belongs, all the performances of solvent resistance, adhesion, finish, scratch resistance, weather resistance, acid resistance, impact resistance, contamination resistance and storage stability are provided. It is important to be good. Therefore, a comprehensive evaluation of each paint was performed according to the following criteria:
S: Solvent resistance, adhesion, finish (visual), finish (gloss), scratch resistance, weather resistance (appearance), weather resistance (adhesion), acid resistance and stain resistance are all S ;
A: all of the above items are S or A and at least one is A;
B: all of the above items are S, A or B and at least one is B;
C: All of the above items are S, A, B or C, and at least one is C.

Claims (13)

カプロラクトン変性ヒドロキシアルキル(メタ)アクリレート(a1)とポリイソシアネート化合物(a2)とを反応させることにより得られ、かつ300〜3,800の範囲のイソシアネート当量を有するラジカル重合性不飽和基含有化合物(A)、非水分散型樹脂(B)及び光重合開始剤(C)を含有することを特徴とする塗料組成物。 Radical polymerizable unsaturated group-containing compound (A) obtained by reacting caprolactone-modified hydroxyalkyl (meth) acrylate (a1) with polyisocyanate compound (a2) and having an isocyanate equivalent weight in the range of 300 to 3,800 ), A non-aqueous dispersion resin (B) and a photopolymerization initiator (C). 非水分散型樹脂(B)が、高分子重合体よりなる分散安定剤を存在させ、該分散安定剤及び重合性不飽和単量体(b1)は溶解するが、該重合性不飽和単量体から形成される重合体は実質的に溶解しない有機液体中で、該重合性不飽和単量体が重合反応することにより得られる重合体微粒子(i)の分散液であって、該分散安定剤がエポキシ基、カルボキシル基、水酸基、イソシアナト基及びアルコキシシリル基から選ばれる少なくとも1種の化学反応性基を有するものである請求項1に記載の塗料組成物。 The non-aqueous dispersion type resin (B) contains a dispersion stabilizer made of a polymer, and the dispersion stabilizer and the polymerizable unsaturated monomer (b1) dissolve, but the polymerizable unsaturated monomer. The polymer formed from the body is a dispersion of polymer fine particles (i) obtained by the polymerization reaction of the polymerizable unsaturated monomer in an organic liquid that does not substantially dissolve, The coating composition according to claim 1, wherein the agent has at least one chemically reactive group selected from an epoxy group, a carboxyl group, a hydroxyl group, an isocyanato group, and an alkoxysilyl group. 非水分散型樹脂(B)が重合性不飽和基を有している請求項1に記載の塗料組成物。 The coating composition according to claim 1, wherein the non-aqueous dispersion resin (B) has a polymerizable unsaturated group. 非水分散型樹脂(B)の重合性不飽和基当量が660〜10,000である請求項1に記載の塗料組成物。 The coating composition according to claim 1, wherein the non-aqueous dispersion resin (B) has a polymerizable unsaturated group equivalent of 660 to 10,000. 上記非水分散型樹脂(B)の分散安定剤部分の化学反応性基と反応しうる相補的化学反応性基を有する重合性不飽和化合物(b2)を反応させて、該非水分散型樹脂(B)における重合体微粒子(i)の分散安定剤部分に重合性不飽和基を導入してなることを特徴とする請求項1に記載の塗料組成物。 The non-aqueous dispersion resin (B2) is reacted with a polymerizable unsaturated compound (b2) having a complementary chemically reactive group capable of reacting with the chemically reactive group of the dispersion stabilizer portion of the non-aqueous dispersion resin (B). The coating composition according to claim 1, wherein a polymerizable unsaturated group is introduced into the dispersion stabilizer portion of the polymer fine particles (i) in B). 非水分散型樹脂(B)における重合微粒子の平均粒子径が、50〜500nmである請求項1に記載の塗料組成物。 The coating composition according to claim 1, wherein the average particle size of the polymer particles in the non-aqueous dispersion resin (B) is 50 to 500 nm. 塗料組成物の総固形分100質量部に対して非水分散型樹脂(B)を固形分で1〜50質量部含有する請求項1に記載の塗料組成物。 The coating composition of Claim 1 which contains 1-50 mass parts of non-aqueous dispersion-type resin (B) by solid content with respect to 100 mass parts of total solid content of a coating composition. さらに、前記化合物(A)以外のイソシアネート化合物(D)を含有する請求項1に記載の塗料組成物。 Furthermore, the coating composition of Claim 1 containing isocyanate compounds (D) other than the said compound (A). さらに、水酸基含有樹脂(E)を含有する請求項1に記載の塗料組成物。 Furthermore, the coating composition of Claim 1 containing hydroxyl-containing resin (E). 水酸基含有樹脂(E)のガラス転移点温度が0℃以上である請求項9に記載の塗料組成物。 The coating composition according to claim 9, wherein the glass transition temperature of the hydroxyl group-containing resin (E) is 0 ° C. or higher. さらに、前記化合物(A)以外のラジカル重合性不飽和基含有化合物(F)を含有する請求項1に記載の塗料組成物。 Furthermore, the coating composition of Claim 1 containing radically polymerizable unsaturated group containing compound (F) other than the said compound (A). 被塗物上に、活性水素基を含有する樹脂及び着色顔料を含有するベース塗料組成物を塗装してベース塗膜を形成する工程、
次いで請求項1に記載の塗料組成物を塗装してクリヤ塗膜を形成する工程、ならびに活性エネルギー線の照射及び加熱を行なう工程、を含む複層塗膜形成方法。
Applying a base coating composition containing a resin containing an active hydrogen group and a color pigment on an object to be coated to form a base coating film;
Next, a method for forming a multilayer coating film, comprising: a step of coating the coating composition according to claim 1 to form a clear coating film; and a step of irradiation and heating with active energy rays.
請求項12に記載の塗膜形成方法によって得られた塗装物品。 The coated article obtained by the coating-film formation method of Claim 12.
JP2012541885A 2010-11-05 2011-11-01 Coating composition and coating film forming method Expired - Fee Related JP5762435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012541885A JP5762435B2 (en) 2010-11-05 2011-11-01 Coating composition and coating film forming method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010248371 2010-11-05
JP2010248371 2010-11-05
JP2012541885A JP5762435B2 (en) 2010-11-05 2011-11-01 Coating composition and coating film forming method
PCT/JP2011/075221 WO2012060390A1 (en) 2010-11-05 2011-11-01 Coating composition and method for forming coating film

