JPWO2011108764A1 - High-strength seamless steel pipe for machine structure with excellent toughness and its manufacturing method - Google Patents

High-strength seamless steel pipe for machine structure with excellent toughness and its manufacturing method Download PDF

Info

Publication number
JPWO2011108764A1
JPWO2011108764A1 JP2011532386A JP2011532386A JPWO2011108764A1 JP WO2011108764 A1 JPWO2011108764 A1 JP WO2011108764A1 JP 2011532386 A JP2011532386 A JP 2011532386A JP 2011532386 A JP2011532386 A JP 2011532386A JP WO2011108764 A1 JPWO2011108764 A1 JP WO2011108764A1
Authority
JP
Japan
Prior art keywords
steel pipe
less
toughness
strength
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011532386A
Other languages
Japanese (ja)
Other versions
JP4860786B2 (en
Inventor
坂本 真也
真也 坂本
朝日 均
均 朝日
潤一 岡本
潤一 岡本
精二 石橋
精二 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2011532386A priority Critical patent/JP4860786B2/en
Application granted granted Critical
Publication of JP4860786B2 publication Critical patent/JP4860786B2/en
Publication of JPWO2011108764A1 publication Critical patent/JPWO2011108764A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

低コストで製造可能な、加速冷却ままで、高強度、高靭性を有するシームレス鋼管であって、質量%で、C:0.03〜0.20%、Si:0.01〜0.50%、Mn:0.80〜3.00%を含有し、P:0.020%以下、S:0.0080%以下、Al:0.050%以下、N:0.0080%以下、O:0.0050%以下に制限し、残部がFe及び不純物からなり、β=2.7C+0.4Si+Mn+0.45Ni+Mo(元素記号は各元素の含有量[質量%])が2.50〜4.00、Pcm=C+Si/30+(Mn+Cu)/20+Ni/60+Mo/15+V/10が0.15〜0.30であり、組織がフレッシュマルテンサイトからなり、旧オーステナイトの平均粒径が50〜200μmであることを特徴とする。A seamless steel pipe with high strength and high toughness that can be manufactured at a low cost, with accelerated cooling, and in mass%, C: 0.03 to 0.20%, Si: 0.01 to 0.50% , Mn: 0.80 to 3.00%, P: 0.020% or less, S: 0.0080% or less, Al: 0.050% or less, N: 0.0080% or less, O: 0 .0050% or less, the balance is Fe and impurities, β = 2.7C + 0.4Si + Mn + 0.45Ni + Mo (element symbol is the content [mass%] of each element) is 2.50 to 4.00, Pcm = C + Si / 30 + (Mn + Cu) / 20 + Ni / 60 + Mo / 15 + V / 10 is 0.15 to 0.30, the structure is fresh martensite, and the average grain size of the prior austenite is 50 to 200 μm .

Description

本発明は、特にシリンダー、ブッシュ、ブーム等の構造部材及びシャフト等の機械用部材に好適なシームレス鋼管及びその製造方法に関する。   The present invention relates to a seamless steel pipe particularly suitable for structural members such as cylinders, bushes, and booms, and mechanical members such as shafts, and a method for manufacturing the same.

自動車や産業機械等に使用される機械部品の多くは、棒鋼を鍛造、切削加工して所定の形状とした後、調質熱処理により、所定の機械的性質が付与される。
近年では、部品の製造コスト低減のため、また、機械等の軽量化のため、部品に要求される機械的性質を有する鋼管を素材として中空形状部品を製造し、鍛造工程の短縮及び熱処理工程を省略する場合も増えている。
しかし、一般に、鋼管は、棒鋼よりも高価であり、特にシームレス鋼管は、製造コストが高い。そのため、鋼管を中空形状部品の素材として用いても、コストダウンの効果が十分ではない。
これまでに、要求される機械的性質を有し、かつ、製造コストを低減した安価な鋼管を提供するために、さまざまな検討がされている。
特許文献1には、特定の組成の素管に、特定の温度域で絞り圧延と傾斜圧延とを組み合わせた加工を施すことにより、ミクロ組織をフェライト粒径2μm以下の微細かつ均一なフェライト、セメンタイト組織とし、高強度でかつ延性・靭性に優れる鋼管を製造する技術が開示されている。
特許文献2には、外表面からのみの加速冷却により、外面、内面の冷却速度の違いが生じる環境であっても、板厚方向全面に渡って、高強度、高靭性を両立できる最適な組織を生成する技術が開示されている。
特許文献3には、AlとTiの添加量を最適化して粒内変態を活用し、さらに、シームレス圧延後の加速冷却により製造する、高強度、高靭性を両立できる微細な金属組織を有する鋼管が開示されている。しかし、この技術では、粒内変態を活用するためにAl量を低減する必要があり、脱酸のコストが高くなる。
特許文献4には、機械構造部材用鋼管を安価に製造することを目的として、主にCr添加鋼で、金属組織が、自己焼戻しマルテンサイト単独組織、又は、下部ベイナイトとの混合組織である鋼管が開示されている。自己焼戻しマルテンサイトとは、加速冷却中にオーステナイト相がマルテンサイト変態し、加速冷却停止後の放冷で微細なセメンタイトがラス内に析出した組織である。
近年の、機械構造用部品の用途拡大や、環境問題に対応した排気ガス削減の要請に伴い、要求される機械的性質を保ちつつ、さらに低コストなシームレス鋼管が求められている。しかし、従来の技術では、高強度、高靭性を維持し、かつ、低コスト化するには限界があった。
また、鋼管の焼入れ性を向上させるためには、通常、Crを添加するが、Crを添加すると、圧延時のロールやプラグとの焼付に起因する表面疵が発生するという問題があった。
Many mechanical parts used in automobiles, industrial machines, and the like are given predetermined mechanical properties by tempering heat treatment after forging and cutting steel bars into a predetermined shape.
In recent years, in order to reduce the manufacturing cost of parts and to reduce the weight of machines, etc., hollow parts are manufactured using steel pipes with the mechanical properties required for parts as raw materials, shortening the forging process and heat treatment process. More cases are omitted.
However, in general, steel pipes are more expensive than bar steel, and seamless steel pipes are particularly expensive to manufacture. Therefore, even if the steel pipe is used as a material for the hollow part, the effect of cost reduction is not sufficient.
Various studies have been made so far to provide an inexpensive steel pipe having the required mechanical properties and reduced manufacturing costs.
Patent Document 1 discloses that a micro-structure of fine and uniform ferrite and cementite having a ferrite grain size of 2 μm or less is obtained by subjecting a raw tube having a specific composition to a combination of drawing and tilt rolling in a specific temperature range. A technique for producing a steel pipe having a structure and high strength and excellent ductility and toughness is disclosed.
Patent Document 2 discloses an optimum structure capable of achieving both high strength and high toughness across the entire plate thickness direction even in an environment where the cooling rate of the outer surface and the inner surface is different due to accelerated cooling only from the outer surface. Techniques for generating are disclosed.
Patent Document 3 discloses a steel pipe having a fine metal structure that can achieve both high strength and high toughness by using intragranular transformation by optimizing the addition amount of Al and Ti, and further producing by accelerated cooling after seamless rolling. Is disclosed. However, in this technique, it is necessary to reduce the amount of Al in order to utilize intragranular transformation, and the cost of deoxidation increases.
Patent Document 4 discloses a steel pipe mainly made of Cr-added steel and having a metal structure of a self-tempered martensite single structure or a mixed structure with lower bainite for the purpose of inexpensively manufacturing a steel pipe for machine structural members. Is disclosed. Self-tempered martensite is a structure in which austenite phase has undergone martensitic transformation during accelerated cooling, and fine cementite is precipitated in the lath by cooling after stopping the accelerated cooling.
With the recent expansion of applications of machine structural parts and demands for exhaust gas reduction corresponding to environmental problems, there is a need for a low-cost seamless steel pipe while maintaining the required mechanical properties. However, the conventional techniques have limitations in maintaining high strength and high toughness and reducing the cost.
In order to improve the hardenability of the steel pipe, Cr is usually added. However, when Cr is added, there is a problem that surface flaws are generated due to seizure with a roll or a plug during rolling.

特開2000−312907号公報JP 2000-312907 A 特開2008−266700号公報JP 2008-266700 A 特開2009−52106号公報JP 2009-52106 A 特開2007−262468号公報JP 2007-262468 A

本発明は、上記のような現状に鑑みてなされたものであり、特にシリンダー、ブッシュ、ブーム等の構造部材及びシャフト等の機械用部材に好適な、高強度、高靭性で、溶接性に優れ、かつ、表面疵の発生を抑えられる機械構造用シームレス鋼管の提供、及び、適正な熱処理によって機械構造用シームレス鋼管を安価に製造する方法の提供を課題とする。   The present invention has been made in view of the above situation, and is particularly suitable for structural members such as cylinders, bushes, booms, and mechanical members such as shafts, and has high strength, high toughness, and excellent weldability. Further, it is an object of the present invention to provide a seamless steel pipe for machine structure that can suppress the occurrence of surface flaws, and a method for inexpensively manufacturing the seamless steel pipe for machine structure by appropriate heat treatment.

本発明者らは、表面疵の発生を防ぐために、Crを添加しない成分組成の鋼管について、鋼管の熱処理工程の省略によるコスト低減の検討を行った。具体的には、加速冷却まま鋼管(加速冷却後、熱処理を施さずに製造される鋼管)に注目し、検討した。
加速冷却まま鋼管の組織の旧オーステナイトの粒径は100μm程度であり、焼入れ、焼戻し処理(以下「QT処理」という)を施した鋼管(以下「QT鋼管」という)では20〜30μm程度である。
なお、脱酸元素であるAl量を0.010%以下に低減して、Tiを添加すれば、粒内変態を活用して粒径を微細にすることが可能である。しかし、本発明では、製造コストを低減するため、通常、脱酸に必要とされる0.010%超のAlを添加する。
したがって、従来、加速冷却まま鋼管の組織の粒径は、QT鋼管の組織の粒径と比較して粗大であり、QT鋼管と同等又は同等以上の強度及び靭性は確保できないと考えられていた。
また、表面疵の発生を防ぐためにCrを添加しないと、焼入れ性が低下するので、強度確保はさらに困難であり、強度確保のためにCr以外の金属を添加すると、コストが上昇すると考えられていた。
しかし、本発明者らが鋭意検討した結果、鋼管の成分組成を適正にすることで、靭性に有害な組織である上部ベイナイトの生成を抑制することができ、Crを添加しない加速冷却まま鋼管でも、溶接性を損なうことなく、QT鋼管と同等の強度及び靭性が得られることを見出した。
本発明は、上記知見に基づきなされたものであって、その要旨は以下のとおりである。
(1)質量%で、
C :0.03〜0.20%、
Si:0.01〜0.50%、
Mn:0.80〜3.00%、
Al:0.010%超、0.050%以下
を含有し、
P :0.020%以下、
S :0.0080%以下、
N :0.0080%以下、
O :0.0050%以下
に制限し、残部がFe及び不可避的不純物からなり、下記式(1)によって求められるβが2.50〜4.00、下記式(2)によって求められるPcmが0.15〜0.30であり、組織がフレッシュマルテンサイトからなり、旧オーステナイトの粒径が50〜200μmであることを特徴とする靭性に優れた機械構造用高強度シームレス鋼管。
β=2.7C+0.4Si+Mn+0.45Ni
+Mo …(1)
Pcm=C+Si/30+(Mn+Cu)/20
+Ni/60+Mo/15+V/10 …(2)
ここで、C、Si、Mn、Ni、Cu、Mo、Vは各元素の含有量[質量%]である。
(2)さらに、前記鋼管が、質量%で、
B :0.0001〜0.0030%
を含有し、前記式(1)に代えて下記式(3)よって求められるβが2.50〜4.00、前記式(2)に代えて下記式(4)によって求められるPcmが0.15〜0.30であることを特徴とする前記(1)の靭性に優れた機械構造用高強度シームレス鋼管。
β=2.7C+0.4Si+Mn+0.45Ni
+2Mo …(3)
Pcm=C+Si/30+(Mn+Cu)/20
+Ni/60+Mo/15+V/10+5B …(4)
ここで、C、Si、Mn、Ni、Cu、Mo、V、Bは各元素の含有量[質量%]である。
(3)さらに、前記鋼管が、質量%で、
Ni:1.00%以下、
Cu:1.00%以下、
Mo:1.50%以下
の1種又は2種以上を含有することを特徴とする前記(1)又は(2)の靭性に優れた機械構造用高強度シームレス鋼管。
(4)さらに、前記鋼管が、質量%で、
Ti:0.050%以下、
Nb:0.050%以下、
V :0.050%以下
の1種又は2種以上を含有することを特徴とする前記(1)〜(3)の靭性に優れた機械構造用高強度シームレス鋼管。
(5)さらに、前記鋼管が、質量%で、
Ca:0.0040%以下、
Mg:0.0010%以下、
REM:0.005%以下
の1種又は2種以上を含有することを特徴とする前記(1)〜(4)の靭性に優れた機械構造用高強度シームレス鋼管。
(6)前記(1)〜(5)のいずれかの機械構造用高強度シームレス鋼管の製造方法であって、
前記(1)〜(5)のいずれかの成分を有する鋼をシームレス圧延し、その後、
開始温度750〜950℃で、冷却速度が10〜50℃/秒の加速冷却を施す
ことを特徴とする靭性に優れた機械構造用高強度シームレス鋼管の製造方法。
In order to prevent the occurrence of surface flaws, the present inventors have studied cost reduction by omitting the heat treatment step of the steel pipe for the steel pipe having a component composition to which Cr is not added. Specifically, we focused on and examined steel pipes with accelerated cooling (steel pipes manufactured without heat treatment after accelerated cooling).
The grain size of the prior austenite in the structure of the steel pipe with accelerated cooling is about 100 μm, and about 20 to 30 μm in a steel pipe (hereinafter referred to as “QT steel pipe”) subjected to quenching and tempering treatment (hereinafter referred to as “QT steel pipe”).
If the amount of Al, which is a deoxidizing element, is reduced to 0.010% or less and Ti is added, the grain size can be made fine by utilizing intragranular transformation. However, in the present invention, in order to reduce the manufacturing cost, more than 0.010% Al required for deoxidation is usually added.
Therefore, conventionally, the grain size of the structure of the steel pipe with accelerated cooling is coarse compared to the grain size of the structure of the QT steel pipe, and it has been considered that strength and toughness equal to or higher than that of the QT steel pipe cannot be secured.
Further, if Cr is not added to prevent the occurrence of surface flaws, the hardenability is deteriorated, so that it is further difficult to ensure the strength, and it is believed that the cost increases if a metal other than Cr is added to ensure the strength. It was.
However, as a result of intensive studies by the present inventors, it is possible to suppress the formation of upper bainite, which is a structure harmful to toughness, by making the component composition of the steel pipe appropriate, and even in the steel pipe with accelerated cooling without adding Cr. The inventors have found that the same strength and toughness as those of the QT steel pipe can be obtained without impairing the weldability.
The present invention has been made based on the above findings, and the gist thereof is as follows.
(1) In mass%,
C: 0.03-0.20%,
Si: 0.01 to 0.50%,
Mn: 0.80 to 3.00%,
Al: more than 0.010%, 0.050% or less,
P: 0.020% or less,
S: 0.0080% or less,
N: 0.0080% or less,
O: Limited to 0.0050% or less, the balance being Fe and unavoidable impurities, β calculated from the following formula (1) is 2.50 to 4.00, and Pcm calculated from the following formula (2) is 0 A high-strength seamless steel pipe for machine structures having excellent toughness, characterized in that it has a texture of .15 to 0.30, the structure is fresh martensite, and the particle size of the prior austenite is 50 to 200 μm.
β = 2.7C + 0.4Si + Mn + 0.45Ni
+ Mo (1)
Pcm = C + Si / 30 + (Mn + Cu) / 20
+ Ni / 60 + Mo / 15 + V / 10 (2)
Here, C, Si, Mn, Ni, Cu, Mo, and V are contents [mass%] of each element.
(2) Furthermore, the said steel pipe is mass%,
B: 0.0001 to 0.0030%
The β calculated from the following formula (3) instead of the formula (1) is 2.50 to 4.00, and the Pcm calculated by the following formula (4) instead of the formula (2) is 0.00. The high-strength seamless steel pipe for machine structures having excellent toughness as described in (1) above, which is 15 to 0.30.
β = 2.7C + 0.4Si + Mn + 0.45Ni
+ 2Mo (3)
Pcm = C + Si / 30 + (Mn + Cu) / 20
+ Ni / 60 + Mo / 15 + V / 10 + 5B (4)
Here, C, Si, Mn, Ni, Cu, Mo, V, and B are content [mass%] of each element.
(3) Furthermore, the said steel pipe is mass%,
Ni: 1.00% or less,
Cu: 1.00% or less,
Mo: High-strength seamless steel pipe for machine structure excellent in toughness of (1) or (2) above, containing one or more of 1.50% or less.
(4) Furthermore, the said steel pipe is mass%,
Ti: 0.050% or less,
Nb: 0.050% or less,
V: The high-strength seamless steel pipe for machine structures excellent in toughness according to the above (1) to (3), comprising one or more of 0.050% or less.
(5) Furthermore, the said steel pipe is mass%,
Ca: 0.0040% or less,
Mg: 0.0010% or less,
REM: The high-strength seamless steel pipe for machine structures excellent in toughness according to the above (1) to (4), characterized by containing one or more of 0.005% or less.
(6) A method for producing a high-strength seamless steel pipe for machine structure according to any one of (1) to (5),
Seamless rolling the steel having any one of the components (1) to (5),
A method for producing a high-strength seamless steel pipe for machine structures excellent in toughness, characterized by performing accelerated cooling at a starting temperature of 750 to 950 ° C and a cooling rate of 10 to 50 ° C / second.

本発明によれば、加速冷却まま鋼管において、加速冷却時に上部ベイナイトの生成を抑制することが可能となる。その結果、QT処理を施すことなく、低コストで、QT鋼管と同等の靭性をもつ、加速冷却まま鋼管を製造することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to suppress the production | generation of an upper bainite at the time of accelerated cooling in a steel pipe with accelerated cooling. As a result, it is possible to manufacture a steel pipe having a toughness equivalent to that of a QT steel pipe with accelerated cooling without performing QT treatment.

本発明のシームレス鋼管は、加速冷却ままで、上部ベイナイトの生成を抑制して靭性を改善するために、焼入れ性の指標であるβを適正な範囲に制御し、かつ、溶接性を確保するために、溶接性の指標であるPcmを適正な範囲に制御したものである。以下、本発明について詳細に説明する。
まず、本発明で、鋼管の化学成分を限定した理由を述べる。以下、「%」は、「質量%」を意味するものとする。
Cは、強度向上に極めて有効な元素である。目標とする強度を得るためには、0.03%以上のCを添加する必要がある。一方、0.20%超のCを添加すると、低温靭性が低下し、溶接時に割れを生じる。したがって、C量は、0.03〜0.20%に限定する。強度を高めるには、C量は、0.07%以上が好ましい。一方、靭性を確保するためには、C量は、0.15%以下が好ましい。
Siは、脱酸元素であり、強度の向上に寄与する元素である。添加の効果を得るためには、0.01%以上のSiの添加が必要である。強度を向上させるには、Si量は、0.10%以上が好ましい。一方、Siを、0.50%を超えて添加すると、上部ベイナイトが生成し、低温靭性を損なうので、Si量の上限は0.50%に制限する。Si量の好ましい上限は0.25%である。
Mnは、低温変態組織の生成を促進する元素であり、強度と低温靭性のバランスを向上させるために有効である。この効果を得るには、0.80%以上のMnを添加することが必要である。しかし、Mn量が3.00%よりも多いと、低温靭性を損なうことがあるので、3.00%を上限とする。強度と低温靭性のバランスを向上させるために好ましいMn量の範囲は、1.50〜2.40%である。
P及びSは不純物であり、過剰に含有すると靭性が低下し、溶接性が低下する。よって、P及びSの含有量の上限は、それぞれ、0.020%及び0.0080%とする。P及びSの含有量は、靭性を確保するために、添加量が少ない方が好ましく、それぞれ、0.015%以下及び0.0050%以下がより好ましい。P及びSは含有しないことが好ましいので、下限値は規定しない。ただし、P及びSの含有量を0.0010%未満にすると製造コストが増大するので、0.0010%を下限とすることが好ましい。
Alは、強力な脱酸元素であり、脱酸のコストの観点から、0.010%超を添加する。Alを過剰に添加すると粗大なAl酸化物が生成し、低温靭性が劣化するので、上限を0.050%に制限する。靭性を高めるには、Al量の上限を0.035%にすることがより好ましい。
Nは、不純物であり、0.0080%を超えると、粗大なTiNが生成し、靭性が低下するので上限を0.0080%に制限する。Nの含有量は、0.0060%未満が好ましく、0.0050%以下であれば、さらに好ましい。Nは含有しないことが好ましいので、下限は特に規定しない。ただし、Nの含有量を0.0010%未満とすると製造コストが増大するので、0.0010%を下限とすることが好ましい。
Oは、0.0050%を超えて含有すると、粗大な酸化物が生成し、低温靭性を損なうので、上限を0.0050%とする。Oは含有しないことが好ましいので、下限は特に規定しない。ただしOの含有量を0.0010%未満とすると製造コストが増大するので、0.0010%を下限とすることが好ましい。
本発明の鋼には、さらにBを添加してもよい。Bは、焼入れ性を高め、鋼の強靭化に寄与する元素である。その効果を得るためには、0.0001%以上のBを添加することが好ましい。一方、Bの添加量が0.0030%より多いとBNなどの析出物を生じ、焼入れ性が低下することがある。より好ましいB量の範囲は、0.0010〜0.0020%である。
さらに、Ni、Cu、Moの1種又は2種以上を添加してもよい。これらは、焼入れ性を高める元素であり、本発明の鋼の強靱化に寄与する。
Niは、低温靭性を劣化させることなく強度を向上させる元素でもあり、添加の効果を得るためには0.05%以上添加することが好ましい。1.00%を超えてNiを添加すると、偏析して組織が不均一になり、靭性が劣化することがあるため、Ni量の上限は1.00%とすることが好ましい。Niの添加量は0.80%未満が好ましく、0.50%以下がより好ましい。さらに好ましい範囲は、0.25〜0.45%である。
Cu、及びMoは、強度を向上させる効果を得るために、それぞれ、0.05%以上を添加することが好ましい。Cu及びMoは、添加量がそれぞれ、1.00%、及び1.50%を超えると溶接性を損なうことがある。また、Cuを単独で添加すると表面疵が発生することがあるので、Cuは、Niと同時に添加することが好ましい。
さらに、Ti、Nb、Vの1種又は2種以上を添加してもよい。これらは、析出強化によって鋼の強度を向上させる元素である。
Tiは、鋼を析出強化させるために、0.005%以上含有させることが好ましい。また、不純物であるNを固定し、靭性を高めるには、0.010%以上のTiを添加することが好ましい。Ti量が、0.050%を超えると、粗大なTi酸化物の析出によって靭性が低下することがあるので、上限を0.050%とすることが好ましい。また、TiNの粗大化を防止して低温靭性を向上させるには、Ti量の上限を0.035%以下とすることが好ましい。
Nbは、炭化物、窒化物等の析出物を生成し、圧延時のオーステナイトの再結晶を抑制し組織を微細化するだけでなく、焼入れ性を増大させ、鋼の強靱化に有効な元素である。Nb量が0.050%を超えると、粗大なNbの析出物が生成し、靭性が劣化することがあるので、上限を0.050%とする。Nb添加の効果を得るには、0.005%以上添加することが好ましい。
Vは、炭化物、窒化物を生成し、析出強化によって鋼の強度を向上させる元素であり、焼入れ性を高める効果も有する。V量が0.050%を超えると炭化物、窒化物が粗大化し、靭性を損なうことがあるので、V量の上限を0.050%とすることが好ましい。V添加の効果を得るには、0.005%以上添加することが好ましい。
さらに、Ca、Mg、REMの1種又は2種以上を添加してもよい。これらは、介在物の形状を調整し加工性を向上させる元素であり、さらに、硫化物、酸化物又は硫酸化物として析出し、鋼管の接合部の硬化を防止する作用をもつ。
Ca、Mg、及びREMの含有量は、それぞれ、0.0040%、0.0010%、及び0.005%を超えると、介在物が多くなりすぎ、延性が劣化するので、上限をそれぞれ、0.0040%、0.0010%、及び0.005%とする。熱間加工性を高めるには、Ca、Mg、及びREMの含有量の下限を、それぞれ、0.0005%、0.0005%、及び0.0001%とすることが好ましい。
上記の元素の残部は、Fe及び不可避的不純物である。不可避的不純物としては、スクラップから混入するSn、Bi等が挙げられる。また、脱酸時に必要に応じて添加される、Zr、Taなどを、本発明の特性を損なわない範囲で含有してもよい。
本発明のシームレス鋼管は、上部ベイナイトの生成を抑制し、靭性を改善した点が特徴である。上部ベイナイトの生成を抑制するためには、鋼材の焼入れ性を高めることが必要である。そこで、本発明では、個々の元素の組成の限定に加えて、さらに、下記式(1)で求められるβを、2.50〜4.00の範囲に限定する。βは鋼の焼入れ性の指標であり、式(1)の元素記号は、各元素の含有量(質量%)を表す。
β=2.7C+0.4Si+Mn+0.45Ni
+Mo … (1)
βが2.50よりも小さくなると、低温靭性が劣化する。また、βが4.00を超えると、HAZ靭性、溶接性が悪化する。
さらに、下記式(2)で求められるPcmを0.15〜0.30に限定する。式(2)の元素記号は、各元素の含有量(質量%)を表す。
Pcm=C+Si/30+(Mn+Cu)/20
+Ni/60+Mo/15+V/10 … (2)
Pcmが0.15よりも小さくなると、必要な強度が得られなくなり、さらに、溶接性が悪化する。Pcmが0.30を超えると、低温靭性が劣化し、さらに、溶接性が悪化する。より好ましいPcmの範囲は、0.20超〜0.30である。
式(1)、式(2)に含まれる選択元素を添加しないときは、その元素の含有量は0として計算する。
鋼管がBを含有するときは、上記式(1)、式(2)に代えて、下記式(3)、式(4)を用いて、β及びPcmを求める。式(3)及び式(4)の元素記号は、各元素の含有量(質量%)を表す。
β=2.7C+0.4Si+Mn+0.45Ni
+2Mo … (3)
Pcm=C+Si/30+(Mn+Cu)/20
+Ni/60+Mo/15+V/10+5B … (4)
式(3)、式(4)に含まれる選択元素を添加しないときは、式(1)、式(2)の場合と同様に、その元素の含有量は0として計算する。
式(1)及び式(3)によって定義されるβは、鋼の焼入れ性に及ぼす各元素の影響を重み付けした経験式である。式(1)と式(3)との相違点は、Moの係数である。これは、Moを単独で含有する場合と比較して、MoとBとを同時に含有する場合は、相乗効果によって、焼入れ性を高めるMoの効果が高まることを意味する。
本発明のシームレス鋼管の金属組織は、フレッシュマルテンサイトからなる。フレッシュマルテンサイトは、ラス状の組織であり、光学顕微鏡による観察ではセメンタイトが見られない点で、焼戻しマルテンサイトやベイナイトとは異なる。本発明のシームレス鋼管は、冷却ままで製造されるので、焼戻しマルテンサイトは含まれない。また、本発明のシームレス鋼管は、靭性を低下させる相の生成を抑制したものであり、上部ベイナイトも含まれない。
フレッシュマルテンサイトは、冷却によってオーステナイトが変態した組織であり、旧オーステナイトの粒径が大きいほど、靭性が低下する。しかし、シームレス鋼管を製造する場合、一般に、鋼片の加熱温度が高く、穿孔及び圧延によって導入される累積ひずみ量を確保できないので、旧オーステナイトを微細にすることが困難である。
本発明では、旧オーステナイトの粒径を50μm以上とする。これは、QT処理を施すことなく旧オーステナイトの粒径を50μm未満にするには、低温で穿孔及び圧延を行う必要があり、製造コストが高くなるためである。
一方、旧オーステナイトの粒径が粗大であると靭性が低下するので、本発明では、靭性を確保するために、旧オーステナイトの粒径を200μm以下とする。
旧オーステナイトの粒径は、JIS G 0551に準拠して測定することができる。
本発明のシームレス鋼管は、成分、特に、焼入れ性指標β及び溶接性指標Pcmを適正な範囲とすることにより、金属組織をフレッシュマルテンサイトとし、旧オーステナイトの粒径を50〜200μmとするものである。そして、本発明によれば、特に製造コストが上昇することなく、強度と靭性のバランスに優れたシームレス鋼管を提供することができる。なお、本発明の機械構造用シームレス鋼管の好ましい特性は、例えば、引張強度が780MPa以上、さらに好ましくは980MPa以上であり、かつ−20℃でのシャルピー吸収エネルギーが100J以上である。
次に、本発明のシームレス鋼管の製造方法について説明する。
本発明の鋼管は、熱間で約1100〜1300℃で加熱した鋼片を穿孔し、圧延して製造されるシームレス鋼管であり、シームレス圧延後に延伸工程を経ることもある。結晶粒微細化による高靭性化の観点からは、穿孔、圧延で累積ひずみ量を増加させることが好ましい。
シームレス圧延後、必要に応じて、磨管、定型工程を経て、その後、所定の温度まで再加熱する。なお、再加熱前に、鋼管の温度が600℃未満になると、部分的に変態が生じ、再加熱後、異常粒成長によって、局所的に粗大な結晶粒を生じることがある。また、再加熱前の冷却時に析出物を生じ、焼入れ性を高める元素の固溶量が減少して焼入れ性が低下することがあるので、鋼管の温度を600℃未満にすることなく再加熱することが好ましい。
再加熱後、必要に応じて絞り圧延を施し、鋼管を加速冷却する。加速冷却を開始する際の鋼管の温度は、高すぎるとオーステナイト粒が粗大化し、靭性が低下することがあるので、950℃以下とし、900℃以下が好ましい。また、結晶粒界からのフェライト変態を抑制するため、加速冷却を開始する際の鋼管の温度は750℃以上とする。
加速冷却の冷却速度が遅すぎると、上部ベイナイトが生成する。上部ベイナイトは、比較的高温で生じるベイナイトであり、局部的な脆化相である島状マルテンサイトを多く含有するので、靭性の低下を招く。また、冷却速度が速すぎると、均一な冷却が困難となり、冷却後、鋼管が大きく変形する原因となる。したがって、加速冷却の速度は10〜50℃/秒とする。加速冷却の速度とは、加速冷却の開始から冷却停止までの、平均の冷却速度をいう。
冷却停止温度が高すぎても上部ベイナイトが生成することがあり、400℃以下で加速冷却を停止することが好ましい、より好ましくは250℃以下である。
冷却方法は、水を鋼管の外表面に直接当てる方法、鋼管外周の接線方向に当てる方法、ミスト冷却などから任意に選定できる。
本発明の成分組成を有する鋼管を、適切な冷却速度で加速冷却することにより、上部ベイナイトの生成が抑制された、フレッシュマルテンサイトからなる金属組織が得られる。また、本発明の成分組成を有する鋼管は、旧オーステナイトの粒径が50〜200μmであるから、圧延温度を低くしたり、粒内変態を活用したりする必要がない。したがって、本発明によれば、コストを上昇させることなく、強度及び靭性に優れた鋼管を製造することが可能である。
In order to improve the toughness by suppressing the formation of upper bainite while maintaining the accelerated cooling, the seamless steel pipe of the present invention controls β, which is an index of hardenability, in an appropriate range, and ensures weldability. Furthermore, Pcm, which is an index of weldability, is controlled within an appropriate range. Hereinafter, the present invention will be described in detail.
First, the reason why the chemical components of the steel pipe are limited in the present invention will be described. Hereinafter, “%” means “% by mass”.
C is an element that is extremely effective for improving the strength. In order to obtain the target strength, it is necessary to add 0.03% or more of C. On the other hand, if more than 0.20% of C is added, the low temperature toughness decreases and cracks occur during welding. Therefore, the amount of C is limited to 0.03 to 0.20%. In order to increase the strength, the C content is preferably 0.07% or more. On the other hand, in order to ensure toughness, the C content is preferably 0.15% or less.
Si is a deoxidizing element and is an element that contributes to improvement in strength. In order to obtain the effect of addition, it is necessary to add 0.01% or more of Si. In order to improve the strength, the amount of Si is preferably 0.10% or more. On the other hand, if Si is added in excess of 0.50%, upper bainite is generated and low temperature toughness is impaired, so the upper limit of Si content is limited to 0.50%. A preferable upper limit of the amount of Si is 0.25%.
Mn is an element that promotes the formation of a low-temperature transformation structure, and is effective for improving the balance between strength and low-temperature toughness. In order to obtain this effect, it is necessary to add 0.80% or more of Mn. However, if the amount of Mn is more than 3.00%, the low temperature toughness may be impaired, so 3.00% is made the upper limit. In order to improve the balance between strength and low temperature toughness, the preferable range of the amount of Mn is 1.50 to 2.40%.
P and S are impurities, and if contained excessively, toughness is lowered and weldability is lowered. Therefore, the upper limits of the P and S contents are 0.020% and 0.0080%, respectively. In order to ensure toughness, the content of P and S is preferably less, and more preferably 0.015% or less and 0.0050% or less, respectively. Since it is preferable not to contain P and S, a lower limit is not prescribed | regulated. However, if the content of P and S is less than 0.0010%, the production cost increases, so 0.0010% is preferably set as the lower limit.
Al is a strong deoxidizing element, and more than 0.010% is added from the viewpoint of deoxidation cost. If Al is added excessively, coarse Al oxide is generated and low temperature toughness deteriorates, so the upper limit is limited to 0.050%. In order to increase toughness, the upper limit of the Al content is more preferably 0.035%.
N is an impurity, and if it exceeds 0.0080%, coarse TiN is generated and the toughness is lowered, so the upper limit is limited to 0.0080%. The N content is preferably less than 0.0060%, more preferably 0.0050% or less. Since it is preferable not to contain N, the lower limit is not particularly defined. However, if the N content is less than 0.0010%, the production cost increases, so 0.0010% is preferably set as the lower limit.
If O is contained in an amount exceeding 0.0050%, a coarse oxide is generated and the low temperature toughness is impaired, so the upper limit is made 0.0050%. Since it is preferable not to contain O, the lower limit is not particularly defined. However, if the O content is less than 0.0010%, the production cost increases, so 0.0010% is preferably set as the lower limit.
B may be further added to the steel of the present invention. B is an element that enhances hardenability and contributes to toughening of steel. In order to obtain the effect, 0.0001% or more of B is preferably added. On the other hand, when the addition amount of B is more than 0.0030%, precipitates such as BN are generated, and the hardenability may be lowered. A more preferable range of the amount of B is 0.0010 to 0.0020%.
Furthermore, you may add 1 type, or 2 or more types, Ni, Cu, and Mo. These are elements that enhance the hardenability and contribute to the toughening of the steel of the present invention.
Ni is an element that improves the strength without deteriorating the low-temperature toughness, and it is preferable to add 0.05% or more in order to obtain the effect of addition. When Ni is added in excess of 1.00%, segregation occurs and the structure becomes non-uniform, and the toughness may deteriorate, so the upper limit of the Ni content is preferably 1.00%. The amount of Ni added is preferably less than 0.80%, more preferably 0.50% or less. A more preferable range is 0.25 to 0.45%.
In order to obtain the effect of improving strength, Cu and Mo are each preferably added in an amount of 0.05% or more. Cu and Mo may impair weldability when the addition amount exceeds 1.00% and 1.50%, respectively. Moreover, since Cu may be generated when Cu is added alone, Cu is preferably added simultaneously with Ni.
Further, one or more of Ti, Nb, and V may be added. These are elements that improve the strength of steel by precipitation strengthening.
Ti is preferably contained in an amount of 0.005% or more in order to precipitate and strengthen steel. Moreover, in order to fix N which is an impurity and improve toughness, it is preferable to add 0.010% or more of Ti. If the amount of Ti exceeds 0.050%, the toughness may be reduced by the precipitation of coarse Ti oxides, so the upper limit is preferably made 0.050%. Moreover, in order to prevent coarsening of TiN and improve low temperature toughness, it is preferable to make the upper limit of Ti amount 0.035% or less.
Nb is an element that produces precipitates such as carbides and nitrides, suppresses recrystallization of austenite during rolling and refines the structure, and also increases hardenability and is effective in strengthening steel. . If the amount of Nb exceeds 0.050%, coarse Nb precipitates are produced and the toughness may be deteriorated, so the upper limit is made 0.050%. In order to obtain the effect of Nb addition, 0.005% or more is preferably added.
V is an element that generates carbides and nitrides and improves the strength of the steel by precipitation strengthening, and also has an effect of improving hardenability. If the V amount exceeds 0.050%, carbides and nitrides are coarsened and the toughness may be impaired. Therefore, the upper limit of the V amount is preferably 0.050%. In order to obtain the effect of V addition, 0.005% or more is preferably added.
Furthermore, you may add 1 type (s) or 2 or more types of Ca, Mg, and REM. These elements are elements that adjust the shape of inclusions to improve workability, and further precipitate as sulfides, oxides, or sulfates, and have an action of preventing hardening of the joint portion of the steel pipe.
When the contents of Ca, Mg, and REM exceed 0.0040%, 0.0010%, and 0.005%, respectively, inclusions increase excessively and ductility deteriorates. .0040%, 0.0010%, and 0.005%. In order to improve hot workability, it is preferable that the lower limits of the contents of Ca, Mg, and REM are 0.0005%, 0.0005%, and 0.0001%, respectively.
The balance of the above elements is Fe and inevitable impurities. Inevitable impurities include Sn, Bi and the like mixed from scrap. Moreover, you may contain Zr, Ta, etc. which are added as needed at the time of deoxidation in the range which does not impair the characteristic of this invention.
The seamless steel pipe of the present invention is characterized by suppressing the formation of upper bainite and improving toughness. In order to suppress the formation of upper bainite, it is necessary to improve the hardenability of the steel material. Therefore, in the present invention, in addition to limiting the composition of each element, β obtained by the following formula (1) is further limited to a range of 2.50 to 4.00. β is an index of the hardenability of steel, and the element symbol of the formula (1) represents the content (% by mass) of each element.
β = 2.7C + 0.4Si + Mn + 0.45Ni
+ Mo (1)
When β is smaller than 2.50, the low temperature toughness deteriorates. Moreover, when β exceeds 4.00, the HAZ toughness and weldability deteriorate.
Furthermore, Pcm calculated | required by following formula (2) is limited to 0.15-0.30. The element symbol of Formula (2) represents content (mass%) of each element.
Pcm = C + Si / 30 + (Mn + Cu) / 20
+ Ni / 60 + Mo / 15 + V / 10 (2)
If Pcm is smaller than 0.15, the required strength cannot be obtained, and the weldability deteriorates. When Pcm exceeds 0.30, the low temperature toughness deteriorates, and further, the weldability deteriorates. A more preferable range of Pcm is more than 0.20 to 0.30.
When the selective element included in the formulas (1) and (2) is not added, the content of the element is calculated as 0.
When the steel pipe contains B, β and Pcm are obtained using the following formulas (3) and (4) instead of the above formulas (1) and (2). The element symbols in the formulas (3) and (4) represent the content (% by mass) of each element.
β = 2.7C + 0.4Si + Mn + 0.45Ni
+ 2Mo (3)
Pcm = C + Si / 30 + (Mn + Cu) / 20
+ Ni / 60 + Mo / 15 + V / 10 + 5B (4)
When the selective element included in the formulas (3) and (4) is not added, the content of the element is calculated as 0 as in the case of the formulas (1) and (2).
Β defined by the equations (1) and (3) is an empirical equation that weights the influence of each element on the hardenability of steel. The difference between Equation (1) and Equation (3) is the coefficient of Mo. This means that when Mo and B are simultaneously contained, the effect of Mo that enhances the hardenability is enhanced by a synergistic effect as compared with the case where Mo is contained alone.
The metal structure of the seamless steel pipe of the present invention consists of fresh martensite. Fresh martensite is a lath-like structure and is different from tempered martensite and bainite in that cementite is not observed by observation with an optical microscope. Since the seamless steel pipe of the present invention is manufactured while being cooled, tempered martensite is not included. Moreover, the seamless steel pipe of this invention suppresses the production | generation of the phase which reduces toughness, and does not contain an upper bainite.
Fresh martensite is a structure in which austenite is transformed by cooling, and the toughness decreases as the particle size of prior austenite increases. However, when producing a seamless steel pipe, generally, the heating temperature of the steel slab is high, and the accumulated strain amount introduced by drilling and rolling cannot be secured, so it is difficult to make the prior austenite fine.
In the present invention, the particle size of the prior austenite is 50 μm or more. This is because in order to reduce the grain size of the prior austenite to less than 50 μm without performing QT treatment, it is necessary to perform piercing and rolling at a low temperature, which increases the manufacturing cost.
On the other hand, if the particle size of the prior austenite is coarse, the toughness is lowered. Therefore, in the present invention, the particle size of the prior austenite is set to 200 μm or less in order to ensure toughness.
The particle size of prior austenite can be measured according to JIS G 0551.
The seamless steel pipe of the present invention has a metal structure of fresh martensite and a prior austenite particle size of 50 to 200 μm by adjusting the components, particularly the hardenability index β and the weldability index Pcm. is there. And according to this invention, the seamless steel pipe excellent in the balance of intensity | strength and toughness can be provided, without manufacturing cost rising especially. In addition, as for the preferable characteristic of the seamless steel pipe for machine structures of this invention, tensile strength is 780 Mpa or more, More preferably, it is 980 Mpa or more, and the Charpy absorbed energy in -20 degreeC is 100 J or more.
Next, the manufacturing method of the seamless steel pipe of this invention is demonstrated.
The steel pipe of the present invention is a seamless steel pipe manufactured by punching and rolling a steel piece heated at about 1100 to 1300 ° C., and may undergo a drawing process after seamless rolling. From the viewpoint of increasing toughness by refining crystal grains, it is preferable to increase the cumulative strain amount by drilling and rolling.
After seamless rolling, if necessary, it is subjected to a polishing tube and a standard process, and then reheated to a predetermined temperature. If the temperature of the steel pipe is less than 600 ° C. before reheating, partial transformation occurs, and after reheating, locally coarse crystal grains may be generated due to abnormal grain growth. In addition, precipitates are formed during cooling before reheating, and the solid solution amount of elements that enhance the hardenability may decrease and hardenability may decrease. Therefore, reheating is performed without reducing the temperature of the steel pipe to less than 600 ° C. It is preferable.
After reheating, the steel pipe is accelerated and cooled as necessary, and the steel pipe is accelerated. If the temperature of the steel pipe at the start of accelerated cooling is too high, the austenite grains become coarse and the toughness may be lowered. Therefore, the temperature is 950 ° C. or less, and preferably 900 ° C. or less. Moreover, in order to suppress the ferrite transformation from a crystal grain boundary, the temperature of the steel pipe at the time of starting accelerated cooling shall be 750 degreeC or more.
If the cooling rate of accelerated cooling is too slow, upper bainite is generated. The upper bainite is a bainite that is generated at a relatively high temperature and contains a large amount of island martensite, which is a local embrittlement phase, resulting in a decrease in toughness. On the other hand, when the cooling rate is too high, uniform cooling becomes difficult, and the steel pipe is greatly deformed after cooling. Accordingly, the accelerated cooling rate is 10 to 50 ° C./second. The accelerated cooling rate means an average cooling rate from the start of accelerated cooling to the stop of cooling.
Even if the cooling stop temperature is too high, upper bainite may be generated, and it is preferable to stop the accelerated cooling at 400 ° C. or lower, more preferably 250 ° C. or lower.
The cooling method can be arbitrarily selected from a method in which water is directly applied to the outer surface of the steel pipe, a method in which water is applied in a tangential direction of the outer periphery of the steel pipe, and mist cooling.
By accelerating and cooling the steel pipe having the component composition of the present invention at an appropriate cooling rate, a metal structure composed of fresh martensite in which the formation of upper bainite is suppressed is obtained. Moreover, since the steel tube which has a component composition of this invention has the particle size of prior austenite 50-200 micrometers, it is not necessary to make a rolling temperature low or to utilize an intragranular transformation. Therefore, according to the present invention, it is possible to manufacture a steel pipe excellent in strength and toughness without increasing costs.

表1に記載の成分組成を有する鋼を溶製し、転炉、連続鋳造プロセスにより直径100〜170mmの鋼片を鋳造した。これらの鋼片を1100〜1250℃に加熱し、マンネスマン−プラグミル方式により穿孔、圧延し、900〜1000℃に再加熱後、表2に示す条件で加速冷却を行った。加速冷却は、水を鋼管の外表面に直接当てる方法によって行った。製造後、鋼管の表面疵の有無を目視で確認した。

Figure 2011108764
Figure 2011108764
製造した鋼管のサイズは、表2に示したとおりである。製造した鋼管の長手方向及び肉厚方向の中央部近傍から試料を採取し、光学顕微鏡を用いて金属組織を観察し、金属組織を、フレッシュマルテンサイト、上部ベイナイト、下部ベイナイト、パーライト、フェライトに分類した。また、旧オーステナイトの粒径は、JIS G 0551に準拠して測定した。
旧オーステナイトの粒径とは、マルテンサイトに変態する前の組織(高温での組織)の粒径のことをいう。旧オーステナイトの粒径は、マルテンサイトに変態した後も変わらないので、変態後でも測定可能である。
引張試験は円弧状のJIS12号引張試験片を用いて行い、降伏強度と引張強度を測定した。靭性の評価は、JIS Z 2242に準拠し、2mmVノッチフルサイズ試験片を用いて、−20℃でシャルピー試験を実施し、吸収エネルギーを測定した。
表3に結果を示す。
Figure 2011108764
○:表面疵なし ×:表面疵あり
M:フレッシュマルテンサイト,BL:下部ベイナイト,BU:上部ベイナイト,
P:パーライト,F:フェライト
下線は本発明の範囲外であることを意味する。
本発明で既定する成分組成、β、及びPcmを満たす鋼A〜Iを用いて、本発明で規定する製造方法で製造した鋼管は、組織がフレッシュマルテンサイトであり、旧オーステナイトの粒径が50〜200μmとなる。
その結果、機械構造用鋼管として必要な強度を有し、さらに、シャルピー衝撃試験の−20℃における吸収エネルギー(vE−20)が115J以上と高い値を示しており、靭性も優れている。
鋼Gを用いて、本発明の範囲内で冷却開始温度や冷却速度を変えて製造した鋼管(No.7、10〜13)は、いずれも適正な金属組織を有し、また、機械構造用鋼管として必要な強度を有する。さらに、シャルピー衝撃試験の−20℃における吸収エネルギー(vE−20)が115J以上と高い値を示しており、靭性も優れている。
No.14は、Crを含有するため、シームレス圧延によって鋼管に表面疵が発生した。
No.15は、Cが本発明で規定する下限を下回っており、βが2.29と焼入れ性が劣っている。そのため、加速冷却後の金属組織は上部ベイナイトと下部ベイナイトとなり、その結果、強度が弱く、靭性も劣っている。
No.16は、Bが本発明で規定する上限を超えており、βが2.11と焼入れ性が劣っている。加速冷却後の金属組織は上部ベイナイトとパーライトとなり、その結果、強度が弱く、靭性も劣っている。
No.17は、Cが本発明で規定する上限を超えているので、加速冷却後の金属組織はフレッシュマルテンサイトであるが、強度が高くなりすぎ、靭性が低下した。
No.18は、個々の元素の組成は本発明の範囲内であるが、βが4.01と大きい。その結果、加速冷却後の金属組織はフレッシュマルテンサイトであるが、強度が高くなりすぎ、靭性が低下した。
No.19は、成分組成、β、及びPcmが本発明の範囲内である鋼Gを用いて製造した鋼管であるが、冷却開始温度が高いので、金属組織が上部ベイナイトとフェライトとなり、強度が弱く、靭性も劣っている。
No.20は、鋼Gを用いて製造した鋼管であるが、冷却開始温度が高いので、旧オーステナイトの平均粒径が大きくなり、その結果、靭性が低下した。
No.21は、鋼Gを用いて製造した鋼管であるが、冷却速度が遅いので、金属組織がパーライトとフェライトとなり、さらに、旧オーステナイトの平均粒径が小さくなり、その結果、強度が弱く、靭性もやや劣っている。
以上示したとおり、本発明で規定する成分組成、β、及びPcmを満たす鋼を、本発明の製造方法で製造することにより、QT鋼管と同等の靭性をもつ、QT処理を施さない加速冷却まま鋼管を製造することが可能となる。Steel having the composition shown in Table 1 was melted, and steel pieces having a diameter of 100 to 170 mm were cast by a converter and a continuous casting process. These steel pieces were heated to 1100 to 1250 ° C., punched and rolled by the Mannesmann-plug mill method, reheated to 900 to 1000 ° C., and then subjected to accelerated cooling under the conditions shown in Table 2. Accelerated cooling was performed by applying water directly to the outer surface of the steel pipe. After the production, the presence or absence of surface flaws on the steel pipe was visually confirmed.
Figure 2011108764
Figure 2011108764
The size of the manufactured steel pipe is as shown in Table 2. Samples are collected from the center of the manufactured steel pipe in the longitudinal direction and thickness direction, and the metal structure is observed using an optical microscope. The metal structure is classified into fresh martensite, upper bainite, lower bainite, pearlite, and ferrite. did. Moreover, the particle size of the prior austenite was measured based on JIS G 0551.
The grain size of prior austenite refers to the grain size of the structure (transformation at high temperature) before transformation to martensite. The particle size of the prior austenite does not change even after transformation to martensite, so it can be measured even after transformation.
The tensile test was performed using an arc-shaped JIS No. 12 tensile test piece, and the yield strength and tensile strength were measured. Evaluation of toughness was based on JIS Z 2242, and a Charpy test was performed at −20 ° C. using a 2 mmV notch full-size test piece, and the absorbed energy was measured.
Table 3 shows the results.
Figure 2011108764
○: No surface defects ×: Surface defects M: Fresh martensite, BL: Lower bainite, BU: Upper bainite,
P: pearlite, F: ferrite underline means outside the scope of the present invention.
The steel pipe manufactured by the manufacturing method specified by the present invention using steels A to I satisfying the composition defined by the present invention, β, and Pcm has a structure of fresh martensite, and the grain size of the prior austenite is 50. ˜200 μm.
As a result, it has the necessary strength as a steel pipe for machine structural use, and the absorbed energy (vE-20) at −20 ° C. in the Charpy impact test is as high as 115 J or more, and the toughness is also excellent.
Steel pipes (Nos. 7 and 10 to 13) manufactured by using steel G and changing the cooling start temperature and the cooling rate within the scope of the present invention all have an appropriate metal structure, and are used for mechanical structures. It has the necessary strength as a steel pipe. Furthermore, the absorbed energy (vE-20) at −20 ° C. of the Charpy impact test shows a high value of 115 J or more, and the toughness is also excellent.
No. Since No. 14 contains Cr, surface flaws occurred in the steel pipe by seamless rolling.
No. No. 15 is lower than the lower limit defined by C in the present invention, and β is 2.29, which is inferior in hardenability. Therefore, the metal structure after accelerated cooling is an upper bainite and a lower bainite. As a result, the strength is weak and the toughness is inferior.
No. No. 16 is inferior in hardenability, with B exceeding the upper limit specified in the present invention and β being 2.11. The metal structure after accelerated cooling becomes upper bainite and pearlite. As a result, the strength is weak and the toughness is inferior.
No. In No. 17, since C exceeds the upper limit defined in the present invention, the metal structure after accelerated cooling is fresh martensite, but the strength is too high and the toughness is lowered.
No. No. 18, although the composition of each element is within the scope of the present invention, β is as large as 4.01. As a result, the metal structure after accelerated cooling was fresh martensite, but the strength was too high and the toughness was lowered.
No. 19 is a steel pipe manufactured using steel G whose component composition, β, and Pcm are within the scope of the present invention, but because the cooling start temperature is high, the metal structure becomes upper bainite and ferrite, and the strength is weak. Toughness is also poor.
No. Although 20 is a steel pipe manufactured using steel G, since the cooling start temperature is high, the average grain size of prior austenite was increased, and as a result, toughness was reduced.
No. 21 is a steel pipe manufactured using steel G, but because the cooling rate is slow, the metal structure becomes pearlite and ferrite, and the average grain size of the prior austenite becomes small, resulting in low strength and high toughness. Somewhat inferior.
As described above, steel that satisfies the component composition, β, and Pcm defined in the present invention is manufactured by the manufacturing method of the present invention, so that it has the same toughness as a QT steel pipe and is not cooled by QT treatment. It becomes possible to manufacture a steel pipe.

本発明によれば、特にシリンダー、ブッシュ、ブーム等の構造部材及びシャフト等の機械用部材に好適な、QT鋼管と同等又は同等以上の靭性をもつシームレス鋼管を、低コストで、製造することが可能となるので、自動車産業、機械産業等への貢献は大きい。   According to the present invention, a seamless steel pipe having a toughness equivalent to or equal to or better than a QT steel pipe, which is particularly suitable for structural members such as cylinders, bushes, booms, and mechanical members such as shafts, can be manufactured at low cost. Because it becomes possible, the contribution to the automobile industry, the machine industry, etc. is great.

Claims (6)

質量%で、
C :0.03〜0.20%、
Si:0.01〜0.50%、
Mn:0.80〜3.00%、
Al:0.010%超、0.050%以下
を含有し、
P :0.020%以下、
S :0.0080%以下、
N :0.0080%以下、
O :0.0050%以下
に制限し、残部がFe及び不可避的不純物からなり、下記式(1)によって求められるβが2.50〜4.00、下記式(2)によって求められるPcmが0.15〜0.30であり、組織がフレッシュマルテンサイトからなり、旧オーステナイトの粒径が50〜200μmであることを特徴とする靭性に優れた機械構造用高強度シームレス鋼管。
β=2.7C+0.4Si+Mn+0.45Ni
+Mo …(1)
Pcm=C+Si/30+(Mn+Cu)/20
+Ni/60+Mo/15+V/10 …(2)
ここで、C、Si、Mn、Ni、Cu、Mo、Vは各元素の含有量[質量%]である。
% By mass
C: 0.03-0.20%,
Si: 0.01 to 0.50%,
Mn: 0.80 to 3.00%,
Al: more than 0.010%, 0.050% or less,
P: 0.020% or less,
S: 0.0080% or less,
N: 0.0080% or less,
O: Limited to 0.0050% or less, the balance being Fe and unavoidable impurities, β calculated from the following formula (1) is 2.50 to 4.00, and Pcm calculated from the following formula (2) is 0 A high-strength seamless steel pipe for machine structures having excellent toughness, characterized in that it has a texture of .15 to 0.30, the structure is fresh martensite, and the particle size of the prior austenite is 50 to 200 μm.
β = 2.7C + 0.4Si + Mn + 0.45Ni
+ Mo (1)
Pcm = C + Si / 30 + (Mn + Cu) / 20
+ Ni / 60 + Mo / 15 + V / 10 (2)
Here, C, Si, Mn, Ni, Cu, Mo, and V are contents [mass%] of each element.
さらに、前記鋼管が、質量%で、
B :0.0001〜0.0030%
を含有し、前記式(1)に代えて下記式(3)よって求められるβが2.50〜4.00、前記式(2)に代えて下記式(4)によって求められるPcmが0.15〜0.30であることを特徴とする請求項1に記載の靭性に優れた機械構造用高強度シームレス鋼管。
β=2.7C+0.4Si+Mn+0.45Ni
+2Mo …(3)
Pcm=C+Si/30+(Mn+Cu)/20
+Ni/60+Mo/15+V/10+5B …(4)
ここで、C、Si、Mn、Ni、Cu、Mo、V、Bは各元素の含有量[質量%]である。
Furthermore, the said steel pipe is mass%,
B: 0.0001 to 0.0030%
The β calculated from the following formula (3) instead of the formula (1) is 2.50 to 4.00, and the Pcm calculated by the following formula (4) instead of the formula (2) is 0.00. It is 15-0.30, The high-strength seamless steel pipe for machine structures excellent in toughness of Claim 1 characterized by the above-mentioned.
β = 2.7C + 0.4Si + Mn + 0.45Ni
+ 2Mo (3)
Pcm = C + Si / 30 + (Mn + Cu) / 20
+ Ni / 60 + Mo / 15 + V / 10 + 5B (4)
Here, C, Si, Mn, Ni, Cu, Mo, V, and B are content [mass%] of each element.
さらに、前記鋼管が、質量%で、
Ni:1.00%以下、
Cu:1.00%以下、
Mo:1.50%以下
の1種又は2種以上を含有することを特徴とする請求項1又は2に記載の靭性に優れた機械構造用高強度シームレス鋼管。
Furthermore, the said steel pipe is mass%,
Ni: 1.00% or less,
Cu: 1.00% or less,
The high-strength seamless steel pipe for machine structures having excellent toughness according to claim 1 or 2, characterized by containing Mo: 1.50% or less.
さらに、前記鋼管が、質量%で、
Ti:0.050%以下、
Nb:0.050%以下、
V :0.050%以下
の1種又は2種以上を含有することを特徴とする請求項1〜3のいずれか1項に記載の靭性に優れた機械構造用高強度シームレス鋼管。
Furthermore, the said steel pipe is mass%,
Ti: 0.050% or less,
Nb: 0.050% or less,
The high-strength seamless steel pipe for machine structure excellent in toughness according to any one of claims 1 to 3, wherein V: 1 type or 2 types or more of 0.050% or less is contained.
さらに、前記鋼管が、質量%で、
Ca:0.0040%以下、
Mg:0.0010%以下、
REM:0.005%以下
の1種又は2種以上を含有することを特徴とする請求項1〜4のいずれか1項に記載の靭性に優れた機械構造用高強度シームレス鋼管。
Furthermore, the said steel pipe is mass%,
Ca: 0.0040% or less,
Mg: 0.0010% or less,
REM: 0.005% or less of 1 type or 2 types or more, The high-strength seamless steel pipe for machine structures excellent in toughness of any one of Claims 1-4 characterized by the above-mentioned.
請求項1〜5のいずれか1項に記載の機械構造用高強度シームレス鋼管の製造方法であって、
請求項1〜5のいずれか1項に記載の成分を有する鋼をシームレス圧延し、その後、
開始温度750〜950℃で、冷却速度が10〜50℃/秒の加速冷却を施す
ことを特徴とする靭性に優れた機械構造用高強度シームレス鋼管の製造方法。
It is a manufacturing method of the high strength seamless steel pipe for machine structures given in any 1 paragraph of Claims 1-5,
Seamless rolling the steel having the component according to any one of claims 1 to 5,
A method for producing a high-strength seamless steel pipe for machine structures excellent in toughness, characterized by performing accelerated cooling at a starting temperature of 750 to 950 ° C and a cooling rate of 10 to 50 ° C / second.
JP2011532386A 2010-03-05 2011-03-03 High-strength seamless steel pipe for machine structure with excellent toughness and its manufacturing method Expired - Fee Related JP4860786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011532386A JP4860786B2 (en) 2010-03-05 2011-03-03 High-strength seamless steel pipe for machine structure with excellent toughness and its manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010049298 2010-03-05
JP2010049298 2010-03-05
JP2011532386A JP4860786B2 (en) 2010-03-05 2011-03-03 High-strength seamless steel pipe for machine structure with excellent toughness and its manufacturing method
PCT/JP2011/055562 WO2011108764A1 (en) 2010-03-05 2011-03-03 High-strength seamless steel pipe for mechanical structure which has excellent toughness, and process for production of same

Publications (2)

Publication Number Publication Date
JP4860786B2 JP4860786B2 (en) 2012-01-25
JPWO2011108764A1 true JPWO2011108764A1 (en) 2013-06-27

Family

ID=44542392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011532386A Expired - Fee Related JP4860786B2 (en) 2010-03-05 2011-03-03 High-strength seamless steel pipe for machine structure with excellent toughness and its manufacturing method

Country Status (4)

Country Link
JP (1) JP4860786B2 (en)
KR (1) KR101471730B1 (en)
CN (2) CN103924155B (en)
WO (1) WO2011108764A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104911475B (en) * 2015-06-25 2017-05-10 东北大学 Preparation method for low-carbon medium-manganese high-toughness super-thick steel plate
WO2017006144A1 (en) * 2015-07-09 2017-01-12 Arcelormittal Steel for press hardening and press hardened part manufactured from such steel
CN106555045A (en) * 2015-09-24 2017-04-05 宝山钢铁股份有限公司 A kind of seamless steel pipe press quenching cooling technique and manufacture method of utilization waste heat
US11168375B2 (en) 2016-09-21 2021-11-09 Jfe Steel Corporation Steel pipe or tube for pressure vessels, method of producing steel pipe or tube for pressure vessels, and composite pressure vessel liner
CN108393355A (en) * 2018-03-26 2018-08-14 天津商业大学 A kind of manufacturing method of oil/gas well novel seamless steel tube
CN114107794B (en) * 2020-08-31 2023-08-11 宝山钢铁股份有限公司 980 MPa-grade ultra-low carbon martensite and residual austenite ultra-high hole-enlarging steel and manufacturing method thereof
CN114318128A (en) * 2020-09-30 2022-04-12 宝山钢铁股份有限公司 Self-tempering martensite type high-strength and high-toughness seamless steel pipe and manufacturing method thereof
CN113528954B (en) * 2021-06-29 2022-06-14 鞍钢股份有限公司 Seamless steel tube for cold-drawing hydraulic cylinder and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10140238A (en) * 1996-11-12 1998-05-26 Sumitomo Metal Ind Ltd Production of steel tube for air bag, having high strength and high toughness
JPH10140250A (en) * 1996-11-12 1998-05-26 Sumitomo Metal Ind Ltd Production of steel tube for air bag, having high strength and high toughness
JP4608739B2 (en) * 2000-06-14 2011-01-12 Jfeスチール株式会社 Manufacturing method of steel pipe for automobile door reinforcement
JP3975852B2 (en) * 2001-10-25 2007-09-12 Jfeスチール株式会社 Steel pipe excellent in workability and manufacturing method thereof
JP4751224B2 (en) * 2006-03-28 2011-08-17 新日本製鐵株式会社 High strength seamless steel pipe for machine structure with excellent toughness and weldability and method for producing the same
JP5020690B2 (en) * 2007-04-18 2012-09-05 新日本製鐵株式会社 High strength steel pipe for machine structure and manufacturing method thereof
JP4959471B2 (en) * 2007-08-28 2012-06-20 新日本製鐵株式会社 High strength seamless steel pipe with excellent toughness for machine structure and manufacturing method thereof

Also Published As

Publication number Publication date
KR101471730B1 (en) 2014-12-10
CN103924155A (en) 2014-07-16
WO2011108764A1 (en) 2011-09-09
CN103924155B (en) 2018-10-26
KR20120107522A (en) 2012-10-02
CN102782173A (en) 2012-11-14
JP4860786B2 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP4860786B2 (en) High-strength seamless steel pipe for machine structure with excellent toughness and its manufacturing method
JP4475440B1 (en) Seamless steel pipe and manufacturing method thereof
JP5423072B2 (en) High-strength cold-rolled steel sheet excellent in bending workability and delayed fracture resistance and method for producing the same
JP5871109B1 (en) Thick steel plate and manufacturing method thereof
CN108368575B (en) Rolling wire rod for cold forging tempered product
JP2009041079A (en) Steel for welded structure having excellent toughness in weld heat-affected zone, method for producing the same, and method for producing welded structure
WO2016114146A1 (en) Thick high-toughness high-strength steel sheet and method for manufacturing same
JP2017115200A (en) H-shaped steel for low temperature and production method therefor
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP2005264208A (en) Low yield ratio wide flange beam having excellent earthquake resistance and its production method
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP4959471B2 (en) High strength seamless steel pipe with excellent toughness for machine structure and manufacturing method thereof
JP5874664B2 (en) High strength steel plate with excellent drop weight characteristics and method for producing the same
CA3094517C (en) A steel composition in accordance with api 5l psl-2 specification for x-65 grade having enhanced hydrogen induced cracking (hic) resistance, and method of manufacturing the steel thereof
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
JP5151693B2 (en) Manufacturing method of high-strength steel
JP2012193404A (en) Seamless steel pipe and method for manufacturing the same
JP2023531248A (en) Method for producing high-strength steel pipe from steel composition and components made therefrom
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP5020690B2 (en) High strength steel pipe for machine structure and manufacturing method thereof
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JP4967356B2 (en) High strength seamless steel pipe and manufacturing method thereof
JP2017186594A (en) H-shaped steel for low temperature and manufacturing method therefor
JP5412915B2 (en) Ferrite-pearlite rolled non-heat treated steel
JP2007246985A (en) Manufacturing method of high-toughness and high-tensile thick steel plate

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111102

R151 Written notification of patent or utility model registration

Ref document number: 4860786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees