JPWO2012036181A1 - Molded packaging material - Google Patents

Molded packaging material Download PDF

Info

Publication number
JPWO2012036181A1
JPWO2012036181A1 JP2012534026A JP2012534026A JPWO2012036181A1 JP WO2012036181 A1 JPWO2012036181 A1 JP WO2012036181A1 JP 2012534026 A JP2012534026 A JP 2012534026A JP 2012534026 A JP2012534026 A JP 2012534026A JP WO2012036181 A1 JPWO2012036181 A1 JP WO2012036181A1
Authority
JP
Japan
Prior art keywords
aluminum alloy
mass
molded
alloy foil
packaging material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012534026A
Other languages
Japanese (ja)
Other versions
JP5841537B2 (en
Inventor
雅和 石
雅和 石
鈴木 覚
覚 鈴木
山本 兼滋
兼滋 山本
智彦 古谷
智彦 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Foil Manufacturing Co Ltd
Furukawa Sky Aluminum Corp
Original Assignee
Nippon Foil Manufacturing Co Ltd
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Foil Manufacturing Co Ltd, Furukawa Sky Aluminum Corp filed Critical Nippon Foil Manufacturing Co Ltd
Priority to JP2012534026A priority Critical patent/JP5841537B2/en
Publication of JPWO2012036181A1 publication Critical patent/JPWO2012036181A1/en
Application granted granted Critical
Publication of JP5841537B2 publication Critical patent/JP5841537B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

良好な成形性を有したアルミニウム合金成形包装体材料を提供するFe:0.8〜1.7mass%、Si:0.05〜0.20mass%、Cu:0.0025〜0.0200mass%を含有し、残部がAl及び不可避的不純物からなり、平均結晶粒径が20μm以下であり、圧延方向に対する0度、45度、90度における0.2%耐力の平均値YSと最大引張強さの平均値TSがYS/TS≦0.60を満たすアルミニウム合金箔8を備える成形包装体材料1を提供する。Fe: 0.8 to 1.7 mass%, Si: 0.05 to 0.20 mass%, Cu: 0.0025 to 0.0200 mass%, which provides aluminum alloy molded packaging material having good formability The balance is made of Al and inevitable impurities, the average crystal grain size is 20 μm or less, the average value YS of 0.2% proof stress and the average of the maximum tensile strength at 0 °, 45 °, and 90 ° with respect to the rolling direction. Provided is a molded package material 1 including an aluminum alloy foil 8 having a value TS satisfying YS / TS ≦ 0.60.

Description

本発明は、成形包装体材料、それを用いる二次電池、医薬品包装容器、及びその製造方法に関するものである。   The present invention relates to a molded packaging material, a secondary battery using the molded packaging material, a pharmaceutical packaging container, and a method for producing the same.

医薬品を包装するPTP(プレススルーパッケージ)は、容器と蓋材との組み合わせにより、包装する形態をとる場合が多い。容器側は深絞り成形が要求され、通常のストリップ包装体では、容器はプラスティックフィルム、例えば、ポリプロピレンなどの樹脂フィルムを成形したものが用いられる。保管する際に水蒸気バリヤー性が要求される内容物の錠剤等には、バリヤー性の高いアルミニウム箔と樹脂フィルムを片面もしくは両面に貼合した複合体として使用する場合も多い。   In many cases, a PTP (press-through package) for packaging pharmaceutical products takes a packaging form by a combination of a container and a lid. Deep drawing is required on the container side, and in a normal strip package, a plastic film, for example, a resin film such as polypropylene is used as the container. In the case of tablets or the like whose contents require water vapor barrier properties during storage, they are often used as composites in which an aluminum foil having a high barrier property and a resin film are bonded to one or both sides.

近年、医薬品は様々な形態や大きさのものが上市されており、これを包装する包装体もそれらの形態に合せ今までより深くしたり複雑な形状等に成形する必要性が増加している。   In recent years, various forms and sizes of pharmaceutical products have been put on the market, and the need to make the packaging for packaging these products deeper or more complicated to match these forms has increased. .

また、二次電池の外装材にも、水蒸気バリヤー性を付与させるために、アルミニウム箔の両面に樹脂フィルムを貼合した複合体の構成を持つ成形包装体材料が用いられる。   Further, a molded package material having a composite structure in which a resin film is bonded to both surfaces of an aluminum foil is also used for an exterior material of a secondary battery in order to impart water vapor barrier properties.

例えば、リチウムイオン二次電池等の二次電池(リチウムイオンキャパシタも含む、以下同じ)は、近年、移動体通信機器、ノートブック型パソコン、ヘッドフォンステレオ、カムコーダー等のエレクトロニクス機器の小型軽量化に伴い、その駆動源として重宝されている。この二次電池は、例えば、図1に示したような構成となっている。即ち、正極集電体2、正極3、隔離材(セパレーター)4、負極5、負極集電体6の順で積層された積層体(二次電池本体)を、成形包装体(外装材)1に収納している。そして、外装材1は、必要に応じて端部7において熱封緘されている。   For example, secondary batteries such as lithium ion secondary batteries (including lithium ion capacitors, the same shall apply hereinafter) have recently become smaller and lighter in electronic devices such as mobile communication devices, notebook computers, headphone stereos, and camcorders. It is useful as its driving source. For example, the secondary battery has a configuration as shown in FIG. That is, a laminated body (secondary battery body) in which the positive electrode current collector 2, the positive electrode 3, the separator (separator) 4, the negative electrode 5, and the negative electrode current collector 6 are laminated in this order is formed into a molded packaging body (exterior material) 1. It is stored in. And the exterior material 1 is heat-sealed in the edge part 7 as needed.

ここで図1の成形包装体1は、一般的に、図2に示すように、外装材本体8の片面には熱封緘層9が積層貼合され、他面には合成樹脂製フィルム10が積層貼合された態様となっている。成形包装体1は、図1に示すように、正極集電体2等を内部に収納するために、その収納部である中央部が凹部となり、凹部周辺が平坦部となるように成形されている。   Here, as shown in FIG. 2, the molded packaging body 1 of FIG. 1 is generally laminated with a heat sealing layer 9 on one side of the exterior material body 8 and a synthetic resin film 10 on the other side. It is an aspect that is laminated. As shown in FIG. 1, the molded package 1 is molded such that the central portion, which is the storage portion, becomes a concave portion and the periphery of the concave portion becomes a flat portion in order to accommodate the positive electrode current collector 2 and the like inside. Yes.

二次電池には、長時間の使用に耐える充電容量あるいは高出力が要求されている。そのため電池の電極、集電体、セパレーターで構成される素子の構造が複雑化・多層化したものとなり、より深い凹部成形が必要になる等の苛酷な条件での成形が要求されるようになってきた。   Secondary batteries are required to have a charge capacity or high output that can withstand long-term use. Therefore, the structure of the element composed of battery electrodes, current collectors, and separators has become complicated and multi-layered, and molding under harsh conditions such as deeper recess formation is required. I came.

従来、成形包装体1や外装材本体8としては、内容物の品質に悪影響を与えないように、水分や空気等が透過しにくく、成形性に優れた金属箔、特にアルミニウム合金箔が好適に用いられている。当該アルミニウム合金箔としては、JIS1100、3003、3004、8079または8021(JIS H 4160)で規定された組成のものが用いられている。このようなアルミニウム合金箔は、引張強さに優れており、破断しにくい。   Conventionally, as the molded packaging body 1 and the exterior material body 8, a metal foil, particularly an aluminum alloy foil, which is difficult to permeate moisture, air, etc., and has excellent moldability so as not to adversely affect the quality of the contents. It is used. As the aluminum alloy foil, one having a composition defined in JIS 1100, 3003, 3004, 8079 or 8021 (JIS H 4160) is used. Such an aluminum alloy foil is excellent in tensile strength and hardly breaks.

しかしながら、上記アルミニウム合金箔は引張伸びの程度が低いものがあり、深い凹部を形成させるような苛酷な成形を行うと、亀裂やピンホールが生じるということがあった。つまり、成形包装体1や外装材本体8を得る際、アルミニウム合金箔に比較的浅い凹部の成形加工を施す場合は問題がないが、収容物の容量を増加させるためにアルミニウム合金箔を用いて包装体の中央部に深い凹部を成形すると、凹部と平坦部との境界部で亀裂等が生じやすくなり、水分や空気等が透過しやすく、内容物の品質に悪影響を与えるという欠点があった。特に、二次電池外装材用途として使用する場合では、水分や空気が透過すると、電池内部の電解液との反応で弗化水素酸が生成され、電池内部が腐食され易い環境となってしまう。   However, some of the above aluminum alloy foils have a low tensile elongation, and cracks and pinholes may occur when severe molding is performed to form deep recesses. That is, when obtaining the molded packaging body 1 and the exterior material main body 8, there is no problem when the aluminum alloy foil is formed into a relatively shallow recess, but the aluminum alloy foil is used to increase the capacity of the contents. If a deep recess is formed in the center of the package, cracks and the like are likely to occur at the boundary between the recess and the flat part, moisture and air are easily transmitted, and the quality of the contents is adversely affected. . In particular, when used as a secondary battery exterior material, when moisture or air permeates, hydrofluoric acid is generated by reaction with the electrolyte inside the battery, and the inside of the battery is easily corroded.

従来、外装材本体として、厚さが20〜60μmで、圧延方向に対する0度、45度、90度方向の伸びが全て11%以上であるアルミニウム箔が提案されている(特許文献1)。また、同じく外装材本体として、特定量のFeやSiをAlに添加すると、引張伸び及び引張強さの両方が向上し、二次電池の外装材本体として適したアルミニウム合金箔が得られることが提案されている(特許文献2)。   Conventionally, an aluminum foil having a thickness of 20 to 60 μm and an elongation of 0%, 45 degrees, and 90 degrees in the rolling direction of 11% or more has been proposed as an exterior material body (Patent Document 1). Similarly, when a specific amount of Fe or Si is added to Al as an exterior material body, both tensile elongation and tensile strength are improved, and an aluminum alloy foil suitable as an exterior material body for a secondary battery can be obtained. It has been proposed (Patent Document 2).

特開2005−163077号公報JP 2005-163077 A 特開2001−176459号公報Japanese Patent Laid-Open No. 2001-176659

しかしながら、上記文献記載の従来技術は、以下の点で改善の余地を有していた。   However, the prior art described in the above literature has room for improvement in the following points.

第一に、特許文献1及び特許文献2のアルミニウム合金箔の伸び値では、電池用外装材としては、未だ不十分であった。   First, the elongation values of the aluminum alloy foils of Patent Document 1 and Patent Document 2 are still insufficient as battery exterior materials.

第二に、上記用途の他に自動車や電動工具に使用される二次電池の分野では、高出力を狙うため、より深い絞り成形性あるいは張り出し成形性が必要で、この目的にかなうより高い引張伸びを有するアルミニウム合金箔が要求されている。   Secondly, in the field of secondary batteries used for automobiles and power tools in addition to the above applications, deeper drawability or stretch formability is required in order to aim at high output, and higher tensile strength for this purpose is required. There is a need for an aluminum alloy foil having elongation.

本発明は上記事情に鑑みてなされたものであり、優れた伸び値を有し、良好な成形性を有する成形包装体材料及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a molded package material having an excellent elongation value and good moldability, and a method for producing the same.

本発明者等は、上記事情に鑑み鋭意検討を行った結果、アルミニウム合金箔の組成と平均結晶粒径が特定の条件を満たす場合に、圧延方向に対する0度、45度、90度方向の3方向の機械的特性について、平均の引張強さと平均の0.2%耐力が特定の比率にすることにより良好な成形性を有した成形包装体材料が得られることを見出した。   As a result of intensive studies in view of the above circumstances, the present inventors have found that when the composition of the aluminum alloy foil and the average crystal grain size satisfy specific conditions, 3 degrees in the 0 degree, 45 degree, and 90 degree directions with respect to the rolling direction. Regarding the mechanical properties in the direction, it was found that a molded packaging material having good moldability can be obtained by setting the average tensile strength and the average 0.2% proof stress to a specific ratio.

また、通常アルミニウム合金箔は、鋳造、均質化処理、熱間圧延、冷間圧延という工程を順次施して製造される。そこで、本発明者等は、これらの各工程の条件について鋭意検討した結果、特定の組成のアルミニウム合金鋳塊の均質化処理時に高温での保持を行った後、さらに低温まで冷却し、冷間圧延工程の前又は途中で実施する中間焼鈍の温度条件を制御することで、良好な成形性を有した成形包装体材料が得られることを見出し、本発明に到達した。   In general, an aluminum alloy foil is manufactured by sequentially performing steps of casting, homogenization treatment, hot rolling, and cold rolling. Therefore, as a result of intensive studies on the conditions of each of these steps, the present inventors held at a high temperature during homogenization treatment of an aluminum alloy ingot having a specific composition, and then cooled to a low temperature. The inventors have found that a molded package material having good formability can be obtained by controlling the temperature conditions of the intermediate annealing performed before or during the rolling process, and have reached the present invention.

即ち、本発明によれば、Fe:0.8〜1.7mass%、Si:0.05〜0.20mass%、Cu:0.0025〜0.0200mass%を含有し、残部がAl及び不可避的不純物からなり、平均結晶粒径が20μm以下であり、圧延方向に対する0度、45度、90度における0.2%耐力の平均値YSと最大引張強さの平均値TSがYS/TS≦0.60を満たすアルミニウム合金箔を備える成形包装体材料が提供される。   That is, according to the present invention, Fe: 0.8 to 1.7 mass%, Si: 0.05 to 0.20 mass%, Cu: 0.0025 to 0.0200 mass%, the balance being Al and inevitable It consists of impurities, the average crystal grain size is 20 μm or less, the average value YS of 0.2% proof stress and the average value TS of the maximum tensile strength at 0 °, 45 ° and 90 ° with respect to the rolling direction are YS / TS ≦ 0 A molded packaging material comprising an aluminum alloy foil satisfying .60 is provided.

この成形包装体材料によれば、アルミニウム合金箔の組成と平均結晶粒径が特定の条件を満たし、アルミニウム合金箔の3方向の平均の引張強さと平均の0.2%耐力が特定の比率を有するので、良好な成形性を有した成形包装体材料が得られる。特に、上記アルミニウム合金箔は、更に、圧延方向に対する0度、45度、90度方向における伸びの平均値が20.0%以上であることが好ましい。このような規定により、本発明の成形包装体材料は、特に苛酷な条件での深絞り成形が可能となり、二次電池等の多層に積層された部品等の比較的厚い内容物を収容することができるので、様々な用途の成形包装材料として好適に利用できる。また、上記特定の条件に規定されているので深絞り成形時に不均一な変形が起こり難く、成形体のコーナー部での割れも抑制できる上、外部からの水分や空気が成形包装体材料内に侵入することがないので、成形包装体材料内の内容物の劣化を確実に防止できる。   According to this molded packaging material, the composition and average crystal grain size of the aluminum alloy foil satisfy specific conditions, and the average tensile strength in three directions and the average 0.2% proof stress of the aluminum alloy foil have a specific ratio. Therefore, a molded package material having good moldability can be obtained. In particular, the aluminum alloy foil preferably further has an average value of elongation of 20.0% or more in the 0 degree, 45 degree, and 90 degree directions with respect to the rolling direction. By such a regulation, the molded packaging material of the present invention can be deep-drawn under particularly severe conditions, and accommodates relatively thick contents such as components laminated in multiple layers such as a secondary battery. Therefore, it can be suitably used as a molding packaging material for various uses. In addition, because it is specified in the above specific conditions, non-uniform deformation is unlikely to occur during deep drawing, cracks at the corners of the molded body can be suppressed, and moisture and air from the outside are contained in the molded packaging material. Since it does not invade, the deterioration of the contents in the molded packaging material can be reliably prevented.

また、本発明によれば、上記の成形包装体材料を用いる二次電池が提供される。   Moreover, according to this invention, the secondary battery using said shaping | molding package body material is provided.

この二次電池によれば、上記の良好な成形性を有した成形包装体材料を用いるため、深絞り成形が可能となり、厚さの比較的厚く二次電池用外装材を具備するので、長時間の使用に耐える充電容量及び高出力性能を有する優れた二次電池を得ることができる。また、この二次電池によれば、本発明の成形包装体材料を用いているので、深絞り成形時に不均一な変形が起こり難く、成形体のコーナー部で亀裂やピンホールが発生せず、外部からの水分や空気が成形包装体内に侵入しにくい外装材を有するので、電池内部の電解液との反応で弗化水素酸が生成されて電池内部が腐食されることを抑制でき、電池性能の安定性にも優れたものである。   According to this secondary battery, since the molded packaging material having the above-mentioned good moldability is used, deep drawing can be performed, and the outer battery is provided with a relatively thick secondary battery. It is possible to obtain an excellent secondary battery having a charging capacity that can withstand the use of time and a high output performance. Further, according to this secondary battery, since the molded packaging material of the present invention is used, non-uniform deformation hardly occurs at the time of deep drawing, cracks and pinholes do not occur at the corner of the molded body, Since it has an exterior material that makes it difficult for moisture and air from the outside to enter the molded package, it can prevent the hydrofluoric acid from being generated by the reaction with the electrolyte inside the battery and corroding the inside of the battery. It is also excellent in stability.

また、本発明によれば、上記の成形包装体材料を用いる医薬品包装容器が提供される。   Moreover, according to this invention, the pharmaceutical packaging container using said shaping | molding package material is provided.

この医薬品包装容器によれば、上記の良好な成形性を有した成形包装体材料を用いるため、深絞り成形が可能となり、より深く成形された医薬品包装容器を得ることができる。また、この医薬品包装容器によれば、アルミニウム合金箔の平均粒径が小さいので、深絞り成形時に不均一な変形が起こり難く、成形体のコーナー部での割れも少ないため、外部からの水蒸気が成形包装体材料内に侵入しにくくなり、保管する際に水蒸気バリヤー性が要求される内容物の錠剤等を好適に包装することができる。従って、本発明の医薬品包装容器を医薬品のPTPとして使用すれば、医薬品を長期にわたり安定して保持することができる。   According to this pharmaceutical packaging container, since the molded packaging material having the above-mentioned good moldability is used, deep drawing can be performed, and a pharmaceutical packaging container molded more deeply can be obtained. Further, according to this pharmaceutical packaging container, since the average particle diameter of the aluminum alloy foil is small, non-uniform deformation hardly occurs at the time of deep drawing molding, and there are few cracks at the corner of the molded body, so that water vapor from the outside is not generated. It is difficult to penetrate into the molded packaging material, and it is possible to suitably package tablets or the like whose contents require water vapor barrier properties when stored. Therefore, if the pharmaceutical packaging container of the present invention is used as a PTP for pharmaceuticals, the pharmaceuticals can be stably held over a long period of time.

また、本発明によれば、上記の成形包装体材料の方法であって、Fe:0.8〜1.7mass%、Si:0.05〜0.20mass%、Cu:0.0025〜0.0200mass%を含有し、残部がAl及び不可避的不純物から成るアルミニウム合金鋳塊を、550℃以上610℃以下で3時間以上の均質化保持する工程と、該均質化保持後に400℃以上450℃以下まで冷却する工程と、熱間圧延および冷間圧延を施す工程と、該冷間圧延の前あるいは途中で、300℃以上450℃以下で1時間以上保持する中間焼鈍を施す工程と、該冷間圧延後に最終焼鈍を施して上記のアルミニウム合金箔を得る工程と、を含む、方法が提供される。   Moreover, according to this invention, it is the method of said shaping | molding package material, Comprising: Fe: 0.8-1.7mass%, Si: 0.05-0.20mass%, Cu: 0.0025-0. A step of homogenizing and holding an aluminum alloy ingot containing 0200 mass%, the balance being Al and inevitable impurities at 550 ° C. or more and 610 ° C. or less for 3 hours or more, and 400 to 450 ° C. or less after the homogenization holding A step of cooling to a temperature, a step of performing hot rolling and cold rolling, a step of performing an intermediate annealing to be held at 300 ° C. or higher and 450 ° C. or lower for 1 hour or longer before or during the cold rolling, and the cold And subjecting to a final annealing after rolling to obtain the above aluminum alloy foil.

この方法によれば、特定の組成のアルミニウム合金鋳塊の均質化処理時に高温での保持を行った後、冷却してから熱間圧延を行い、冷間圧延工程の途中で実施する中間焼鈍の温度条件を制御することで、平均結晶粒径が特定の条件を満たす成形包装体材料を得ることができ、上述した3方向の平均の引張強さと平均の0.2%耐力が特定の比率になり、優れた伸び値を有し、良好な成形性を有する成形包装体材料が得られる。特に、所定の3方向の平均伸びが高い値を有するため優れた伸び値を有し、良好な成形性を有する成形包装体材料を確実に得ることができる。そのため、この方法で得られる成形包装体材料は、特に苛酷な条件での深絞り成形が可能となり、内容物の収容量を増加させることができ、比較的厚い内容物を包装することができるので、様々な用途の成形包装材料として好適に利用できる。また、この方法で得られる成形包装体材料は、深絞り成形時に不均一な変形が起こり難く、成形体のコーナー部での割れも少なく、外部からの水分や空気が成形包装体材料内に侵入することがないので、成形包装体に収容する二次電池用部品や医薬品等の内容物の劣化を防止できる。   According to this method, after holding at a high temperature during homogenization treatment of an aluminum alloy ingot of a specific composition, it is cooled and then hot-rolled, and the intermediate annealing performed in the middle of the cold-rolling process By controlling the temperature condition, it is possible to obtain a molded packaging material whose average crystal grain size satisfies a specific condition, and the above-described average tensile strength in three directions and average 0.2% proof stress are in a specific ratio. Thus, a molded package material having an excellent elongation value and good moldability can be obtained. In particular, since the average elongation in three predetermined directions has a high value, a molded package material having an excellent elongation value and good moldability can be obtained with certainty. Therefore, the molded packaging material obtained by this method can be deep-drawn under particularly severe conditions, can increase the content capacity, and can wrap relatively thick contents. It can be suitably used as a molding packaging material for various uses. In addition, the molded packaging material obtained by this method is less susceptible to non-uniform deformation during deep drawing molding, and there are few cracks at the corners of the molded product, and moisture and air from the outside penetrate into the molded packaging material. Therefore, it is possible to prevent deterioration of contents such as secondary battery parts and medicines contained in the molded package.

本発明によれば、アルミニウム合金箔の組成と平均結晶粒径が特定の条件を満たすため、優れた伸び値を有し、良好な成形性を有した成形包装体材料、二次電池又は医薬品包装容器が得られる。また、本発明によれば、特定の組成のアルミニウム合金鋳塊を特定の工程で処理するため、優れた伸び値を有し、良好な成形性を有した成形包装体材料が効率よく得られる。   According to the present invention, since the composition and average crystal grain size of the aluminum alloy foil satisfy specific conditions, the molded packaging material, secondary battery, or pharmaceutical packaging having an excellent elongation value and good moldability A container is obtained. Moreover, according to this invention, since the aluminum alloy ingot of a specific composition is processed by a specific process, the molded package material which has the outstanding elongation value and favorable moldability is obtained efficiently.

シート状で薄型のポリマーリチウムイオン二次電池の内部構造の一例を示した模式的断面図である。It is typical sectional drawing which showed an example of the internal structure of a sheet-like thin polymer lithium ion secondary battery. 二次電池の外装材の一般例を示した模式的断面図である。It is typical sectional drawing which showed the general example of the exterior material of a secondary battery.

以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、本発明の実施の形態において、「A〜B」とは、A以上B以下を意味するものとする。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate. Further, in the embodiment of the present invention, “A to B” means A or more and B or less.

<アルミニウム合金箔>
(1)アルミニウム合金箔の組成および平均結晶粒径
本実施形態に係る成形包装体材料は、Fe、Si、Cuを特定の組成で含有し、残部がAl及び不可避的不純物からなり、平均結晶粒径が20μm以下であるアルミニウム合金箔を備える。
<Aluminum alloy foil>
(1) Composition and average crystal grain size of aluminum alloy foil The molded package material according to the present embodiment contains Fe, Si, Cu in a specific composition, the balance is made of Al and inevitable impurities, and the average crystal grain An aluminum alloy foil having a diameter of 20 μm or less is provided.

ここで、上記のアルミニウム合金箔に含まれるFeの含有量は、0.8〜1.7mass%である。Feが0.8mass%未満になると、引張強さ及び伸びの両方が低下し、成形性が低下する。また、Feが1.7mass%を超えると引張強さと耐力が共に増加し、上記圧延方向に対する0度、45度、90度方向の引張強さTSと耐力YSの平均値との比、YS/TSの値が0.60を超えるために成形性が低下する。特に1.0mass%以上、1.6mass%以下が強度と伸びのバランスの観点からより好ましい。   Here, content of Fe contained in said aluminum alloy foil is 0.8-1.7 mass%. When Fe is less than 0.8 mass%, both the tensile strength and the elongation are lowered, and the moldability is lowered. Further, when Fe exceeds 1.7 mass%, both the tensile strength and the proof stress increase, and the ratio between the tensile strength TS and the average value of the proof strength YS in the 0 degree, 45 degree, and 90 degree directions with respect to the rolling direction, YS / Since the value of TS exceeds 0.60, the moldability is lowered. In particular, 1.0 mass% or more and 1.6 mass% or less are more preferable from the viewpoint of the balance between strength and elongation.

また、上記のアルミニウム合金箔に含まれるSiの含有量は、0.05〜0.20mass%である。Siが0.05mass%未満になると、引張強さ及び伸びの両方が低下するため、好ましくない。一方、Siが0.20mass%を超えると、引張強さは大きくなるが伸びが低下し、成形性が低下する。また、結晶粒径が大きくなるために、成形時の均一な変形が起こりにくくなる。これらの数値の中でも、特に0.06mass%以上、0.10mass%以下が強度と結晶粒径の観点から好ましい。   Moreover, content of Si contained in said aluminum alloy foil is 0.05-0.20 mass%. If Si is less than 0.05 mass%, both the tensile strength and the elongation decrease, which is not preferable. On the other hand, when Si exceeds 0.20 mass%, the tensile strength increases, but the elongation decreases and the formability decreases. In addition, since the crystal grain size becomes large, uniform deformation during molding hardly occurs. Among these numerical values, 0.06 mass% or more and 0.10 mass% or less are particularly preferable from the viewpoint of strength and crystal grain size.

また、上記のアルミニウム合金箔に含まれるCuの含有量は、0.0025〜0.0200mass%である。Cuが0.0025mass%以下であると、固溶量が少ないために、伸びが低下し、成形性が低下する。また、Cuが0.0200mass%を超えると、圧延時の硬化が大きく、圧延中の切れが生じ易くなる。これらの数値の中でも、特に0.0050mass%以上、0.0100mass%以下が圧延性と成形性の観点から好ましい。   Moreover, content of Cu contained in said aluminum alloy foil is 0.0025-0.0200 mass%. If the Cu content is 0.0025 mass% or less, the amount of solid solution is small, so the elongation is lowered and the formability is lowered. Moreover, when Cu exceeds 0.0200 mass%, hardening at the time of rolling will be large and it will become easy to produce the cut | disconnection during rolling. Among these numerical values, 0.0050 mass% or more and 0.0100 mass% or less are particularly preferable from the viewpoints of rollability and formability.

また、上記のアルミニウム合金箔に含まれる不可避的不純物は、個々に0.05mass%以下、合計で0.15mass%以下である。あるいは、特に、Mn、Mg、Zn等などの不可避的不純物が、個々に0.05mass%、及び合計で0.15mass%を超えると、圧延時の硬化が大きく、圧延中の切れが生じ易くなる。   Moreover, the inevitable impurities contained in the aluminum alloy foil are individually 0.05 mass% or less, and the total is 0.15 mass% or less. Alternatively, in particular, if inevitable impurities such as Mn, Mg, Zn, etc. individually exceed 0.05 mass% and the total amount is 0.15 mass%, the curing during rolling is large, and breakage during rolling tends to occur. .

また、上記のアルミニウム合金箔最終焼鈍後の平均結晶粒径は、20μm以下であることが好ましい。平均結晶粒径は、好ましくは18μm以下、特に15μm以下であることが成形時の不均一な変形を防止する観点から好ましい。なお、下限としては5μm以上であることが箔圧延方向に対する0度、45度、90度方向の引張強さTSと耐力YSの平均値が、YS/TS≦0.60を満たす観点から推奨される。この平均結晶粒径が大きくなり過ぎると断面方向に占める結晶粒の個数が少なすぎ、変形の局在化が発生するために、伸び値が低下し、成形性が低下する。また、表面が肌荒れするため、樹脂フィルムとの密着性が低下する。   Moreover, it is preferable that the average crystal grain diameter after final annealing of said aluminum alloy foil is 20 micrometers or less. The average crystal grain size is preferably 18 μm or less, and particularly preferably 15 μm or less from the viewpoint of preventing uneven deformation during molding. In addition, as a lower limit, it is recommended that the average value of the tensile strength TS and the proof stress YS in the 0 degree, 45 degree, and 90 degree directions with respect to the foil rolling direction is 5 μm or more from the viewpoint of satisfying YS / TS ≦ 0.60. The When this average crystal grain size becomes too large, the number of crystal grains occupying in the cross-sectional direction is too small and localization of deformation occurs, resulting in a decrease in elongation value and a decrease in moldability. Moreover, since the surface roughens, adhesiveness with a resin film falls.

なお、本発明において平均結晶粒径は以下のように測定することができる。即ち、まず、アルミニウム合金箔を、5℃以下の20容量%過塩素酸+80容量%エタノール混合溶液を用い、電圧20Vで電解研磨を施し、水洗、乾燥後、25℃以下の50容量%燐酸+47容量%メタノール+3容量%弗化水素酸の混合溶液中で、電圧20Vで陽極酸化皮膜を形成させた後、光学顕微鏡で偏光をかけて、結晶粒を観察し、写真を撮影する。次いで撮影された写真から、切断法にて、平均粒径を測定する。切断法は、所定の線分内に何個結晶粒があるかを数え、線分をその個数で除した大きさを使用する方法である。   In the present invention, the average crystal grain size can be measured as follows. That is, first, an aluminum alloy foil was subjected to electropolishing at a voltage of 20 V using a 20 volume% perchloric acid + 80 volume% ethanol mixed solution at 5 ° C. or less, washed with water, dried, and then 50 volume% phosphoric acid at 25 ° C. or less + 47 An anodic oxide film is formed at a voltage of 20 V in a mixed solution of volume% methanol + 3 volume% hydrofluoric acid, and then polarized with an optical microscope to observe crystal grains and take a photograph. Next, from the photograph taken, the average particle diameter is measured by a cutting method. The cutting method is a method of counting the number of crystal grains in a predetermined line segment and using a size obtained by dividing the line segment by the number.

(2)アルミニウム合金箔の物性
本実施形態の成形包装体材料に用いられるアルミニウム合金箔は、上述したように、アルミニウム合金箔の組成と結晶粒径が特定の条件を満たすため、アルミニウム合金の箔圧延方向に対する0度、45度、90度方向の引張強さTSと耐力YSの平均値が、YS/TS≦0.60を満たすことが好ましい。上記YS/TSの値が0.60を超えると、成形包装体材料を二次電池用外装材のように、板厚が薄い合金箔による包装体とするには、結晶粒を微細化することで、引張強さ、耐力は大きく増加するものの、加工硬化性の増加が少なく、伸び値は低下し、成形性が低下する場合がある。上記YS/TSの値は好ましくは、0.20以上、0.55以下が成形性向上の観点から推奨される。
(2) Physical Properties of Aluminum Alloy Foil As described above, the aluminum alloy foil used in the molded packaging material of the present embodiment has a composition and a crystal grain size that satisfy specific conditions. It is preferable that the average value of the tensile strength TS and the proof stress YS in the 0 degree, 45 degree, and 90 degree directions with respect to the rolling direction satisfy YS / TS ≦ 0.60. If the value of YS / TS exceeds 0.60, the crystal grains must be refined in order to make the molded package material into a package made of an alloy foil having a thin plate thickness, such as a secondary battery exterior material. However, although tensile strength and proof stress are greatly increased, there is little increase in work-curing property, elongation value is decreased, and moldability may be decreased. The value of YS / TS is preferably 0.20 or more and 0.55 or less from the viewpoint of improving moldability.

本実施形態の成形包装体材料に用いられるアルミニウム合金箔は、上述したように、アルミニウム合金箔の組成と結晶粒径が特定の条件を満たすため、圧延方向に対する0度、45度、90度方向の伸びは、平均で20.0%以上となることが好ましい。特に、本二次電池用外装材又は医薬品包装容器のように、包装体の収容量を高めるために深い凹部を形成させるような成形を行うには、上記の3方向の平均伸びについて、20.0%以上、特に25%以上となることが好ましい。20%未満であると、凹部と平坦部との境界部での割れが発生し易くなる。なお、上限としては特に制限はない。   As described above, the aluminum alloy foil used for the molded packaging material of the present embodiment satisfies the specific conditions for the composition and crystal grain size of the aluminum alloy foil, and therefore, the 0 degree, 45 degree, and 90 degree directions with respect to the rolling direction. The average elongation is preferably 20.0% or more. In particular, in order to perform molding so as to form deep recesses in order to increase the capacity of the package, such as the outer packaging material for a secondary battery or a pharmaceutical packaging container, the average elongation in the above three directions is 20. It is preferably 0% or more, particularly 25% or more. If it is less than 20%, cracks at the boundary between the recess and the flat portion are likely to occur. The upper limit is not particularly limited.

本実施形態の成形包装体材料に用いられるアルミニウム合金箔の厚さは任意であり、用途や成形条件等に応じて適宜調整し得るが、一般的には、10〜100μmが好ましい。このアルミニウム合金箔の厚さが10μm以上であれば、引張強さが向上する。また、厚さが10μm未満になると、引張強さが低下する場合がある。また、厚さが100μmを超えると、包装体全体の厚さが厚くなりすぎて、得られる成形包装体の小型化が図りにくくなるため、好ましくない場合がある。このアルミニウム合金箔の厚さは、特に、30〜50μmが好ましい。なお、本発明の用途である二次電池の外装材に用いる場合には、加工後の厚さが50μm以上、好ましくは70μm以上、300μm以下が二次電池の成形体としての収容量確保の観点から推奨される。また、医薬品包装材として用いる場合には、加工後の厚さが30μm以上、好ましくは50μm以上、200μm以下であることが強度や防湿性の観点から推奨されるが、これら厚さは特に制限されるものではない。   The thickness of the aluminum alloy foil used for the molded packaging material of the present embodiment is arbitrary, and can be appropriately adjusted according to the application, molding conditions, etc., but generally 10 to 100 μm is preferable. If the thickness of the aluminum alloy foil is 10 μm or more, the tensile strength is improved. On the other hand, if the thickness is less than 10 μm, the tensile strength may decrease. On the other hand, if the thickness exceeds 100 μm, the thickness of the entire package becomes too thick and it is difficult to reduce the size of the resulting molded package, which may be undesirable. As for the thickness of this aluminum alloy foil, 30-50 micrometers is especially preferable. In addition, when used for an outer packaging material of a secondary battery which is an application of the present invention, a thickness after processing is 50 μm or more, preferably 70 μm or more and 300 μm or less from the viewpoint of securing a capacity as a molded article of a secondary battery. Recommended by In addition, when used as a packaging material for pharmaceuticals, the thickness after processing is recommended to be 30 μm or more, preferably 50 μm or more and 200 μm or less from the viewpoint of strength and moisture resistance, but these thicknesses are particularly limited. It is not something.

<アルミニウム合金箔の製造方法>
本実施形態に係る成形包装体材料の製造方法は、Fe:0.8〜1.7mass%、Si:0.05〜0.20mass%、Cu:0.0025〜0.0200mass%を含有し、残部がAl及び不可避的不純物から成るアルミニウム合金鋳塊を、550℃以上610℃以下で3時間以上の均質化保持する工程と、該均質化保持後に400℃以上450℃以下まで冷却する工程と、該冷却後に熱間圧延および冷間圧延を施す工程と、該冷間圧延の前あるいは途中で、300℃以上450℃以下で1時間以上保持する中間焼鈍を施す工程と、該冷間圧延後に最終焼鈍を実施して前記アルミニウム合金箔を得る工程と、を含む。
<Method for producing aluminum alloy foil>
The manufacturing method of the molded package material according to the present embodiment contains Fe: 0.8 to 1.7 mass%, Si: 0.05 to 0.20 mass%, Cu: 0.0025 to 0.0200 mass%, A step of homogenizing and holding an aluminum alloy ingot consisting of Al and inevitable impurities at 550 ° C. or more and 610 ° C. or less for 3 hours or more, and cooling to 400 ° C. or more and 450 ° C. or less after the homogenization holding; A step of performing hot rolling and cold rolling after the cooling, a step of performing an intermediate annealing to be held at 300 ° C. or higher and 450 ° C. or lower for 1 hour or more before or during the cold rolling, and a final step after the cold rolling And performing the annealing to obtain the aluminum alloy foil.

この方法によれば、特定の組成のアルミニウム合金鋳塊の均質化処理時に高温での保持を行った後、さらに低温まで冷却し、冷間圧延工程の途中で実施する中間焼鈍の温度条件を制御することで、得られる特定の組成のアルミニウム合金箔の平均結晶粒径が特定の条件を満たす成形包装体材料を得ることができる。特に、上記3方向の平均の引張強さと平均の0.2%耐力が特定の比率になるとともに、3方向の平均伸びが高い値を有するため、優れた伸び値を有し、良好な成形性を有する成形包装体材料が得られる。そのため、この方法で得られる成形包装体材料は、特に苛酷な条件での深絞り成形が可能となり、内容物の収容量を増加させることができ、比較的厚さの比較的厚い内容物を包装することができるので、様々な用途の成形包装材料として好適に利用できる。また、この方法で得られる成形包装体材料は、深絞り成形時に不均一な変形が起こり難く、成形体のコーナー部での割れも少なく、外部からの水分や空気が成形包装体材料内に侵入することがないので、成形包装体材料内の内容物の劣化を防止できる。   According to this method, after holding at a high temperature during homogenization treatment of an aluminum alloy ingot of a specific composition, it is further cooled to a low temperature, and the temperature conditions of intermediate annealing performed in the middle of the cold rolling process are controlled. By doing so, it is possible to obtain a molded package material in which the average crystal grain size of the obtained aluminum alloy foil having a specific composition satisfies a specific condition. In particular, since the average tensile strength in the three directions and the average 0.2% proof stress are in a specific ratio, the average elongation in the three directions has a high value, and thus has an excellent elongation value and good moldability. A molded packaging material having the following is obtained. Therefore, the molded packaging material obtained by this method can be deep-drawn under particularly severe conditions, can increase the content capacity, and can wrap relatively thick contents. Therefore, it can be suitably used as a molding and packaging material for various applications. In addition, the molded packaging material obtained by this method is less susceptible to non-uniform deformation during deep drawing molding, and there are few cracks at the corners of the molded product, and moisture and air from the outside penetrate into the molded packaging material. Therefore, deterioration of the contents in the molded package material can be prevented.

以下、この成形包装体材料の製造方法についてより具体的に説明する。
上記の成形包装体材料に用いる良好な成形性を有したアルミニウム合金箔を得るためには、まず、上記の組成を有するアルミニウム合金を溶解後、半連続鋳造法により鋳塊を得る。その後、均質化処理は550℃以上610℃以下で3時間以上の保持後冷却し、冷却工程として400℃以上450℃以下まで冷却する。冷却速度は、20〜50℃/hrが好ましい。なお、400℃以上450℃以下まで冷却後、この温度範囲でさらに数時間の保持をしても良い。
Hereinafter, the method for producing the molded packaging material will be described more specifically.
In order to obtain an aluminum alloy foil having good formability for use in the above-described molded package material, first, an aluminum alloy having the above composition is melted, and then an ingot is obtained by a semi-continuous casting method. Thereafter, the homogenization is cooled after holding at 550 ° C. or more and 610 ° C. or less for 3 hours or more, and is cooled to 400 ° C. or more and 450 ° C. or less as a cooling step. The cooling rate is preferably 20 to 50 ° C./hr. In addition, after cooling to 400 degreeC or more and 450 degrees C or less, you may hold | maintain several hours in this temperature range.

均質化処理では、550℃未満及び、3時間未満の保持時間では、Fe系析出物が十分に粗大化しないため、耐力が高くなり、上記圧延方向に対する0度、45度、90度方向の引張強さTSと耐力YSの平均値との比、YS/TSの値が0.60超となり、伸び値が低下し、成形性が劣る場合がある。均質化処理温度が610℃を超えると、局部的に鋳塊が溶融することがあり、製造上好ましくない。また、鋳造時に混入した極僅かの水素ガスが表面に出て材料表面に膨れを生じさせ易くなるため好ましくない。均質化処理温度は、好ましくは580℃以上、610℃以下である。   In the homogenization treatment, when the holding time is less than 550 ° C. and less than 3 hours, the Fe-based precipitates are not sufficiently coarsened, so the yield strength is increased, and the tensile strength in the 0, 45, and 90 degrees directions with respect to the rolling direction is increased. The ratio of the strength TS and the average value of the proof stress YS, the value of YS / TS, exceeds 0.60, the elongation value decreases, and the moldability may be inferior. If the homogenization temperature exceeds 610 ° C., the ingot may be locally melted, which is not preferable in production. Moreover, since very little hydrogen gas mixed at the time of casting comes out on the surface and it becomes easy to produce a swelling on the material surface, it is not preferable. The homogenization temperature is preferably 580 ° C or higher and 610 ° C or lower.

本発明の製造方法は、上記均質化処理の後、400℃以上450℃以下まで冷却する。冷却温度が400℃未満では、Fe系の析出物の析出量が多くなりすぎ、結晶粒が粗大化し、伸び値が低下する。冷却温度が450℃を超えると、Feの固溶量が増加するために、耐力が高くなり、上記圧延方向に対する0度、45度、90度方向の引張強さTSと耐力YSの平均値との比、YS/TSの値が0.60を超えて、伸び値が低下し成形性が低下するため好ましくない。   The manufacturing method of the present invention is cooled to 400 ° C. or higher and 450 ° C. or lower after the homogenization treatment. When the cooling temperature is less than 400 ° C., the amount of Fe-based precipitates increases too much, the crystal grains become coarse, and the elongation value decreases. When the cooling temperature exceeds 450 ° C., the solid solution amount of Fe increases, so the yield strength increases, and the average value of the tensile strength TS and the yield strength YS in the 0 degree, 45 degree, and 90 degree directions with respect to the rolling direction The ratio of YS / TS exceeds 0.60, and the elongation value decreases and the moldability decreases.

本発明の製造方法は、熱間圧延を上記均質化処理、冷却終了後に実施する。熱間圧延の終了温度は、250〜400℃が好ましい。より確実に熱間圧延後のアルミニウム合金板を再結晶させることが必要な観点から、好ましくは300℃以上であることが推奨される。   In the production method of the present invention, hot rolling is performed after the homogenization treatment and cooling are completed. The end temperature of hot rolling is preferably 250 to 400 ° C. From the viewpoint that it is necessary to recrystallize the aluminum alloy sheet after hot rolling more reliably, it is recommended that the temperature is preferably 300 ° C. or higher.

本発明の製造方法は、上記熱間圧延後、冷間圧延を実施する。この冷間圧延は公知の方法で行うことができ、特に制限されるものではない。   The manufacturing method of this invention implements cold rolling after the said hot rolling. This cold rolling can be performed by a known method and is not particularly limited.

本発明の製造方法は、上記冷間圧延の前あるいは途中において、中間焼鈍を300℃以上450℃以下で1時間以上行うことが必要である。中間焼鈍の温度が300℃未満では、伸び値が低下する。中間焼鈍の温度が450℃を超えると、上記圧延方向に対する0度、45度、90度方向の引張強さTSと耐力YSの平均値との比、YS/TSの値が0.60を超えて、伸び値が低下し、成形性が低下するため好ましくない。中間焼鈍は、Fe固溶量を低下することで耐力を低下させる観点から、好ましくは300℃以上、400℃以下であることが推奨される。   In the production method of the present invention, it is necessary to perform intermediate annealing at 300 ° C. or more and 450 ° C. or less for 1 hour or more before or during the cold rolling. When the intermediate annealing temperature is less than 300 ° C., the elongation value decreases. When the temperature of the intermediate annealing exceeds 450 ° C., the ratio of the tensile strength TS and the average value of the proof stress YS in the 0 degree, 45 degree and 90 degree directions with respect to the rolling direction, the value of YS / TS exceeds 0.60. Thus, the elongation value is lowered, and the moldability is lowered. The intermediate annealing is preferably performed at a temperature of 300 ° C. or more and 400 ° C. or less from the viewpoint of reducing the yield strength by reducing the amount of Fe solid solution.

冷間圧延の終了後には、最終焼鈍を実施し、アルミニウム合金箔を完全な軟質箔とすることが好ましい。なお、最終焼鈍の保持温度は、200〜400℃で5時間以上が完全に再結晶させつつ圧延油を完全に揮発させる観点から好ましい。200℃未満では、完全な軟質箔を得ることが困難な場合がある。また、400℃を超えると、Fe固溶量が増加し、耐力が増加するために、上記圧延方向に対する0度、45度、90度方向の引張強さTSと耐力YSの平均値との比、YS/TSの値が0.60を超えて、伸び値が低下し、成形性が低下する場合があるために好ましくない。より好ましい最終焼鈍温度は、240℃以上、320℃以下であることが推奨される。最終焼鈍の保持時間が5時間未満では、箔圧延時の圧延油が十分に揮発しないために、箔の表面の濡れ性が低下し、ラミネート樹脂との密着性が低下し易くなる場合がある。さらに、最終焼鈍時の昇温速度は、50℃/hr以下で実施することが望ましい。昇温速度が50℃/hrを超えると、粗大粒が発生しやすくなり、成形時に不均一な変形が起こり易くなり、成形性が低下する場合がある。   After the end of the cold rolling, it is preferable to perform final annealing to make the aluminum alloy foil a complete soft foil. In addition, the holding temperature of final annealing is preferable from a viewpoint which volatilizes rolling oil completely, recrystallizing at 200-400 degreeC for 5 hours or more. If it is less than 200 degreeC, it may be difficult to obtain perfect soft foil. Further, when the temperature exceeds 400 ° C., the amount of solid solution of Fe increases and the yield strength increases, so the ratio between the tensile strength TS and the average value of the yield strength YS in the 0 degree, 45 degree, and 90 degree directions with respect to the rolling direction. The value of YS / TS exceeds 0.60, which is not preferable because the elongation value decreases and the moldability may decrease. A more preferable final annealing temperature is 240 ° C. or higher and 320 ° C. or lower. If the holding time of the final annealing is less than 5 hours, the rolling oil at the time of foil rolling is not sufficiently volatilized, so that the wettability of the foil surface is lowered and the adhesiveness with the laminate resin is likely to be lowered. Furthermore, it is desirable that the temperature increase rate during the final annealing is 50 ° C./hr or less. When the rate of temperature rise exceeds 50 ° C./hr, coarse particles are likely to be generated, and non-uniform deformation is likely to occur during molding, which may reduce moldability.

<成形包装体材料>
本発明の成形包装体材料は、アルミニウム合金箔単体又は上記したアルミニウム合金箔8層を含む複数層からなるものであってもよく、特に制限されるものではないが、複数層とする場合には、少なくとも構成要素としてアルミニウム合金箔を構成として備えていることが必要である。具体的には、図2に示されるように、合成樹脂製フィルム10、アルミニウム合金箔8、熱封緘層9の順に積層されてなるものを例示することができる。合成樹脂製フィルム10は、成形包装体材料の成形性をより高めるため、或いは包装体の本体主要材料であるアルミニウム合金箔8を保護するため、或いは印刷を可能ならしめるために、アルミニウム合金箔8の片面に積層貼着されるものである。このような合成樹脂製フィルム10としては、ポリエステルフィルムやナイロンフィルム等が用いられる。本発明の成形包装体材料は、二次電池や医薬品包装容器として用いることができ、特に、二次電池とする場合には、本発明の成形包装体材料を二次電池外装材用として用いることができる。この場合は外装材内に収容する種々の電池部材の発熱や放熱処理等を行う必要があることから、合成樹脂製フィルム10としては耐熱性ポリエステルフィルムを用いるのが好ましい。
<Molded packaging material>
The molded packaging material of the present invention may be composed of a single layer of aluminum alloy foil or a plurality of layers including the above-described eight layers of aluminum alloy foil, and is not particularly limited. It is necessary that at least an aluminum alloy foil is provided as a constituent element. Specifically, as illustrated in FIG. 2, an example in which a synthetic resin film 10, an aluminum alloy foil 8, and a heat sealing layer 9 are laminated in this order can be exemplified. The synthetic resin film 10 is used to further improve the moldability of the molded packaging material, to protect the aluminum alloy foil 8 that is the main material of the packaging body, or to enable printing. Is laminated and adhered to one side. As such a synthetic resin film 10, a polyester film, a nylon film, or the like is used. The molded packaging material of the present invention can be used as a secondary battery or a pharmaceutical packaging container. In particular, when a secondary battery is used, the molded packaging material of the present invention is used for a secondary battery exterior material. Can do. In this case, since it is necessary to perform heat generation and heat dissipation treatment of various battery members housed in the exterior material, it is preferable to use a heat-resistant polyester film as the synthetic resin film 10.

熱封緘層9は、包装体の端部7を封緘するためのものである。熱封緘層9としては、従来公知の熱融着性合成樹脂を用いることができる。特に、本発明で用いるアルミニウム合金箔8との貼着性に優れており、内容物を保護できるものであれば何でも良く、例えば、無延伸ポリプロピレンフィルム、二軸延伸ポリプロピレンフィルムやマレイン酸変性ポリオレフィンを用いるのが好ましい。   The heat sealing layer 9 is for sealing the end 7 of the package. As the heat sealing layer 9, a conventionally known heat-sealable synthetic resin can be used. In particular, any material may be used as long as it has excellent adhesion to the aluminum alloy foil 8 used in the present invention and can protect the contents. For example, an unstretched polypropylene film, a biaxially stretched polypropylene film, or a maleic acid-modified polyolefin is used. It is preferable to use it.

本発明の成形包装体材料を複数層とする場合には、合成樹脂製フィルム10、本発明で用いるアルミニウム合金箔8、熱封緘層9の順に積層形成すればよく、成形性、接着性等、内容物の適性を満足するものであれば特に限定するものではない。例えば、アルミニウム合金箔の片面に、無延伸ポリプロピレンフィルムを、接着性皮膜を介して載せ、圧着して、該アルミニウム合金箔と該フィルムとを貼着した後、該アルミニウム合金箔の他面に、接着剤塗布し、この上に合成樹脂製フィルムを載せて貼着することができる。   When the molded packaging material of the present invention has a plurality of layers, the synthetic resin film 10, the aluminum alloy foil 8 used in the present invention, and the heat sealing layer 9 may be laminated in this order. There is no particular limitation as long as the suitability of the contents is satisfied. For example, after placing an unstretched polypropylene film on one side of an aluminum alloy foil through an adhesive film, pressure bonding, and pasting the aluminum alloy foil and the film, on the other side of the aluminum alloy foil, An adhesive can be applied, and a synthetic resin film can be placed thereon for pasting.

上記のアルミニウム合金箔とポリプロピレンフィルムとの圧着は、一般的に加熱下で行われる。加熱条件は、160〜240℃程度である。また、圧着条件は、圧力0.5〜2kg/cmであり、時間0.5〜3秒程度である。The pressure bonding between the aluminum alloy foil and the polypropylene film is generally performed under heating. Heating conditions are about 160-240 degreeC. The pressure bonding conditions are a pressure of 0.5 to 2 kg / cm 2 and a time of about 0.5 to 3 seconds.

また、合成樹脂製フィルム10の接着剤としては、従来公知のものが用いられ、例えば、ウレタン系接着剤等が用いられる。   As the adhesive for the synthetic resin film 10, a conventionally known one is used, and for example, a urethane-based adhesive or the like is used.

本発明の成形包装体材料は、公知の方法で成形することができ、成形方法は特に制限されるものではないが、特に深絞り成形に好適に使用することができる。ここで、本実施形態に係る成形包装体材料を用いて、包装体を得る方法の一例としては、成形包装体材料を所望の大きさに裁断して所望の形状にした包装材を得、この包装材に、中央部が凹部となり周辺部が平坦部となるように、且つ、熱封緘層側が内面となるように、深絞り成形を施す。深絞り成形を施した包装材2枚を用いて、凹部同士が対向するようにし、且つ、周辺部の熱封緘層同士が当接するようにして接着する。そして、一部を残し、他の周辺部を熱封緘して、包装体を得る。二次電池外装材用であれば、中央部に正極集電体2、正極3、隔離材4、負極5、負極集電体6を収納し更に電解質で含浸させることで二次電池を製造することができさらに、二次電池本体から延びているリード線を外部に出すようにして、袋の口を再度、熱封緘する等、公知の方法に従って製造することができる。   The molded package material of the present invention can be molded by a known method, and the molding method is not particularly limited, but can be suitably used particularly for deep drawing. Here, as an example of a method for obtaining a package using the molded package material according to the present embodiment, a packaging material obtained by cutting the molded package material into a desired size to obtain a desired shape is obtained. The packaging material is deep-drawn so that the central portion becomes a concave portion and the peripheral portion becomes a flat portion, and the heat sealing layer side becomes an inner surface. Using two packaging materials subjected to deep drawing, the concave portions are opposed to each other, and the heat sealing layers in the peripheral portion are bonded to each other to be bonded. And a part is left and the other peripheral part is heat-sealed, and a package is obtained. For secondary battery exterior materials, a secondary battery is manufactured by storing the positive electrode current collector 2, the positive electrode 3, the separator 4, the negative electrode 5, and the negative electrode current collector 6 in the center and further impregnating with an electrolyte. In addition, the lead wire extending from the secondary battery body can be taken out to the outside, and the bag mouth can be heat-sealed again.

本発明の二次電池によれば、上記の良好な成形性を有したアルミニウム合金箔を備える成形包装体材料を用いるため、優れた伸び率を有し、凹部を従来より深くする等のより苛酷な条件での深絞り成形の良好となり、収容量の多い二次電池用外装材を形成できるので、長時間の使用に耐える充電容量あるいは高出力な二次電池を得ることができる。また、この二次電池によれば、その外装材が深絞り成形時に不均一な変形が起こり難く、成形体のコーナー部での亀裂、破壊も抑制されるので、電池とした場合の外部からの水分や空気侵入を抑え、電池の内容物の劣化を可及的に防止できる。   According to the secondary battery of the present invention, since the molded packaging material provided with the aluminum alloy foil having the above-mentioned good formability is used, it has an excellent elongation rate and is more harsh such as making the recess deeper than before. Under such conditions, deep drawing can be favorably formed, and a secondary battery exterior material having a large capacity can be formed. Therefore, a secondary battery having a charge capacity or high output that can withstand long-time use can be obtained. In addition, according to this secondary battery, the exterior material is unlikely to be deformed unevenly during deep drawing, and cracks and breakage at the corners of the molded body are also suppressed. It suppresses moisture and air intrusion and can prevent deterioration of battery contents as much as possible.

本発明の成形包装体材料を用いて、医薬品包装容器を得る場合にも成形方法は、上述した方法を採用できる。例えば、PTP用であれば、薬(錠剤、カプセルなど)を収納して医薬品包装容器として用いることができる。本発明の医薬品包装容器は公知の方法で製造でき、製造方法は特に制限されるものではない。   The method described above can also be adopted as a molding method when a pharmaceutical packaging container is obtained using the molded packaging material of the present invention. For example, in the case of PTP, medicines (tablets, capsules, etc.) can be stored and used as pharmaceutical packaging containers. The pharmaceutical packaging container of the present invention can be produced by a known method, and the production method is not particularly limited.

この医薬品包装容器によれば、上記の伸び率が高く良好な成形性を有したアルミニウム合金成形包装体材料を用いるため、深絞り成形が可能となり、成形包装体材料の低減化が図れる医薬品包装容器を得ることができる。また、この医薬品包装容器によれば、アルミニウム合金箔の平均結晶粒径が小さいので、深絞り成形時に不均一な変形が起こり難く、成形体のコーナー部での割れも少ないため、外部からの水蒸気が成形包装体材料内に侵入しにくくなり、保管する際に水蒸気バリヤー性が要求される内容物の錠剤等の長期の品質管理性にも優れている。   According to this pharmaceutical packaging container, since the aluminum alloy molded packaging material having a high elongation rate and good formability is used, the pharmaceutical packaging container can be deep-drawn and the molded packaging material can be reduced. Can be obtained. Further, according to this pharmaceutical packaging container, since the average crystal grain size of the aluminum alloy foil is small, non-uniform deformation hardly occurs at the time of deep drawing, and there are few cracks at the corners of the molded body, so that water vapor from the outside However, it is difficult to penetrate into the molded packaging material, and it is excellent in long-term quality controllability such as tablets of contents that require a water vapor barrier property during storage.

以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。   As mentioned above, although embodiment of this invention was described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

例えば、上記実施の形態では二次電池用又は医薬品包装用の成形包装体材料としたが、特に限定する趣旨ではなく、他の包装用途に用いてもよい。たとえば、二次電池ではなく、一次電池の成形包装体材料に用いることもできる。このようにすれば、過酷な条件で用いられる高度な耐久性が要求される一次電池においても深絞り成形時に不均一な変形が起こり難く、成形体のコーナー部での亀裂、破壊も抑制されるので、電池とした場合の外部からの水分や空気侵入を抑え、電池の内容物の劣化を可及的に防止できる。   For example, in the above-described embodiment, the molded package material is used for a secondary battery or a pharmaceutical package. However, the material is not particularly limited, and may be used for other packaging applications. For example, it can also be used as a molded battery material for primary batteries, not secondary batteries. In this way, even in a primary battery that requires high durability used under severe conditions, non-uniform deformation is unlikely to occur during deep drawing, and cracks and breakage at the corners of the molded body are also suppressed. Therefore, it is possible to suppress moisture and air intrusion from the outside in the case of a battery and prevent deterioration of the battery contents as much as possible.

以下、本発明を実施例・比較例を示しさらに説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated further, this invention is not limited to these Examples.

<実施例1>
表1に示した組成を持つアルミニウム鋳塊を準備し、常法に従って、均質化処理、冷却、熱間圧延、冷間圧延、箔圧延及び最終焼鈍を施して、厚さ35μmのアルミニウム合金箔を得た。得られたアルミニウム合金箔の圧延方向に対する0度、45度、90度における引張強さ、0.2%耐力及び伸びを測定し、その結果を表2に示した。また、冷間圧延中に圧延切れが生じた場合、その回数も表2に示した。
<Example 1>
An aluminum ingot having the composition shown in Table 1 was prepared, and subjected to homogenization treatment, cooling, hot rolling, cold rolling, foil rolling and final annealing according to a conventional method to obtain an aluminum alloy foil having a thickness of 35 μm. Obtained. The obtained aluminum alloy foil was measured for tensile strength, 0.2% proof stress and elongation at 0 °, 45 ° and 90 ° with respect to the rolling direction, and the results are shown in Table 2. Table 2 also shows the number of rolling breaks during cold rolling.

アルミニウム合金箔の引張強さは、巾10mmの短冊状試料片を用い、チャック間距離50mmで、引張速度10mm/min.の速度で引張試験を行い、短冊状試料片にかかる最大荷重を測定し、元の試料の断面積で除した応力を引張強さとして、計算した。また、0.2%耐力は荷重−伸び曲線図の初期の立ち上がりのほぼ直線で示される弾性域内のこの直線から0.2%の永久歪みの値から平行線を引き、上記曲線と交わった点、すなわち鋼材料などの降伏点に相当する点の値を求めた。また、伸びは、引張強さの場合と同様の測定方法で、短冊状試料片が破断したときのチャック間距離をL(mm)としたとき、〔(L−50)/50〕×100で算出されるものである。   The tensile strength of the aluminum alloy foil was a strip-shaped sample piece having a width of 10 mm, a distance between chucks of 50 mm, and a tensile speed of 10 mm / min. The maximum load applied to the strip-shaped sample piece was measured at a speed of 1 mm, and the stress divided by the cross-sectional area of the original sample was calculated as the tensile strength. In addition, 0.2% proof stress is the point where a parallel line is drawn from the permanent strain value of 0.2% from this straight line in the elastic region indicated by a straight line at the initial rise of the load-elongation curve diagram, and intersects with the above curve. That is, the value of the point corresponding to the yield point of the steel material or the like was obtained. Elongation is [(L-50) / 50] × 100, where L (mm) is the distance between chucks when the strip-shaped sample piece is broken by the same measurement method as in the case of tensile strength. It is calculated.

次に、実施例に係るアルミニウム合金箔を用いた成形包装体材料の深絞り性がどの程度であるかを、試験するために、以下の実験を行った。即ち、実施例及び比較例で得られた各アルミニウム合金箔の片面に、平均粒径6〜8μmの無水マレイン酸変性ポリプロピレン15重量部とトルエン85重量部よりなるオルガノゾルを塗布し、200℃で20秒間の条件で乾燥し、厚さ2μmの接着性皮膜を得た。次に、厚さ30μmのポリプロピレンフィルムを、温度200℃、圧力2kg/cm、時間1秒間の圧着条件で、接着性皮膜表面に圧着して貼着した。最後に、アルミニウム合金箔の他面(押出フィルムが貼着されていない面)に、厚さ12μmの耐熱性ポリエステルフィルムを、ウレタン系接着剤を介して貼着して成形包装体材料を得た。この成形包装体材料にエリクセン試験を行って、成形包装体材料の変形能が、どの程度であるかを測定し、その結果を表2に示した。なお、エリクセン試験は、耐熱性ポリエステルフィルム面を張り出し面とし、JIS Z 2247に記載の方法に準拠した方法で行った。エリクセン値が大きいほど、変形能が大きいことを示している。Next, the following experiment was conducted to test the degree of deep drawability of the molded package material using the aluminum alloy foil according to the example. That is, an organosol consisting of 15 parts by weight of maleic anhydride-modified polypropylene having an average particle size of 6 to 8 μm and 85 parts by weight of toluene was applied to one side of each aluminum alloy foil obtained in the examples and comparative examples. The film was dried for 2 seconds to obtain an adhesive film having a thickness of 2 μm. Next, a polypropylene film having a thickness of 30 μm was bonded to the surface of the adhesive film under pressure bonding conditions of a temperature of 200 ° C., a pressure of 2 kg / cm 2 , and a time of 1 second. Finally, a heat-resistant polyester film having a thickness of 12 μm was attached to the other surface of the aluminum alloy foil (the surface on which the extruded film was not attached) via a urethane adhesive to obtain a molded packaging material. . An Erichsen test was performed on the molded packaging material, and the degree of deformability of the molded packaging material was measured. The results are shown in Table 2. The Erichsen test was conducted by a method based on the method described in JIS Z 2247 with the heat-resistant polyester film surface as the overhanging surface. The larger the Eriksen value, the greater the deformability.

本実施例及び比較例で示した各アルミニウム合金箔の平均粒径を以下のようにして測定した。すなわち、得られた各アルミニウム合金箔を、5℃以下の20容量%過塩素酸+80容量%エタノール混合溶液を用い、電圧20Vで電解研磨を行った後、水洗、乾燥後、25℃以下の50容量%燐酸+47容量%メタノール+3容量%弗化水素酸の混合溶液中で、電圧20Vで陽極酸化皮膜を形成させた後、光学顕微鏡で偏光をかけて、結晶粒を観察し、写真に撮影した。撮影された写真から、切断法にて、平均粒径を測定した。切断法は、ある線分内に何個結晶粒があるかを数え、線分をその個数で除した大きさを表2に示した。   The average particle size of each aluminum alloy foil shown in this example and the comparative example was measured as follows. That is, each aluminum alloy foil obtained was electropolished at a voltage of 20 V using a 20 volume% perchloric acid + 80 volume% ethanol mixed solution of 5 ° C. or less, washed with water, dried, and then cooled to 50 ° C. of 25 ° C. or less. An anodized film was formed at a voltage of 20 V in a mixed solution of volume% phosphoric acid + 47 volume% methanol + 3 volume% hydrofluoric acid, and then polarized with an optical microscope, the crystal grains were observed and photographed. . From the photograph taken, the average particle diameter was measured by a cutting method. In the cutting method, the number of crystal grains in a certain line segment was counted, and the size obtained by dividing the line segment by the number is shown in Table 2.

以上の結果から明らかなように、実施例1〜18に係るアルミニウム合金箔は、比較例19〜25に係るアルミニウム合金箔に比べて、伸びが大きく、苛酷な成形に対応できる所謂変形能が大きいことを示している。また、実施例1〜18に係るアルミニウム合金箔を用いて得られた成形包装体材料は、比較例19〜25に係るものに比べて、エリクセン値が大きく、その変形能が大きいことを示している。従って、実施例1〜18に係るアルミニウム合金箔を用いて得られた成形包装体材料は、伸びが大きく、深絞り成形が良好に行え、厚さの比較的厚い内容物を包装するのに適していることが分かる。なお、実施例1〜18に係るアルミニウム合金箔は、冷間圧延途中において、圧延切れも殆ど発生せず、製造しやすいものでもある。   As is clear from the above results, the aluminum alloy foils according to Examples 1 to 18 have a large elongation and a large so-called deformability that can cope with severe forming compared to the aluminum alloy foils according to Comparative Examples 19 to 25. It is shown that. Further, the molded packaging material obtained using the aluminum alloy foils according to Examples 1 to 18 has a large Erichsen value and a large deformability compared to those according to Comparative Examples 19 to 25. Yes. Therefore, the molded packaging material obtained by using the aluminum alloy foils according to Examples 1 to 18 has a large elongation, can perform deep drawing well, and is suitable for packaging a relatively thick content. I understand that In addition, the aluminum alloy foil which concerns on Examples 1-18 hardly produces rolling breakage in the middle of cold rolling, and is easy to manufacture.

<実施例2>
表3に示す元素組成を持つアルミニウム鋳塊を準備し、均質化処理、冷却、熱間圧延を施して、厚さ2.4mmのアルミニウム板を得た。このアルミニウム板に冷間圧延を施して、板厚が0.55mmで、表3に示す保持温度及び保持時間の各条件で中間焼鈍を施した後、さらに、冷間圧延を施して、35μmのアルミニウム合金箔を得た。そして、表3に示す保持温度及び保持時間、昇温速度の各条件で最終焼鈍を施し、アルミニウム合金箔を得た。得られたアルミニウム合金箔には、実施例1と同等の方法で各種評価を行い、引張強さ、0.2%耐力、伸び、結晶粒径、エリクセン値、圧延切れ回数を表4に示した。
<Example 2>
An aluminum ingot having the elemental composition shown in Table 3 was prepared, and subjected to homogenization, cooling, and hot rolling to obtain an aluminum plate having a thickness of 2.4 mm. The aluminum plate was cold-rolled, the plate thickness was 0.55 mm, and after intermediate annealing was performed under the conditions of holding temperature and holding time shown in Table 3, cold-rolling was further performed to obtain 35 μm. An aluminum alloy foil was obtained. And final annealing was performed on each conditions of the holding temperature and holding time which were shown in Table 3, and the temperature increase rate, and aluminum alloy foil was obtained. The obtained aluminum alloy foil was subjected to various evaluations in the same manner as in Example 1. Table 4 shows the tensile strength, 0.2% proof stress, elongation, crystal grain size, Erichsen value, and number of rolling breaks. .

以上の結果から明らかなように、実施例1〜18に係るアルミニウム合金箔は、比較例に係るアルミニウム合金箔19〜37に比べて、伸びが大きく、変形能が大きいことを示している。また、実施例1〜18に係るアルミニウム合金箔を用いて得られた成形包装体材料は、比較例19〜37に係るものに比べて、エリクセン値が大きく、その変形能が大きいことを示している。従って、実施例1〜18に係るアルミニウム合金箔を用いて得られた成形包装体材料は、深絞り成形が良好に行え、厚さの比較的厚い内容物を包装するのに適していることが分かる。なお、実施例1〜18に係るアルミニウム合金箔は、冷間圧延途中において、圧延切れも殆ど発生せず、製造しやすいものでもある。   As is clear from the above results, the aluminum alloy foils according to Examples 1 to 18 have a larger elongation and a higher deformability than the aluminum alloy foils 19 to 37 according to the comparative examples. In addition, the molded packaging material obtained using the aluminum alloy foils according to Examples 1 to 18 has a large Erichsen value and a large deformability compared to those according to Comparative Examples 19 to 37. Yes. Therefore, the molded packaging material obtained using the aluminum alloy foils according to Examples 1 to 18 can be well formed by deep drawing and is suitable for packaging a relatively thick content. I understand. In addition, the aluminum alloy foil which concerns on Examples 1-18 hardly produces rolling breakage in the middle of cold rolling, and is easy to manufacture.

以上、本発明を実施例に基づいて説明した。この実施例はあくまで例示であり、種々の変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。   In the above, this invention was demonstrated based on the Example. It is to be understood by those skilled in the art that this embodiment is merely an example, and that various modifications are possible and that such modifications are within the scope of the present invention.

1 外装材(成形包装体材料)
2 正極集電体
3 正極
4 隔離材(セパレーター)
5 負極
6 負極集電体
7 外装材の端部
8 外装材本体(アルミニウム合金箔)
9 熱封緘層
10 合成樹脂製フィルム
1 Exterior material (molded packaging material)
2 Positive current collector 3 Positive electrode 4 Separator (separator)
5 Negative Electrode 6 Negative Electrode Current Collector 7 Exterior Material End 8 Exterior Material Body (Aluminum Alloy Foil)
9 Heat sealing layer 10 Synthetic resin film

Claims (8)

Fe:0.8〜1.7mass%、Si:0.05〜0.20mass%、Cu:0.0025〜0.0200mass%を含有し、残部がAl及び不可避的不純物からなり、平均結晶粒径が20μm以下であり、圧延方向に対する0度、45度、90度における0.2%耐力の平均値YSと最大引張強さの平均値TSがYS/TS≦0.60を満たすアルミニウム合金箔を備える成形包装体材料。   Fe: 0.8 to 1.7 mass%, Si: 0.05 to 0.20 mass%, Cu: 0.0025 to 0.0200 mass%, the balance is made of Al and inevitable impurities, and the average crystal grain size Is an aluminum alloy foil satisfying YS / TS ≦ 0.60 with an average value YS of 0.2% proof stress and an average value TS of maximum tensile strength at 0 °, 45 ° and 90 ° with respect to the rolling direction. Molded packaging material provided. 前記アルミニウム合金箔が、Fe:0.8〜1.7mass%、Si:0.05〜0.20mass%、Cu:0.0025〜0.0200mass%を含有し、残部がAl及び不可避的不純物から成るアルミニウム合金鋳塊を、550℃以上610℃以下で3時間以上の均質化保持後、さらに400℃以上450℃以下まで冷却し、その後熱間圧延および冷間圧延を施し、該冷間圧延の前あるいは途中で、300℃以上450℃以下で1時間以上保持する中間焼鈍を施し、冷間圧延後に最終焼鈍を施して得られる、請求項1に記載の成形包装体材料。   The aluminum alloy foil contains Fe: 0.8 to 1.7 mass%, Si: 0.05 to 0.20 mass%, Cu: 0.0025 to 0.0200 mass%, and the balance from Al and inevitable impurities The aluminum alloy ingot is homogenized and maintained at 550 ° C. or more and 610 ° C. or less for 3 hours or more, and further cooled to 400 ° C. or more and 450 ° C. or less, and then subjected to hot rolling and cold rolling. The molded packaging material according to claim 1, which is obtained by performing intermediate annealing that is held at 300 ° C. or higher and 450 ° C. or lower for 1 hour or longer before and during the course, and then performing final annealing after cold rolling. 前記アルミニウム合金箔が、圧延方向に対する0度、45度、90度方向における伸びの平均値が20.0%以上である、請求項1又は2に記載の成形包装体材料。   The molded packaging material according to claim 1 or 2, wherein the aluminum alloy foil has an average value of elongation of 20.0% or more in the 0 degree, 45 degree, and 90 degree directions with respect to the rolling direction. 前記アルミニウム合金箔の一方の側に積層されてなる合成樹脂製フィルムと、
前記アルミニウム合金箔の他方の側に積層されてなる熱封緘層と、
をさらに備える、請求項1〜3のいずれかに記載の成形包装体材料。
A synthetic resin film laminated on one side of the aluminum alloy foil;
A heat sealing layer laminated on the other side of the aluminum alloy foil;
The molded packaging material according to any one of claims 1 to 3, further comprising:
医薬品包装又は二次電池外装に用いる、請求項1〜4のいずれかに記載の成形包装体材料。   The shaped packaging material according to any one of claims 1 to 4, which is used for a pharmaceutical packaging or a secondary battery exterior. 請求項1〜5のいずれかに記載の成形包装体材料を用いる二次電池。   The secondary battery using the shaping | molding package body material in any one of Claims 1-5. 請求項1〜5のいずれかに記載の成形包装体材料を用いる医薬品包装容器。   A pharmaceutical packaging container using the molded packaging material according to any one of claims 1 to 5. 請求項1〜5のいずれかに記載の成形包装体材料の製造方法であって、
Fe:0.8〜1.7mass%、Si:0.05〜0.20mass%、Cu:0.0025〜0.0200mass%を含有し、残部がAl及び不可避的不純物から成るアルミニウム合金鋳塊を、550℃以上610℃以下で3時間以上の均質化保持する工程と、
該均質化保持後に400℃以上450℃以下まで冷却する工程と、
該冷却後に熱間圧延および冷間圧延を施す工程と、
該冷間圧延の前あるいは途中で、300℃以上450℃以下で1時間以上保持する中間焼鈍を施す工程と、
該冷間圧延後に最終焼鈍を実施して前記アルミニウム合金箔を得る工程と、
を含む、方法。
A method for producing a molded package material according to any one of claims 1 to 5,
An aluminum alloy ingot containing Fe: 0.8 to 1.7 mass%, Si: 0.05 to 0.20 mass%, Cu: 0.0025 to 0.0200 mass%, and the balance consisting of Al and inevitable impurities A step of maintaining homogenization at 550 ° C. or more and 610 ° C. or less for 3 hours or more;
Cooling to 400 ° C. or more and 450 ° C. or less after the homogenization holding;
A step of performing hot rolling and cold rolling after the cooling;
Before or during the cold rolling, performing an intermediate annealing that is held at 300 ° C. or higher and 450 ° C. or lower for 1 hour or longer;
Performing the final annealing after the cold rolling to obtain the aluminum alloy foil;
Including a method.
JP2012534026A 2010-09-16 2011-09-14 Molded packaging material Active JP5841537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012534026A JP5841537B2 (en) 2010-09-16 2011-09-14 Molded packaging material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010207996 2010-09-16
JP2010207996 2010-09-16
JP2012534026A JP5841537B2 (en) 2010-09-16 2011-09-14 Molded packaging material
PCT/JP2011/070923 WO2012036181A1 (en) 2010-09-16 2011-09-14 Material for molded packages

Publications (2)

Publication Number Publication Date
JPWO2012036181A1 true JPWO2012036181A1 (en) 2014-02-03
JP5841537B2 JP5841537B2 (en) 2016-01-13

Family

ID=45831638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012534026A Active JP5841537B2 (en) 2010-09-16 2011-09-14 Molded packaging material

Country Status (5)

Country Link
JP (1) JP5841537B2 (en)
KR (1) KR101842689B1 (en)
CN (1) CN103140592B (en)
TW (1) TWI444482B (en)
WO (1) WO2012036181A1 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103223753B (en) * 2012-01-26 2016-05-11 昭和电工包装株式会社 Be shaped with packaging material and lithium secondary battery
WO2013168606A1 (en) * 2012-05-11 2013-11-14 古河スカイ株式会社 Aluminum alloy foil and method for producing same, molded packaging material, secondary cell, and medical drug container
EP2858138B1 (en) * 2012-06-04 2019-09-25 Dai Nippon Printing Co., Ltd. Packaging material for cell
US9732402B2 (en) * 2012-08-01 2017-08-15 Uacj Corporation Aluminum alloy foil and method for manufacturing same
PL2871250T3 (en) * 2012-08-31 2017-01-31 Daiki Aluminium Industry Co Ltd Highly heat conductive aluminum alloy for die casting, aluminum alloy die cast product using same, and heatsink using same
JP6058363B2 (en) * 2012-11-21 2017-01-11 株式会社Uacj Aluminum alloy foil, molded packaging material, battery, pharmaceutical packaging container, and method for producing aluminum alloy foil
JP6085404B2 (en) * 2013-03-29 2017-02-22 株式会社Uacj製箔 Aluminum foil laminate
JP2014205256A (en) * 2013-04-11 2014-10-30 株式会社Uacj Laminate material for cold molding
JP6326788B2 (en) * 2013-12-02 2018-05-23 大日本印刷株式会社 Battery packaging materials
CN110216952B (en) * 2013-12-02 2022-01-18 大日本印刷株式会社 Packaging material for battery
JP6476679B2 (en) * 2014-09-19 2019-03-06 大日本印刷株式会社 Battery packaging materials
KR102279968B1 (en) * 2013-12-11 2021-07-22 다이니폰 인사츠 가부시키가이샤 Packaging material for battery
CN111893349A (en) * 2014-07-09 2020-11-06 海德鲁铝业钢材有限公司 Application of aluminum alloy or flat aluminum product composed of aluminum alloy to aluminum-plastic composite component
WO2016052294A1 (en) * 2014-09-30 2016-04-07 大日本印刷株式会社 Packaging material for batteries
JP5923194B1 (en) * 2015-04-01 2016-05-24 三菱アルミニウム株式会社 Aluminum foil for PTP
JP5976158B1 (en) * 2015-04-16 2016-08-23 三菱アルミニウム株式会社 Aluminum foil for PTP and method for producing the same
JP6859662B2 (en) * 2015-10-28 2021-04-14 大日本印刷株式会社 Battery packaging materials, batteries, battery packaging material manufacturing methods, and aluminum alloy foil
JP2017084787A (en) * 2015-10-28 2017-05-18 大日本印刷株式会社 Battery-packaging material, battery, method for manufacturing battery-packaging material, and aluminum alloy foil
CN108352463A (en) * 2015-10-28 2018-07-31 大日本印刷株式会社 Battery use packing material, battery, the manufacturing method of battery use packing material and alloy foil
JP6922185B2 (en) * 2016-02-09 2021-08-18 大日本印刷株式会社 Battery packaging materials, batteries, battery packaging material manufacturing methods, and aluminum alloy foil
WO2017179636A1 (en) * 2016-04-12 2017-10-19 大日本印刷株式会社 Packaging material for batteries, method for producing same and battery
JPWO2017179712A1 (en) * 2016-04-14 2019-03-14 大日本印刷株式会社 Packaging material for battery, method for manufacturing the same, method for judging defect in molding of packaging material for battery, aluminum alloy foil
CN110114899B (en) * 2016-12-28 2022-06-14 大日本印刷株式会社 Aluminum alloy foil for battery packaging material, and battery
JP6792463B2 (en) * 2017-01-19 2020-11-25 株式会社神戸製鋼所 Aluminum alloy soft foil for molding
JP6461248B2 (en) 2017-07-06 2019-01-30 三菱アルミニウム株式会社 Aluminum alloy foil and method for producing aluminum alloy foil
JP6461249B2 (en) 2017-07-06 2019-01-30 三菱アルミニウム株式会社 Aluminum alloy foil and method for producing aluminum alloy foil
JP6555454B1 (en) * 2017-09-28 2019-08-07 大日本印刷株式会社 Battery packaging material, manufacturing method thereof, battery and aluminum alloy foil
JP7169855B2 (en) * 2018-11-19 2022-11-11 昭和電工パッケージング株式会社 Sheets for packaging materials, lids for containers, and packages
CN110983117A (en) * 2019-12-27 2020-04-10 江门市德佑金属材料实业有限公司 Aluminum alloy for capacitor shell and preparation method of aluminum alloy plate strip of aluminum alloy
CN111653694B (en) * 2020-05-21 2021-08-06 上海恩捷新材料科技有限公司 External packing material for battery device and battery
JP7303274B2 (en) * 2020-12-25 2023-07-04 Maアルミニウム株式会社 aluminum alloy foil
EP4269639A4 (en) * 2020-12-25 2024-02-14 Ma Aluminum Corp Aluminum alloy foil
KR102391814B1 (en) * 2021-02-26 2022-04-29 동우 화인켐 주식회사 Pouch Film for Secondary Battery
CN113059884A (en) * 2021-03-17 2021-07-02 上海恩捷新材料科技有限公司 A highly moldable and highly durable outer packaging material for battery elements, and a battery
WO2024053218A1 (en) * 2022-09-05 2024-03-14 Maアルミニウム株式会社 Aluminum alloy foil and method for producing same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3180812B2 (en) * 1990-07-18 2001-06-25 日本軽金属株式会社 Method for producing Al-Fe alloy foil
JPH04289143A (en) * 1991-03-18 1992-10-14 Furukawa Alum Co Ltd Aluminum alloy foil having superior strength and formability
JP3529269B2 (en) * 1998-07-21 2004-05-24 株式会社神戸製鋼所 Aluminum foil ground and method of manufacturing the same
JP3529272B2 (en) * 1998-08-07 2004-05-24 株式会社神戸製鋼所 Aluminum foil base for thin foil and method for producing the same
JP2000282196A (en) * 1999-03-30 2000-10-10 Furukawa Electric Co Ltd:The Production of aluminum alloy foil base, and aluminum alloy foil base produced by the production method
JP3596666B2 (en) * 1999-12-14 2004-12-02 日本製箔株式会社 Manufacturing method of secondary battery-like exterior material
JP3808276B2 (en) 2000-03-31 2006-08-09 株式会社神戸製鋼所 Aluminum alloy foil and method for producing the same
JP4015518B2 (en) * 2002-05-07 2007-11-28 日本製箔株式会社 Aluminum alloy foil, method for producing the same, and aluminum laminate
JP2005163077A (en) * 2003-12-01 2005-06-23 Mitsubishi Alum Co Ltd High formability aluminum foil for packaging material, and production method therefor
JP3913260B1 (en) * 2005-11-02 2007-05-09 株式会社神戸製鋼所 Aluminum alloy cold rolled sheet for bottle cans with excellent neck formability
CN102329984B (en) * 2011-06-14 2014-11-12 刘继福 Aluminum foil material capable of meeting more than 4 mm punching depth of cold punch formed flexible package material
CN102329985B (en) * 2011-06-14 2013-12-25 刘继福 Aluminum foil for flexible package of polymer lithium ion battery

Also Published As

Publication number Publication date
TW201217545A (en) 2012-05-01
CN103140592B (en) 2015-07-15
KR20140001839A (en) 2014-01-07
TWI444482B (en) 2014-07-11
CN103140592A (en) 2013-06-05
KR101842689B1 (en) 2018-03-27
JP5841537B2 (en) 2016-01-13
WO2012036181A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
JP5841537B2 (en) Molded packaging material
JP6322577B2 (en) Aluminum alloy foil and method for producing the same
JP6381441B2 (en) Aluminum alloy foil and manufacturing method thereof, molded packaging material, secondary battery, pharmaceutical packaging container
JP6058363B2 (en) Aluminum alloy foil, molded packaging material, battery, pharmaceutical packaging container, and method for producing aluminum alloy foil
US10381611B2 (en) Packaging material for cell
US7041380B2 (en) Packaging material for battery
JP2013174010A (en) Packaging material for forming and lithium secondary battery
JP3867989B2 (en) Aluminum alloy plate for battery case and manufacturing method thereof
JP2006331897A (en) Package material for battery case and case for battery
JP6719880B2 (en) Sealant film for exterior material of electricity storage device, exterior material for electricity storage device, electricity storage device, and method for producing resin composition for sealant film of exterior material of electricity storage device
JP2001176459A (en) Outer package material for secondary battery and production method therefor
JP2024052801A (en) Electricity storage device and method for manufacturing the same
KR20230098074A (en) Pouch film laminate and battery case prepared by using the same
KR20230097596A (en) Pouch-type battery case and lithium secondary battery comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151113

R150 Certificate of patent or registration of utility model

Ref document number: 5841537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350