Publications (2)

Publication Number Publication Date
JPWO2012060390A1 true JPWO2012060390A1 (en) 2014-05-12
JP5762435B2 JP5762435B2 (en) 2015-08-12

Family

ID=46024503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012541885A Expired - Fee Related JP5762435B2 (en) 2010-11-05 2011-11-01 Coating composition and coating film forming method

Country Status (2)

Country Link
JP (1) JP5762435B2 (en)
WO (1) WO2012060390A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6188216B2 (en) * 2013-11-29 2017-08-30 関西ペイント株式会社 Coating composition and coated article
JP2015199908A (en) * 2014-03-31 2015-11-12 日本合成化学工業株式会社 Urethane (meth)acrylate-based compound, active energy ray-curable resin composition, and coating agent
CN106164121B (en) * 2014-03-31 2019-12-20 三菱化学株式会社 Urethane (meth) acrylate compound, active energy ray-curable resin composition, and coating agent
WO2015152110A1 (en) * 2014-03-31 2015-10-08 日本合成化学工業株式会社 Urethane (meth)acrylate compound, active-energy-ray-curable resin composition, and coating agent
JP6323952B2 (en) * 2014-08-25 2018-05-16 関西ペイント株式会社 Substrate film formation method
JP6564653B2 (en) * 2015-09-04 2019-08-21 日本ペイントホールディングス株式会社 Low temperature curable coating composition
KR102350403B1 (en) * 2017-03-31 2022-01-11 나가세 테크노 엔지니어링 가부시키가이샤 Method for producing particle film, and liquid for electrostatic spray
WO2021211662A1 (en) 2020-04-15 2021-10-21 Sun Chemical Corporation Method of improving actinic cure of energy curable inks and coatings

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067515A (en) * 1983-09-22 1985-04-17 Kansai Paint Co Ltd Topcoating compound composition
JPS63118317A (en) * 1987-05-27 1988-05-23 Daicel Chem Ind Ltd Curing of polymerized composition
JP2923125B2 (en) * 1992-05-26 1999-07-26 関西ペイント株式会社 Paint composition
JPH0770513A (en) * 1993-08-02 1995-03-14 Kansai Paint Co Ltd Topcoating composition
JP4443276B2 (en) * 2003-03-28 2010-03-31 関西ペイント株式会社 Coating method
JP2008208205A (en) * 2007-02-26 2008-09-11 Mitsubishi Rayon Co Ltd Coating composition, coated article and automobile exterior plate
JP5682214B2 (en) * 2010-10-06 2015-03-11 横浜ゴム株式会社 UV curable resin composition

Also Published As

Publication number Publication date
JP5762435B2 (en) 2015-08-12
WO2012060390A1 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
JP5622748B2 (en) Coating composition, coated article, and multilayer coating film forming method
JP5762435B2 (en) Coating composition and coating film forming method
JP6180497B2 (en) Copolymer, aqueous coating composition containing the copolymer, and method for forming a multilayer coating film
JP5583031B2 (en) Multi-layer coating formation method
JP6523969B2 (en) Water-based paint composition
JP5877829B2 (en) Multi-layer coating formation method
JP5875184B2 (en) Coating composition and coating film forming method
JP5677462B2 (en) Coating method
WO2010119969A1 (en) Base coat paint composition
JP5408888B2 (en) Water-dispersed resin, two-component thermosetting resin composition, and production method thereof
WO2012160891A1 (en) Coating composition and method for forming coating film
US20200061668A1 (en) Method for forming multilayer coating film
JPWO2011099639A1 (en) Water-based coloring paint composition
JP2008208205A (en) Coating composition, coated article and automobile exterior plate
JP5748209B2 (en) Coating composition and coated article
JP5622277B2 (en) MULTILAYER COATING FORMATION METHOD AND COATED ARTICLE
JP5603177B2 (en) Copolymer, aqueous coating composition containing the copolymer, and method for forming a multilayer coating film
JP2018001087A (en) Hydrophilic coating film forming method
JP2017113689A (en) Hydrophilic film formation method on base material
JP6076441B2 (en) Copolymer, aqueous coating composition containing the copolymer, and method for forming a multilayer coating film
WO2011132447A1 (en) Coating material composition and method for forming coating film
JP2012057013A (en) Resin composition, aqueous coating material composition containing the resin composition and method for forming multilayer coating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150609

R150 Certificate of patent or registration of utility model

Ref document number: 5762435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees