JP3596666B2 - Manufacturing method of secondary battery-like exterior material - Google Patents

Manufacturing method of secondary battery-like exterior material Download PDF

Info

Publication number
JP3596666B2
JP3596666B2 JP35406099A JP35406099A JP3596666B2 JP 3596666 B2 JP3596666 B2 JP 3596666B2 JP 35406099 A JP35406099 A JP 35406099A JP 35406099 A JP35406099 A JP 35406099A JP 3596666 B2 JP3596666 B2 JP 3596666B2
Authority
JP
Japan
Prior art keywords
film
secondary battery
aluminum alloy
exterior material
alloy foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35406099A
Other languages
Japanese (ja)
Other versions
JP2001176459A (en
Inventor
昭弘 山口
寿雄 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Foil Manufacturing Co Ltd
Original Assignee
Nippon Foil Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Foil Manufacturing Co Ltd filed Critical Nippon Foil Manufacturing Co Ltd
Priority to JP35406099A priority Critical patent/JP3596666B2/en
Publication of JP2001176459A publication Critical patent/JP2001176459A/en
Application granted granted Critical
Publication of JP3596666B2 publication Critical patent/JP3596666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Laminated Bodies (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン二次電池等の各種二次電池の外装材として好適に使用しうる外装材料の製造方法に関し、特に、ある程度の深絞り成形が可能な二次電池用外装材料の製造方法に関するものである。
【0002】
【従来の技術】
シート状で薄型のポリマーリチウムイオン二次電池等の二次電池は、近年、移動体通信機器,ノートブック型パソコン,ヘッドフォンステレオ,カムコーダー等のエレクトロニクス機器の小型軽量化に伴い、その駆動源として重宝されている。この二次電池は、例えば、図1に示したような構成となっている。即ち、正極集電体2,正極3,隔離材(セパレーター)4,負極5,負極集電体6の順で積層された積層体(二次電池本体)を、外装材1,1で包装収納した構成となっている。そして、外装材1,1は、端部7,7において熱封緘されている。
【0003】
外装材1は、一般的に、図2に示すように、外装材本体8の片面には熱封緘層9が積層貼合され、他面には合成樹脂製フィルム10が積層貼合された態様となっている。外装材1は、図1に示すように、正極集電体2等の積層体を収納するために、その中央部が凹部となり、周辺部が平坦部となるように成形されている。従って、外装材本体8,熱封緘層9及び合成樹脂製フィルム10として、成形性の良好なものを採用する必要がある。
【0004】
従来より、外装材本体8としては、電池性能に悪影響を与えないように、水分や空気等が透過しにくい金属箔、特にアルミニウム箔が用いられている。アルミニウム箔としては、合金番号1100、3003又は3004(JIS H 4160)で規定された組成のものが用いられている。このようなアルミニウム箔は、引張強さに優れており、破断しにくく好ましいものである。しかしながら、引張伸びの程度が低く、深い凹部を形成させるような成形を行うと、亀裂やピンホールが生じるということがあった。従って、厚さの薄いシート状の二次電池を得る場合は問題がないが、電池容量を高めるために二次電池本体の厚さを厚くして、、厚さの比較的厚いシート状の二次電池を得る場合には問題があった。即ち、外装材1の中央部に深い凹部を形成させようとして成形を行うと、外装材本体8の特に凹部と平坦部との境界部で亀裂等が生じ、水分や空気等が透過しやすく、電池性能に悪影響を与える外装材1となってしまうという欠点があった。
【0005】
このため、外装材本体8として、引張伸びの高いアルミニウム合金箔、特に、Fe:0.6重量%以上、及びAl:残部よりなるアルミニウム合金箔を用いることが提案されている(特開平10−208708号公報)。確かに、このアルミニウム合金箔は、引張伸びが向上するが、未だ不十分であった。即ち、引張伸びの向上の程度も少なく、且つ、引張伸びが向上した分だけ引張強さが低下するという憾みがあった。
【0006】
【発明が解決しようとする課題】
そこで、本発明者等が、更にアルミニウム合金箔の元素組成を検討した結果、特定量のFeと特定量のSiをAlに含有させると共に、特定の方法で熱封緘層を設けると、引張伸び及び引張強さの両方がよく向上し、二次電池の外装材が得られることを見出し、本発明に到達した。
【0007】
【課題を解決するための手段】
即ち、本発明は、Fe:0.5〜1.7重量%、Si:0.05〜0.2重量%及びAl:残部よりなるアルミニウム合金箔の片面に、ジカルボン酸変成ポリオレフィンを固形分とするオルガノゾルを塗布した後、該オルガノゾルを乾燥して接着性皮膜を形成せしめ、次いで、ポリプロピレンフィルムの両面に、該オルガノゾル中のジカルボン酸変成ポリオレフィンと同種のジカルボン酸変成ポリオレフィンフィルムが貼合された三層フィルムと該接着性皮膜とを圧着して、該アルミニウム合金箔と該三層フィルムとを貼着した後、該アルミニウム合金箔の他面に、接着剤を介して合成樹脂製フィルムを貼着することを特徴とする二次電池用外装材料の製造方法に関するものである。なお、本発明において、二次電池用「外装材」とは、所定の大きさに裁断されて、二次電池の作成のために用いられるものを意味し、二次電池用「外装材料」とは、所定の大きさに裁断される前の状態のものを意味している。従って、実質的には同義である。
【0008】
本発明に係る二次電池用外装材料は、一般的に、複数の層からなるものであるが、少なくとも、Fe:0.5〜1.7重量%、Si:0.05〜0.2重量%及びAl:残部よりなるアルミニウム合金箔層を含むものである。そして、このアルミニウム合金箔層は、外装材本体8として機能するものである。
【0009】
本発明で用いるアルミニウム合金箔8の合金組成は、前記したとおり、Feを0.5〜1.7重量%含有するものである。Feが0.5重量%未満になると、引張強さ及び伸びの両方が低下し、成形性が不良になる。また、Feが1.7重量%を超えても、引張強さ及び伸びの両方が低下し、成形性が不良になる。
【0010】
また、Siを0.05〜0.2重量%含有するものである。Siが0.05重量%未満になると、引張強さ及び伸びの両方、特に引張強さが低下するため、好ましくない。Siが0.2重量%を超えると、引張強さ及び伸びの両方が低下し、成形性が不良になる。上記したFe及びSiの含有量の残部は、Al(アルミニウム)であるが、その他、不可避的に混入してくる不純物元素を含有していても良い。
【0011】
アルミニウム合金箔8の厚さは任意であるが、一般的には、10〜100μmであるのが好ましい。厚さが10μm未満になると、引張強さが低下する傾向が生じる。即ち、本発明で用いるアルミニウム合金箔8は、引張強さの高いものであるが、それでも、厚さが10μm未満になると、外装材本体として十分な引張強さを実現しにくくなる。また、厚さが100μmを超えると、外装材全体の厚さが厚くなりすぎて、得られる二次電池の小型化が図りにくくなる。
【0012】
本発明に用いるアルミニウム合金箔8は、一般的に、以下の如き方法で得るのが好ましい。即ち、Fe:0.5〜1.7重量%、Si:0.05〜0.2重量%及びAl:残部よりなるアルミニウム鋳塊を準備し、この鋳塊に均質化処理及び熱間圧延を施した後、冷間圧延及び必要により中間焼鈍を施して、所定厚さのアルミニウム箔を得た後、最終焼鈍を施せば良い。特に、最終焼鈍を施すことにより、高い引張強さと高い伸びとを兼ね備えたアルミニウム合金箔を得ることができる。最終焼鈍の条件としては、180〜500℃で1〜10時間程度であれば良い。
【0013】
本発明に係る二次電池用外装材料は、一般的には、以下のような層構成からなっている。即ち、合成樹脂製フィルム10、アルミニウム合金箔8、熱封緘層9の順に積層されてなる。合成樹脂製フィルム10は、二次電池用外装材料の引張強さをより高めるため、或いは外装材本体であるアルミニウム合金箔8を保護するため、或いは印刷を可能ならしめるために、アルミニウム合金箔8の片面に積層貼着されるものである。このような合成樹脂製フィルム10としては、ポリエステルフィルムやナイロンフィルム等が用いられる。特に、二次電池は発熱を伴う場合が多いので、耐熱性ポリエステルフィルムを用いるのが好ましい。
【0014】
熱封緘層9は、二次電池の端部7,7を封緘するためのものである。熱封緘層9としては、本発明で用いるアルミニウム合金箔8との貼着性にも優れたジカルボン酸変成ポリオレフィン、具体的にはマレイン酸変成ポリオレフィンを用いる。
【0015】
合成樹脂製フィルム10、本発明で用いるアルミニウム合金箔8、熱封緘層9の順に積層されてなる二次電池用外装材料の製造方法は、特許第2567360号に係る発明を利用した以下の方法である。即ち、アルミニウム合金箔の片面に、ジカルボン酸変成ポリオレフィンを固形分とするオルガノゾルを塗布した後、該オルガノゾルを乾燥して接着性皮膜を形成せしめ、次いで、ポリプロピレンフィルムの両面に、該オルガノゾル中のジカルボン酸変成ポリオレフィンと同種のジカルボン酸変成ポリオレフィンフィルムが貼合された三層フィルムと該接着性皮膜とを圧着して、該アルミニウム合金箔と該三層フィルムとを貼着した後、該アルミニウム合金箔の他面に、接着剤を介して合成樹脂製フィルムを貼着するというものである。以下、この方法を具体的に説明する。
【0016】
まず、本発明で用いるアルミニウム合金箔8の片面に、ジカルボン酸変成ポリオレフィンを固形分とするオルガノゾルを塗布する。ジカルボン酸変成ポリオレフィンは、ポリエチレン又はポリプロピレンの側鎖にジカルボン酸を付加したものであり、一般的にはポリプロピレンの側鎖にマレイン酸又は無水マレイン酸を付加させたものが用いられる。また、酸変成ポリオレフィンを固形分とするオルガノゾルとは、有機液体中に酸変成ポリオレフィンがコロイド状で分散しているコロイド溶液である。有機液体としては、炭化水素系の液体が用いられ、主としてトルエンが用いられる。また、オルガノゾルの固形分濃度は5〜50重量%程度である。
【0017】
オルガノゾルが塗布された後、乾燥工程に導入し、オルガノゾルを乾燥する。乾燥条件は、温度150〜220℃、時間5〜40秒程度である。この乾燥工程により、オルガノゾルは固化し接着性皮膜となる。オルガノゾルはジカルボン酸変成ポリオレフィンがコロイド状となって分散しているので、アルミニウム合金箔8の片面上に比較的均一に塗布され、均一な接着性皮膜が得られる。
【0018】
この後、接着性皮膜表面上に三層フィルムが重合され、圧着することによってアルミニウム合金箔と三層フィルムとが貼着される。この三層フィルムは、ポリプロピレンフィルムの両面に、上記したオルガノゾル中のジカルボン酸変成ポリオレフィンと同種のジカルボン酸変成ポリオレフィンフィルムが貼合されたものである。ポリプロピレンフィルムの片面に貼合されたジカルボン酸変成ポリオレフィンフィルムは、接着性皮膜と圧着し貼着するためのものである。この圧着は、一般的に加熱下で行われる。加熱条件は、160〜240℃程度である。また、圧着条件は、圧力0.5〜2kg/cmであり、時間0.5〜3秒程度である。一方、ポリプロピレンフィルムの他面に貼合されたジカルボン酸変成ポリオレフィンフィルムは、熱封緘層9として機能するものであり、二次電池の端部7,7を封緘するために用いられるものである。この封緘も、一般的に加熱下で行われる。加熱条件も、160〜240℃程度である。また、熱封緘の際の圧着条件も、圧力0.5〜2kg/cmであり、時間0.5〜3秒程度である。
【0019】
三層フィルム中のジカルボン酸変成ポリオレフィンフィルムは、オルガノゾル中のジカルボン酸変成ポリオレフィンと同種のものが用いられる。従って、オルガノゾル中のジカルボン酸変成ポリオレフィンとして、無水マレイン酸変成ポリプロピレンを用いた場合には、三層フィルム中のジカルボン酸変成ポリオレフィンフィルムとして無水マレイン酸変成ポリプロピレンを用いなければならない。これは、接着性皮膜と三層フィルムの貼着強度(接着強度)を高めるためであると共に、二次電池の端部7,7における封緘強度(接着強度)を高めるためである。なお、三層フィルムとしては、特に三層共押出フィルムを用いるのが好ましい。
【0020】
次に、アルミニウム合金箔の他面(三層フィルムが貼着されていない面)に、接着剤を介して合成樹脂製フィルム10を貼着する。接着剤としては、従来公知のものが用いられ、例えば、ウレタン系接着剤等が用いられる。また、合成樹脂製フィルムも従来公知のものが用いられ、例えば、耐熱性ポリエステルフィルムが用いられる。以上のようにして、合成樹脂製フィルム10,特定の合金組成を持つアルミニウム合金箔8,ジカルボン酸変成ポリオレフィンのオルガノゾルで形成された接着性皮膜,三層フィルム〔ジカルボン酸変成ポリオレフィンフィルム/ポリプロピレンフィルム/ジカルボン酸変成ポリオレフィンフィルム(熱封緘層9である)〕の順で積層された二次電池用外装材料が得られるのである。
【0021】
本発明に係る二次電池用外装材料を用いて、二次電池を得る方法の一例としては、以下のような方法が挙げられる。即ち、二次電池用外装材料を所望の大きさに裁断して外装材を得る。この外装材に、中央部が凹部となり周辺部が平坦部となるように、且つ、熱封緘層側が内面となるように、絞り成形を施す。絞り成形を施した外装材2枚を用いて、凹部同士が対向するようにし、且つ、周辺部の熱封緘層同士が当接するようにして積層する。そして、一部を残し、他の周辺部を熱封緘して、袋を得る。そして、この袋の口から、正極集電体2,正極3,隔離材4,負極5,負極集電体6の順で積層された積層体を電解質で含浸し活性化させた二次電池本体を収納する。最後に、二次電池本体から延びているリード線を外部に出すようにして、袋の口を再度、熱封緘すれば、二次電池が得られるのである。
【0022】
【実施例】
実施例1〜4及び比較例1〜4
表1に示した元素組成を持つアルミニウム鋳塊を準備した。そして、均質化処理及び熱間圧延を施して、厚さ600μmのアルミニウム板を得た。このアルミニウム板に冷間圧延を施して、厚さ30μmのアルミニウム箔を得た後、温度320℃で5時間の条件で最終焼鈍を施し、アルミニウム合金箔を得た。得られたアルミニウム合金箔の引張強さ(N/mm)及び伸び(%)を測定し、その結果を表1に示した。また、冷間圧延中に圧延切れが生じた場合、その回数も表1に示した。更に、得られたアルミニウム合金箔のピンホールの数(10−4 個/m)も表1に示した。
【0023】
【表1】

Figure 0003596666
【0024】
表1中の元素組成の単位は、重量%である。また、ピンホール数(10−4 個/m)は、50μmφのピンホールが検出しうる装置で測定したものである。更に、アルミニウム合金箔の引張強さ(N/mm)は、巾15mmの短冊状試料片を用い、チャック間距離50mmで、引張速度10mm/min.の速度で引っ張り、短冊状試料片が破断したときの応力を測定した。また、伸び(%)は、引張強さの場合と同様の測定方法で、短冊状試料片が破断したときのチャック間距離をL(mm)としたとき、〔(L−50)/50〕×100で算出されるものである。
【0025】
以上の結果から明らかなように、実施例で用いるアルミニウム合金箔は、比較例で用いるものに比べて、引張強さ及び伸び共に優れていることが分かる。従って、実施例で用いるアルミニウム合金箔を、二次電池用外装材の外装材本体として用いた場合、外装材の深絞りが可能となり、厚さの比較的厚いシート状の二次電池を得ることが可能である。また、実施例で用いるアルミニウム合金箔は、ピンホールも殆ど無いため、水分や空気等を透過する恐れがなく、二次電池用外装材本体として好適であることが分かる。なお、実施例で用いるアルミニウム合金箔は、冷間圧延途中において、圧延切れも殆ど発生せず、製造しやすいものでもある。
【0026】
次に、実施例のアルミニウム合金箔を用いた二次電池用外装材料の深絞り性がどの程度であるかを、試験するために、以下の実験を行った。即ち、実施例及び比較例で得られた各アルミニウム合金箔の片面に、平均粒径6〜8μmの無水マレイン酸変成ポリプロピレン15重量部とトルエン85重量部よりなるオルガノゾルを塗布し、200℃で20秒間の条件で乾燥し、厚さ2μmの接着性皮膜を得た。次に、厚さ30μmのポリプロピレンフィルムの両面に、厚さ10μmの無水マレイン酸変成ポリプロピレンフィルムが貼合された三層共押出フィルムを、温度200℃、圧力2kg/cm2、時間1秒間の圧着条件で、接着性皮膜表面に圧着して貼着した。最後に、アルミニウム合金箔の他面(三層共押出フィルムが貼着されていない面)に、厚さ12μmの耐熱性ポリエステルフィルムをウレタン系接着剤を介して貼着して、二次電池用外装材料を得た。この外装材料にエリクセン試験を行って、外装材料の変形能が、どの程度であるかを測定し、その結果を表1に示した。なお、エリクセン試験は、耐熱性ポリエステルフィルム面を張り出し面とし、JIS Z 2247に記載の方法に準拠した行った。エリクセン値(mm)が大きいほど、変形能が大きいことを示している。
【0027】
表1の結果から明らかなように、実施例のアルミニウム合金箔を用いて得られた二次電池外装材料は、比較例ものに比べて、エリクセン値が大きく、その変形能が大きいことを示している。従って、実施例アルミニウム合金箔を用いて得られた二次電池外装材料は、深絞り成形が良好に行え、厚さの比較的厚い二次電池を作成するのに適していることが分かる。
【0028】
【発明の効果】
以上の説明から明らかなように、本発明に係る方法で得られた二次電池用外装材料は、特定の元素組成よりなるアルミニウム合金箔層を用いると共に、特定の方法で熱封緘層を設けたので、引張強さ及び伸び共に向上、深絞り成形が可能となり、厚さの比較的厚い二次電池を製造することができ、電池容量を増大させることができるという効果を奏する。また、引張強さ及び伸び共に向上するので、アルミニウム合金箔層の厚さを薄くすることも可能となり、二次電池用外装材料の厚さを薄くすること、即ち、二次電池の外装部の嵩を小さくすることができ、二次電池本体の大きさを小さくすることなく、二次電池の小型化を図ることができるという効果も奏する。〔発明の名称〕二次電池用外装材料の製造方法
【0029】
従って、本発明に係る方法で得られた二次電池用外装材料は、シート状のリチウム金属二次電池,リチウムイオン二次電池,ポリマーリチウムイオン二次電池等の外装材として有益である。
【図面の簡単な説明】
【図1】シート状で薄型のポリマーリチウムイオン二次電池の内部構造の一例を示した模式的断面図である。
【図2】二次電池の外装材の一般例を示した模式的断面図である。
【符号の説明】
1 外装材
2 正極集電体
3 正極
4 隔離材(セパレーター)
5 負極
6 負極集電体
7 外装材の端部
8 外装材本体(アルミニウム合金箔)
9 熱封緘層
10 合成樹脂製フィルム[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing an exterior material that can be suitably used as an exterior material for various secondary batteries such as a lithium ion secondary battery, and in particular, a method for manufacturing an exterior material for a secondary battery capable of performing a certain degree of deep drawing. It is about.
[0002]
[Prior art]
Rechargeable batteries such as sheet-like thin polymer lithium-ion secondary batteries are useful as a driving source in recent years as electronic devices such as mobile communication devices, notebook computers, headphone stereos, and camcorders become smaller and lighter. Has been. For example, the secondary battery has a configuration as shown in FIG. That is, a laminate (secondary battery body) in which the positive electrode current collector 2, the positive electrode 3, the separator (separator) 4, the negative electrode 5, and the negative electrode current collector 6 are stacked in this order is packaged and stored in the exterior materials 1 and 1. It has become the composition. The exterior materials 1 and 1 are heat sealed at the end portions 7 and 7.
[0003]
As shown in FIG. 2, the exterior material 1 is generally an aspect in which a heat sealing layer 9 is laminated and laminated on one side of the exterior material body 8 and a synthetic resin film 10 is laminated and laminated on the other surface. It has become. As shown in FIG. 1, the exterior material 1 is formed so that a central portion thereof is a concave portion and a peripheral portion thereof is a flat portion in order to accommodate a laminated body such as the positive electrode current collector 2. Therefore, it is necessary to adopt a material having good moldability as the exterior material body 8, the heat sealing layer 9, and the synthetic resin film 10.
[0004]
Conventionally, as the exterior material body 8, a metal foil, particularly an aluminum foil, which is difficult to transmit moisture, air, or the like is used so as not to adversely affect battery performance. As the aluminum foil, one having a composition defined by alloy number 1100, 3003 or 3004 (JIS H 4160) is used. Such an aluminum foil is excellent in tensile strength and is preferable to be hardly broken. However, cracks and pinholes sometimes occur when molding is performed such that the degree of tensile elongation is low and deep recesses are formed. Therefore, there is no problem in obtaining a sheet-shaped secondary battery with a small thickness, but in order to increase the battery capacity, the thickness of the secondary battery body is increased to obtain a sheet-shaped secondary battery with a relatively thick thickness. There was a problem in obtaining the next battery. That is, when molding is performed so as to form a deep recess in the central portion of the exterior material 1, cracks or the like occur in the boundary portion between the recess and the flat portion of the exterior material body 8, and moisture, air, and the like are easily transmitted. There was the fault that it became the exterior material 1 which has a bad influence on battery performance.
[0005]
For this reason, it has been proposed to use an aluminum alloy foil having a high tensile elongation, in particular, an aluminum alloy foil made of Fe: 0.6% by weight or more and Al: the balance as the exterior material body 8 (Japanese Patent Laid-Open No. 10-1990). 208708). Certainly, this aluminum alloy foil has improved tensile elongation, but is still insufficient. That is, there was a stagnation that the degree of improvement in tensile elongation was small and the tensile strength was reduced by the amount of improvement in tensile elongation.
[0006]
[Problems to be solved by the invention]
Therefore, as a result of further study of the elemental composition of the aluminum alloy foil, the present inventors made Al contain a specific amount of Fe and a specific amount of Si, and provided a heat sealing layer by a specific method. both tensile strength was improved better, found that exterior materials of the secondary battery is obtained, have reached the present invention.
[0007]
[Means for Solving the Problems]
That is, the present invention provides a dicarboxylic acid modified polyolefin as a solid content on one surface of an aluminum alloy foil comprising Fe: 0.5 to 1.7 wt%, Si: 0.05 to 0.2 wt%, and Al: the balance. After the organosol is applied, the organosol is dried to form an adhesive film, and then a dicarboxylic acid modified polyolefin film of the same type as the dicarboxylic acid modified polyolefin in the organosol is bonded to both sides of the polypropylene film. After pressure bonding the layer film and the adhesive film, the aluminum alloy foil and the three-layer film are adhered, and then a synthetic resin film is adhered to the other surface of the aluminum alloy foil via an adhesive. The present invention relates to a method for manufacturing a secondary battery exterior material. In the present invention, the “exterior material” for a secondary battery means a material that is cut into a predetermined size and used for the production of a secondary battery. Means a state before being cut into a predetermined size. Therefore, it is substantially synonymous.
[0008]
The secondary battery exterior material according to the present invention is generally composed of a plurality of layers, but at least Fe: 0.5 to 1.7% by weight, Si: 0.05 to 0.2% by weight. % And Al: an aluminum alloy foil layer comprising the balance is included. The aluminum alloy foil layer functions as the exterior material body 8.
[0009]
As described above, the alloy composition of the aluminum alloy foil 8 used in the present invention contains 0.5 to 1.7% by weight of Fe. When Fe is less than 0.5% by weight, both the tensile strength and the elongation are lowered, resulting in poor formability. Moreover, even if Fe exceeds 1.7 weight%, both tensile strength and elongation fall, and a moldability becomes bad.
[0010]
Moreover, it contains 0.05 to 0.2% by weight of Si. When Si is less than 0.05% by weight, both tensile strength and elongation, particularly tensile strength, are lowered, which is not preferable. When Si exceeds 0.2% by weight, both the tensile strength and the elongation are lowered, resulting in poor formability. The balance of the contents of Fe and Si described above is Al (aluminum), but may contain other impurity elements that are inevitably mixed.
[0011]
The thickness of the aluminum alloy foil 8 is arbitrary, but in general, it is preferably 10 to 100 μm. When the thickness is less than 10 μm, the tensile strength tends to decrease. That is, the aluminum alloy foil 8 used in the present invention has a high tensile strength. However, if the thickness is less than 10 μm, it is difficult to achieve a sufficient tensile strength as the exterior material body. On the other hand, when the thickness exceeds 100 μm, the thickness of the entire exterior material becomes too thick, and it is difficult to reduce the size of the obtained secondary battery.
[0012]
In general, the aluminum alloy foil 8 used in the present invention is preferably obtained by the following method. That is, an aluminum ingot consisting of Fe: 0.5 to 1.7% by weight, Si: 0.05 to 0.2% by weight and Al: the balance is prepared, and the ingot is subjected to homogenization treatment and hot rolling. After applying, cold rolling and, if necessary, intermediate annealing may be performed to obtain an aluminum foil having a predetermined thickness, and then final annealing may be performed. In particular, by performing the final annealing, an aluminum alloy foil having both high tensile strength and high elongation can be obtained. The final annealing condition may be about 180 to 500 ° C. for about 1 to 10 hours.
[0013]
The secondary battery exterior material according to the present invention generally has the following layer structure. That is, the synthetic resin film 10, the aluminum alloy foil 8, and the heat sealing layer 9 are laminated in this order. The synthetic resin film 10 is used to increase the tensile strength of the exterior material for the secondary battery, to protect the aluminum alloy foil 8 that is the exterior material body, or to enable printing. Is laminated and adhered to one side. As such a synthetic resin film 10, a polyester film, a nylon film, or the like is used. In particular, since secondary batteries often generate heat, it is preferable to use a heat-resistant polyester film.
[0014]
The heat sealing layer 9 is for sealing the end portions 7 and 7 of the secondary battery. As the heat sealing layer 9, a dicarboxylic acid-modified polyolefin excellent in adhesion to the aluminum alloy foil 8 used in the present invention, specifically, a maleic acid-modified polyolefin is used.
[0015]
The manufacturing method of the exterior material for the secondary battery in which the synthetic resin film 10, the aluminum alloy foil 8 used in the present invention, and the heat sealing layer 9 are laminated in this order is the following method using the invention according to Japanese Patent No. 2567360. is there. That is, after applying an organosol having a dicarboxylic acid-modified polyolefin as a solid content on one surface of an aluminum alloy foil, the organosol is dried to form an adhesive film, and then, on both surfaces of a polypropylene film, The aluminum alloy foil and the three-layer film are bonded together by pressure-bonding the three-layer film bonded with the acid-modified polyolefin and the same kind of dicarboxylic acid-modified polyolefin film, and then bonding the aluminum alloy foil and the three-layer film. A synthetic resin film is stuck to the other surface via an adhesive. Hereinafter, this method will be specifically described.
[0016]
First, an organosol having a dicarboxylic acid-modified polyolefin as a solid content is applied to one surface of an aluminum alloy foil 8 used in the present invention. The dicarboxylic acid-modified polyolefin is obtained by adding dicarboxylic acid to the side chain of polyethylene or polypropylene, and generally used is that obtained by adding maleic acid or maleic anhydride to the side chain of polypropylene. An organosol having an acid-modified polyolefin as a solid content is a colloidal solution in which an acid-modified polyolefin is colloidally dispersed in an organic liquid. As the organic liquid, a hydrocarbon-based liquid is used, and toluene is mainly used. Moreover, the solid content concentration of the organosol is about 5 to 50% by weight.
[0017]
After the organosol is applied, it is introduced into a drying process, and the organosol is dried. Drying conditions are a temperature of 150 to 220 ° C. and a time of about 5 to 40 seconds. By this drying step, the organosol is solidified and becomes an adhesive film. In the organosol, the dicarboxylic acid-modified polyolefin is dispersed in a colloidal form, so that it is applied relatively uniformly on one surface of the aluminum alloy foil 8 to obtain a uniform adhesive film.
[0018]
Thereafter, the three-layer film is polymerized on the surface of the adhesive film, and the aluminum alloy foil and the three-layer film are adhered by pressure bonding. In this three-layer film, a dicarboxylic acid-modified polyolefin film of the same type as the dicarboxylic acid-modified polyolefin in the organosol is bonded to both surfaces of a polypropylene film. The dicarboxylic acid-modified polyolefin film bonded to one side of a polypropylene film is for pressure-bonding and bonding with an adhesive film. This pressure bonding is generally performed under heating. Heating conditions are about 160-240 degreeC. The pressure bonding conditions are a pressure of 0.5 to 2 kg / cm 2 and a time of about 0.5 to 3 seconds. On the other hand, the dicarboxylic acid-modified polyolefin film bonded to the other surface of the polypropylene film functions as the heat sealing layer 9 and is used for sealing the end portions 7 and 7 of the secondary battery. This sealing is also generally performed under heating. Heating conditions are also about 160-240 degreeC. Moreover, the pressure bonding conditions for heat sealing are also a pressure of 0.5 to 2 kg / cm 2 and a time of about 0.5 to 3 seconds.
[0019]
As the dicarboxylic acid-modified polyolefin film in the three-layer film, the same kind as the dicarboxylic acid-modified polyolefin in the organosol is used. Therefore, when maleic anhydride-modified polypropylene is used as the dicarboxylic acid-modified polyolefin in the organosol, maleic anhydride-modified polypropylene must be used as the dicarboxylic acid-modified polyolefin film in the three-layer film. This is to increase the adhesion strength (adhesion strength) between the adhesive film and the three-layer film and to increase the sealing strength (adhesion strength) at the end portions 7 and 7 of the secondary battery. As the three-layer film, it is particularly preferable to use a three-layer coextruded film.
[0020]
Next, the synthetic resin film 10 is attached to the other surface of the aluminum alloy foil (the surface on which the three-layer film is not attached) via an adhesive. A conventionally well-known thing is used as an adhesive agent, for example, a urethane type adhesive agent etc. are used. Moreover, a conventionally well-known thing is used for the film made from a synthetic resin, for example, a heat resistant polyester film is used. As described above, the synthetic resin film 10, the aluminum alloy foil 8 having a specific alloy composition, the adhesive film formed from the organosol of dicarboxylic acid modified polyolefin, the three-layer film [dicarboxylic acid modified polyolefin film / polypropylene film / Thus, an exterior material for a secondary battery laminated in the order of dicarboxylic acid-modified polyolefin film (which is a heat sealing layer 9)] is obtained.
[0021]
The following method is mentioned as an example of the method of obtaining a secondary battery using the exterior material for secondary batteries which concerns on this invention. That is, the exterior material for a secondary battery is cut into a desired size to obtain an exterior material. The exterior material is subjected to drawing so that the central portion becomes a concave portion and the peripheral portion becomes a flat portion, and the heat sealing layer side becomes an inner surface. Using two exterior materials that have been subjected to draw molding, the concave portions are opposed to each other, and the heat sealing layers in the peripheral portion are in contact with each other. And a part is left and the other peripheral part is heat-sealed, and a bag is obtained. And the secondary battery main body which impregnated and activated the laminated body laminated | stacked in order of the positive electrode collector 2, the positive electrode 3, the separator 4, the negative electrode 5, and the negative electrode collector 6 from the opening | mouth of this bag Storing. Finally, if the lead wire extending from the secondary battery main body is exposed to the outside and the bag mouth is heat sealed again, the secondary battery can be obtained.
[0022]
【Example】
Examples 1-4 and Comparative Examples 1-4
An aluminum ingot having the elemental composition shown in Table 1 was prepared. And the homogenization process and the hot rolling were given, and the 600-micrometer-thick aluminum plate was obtained. This aluminum plate was cold-rolled to obtain an aluminum foil having a thickness of 30 μm, and then subjected to final annealing at a temperature of 320 ° C. for 5 hours to obtain an aluminum alloy foil. The obtained aluminum alloy foil was measured for tensile strength (N / mm 2 ) and elongation (%), and the results are shown in Table 1. Table 1 also shows the number of rolling breaks during cold rolling. Furthermore, Table 1 also shows the number of pinholes (10 −4 / m 2 ) in the obtained aluminum alloy foil.
[0023]
[Table 1]
Figure 0003596666
[0024]
The unit of elemental composition in Table 1 is% by weight. The number of pinholes (10 −4 / m 2 ) was measured with a device capable of detecting 50 μmφ pinholes. Furthermore, the tensile strength (N / mm 2 ) of the aluminum alloy foil is a strip-shaped sample piece having a width of 15 mm, a distance between chucks of 50 mm, and a tensile speed of 10 mm / min. The stress was measured when the strip specimen was broken at a speed of. Elongation (%) is the same measurement method as in the case of tensile strength. When the distance between chucks when a strip-shaped sample piece is broken is L (mm), [(L-50) / 50]. It is calculated by x100.
[0025]
As is apparent from the above results, the aluminum alloy foil used in the embodiment, as compared with those used in Comparative Example, it is seen that excellent tensile strength and elongation both. Therefore, when the aluminum alloy foil used in the examples is used as an exterior material body of an exterior material for a secondary battery, the exterior material can be deep-drawn, and a sheet-like secondary battery having a relatively thick thickness can be obtained. Is possible. In addition, since the aluminum alloy foil used in the examples has few pinholes, there is no risk of permeation of moisture, air, etc., and it can be seen that the aluminum alloy foil is suitable as a main body for a secondary battery. In addition, the aluminum alloy foil used in the Examples is easy to manufacture, with almost no rolling breaks occurring during cold rolling.
[0026]
Next, the following experiment was conducted in order to test the degree of deep drawability of the secondary battery exterior material using the aluminum alloy foil of the example. That is, an organosol consisting of 15 parts by weight of maleic anhydride-modified polypropylene having an average particle size of 6 to 8 μm and 85 parts by weight of toluene was applied to one side of each aluminum alloy foil obtained in the examples and comparative examples. The film was dried for 2 seconds to obtain an adhesive film having a thickness of 2 μm. Next, a three-layer coextruded film in which a 10 μm-thick maleic anhydride-modified polypropylene film is bonded to both sides of a 30 μm-thick polypropylene film is bonded at a temperature of 200 ° C., a pressure of 2 kg / cm 2 , and a time of 1 second. Under the conditions, the adhesive film was pressure-bonded and adhered. Finally, a heat-resistant polyester film with a thickness of 12 μm is attached to the other surface of the aluminum alloy foil (the surface on which the three-layer coextruded film is not attached) via a urethane-based adhesive. An exterior material was obtained. The exterior material was subjected to an Erichsen test to determine the degree of deformability of the exterior material, and the results are shown in Table 1. The Erichsen test was conducted in accordance with the method described in JIS Z 2247 with the heat-resistant polyester film surface as the overhanging surface. The larger the Eriksen value (mm), the greater the deformability.
[0027]
From the results apparent Table 1, the secondary battery exterior material obtained by using an aluminum alloy foil embodiment, as compared with that of Comparative Example, Erichsen value is high, indicates that the deformability is greater ing. Therefore, it can be seen that the secondary battery exterior material obtained using the aluminum alloy foil of the example can be satisfactorily formed by deep drawing and is suitable for producing a relatively thick secondary battery.
[0028]
【The invention's effect】
As apparent from the above description, the exterior material for a secondary battery obtained by the method according to the present invention, Rutotomoni an aluminum alloy foil layer comprising a specific elemental composition, the heat seal layer in a particular way provided since, improved tensile strength and elongation both enables deep drawing, it is possible to produce a relatively thick secondary battery having a thickness of, advantageously possible to increase the battery capacity. Moreover, since both the tensile strength and the elongation are improved, it is possible to reduce the thickness of the aluminum alloy foil layer, and to reduce the thickness of the secondary battery exterior material, that is, the secondary battery exterior part. The bulk can be reduced, and the secondary battery can be reduced in size without reducing the size of the secondary battery body. [Title of the Invention] Method for Producing Secondary Battery Exterior Material
Therefore, the packaging material for a secondary battery obtained by the method according to the present invention is useful as a packaging material for a sheet-like lithium metal secondary battery, a lithium ion secondary battery, a polymer lithium ion secondary battery, and the like.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of the internal structure of a sheet-like thin polymer lithium ion secondary battery.
FIG. 2 is a schematic cross-sectional view showing a general example of a packaging material for a secondary battery.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Exterior material 2 Positive electrode collector 3 Positive electrode 4 Separation material (separator)
5 Negative Electrode 6 Negative Electrode Current Collector 7 Exterior Material End 8 Exterior Material Body (Aluminum Alloy Foil)
9 Heat sealing layer 10 Synthetic resin film

Claims (1)

Fe:0.5〜1.7重量%、Si:0.05〜0.2重量%及びAl:残部よりなるアルミニウム合金箔の片面に、ジカルボン酸変成ポリオレフィンを固形分とするオルガノゾルを塗布した後、該オルガノゾルを乾燥して接着性皮膜を形成せしめ、次いで、ポリプロピレンフィルムの両面に、該オルガノゾル中のジカルボン酸変成ポリオレフィンと同種のジカルボン酸変成ポリオレフィンフィルムが貼合された三層フィルムと該接着性皮膜とを圧着して、該アルミニウム合金箔と該三層フィルムとを貼着した後、該アルミニウム合金箔の他面に、接着剤を介して合成樹脂製フィルムを貼着することを特徴とする二次電池用外装材料の製造方法。After applying an organosol having a dicarboxylic acid-modified polyolefin as a solid content on one side of an aluminum alloy foil comprising Fe: 0.5 to 1.7% by weight, Si: 0.05 to 0.2% by weight, and Al: the balance The organosol was dried to form an adhesive film, and then the three-layer film in which the dicarboxylic acid-modified polyolefin film of the same type as the dicarboxylic acid-modified polyolefin in the organosol was bonded to both surfaces of the polypropylene film and the adhesive property A film is pressure-bonded, and after the aluminum alloy foil and the three-layer film are adhered, a synthetic resin film is adhered to the other surface of the aluminum alloy foil via an adhesive. A method for manufacturing a secondary battery exterior material.
JP35406099A 1999-12-14 1999-12-14 Manufacturing method of secondary battery-like exterior material Expired - Fee Related JP3596666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35406099A JP3596666B2 (en) 1999-12-14 1999-12-14 Manufacturing method of secondary battery-like exterior material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35406099A JP3596666B2 (en) 1999-12-14 1999-12-14 Manufacturing method of secondary battery-like exterior material

Publications (2)

Publication Number Publication Date
JP2001176459A JP2001176459A (en) 2001-06-29
JP3596666B2 true JP3596666B2 (en) 2004-12-02

Family

ID=18435033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35406099A Expired - Fee Related JP3596666B2 (en) 1999-12-14 1999-12-14 Manufacturing method of secondary battery-like exterior material

Country Status (1)

Country Link
JP (1) JP3596666B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4910229B2 (en) * 2000-09-13 2012-04-04 株式会社Gsユアサ Film package battery
WO2002043178A1 (en) 2000-11-21 2002-05-30 Sony Corporation Polymer electrolyte battery and method of producing same
JP5266628B2 (en) * 2006-08-28 2013-08-21 大日本印刷株式会社 Battery packaging material
JP2008093933A (en) * 2006-10-11 2008-04-24 Matsushita Electric Ind Co Ltd Vacuum heat insulating material
KR100846296B1 (en) * 2006-12-22 2008-07-14 율촌화학 주식회사 Pouch for packing cell and method for preparing the same
CN103140592B (en) * 2010-09-16 2015-07-15 株式会社Uacj Material for molded packages
JP5565358B2 (en) * 2011-03-25 2014-08-06 大日本印刷株式会社 battery
JP6022956B2 (en) * 2012-01-26 2016-11-09 昭和電工パッケージング株式会社 Molding packaging material and lithium secondary battery
KR102045000B1 (en) * 2012-03-29 2019-11-14 가부시키가이샤 유에이씨제이 Aluminum alloy foil for electrode current collector and method for manufacturing same
CN104364929B (en) 2012-06-04 2015-11-25 大日本印刷株式会社 Battery use packing material
JP6058363B2 (en) * 2012-11-21 2017-01-11 株式会社Uacj Aluminum alloy foil, molded packaging material, battery, pharmaceutical packaging container, and method for producing aluminum alloy foil
US20150298879A1 (en) * 2012-11-30 2015-10-22 Unitika Ltd. Packaging material for cold forming and press-through pack formed using same
WO2016153060A1 (en) * 2015-03-26 2016-09-29 大日本印刷株式会社 Battery packaging material
JP7213004B2 (en) 2017-01-06 2023-01-26 凸版印刷株式会社 Exterior material for power storage device and power storage device using the same
CN115927918A (en) * 2021-12-17 2023-04-07 江苏常铝铝业集团股份有限公司 Aluminum foil for air conditioner and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3567230B2 (en) * 1998-10-15 2004-09-22 昭和電工パッケージング株式会社 Battery case packaging material
JP5089833B2 (en) * 1999-09-20 2012-12-05 大日本印刷株式会社 Polymer battery packaging materials
JP3141021B1 (en) * 1999-09-17 2001-03-05 株式会社エイ・ティーバッテリー Battery

Also Published As

Publication number Publication date
JP2001176459A (en) 2001-06-29

Similar Documents

Publication Publication Date Title
JP3596666B2 (en) Manufacturing method of secondary battery-like exterior material
KR101842689B1 (en) Material for molded packages
EP4102528A1 (en) Energy storage device and method for manufacturing energy storage device
US10109826B2 (en) Secondary battery
JP5959205B2 (en) Battery exterior material, battery exterior material molding method and lithium secondary battery
US10026935B2 (en) Battery exterior body, method of manufacturing battery exterior body, and lithium secondary battery
JP6426895B2 (en) Battery exterior material and battery
JP5266628B2 (en) Battery packaging material
JP4627138B2 (en) Aluminum laminate material for battery packaging
JP5347411B2 (en) Packaging materials for electrochemical cells
WO2013191125A1 (en) Film pack battery
CN215955368U (en) Pouch type battery case and pouch type secondary battery
JP3452172B2 (en) Flat battery
JP2000357494A (en) Armouring material for secondary battery and manufacture of armouring material
JP2023526609A (en) Pouch film laminate, pouch-type battery case and pouch-type secondary battery
JP2017076510A (en) Sealant film for exterior package material of power storage device, exterior package material for power storage device, power storage device, and method for manufacturing resin composition for sealant film of power storage device exterior package material
CN111599944B (en) Battery cell
US20230402686A1 (en) Pouch Film for Secondary Battery and Manufacturing Method Thereof
JP6574366B2 (en) Sealant film for exterior material of electricity storage device, exterior material for electricity storage device, and electricity storage device
KR102282604B1 (en) Secondary battery pouch film containing graphene
JP2001240113A (en) Packaging material
WO2023022088A1 (en) Sheathing material for all-solid-state battery and all-solid-state battery
US20240186623A1 (en) Packaging material for all-solid-state batteries and all-solid-state battery
WO2023013783A1 (en) Power storage device and method for producing power storage device
CN118269428A (en) Pouch film for secondary battery, method for producing same, secondary battery, and method for producing same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040901

R150 Certificate of patent or registration of utility model

Ref document number: 3596666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees