JPWO2011099071A1 - 磁界共鳴型電力伝送システムにおける共振周波数制御方法、送電装置、および受電装置 - Google Patents

磁界共鳴型電力伝送システムにおける共振周波数制御方法、送電装置、および受電装置 Download PDF

Info

Publication number
JPWO2011099071A1
JPWO2011099071A1 JP2011553626A JP2011553626A JPWO2011099071A1 JP WO2011099071 A1 JPWO2011099071 A1 JP WO2011099071A1 JP 2011553626 A JP2011553626 A JP 2011553626A JP 2011553626 A JP2011553626 A JP 2011553626A JP WO2011099071 A1 JPWO2011099071 A1 JP WO2011099071A1
Authority
JP
Japan
Prior art keywords
coil
power transmission
power
resonance
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011553626A
Other languages
English (en)
Other versions
JP5454590B2 (ja
Inventor
聡 下川
聡 下川
昭嘉 内田
昭嘉 内田
田口 雅一
雅一 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority claimed from PCT/JP2010/000847 external-priority patent/WO2011099071A1/ja
Publication of JPWO2011099071A1 publication Critical patent/JPWO2011099071A1/ja
Application granted granted Critical
Publication of JP5454590B2 publication Critical patent/JP5454590B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Near-Field Transmission Systems (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

送電系コイルから受電系コイルへ磁界共鳴を利用して電力を伝送する磁界共鳴型電力伝送システムにおいて、コイルの共振周波数を高速にかつ正確にリアルタイムで調整できるようにする。送電系コイルに供給される電圧の位相および送電系コイルまたは受電系コイルに流れる電流の位相を検出し、それらの位相差が目標値となるように、送電系コイルまたは受電系コイルの共振周波数を可変する。送電系コイルは、交流電源が接続される電力供給コイル、および電力供給コイルと電磁的に密に結合した送電共振コイルを有し、受電系コイルは、受電共振コイル、および受電共振コイルと電磁的に密に結合した電力取出コイルを有する。交流電源の電圧と送電共振コイルの電流との位相差が目標値βとなるように、交流電源の電圧と受電共振コイルの電流との位相差が目標値(β−π/2)となるように制御される。

Description

本発明は、磁界共鳴型電力伝送システムにおける共振周波数制御方法、送電装置、および受電装置に関する。
無線で電力を伝送する、所謂無線電力伝送またはワイヤレス電力供給(WPS:Wireless Power Supply ) においては、空間的に離れた2点間でケーブルを用いることなく電力(エネルギ)の送受電を行なう。無線電力伝送には、電磁誘導を用いる方式と電波を用いる方式の2つの方式がある。また、磁界共鳴(磁場共鳴、磁気共鳴、磁界共鳴モードともいう)を用いる方式も提案されている(特許文献1)。
再公表WO98/34319
本発明は、磁界共鳴型電力伝送システムにおいて、コイルの共振周波数を高速にかつ正確にリアルタイムで調整できるようにすることを目的とする。
本発明が適用される磁界共鳴型電力伝送システムを説明する。
磁界共鳴を用いた方式(磁界共鳴型)では、電波を用いた方式と比べて大電力の伝送が可能であり、電磁誘導方式と比べて伝送距離を長くすることができまたは送受電用のコイルを小さくできる、というメリットがある。
磁界共鳴を用いた方式では、送電系コイルおよび受電系コイルの共振周波数を互いに同じ値に設定しておき、その近傍の周波数で電力伝送を行うことによって、高い効率でエネルギの伝送を行うことが可能になる。
磁界共鳴型電力伝送システムにおいて電力伝送の効率を高めるために、1次コイル側の発振信号の周波数に比して高い周波数を2次コイル側の共振周波数としたものがある(特許文献1)。これによると、キヤパシタンスを小さくし、1次コイルと2次コイルとの結合係数を見かけ上高くすることができるとのことである。
コイル同士の結合度を高めることによって、電力伝送の効率をある程度高めることが可能である。
また、電力伝送の効率を高めるために、各コイルの共振ピークができるだけ鋭くなるようにすることが考えられる。そのためには、例えば各コイルのQ値が高くなるように設計すればよい。
しかし、Q値を高くした場合には、両コイルの共振周波数のズレに対する感度が高くなってしまうという問題、つまり両コイルの共振周波数のズレによる電力伝送の効率の低下への影響が大きくなってしまうという問題がある。
例えば、温度などの環境要因の変化、人や金属などの導体または磁性体が近づくことによるインダクタンスや容量の変化などによって、コイルの共振周波数が変化してしまう。また、製造時におけるバラツキによる共振周波数のズレもある。
そのため、Q値が高い磁界共鳴型電力伝送システムにおいては、その最大限のメリットを生かすためには、コイルの共振周波数を環境変動などに対応して調整する仕組みが必要である。
コイルの共振周波数を目標周波数に合わせるためには、コイルのL(インダクタンス)またはコンデンサのC(容量)を調整する必要がある。
ここに述べる1つの形態の方法では、送電系コイルから受電系コイルへ磁界共鳴を利用して電力を伝送する磁界共鳴型電力伝送システムにおける共振周波数制御方法において、前記送電系コイルに供給される電圧の位相および前記送電系コイルまたは前記受電系コイルに流れる電流の位相を検出し、それらの位相差が目標値となるように、前記送電系コイルまたは前記受電系コイルの共振周波数を可変する。
前記送電系コイルと前記受電系コイルとの結合度が大きくなって双峰特性が現れたときに、前記交流電源の周波数において電流のピークが現れるように、前記送電系コイルまたは前記受電系コイルの共振周波数を可変することも可能である。
また、ここに述べる1つの形態の装置では、送電系コイルから受電系コイルへ磁界共鳴を利用して電力を伝送する磁界共鳴型電力伝送システムにおいて、前記送電系コイルに供給される電圧の位相および前記送電系コイルまたは前記受電系コイルに流れる電流の位相を検出する位相検出部と、検出されたそれらの位相の位相差が目標値となるように、前記送電系コイルまたは前記受電系コイルの共振周波数を可変する共振周波数制御部と、を有する。
磁界共鳴型の電力伝送方法を示す図である。 磁界共鳴型の電力伝送システムの概要を示す図である。 本実施形態の電力伝送システムの制御部の構成の例を示す図である。 共振周波数制御における電流および位相の状態を示す図である。 共振周波数制御における電流および位相の状態を示す図である。 双峰特性が現れた場合の電流および位相の状態を示す図である。 双峰特性が現れた場合の共振周波数制御における電流および位相の状態を示す図である。 双峰特性に対応した共振周波数制御を行った場合の伝送電力の変化の例を示す図である。 電力伝送システムの周波数依存性を示す図である。 コイルの共振周波数をスイープする方法を説明する図である。 共振周波数制御と双峰共振制御とを切り替える構成の例を示す図である。 共振周波数制御の概略の処理手順を示すフローチャートである。 共振周波数制御の概略の処理手順を示すフローチャートである。
以下に述べる実施形態の電力伝送システム(電力伝送装置)1では、交流電源の電圧(ドライブ電圧)とコイルに流れる電流との位相差Δφを基に、コイル(共振回路)のLまたはCに対してリアルタイムの共振周波数制御を行う。
また、送電系コイルと受電系コイルとの結合が大きくなって双峰特性(スプリット)が現れたときに、電力伝送の効率の低下を抑えるため、ピーク(スプリットピーク)が交流電源の周波数において現れるように、送電系コイルまたは受電系コイルの共振周波数をシフトさせる。この場合の共振周波数制御を、双峰特性が現れていない場合の共振周波数制御と区別するため、「双峰共振制御」ということがある。
また、「双峰共振制御」を含まない場合の共振周波数制御を「通常の共振周波数制御」と記載することがある。単に「共振周波数制御」と記載したときは原則として「双峰共振制御」を含む。
図1および図2において、電力伝送システム1は、送電系コイルSC、受電系コイルJC、交流電源11、送電側制御部14、負荷となるデバイス21、および受電側制御部24を備える。
図2において、送電系コイルSCは、電力供給コイル12および送電共振コイル13を備える。電力供給コイル12は、銅線またはアルミニウム線などの金属線が円周状に複数回巻かれたものであり、その両端に交流電源11による交流電圧(高周波電圧)が印加される。
送電共振コイル13は、銅線またはアルミニウム線などの金属線が円周状に巻かれたコイル131と、コイル131の両端に接続されたコンデンサ132とからなり、それらによる共振回路を形成する。共振周波数f0 は次の(1)式で示される。
Figure 2011099071
なお、Lはコイル131のインダクタンス、Cはコンデンサ132の静電容量である。
送電共振コイル13のコイル131は、例えばワンターンコイルである。コンデンサ132として、種々の形式のコンデンサが用いられるが、できるだけ損失が少なく十分な耐圧を有するものが好ましい。本実施形態では、共振周波数を可変するために、コンデンサ132として可変コンデンサが用いられる。可変コンデンサとして、例えばMEMS技術を用いて製作された可変容量デバイスが用いられる。半導体を用いた可変容量デバイス(バラクタ)でもよい。
電力供給コイル12と送電共振コイル13とは、電磁的に互いに密に結合するように配置される。例えば、同一平面上にかつ同心上に配置される。つまり、例えば、送電共振コイル13の内周側に電力供給コイル12が嵌まり込んだ状態で配置される。または、同軸上で適当な距離をあけて配置してもよい。
この状態で、交流電源11から電力供給コイル12に交流電圧が供給されたときに、電力供給コイル12に生じた交番磁界による電磁誘導によって送電共振コイル13に共振電流が流れる。つまり、電磁誘導によって、電力供給コイル12から送電共振コイル13に電力が供給される。
受電系コイルJCは、受電共振コイル22および電力取出コイル23を備える。受電共振コイル22は、銅線またはアルミニウム線などの金属線が円周状に巻かれたコイル221と、コイル221の両端に接続されたコンデンサ222とからなる。受電共振コイル22の共振周波数f0 は、コイル221のインダクタンスおよびコンデンサ222の静電容量に基づいて上の(1)式で示される。
受電共振コイル22のコイル221は、例えばワンターンコイルである。コンデンサ222として、上に述べたように種々の形式のコンデンサが用いられる。本実施形態では、共振周波数を可変するために、コンデンサ222として可変コンデンサが用いられる。可変コンデンサとして、例えばMEMS技術を用いて製作された可変容量デバイスが用いられる。半導体を用いた可変容量デバイス(バラクタ)でもよい。
電力取出コイル23は、銅線またはアルミニウム線などの金属線が円周状に複数回巻かれたものであり、その両端に負荷であるデバイス21が接続される。
受電共振コイル22と電力取出コイル23とは、電磁的に互いに密に結合するように配置される。例えば、同一平面上にかつ同心上に配置される。つまり、例えば、受電共振コイル22の内周側に電力取出コイル23が嵌まり込んだ状態で配置される。または、同軸上で適当な距離をあけて配置してもよい。
この状態で、受電共振コイル22に共振電流が流れると、それによって発生した交番磁界による電磁誘導によって電力取出コイル23に電流が流れる。つまり、電磁誘導によって、受電共振コイル22から電力取出コイル23に電力が送られる。
送電系コイルSCと受電系コイルJCとは、磁界共鳴によって無線で電力を伝送するため、図2に示されるように、コイル面が互いに平行になるように、かつコイル軸心が互いに一致するかまたは余りずれないように、互いに適当な距離の範囲内に配置される。例えば、送電共振コイル13および受電共振コイル22の直径が100mm程度の場合に、数百mm程度の距離の範囲内に配置される。
図2に示す電力伝送システム1において、コイル軸心KSに沿う方向が磁界KKの主な放射方向であり、送電系コイルSCから受電系コイルJCに向かう方向が送電方向SHである。
ここで、送電共振コイル13の共振周波数fsと受電共振コイル22の共振周波数fjとが、ともに交流電源11の周波数fdと一致しているときは、最大の電力が伝送される。しかし、もし、それらの共振周波数fs,fjが互いにズレたり、それらと交流電源11の周波数fdとがズレたりすると、伝送される電力は低下し、効率が低下する。
すなわち、図9において、横軸は交流電源11の周波数fd〔MHz〕であり、縦軸は伝送される電力の大きさ〔dB〕である。曲線CV1は、送電共振コイル13の共振周波数fsと受電共振コイル22の共振周波数fjとが一致している場合を示す。この場合に、図9によると、その共振周波数fs,fjは13.56MHzである。
また、曲線CV2,CV3は、受電共振コイル22の共振周波数fjが送電共振コイル13の共振周波数fsに対して、5パーセント、10パーセント、それぞれ高い場合を示す。
図9において、交流電源11の周波数fdが13.56MHzであるときに、曲線CV1では最高の電力が伝送されるが、曲線CV2,CV3では順次低下している。また、交流電源11の周波数fdが13.56MHzからシフトしたとき、上側に僅かにシフトしたときを除いて、曲線CV1〜CV3のいずれにおいても伝送される電力が低下している。
したがって、送電共振コイル13および受電共振コイル22の共振周波数fs,fjを、交流電源11の周波数fdに極力一致させる必要がある。
図10において、横軸は周波数〔MHz〕であり、縦軸はコイルに流れる電流の大きさ〔dB〕である。曲線CV4は、コイルの共振周波数が交流電源11の周波数fdに一致している場合を示す。この場合に、図10によると、その共振周波数は10MHzである。
また、曲線CV5,CV6は、コイルの共振周波数が、交流電源11の周波数fdに対して、高くなった場合または低くなった場合を示す。
図10において、曲線CV4では最大の電流が流れるが、曲線CV5,CV6ではいずれも電流が低下している。なお、コイルのQ値が高い場合には、共振周波数のズレによる電流または伝送電力の低下への影響が大きい。
そこで、本実施形態の電力伝送システム1では、送電側制御部14および受電側制御部24により、交流電源11の位相φvs、送電共振コイル13および受電共振コイル22に流れる電流の位相φis,φijを用いて、共振周波数制御を行う。
ここで、送電側制御部14は、送電系コイルSCに供給される電圧Vsの位相φvsおよび送電系コイルSCに流れる電流Isの位相φisを検出し、それらの位相差Δφsが所定の目標値φmsとなるように、送電系コイルSCの共振周波数fsを可変する。
すなわち、送電側制御部14は、電流検出センサSE1、位相検出部141,142、目標値設定部143、フィードバック制御部144、および位相送信部145を有する。
電流検出センサSE1は、送電共振コイル13に流れる電流Isを検出する。電流検出センサSE1として、ホール素子、磁気抵抗素子、または検出コイルなどを用いることが可能である。電流検出センサSE1は、例えば電流Isの波形に応じた電圧信号を出力する。
位相検出部141は、電力供給コイル12に供給される電圧Vsの位相φvsを検出する。位相検出部141は、例えば、電圧Vsの波形に応じた電圧信号を出力する。この場合に、電圧Vsをそのまま出力してもよく、または適当な抵抗によって分圧して出力してもよい。したがって、位相検出部141は、単なる電線により、または1つまたは複数の抵抗器によって構成することも可能である。
位相検出部142は、電流検出センサSE1からの出力に基づいて、送電共振コイル13に流れる電流Isの位相φisを検出する。位相検出部142は、例えば、電流Isの波形に応じた電圧信号を出力する。この場合には、位相検出部142は、電流検出センサSE1の出力をそのまま出力してもよい。したがって、電流検出センサSE1が位相検出部142を兼ねるようにすることも可能である。
目標値設定部143は、位相差Δφsの目標値φmsを設定して記憶する。したがって、目標値設定部143には目標値φmsを記憶するためのメモリが設けられる。目標値φmsとして、後で述べるように、例えば、「−π」、または「−πに適当な補正値aを加えた値」などが設定される。
なお、目標値φmsの設定は、予め記憶された1つまたは複数のデータの中から選択することにより行ってもよく、またCPUやキーボードなどからの指令によって行われるようにしてもよい。
フィードバック制御部144は、交流電源11の電圧Vsの位相φvsと送電共振コイル13の電流Isの位相φisとの位相差Δφsが、設定された目標値φmsとなるように、送電共振コイル13の共振周波数fsを可変する。
位相送信部145は、電力供給コイル12に供給される電圧Vsの位相φvsについての情報を、受電側制御部24に対して例えば無線で送信する。位相送信部145は、例えば、電圧Vsの波形に応じた電圧信号を、アナログ信号としてまたはデジタル信号として送信する。その場合に、S/N比を向上させるために、電圧Vsの波形に応じた電圧信号を整数倍に逓倍して送信してもよい。
受電側制御部24は、送電系コイルSCに供給される電圧VSの位相φvsおよび受電系コイルJCに流れる電流IJの位相φijを検出し、それらの位相差Δφjが所定の目標値φmjとなるように、受電系コイルJCの共振周波数fjを可変する。
すなわち、受電側制御部24は、電流検出センサSE2、位相受信部241、位相検出部242、目標値設定部243、およびフィードバック制御部244を有する。
電流検出センサSE2は、受電共振コイル22に流れる電流Ijを検出する。電流検出センサSE2として、ホール素子、磁気抵抗素子、または検出コイルなどを用いることが可能である。電流検出センサSE2は、例えば電流Ijの波形に応じた電圧信号を出力する。
位相受信部241は、位相送信部145から送信された位相φvsについての情報を受信し、その情報を出力する。位相送信部145において電圧信号を逓倍した場合には、位相受信部241において元に戻すために分周を行う。位相受信部241は、例えば、電圧Vsに応じた電圧信号を出力する。
位相検出部242は、電流検出センサSE2からの出力に基づいて、受電共振コイル22に流れる電流Ijの位相φijを検出する。位相検出部242は、例えば、電流Ijの波形に応じた電圧信号を出力する。この場合には、位相検出部242は、電流検出センサSE2の出力をそのまま出力してもよい。したがって、電流検出センサSE2が位相検出部242を兼ねるようにすることも可能である。
目標値設定部243は、位相差Δφjの目標値φmjを設定して記憶する。目標値φmjとして、後で述べるように、例えば、送電側制御部14における目標値φmsに「−π/2」を加算した値が設定される。つまり目標値φmjとして、「−3π/2」が設定される。または、それに適当な補正値bを加えた値などが設定される。なお、目標値φmjの設定方法などについては、目標値φmsの場合と同様である。
フィードバック制御部244は、交流電源11の電圧Vsの位相φvsと受電共振コイル22の電流Ijの位相φijとの位相差Δφjが、設定された目標値φmjとなるように、受電共振コイル22の共振周波数fjを可変する。
なお、送電側制御部14における目標値設定部143とフィードバック制御部144、受電側制御部24における目標値設定部243とフィードバック制御部244は、それぞれ共振周波数制御部の例である。
以下において、図3を用いてさらに詳しく説明する。なお、図3において、図2に示した要素と同じ機能を有する要素には、同じ符号を付して説明を省略しまたは簡略化することがある。
図3において、電力伝送システム(電力伝送装置)1Bは、送電装置3および受電装置4を有する。
送電装置3は、交流電源11、電力供給コイル12および送電共振コイル13からなる送電系コイルSC、および共振周波数制御部CTsなどを備える。
受電装置4は、受電共振コイル22および電力取出コイル23からなる受電系コイルJC、および共振周波数制御部CTjなどを備える。
送電側の共振周波数制御部CTsは、目標値設定部143、位相比較部151、加算部152、ゲイン調整部153,154、補償部155、およびドライバ156などを備える。
位相比較部151は、電流検出センサSE1で検出された電流Isの位相φisと、交流電源11の電圧Vsの位相φvsとを比較し、それらの差である位相差Δφsを出力する。
加算部152は、位相比較部151の出力する位相差Δφsと、目標値設定部143に設定された目標値φmsとを加算する。本実施形態では、目標値φmsは、目標となる位相差Δφsに対して正負が逆になるように設定されるので、位相差Δφsと目標値φmsとの絶対値が一致したときに、加算部152の出力は0となる。
ゲイン調整部153,154は、制御が正しく行われるよう、それぞれ入力される値またはデータに対するゲイン(利得)を調整し、またはデータなどの換算を行う。
補償部155は、例えば低周波成分に対するゲインを定める。本実施形態の共振周波数制御部CTsは、コンデンサ132であるMEMS可変容量デバイスに対するフィードバック制御を行うサーボ系を構成するとみることができる。したがって、補償部155には、サーボ系の安定化、高速化、高精度化を図るための適当なサーボフィルタが用いられる。また、このようなサーボ系においてPID動作を行わせるためのフィルタ回路または微分積分回路などが、必要に応じて用いられる。
ドライバ156は、コンデンサ132であるMEMS可変容量デバイスを駆動し、その静電容量を可変制御するために、コンデンサ132に駆動KSsを出力する。
MEMS可変容量デバイス(MEMS可変キャパシタ)は、例えば、ガラスの基板上に下部電極および上部電極が設けられ、それらの間に印加する電圧による静電吸引力によって撓んで間隔が変化し、それらの間の静電容量が可変される。キャパシタのための電極と駆動のための電極とが別個に設けられることもある。駆動のための電極に印加する電圧と静電容量の変化量との関係が線形でないので、ドライバ156においてその変換のための演算またはテーブル換算なども必要に応じて行う。
受電側の共振周波数制御部CTjは、目標値設定部243、位相比較部251、加算部252、ゲイン調整部253,254、補償部255、およびドライバ256などを備える。受電側の共振周波数制御部CTjの各部の構成および動作は、上に述べた送電側の共振周波数制御部CTsの各部の構成および動作と同様である。
なお、電力伝送システム1,1Bにおける送電側制御部14、受電側制御部24、共振周波数制御部CTs,CTjなどは、ソフトウエアまたはハードウエアにより、またはそれらの組み合わせにより、実現することが可能である。例えば、CPU、ROMおよびRAMなどのメモリ、その他の周辺素子などよりなるコンピュータを用い、適当なコンピュータプログラムをCPUに実行させてもよい。その場合に、適当なハードウエア回路を併用すればよい。
次に、図4〜図7を参照して、電力伝送システム1Bにおける共振周波数制御の動作について説明する。
図4〜図7において、それぞれの各図(A)では、横軸は交流電源11の周波数f〔MHz〕であり、縦軸は各コイルに流れる電流Iの大きさ〔dB〕である。各図(B)では、横軸は交流電源11の周波数f〔MHz〕であり、縦軸は各コイルに流れる電流Iの位相φ〔radian〕である。図4〜図7のそれぞれにおいて、図(A)と図(B)とは対応している。
なお、位相φは、交流電源11の電圧Vsの位相φvs、つまり電力供給コイル12に供給される電圧Vsの位相φvsを基準とし、その位相差Δφを示している。つまり、位相φvsと一致した場合に位相φが0となる。
各曲線に付した符号CAA1〜4、CAB1〜4、CBA1〜4、CBB1〜4、CCA1〜4、CCB1〜4、CDA1〜4、CDB1〜4において、末尾の数字1、2、3、4は、それぞれ、電力供給コイル12、送電共振コイル13、受電共振コイル22、電力取出コイル23に対応することを示す。
そして、共振周波数制御において、送電共振コイル13、または送電共振コイル13と受電共振コイル22とを、その共振周波数fs,fjが10MHzとなるように制御する。
これら図4〜図7は、このような条件の下でコンピュータによるシミュレーションを行ってその結果を示したものである。
図4は送電側制御部14または送電装置3のいずれかのみによって共振周波数制御を行った場合を示し、図5は送電側制御部14または送電装置3および受電側制御部24または受電装置4の両方によって共振周波数制御を行った場合を示す。
図4において、送電共振コイル13について、その共振周波数fsが10MHzとなるように、共振周波数制御が行われる。この場合に、交流電源11の周波数fdを10MHzとし、目標値設定部143においては目標値φmsとして「−π」が設定される。
曲線CAA2に示されるように、送電共振コイル13の電流Isは、交流電源11の周波数fdと一致する10MHzにおいて最大となっている。
曲線CAB2に示されるように、送電共振コイル13の電流Isの位相φisは、共振周波数fsである10MHzにおいて、−πとなっている。つまり、目標値φmsと一致している。
また、送電共振コイル13は、電力供給コイル12からみて直列共振回路と見ることができる。したがって、共振周波数fsよりも低い周波数fdにおいては容量性となって−π/2に近づき、高い周波数fdにおいては誘導性となって−3π/2に近づく。
このように、送電共振コイル13に流れる電流Isの位相φisは、共振周波数fsの近辺において大きく変化する。位相φisつまり位相差Δφsが−πとなるように制御することによって、送電共振コイル13の共振周波数fsを電圧Vsの周波数fdに高精度で一致させることができる。
なお、曲線CAA1に示されるように、電力供給コイル12に流れる電流Iも、共振周波数fsにおいて最大となる。曲線CAB1に示されるように、電力供給コイル12に流れる電流Iの位相φiは、共振周波数fsの近辺において0または進み位相となり、共振周波数fsから外れると−π/2となる。
図5において、送電共振コイル13および受電共振コイル22について、その共振周波数fs,fjが10MHzとなるように、共振周波数制御が行われる。この場合に、目標値設定部143,243において、目標値φmsとして「−π」が、目標値φmjとして「−3π/2」が、それぞれ設定される。
つまり、目標値φmjには、目標値φmsに−π/2を加算した値「φms−π/2」、つまり目標値φmsよりもπ/2遅れた位相が設定される。
曲線CBA2および曲線CBB2については、図4における曲線CAA2および曲線CAB2とほぼ同様である。
曲線CBA3に示されるように、受電共振コイル22の電流Ijは、交流電源11の周波数fdと一致する10MHzにおいて最大となっている。
曲線CBB3に示されるように、受電共振コイル22の電流Ijの位相φijは、共振周波数fsである10MHzにおいて、−3π/2となっている。つまり、目標値φmjと一致している。また、周波数fdが共振周波数fsよりも低くなった場合に、位相差Δφが減少して−π/2に近づき、共振周波数fsよりも高くなった場合に、位相差Δφが増大して−5π/2つまり−π/2に近づく。
このように、送電共振コイル13および受電共振コイル22に流れる電流Is,Ijの位相φis,φijは、共振周波数fs,fjの近辺において大きく変化する。位相φis,φijつまり位相差Δφs,Δφjが−πまたは−3π/2となるように制御することによって、送電共振コイル13および受電共振コイル22の共振周波数fs,fjを電圧Vsの周波数fdに高精度で一致させることができる。
このように、本実施形態の電力伝送システム1,1Bによると、送電系コイルSCおよび受電系コイルJCの共振周波数を高速にかつ正確にリアルタイムで制御することができる。
これにより、送電系コイルSCおよび受電系コイルJCの共振周波数を交流電源11の周波数fdに正確に一致させることができ、送電装置3から受電装置4に対し常に最大の電力を伝送することが可能である。
そのため、環境要因などの変化があっても、常に最大の電力を伝送することができ、高い効率でエネルギの伝送を行うことができる。
また、本実施形態の共振周波数制御方法によると、交流電源の電圧Vsに対するコイル電流の位相差Δφを基に制御を行うので、スイープサーチ法による場合のように電流の振幅の変動による影響を受けることがなく、正確な制御が行える。
なお、スイープサーチ法では、例えば、送電系コイルSCまたは受電系コイルJCにおけるLまたはCをスイープさせ、コイルの電流値が最大(ピーク)となる位置を試行錯誤的にサーチする。
しかし、このようなスイープサーチ法による場合には次の問題が考えられる。すなわち、
(1)使用状態によってはコイルの電流値が常に変動するので、コイルの電流値の変動(振幅変動)によって誤検出が生じ、正確な調整を行うのが容易でない。
(2)調整のために往復スイープ動作が必要となり、調整に時間を要し、高速なリアルタイム制御が困難である。また、一度調整を行っても、使用環境が変わると再度調整を行う必要があるので、その都度使用を一時停止しなければならない。
しかし、本実施形態の共振周波数制御方法によると、リアルタイムで制御を行っているので、交流電源11の周波数fdの変動や環境要因などの変動に対して常に補正が行われ、スイープサーチ法による場合のように再調整や一時停止などの必要がない。
また、本実施形態の電力伝送システム1,1Bでは、送電共振コイル13および受電共振コイル22のQ値が高い場合に、両コイルの共振周波数のズレに対する感度が高くなってしまう。
しかし、本実施形態の共振周波数制御方法によると、Q値が高くなることによって、位相φis,φijの共振周波数の近辺における変化割合が大きくなるので、これによって制御の感度も高くなる。その結果、位相差Δφs,Δφjをより高い精度で目標値φms,φmjに一致させることができ、Q値が高くなることによって一層高い効率の電力伝送を行うことができる。
次に、送電系コイルSCと受電系コイルJCとの結合が大きくなって双峰特性が現れたときの共振周波数制御(双峰共振制御)について説明する。
図6には、双峰特性が現れた場合であって、双峰共振制御を行っていない場合の、電流Is,Ijおよび位相φis、φijの状態が示されている。
つまり、図6に示す状態は、例えば図5に示す状態で動作しているときに、受電系コイルJCが送電系コイルSCに近づいて結合が大きくなった場合に現れる。
図5において曲線CBA2,CBA3,に示すように単峰であったものが、図6においては、曲線CCA2,CCA3に示すように双峰となっている。これにより、共振周波数である10MHzにおいて、曲線CCA4に示すように、電力取出コイル23から取り出される電流が低下し、伝送電力が減少する。
そこで、双峰共振制御では、2つあるピークのうちの1つのピークが、共振周波数fsである10MHzにおいて現れるように、送電系コイルSCおよび受電系コイルJCの共振周波数をシフトさせる。
そのため、通常の共振周波数制御では目標値φmjとして「−3π/2」が設定されたが、双峰共振制御では、目標値φmjとしてさらに−π/2を加算した位相、つまりさらにπ/2だけ遅れた位相である「−2π」を設定する。つまり、目標値φmjを、「−3π/2」から「−2π」に切り替える。
このように、双峰共振制御においては、目標値設定部243の目標値φmjとして、「−2π」が設定される。
目標値設定部143の目標値φmsは、「−π」のままで変わらない。したがって、目標値φmsと目標値φmjとの差が、双峰共振制御になることによって、−π/2から−πに切り替わる。
図7において、曲線CDB2に示されるように、送電共振コイル13の電流Isの位相φisは、共振周波数fsである10MHzにおいて、−πとなっている。また、曲線CDB3に示されるように、受電共振コイル22の電流Ijの位相φijは、共振周波数fsである10MHzにおいて、−2πとなっている。
曲線CDA2,CDA3,CDA4に示されるように、いずれの電流Iも双峰共振制御によって増大している。例えば、曲線CDA4において、通常の共振周波数制御においては電流が約−30dBであったものが、双峰共振制御においては約−20dBとなり、約10dB増大している。
図8には、送電共振コイル13と受電共振コイル22との距離を、200mmから100mmの間で変化させた場合の、電力取出コイル23から取り出される電力の変化の状態が示されている。
なお、図8は、コイルの直径を100mmとし、電力供給コイル12と送電共振コイル13との間隔を50mm、受電共振コイル22と電力取出コイル23との間隔を40mmとしてシミュレーションを行った結果である。電力取出コイル23の負荷であるデバイス21として、10Ωの抵抗器を接続した。
図8において、曲線CU1は通常の共振周波数制御と双峰共振制御とを切り替えた場合、曲線CU2は双峰共振制御を行わなかった場合を、それぞれ示す。
双峰共振制御を行わない場合には、曲線CU2に示されるように、コイル間の距離が近づくにつれて電力が低下する。これに対し、曲線CU1に示されるように、コイル間の距離が140mm程度に近づいたときに双峰共振制御に切り替えると、電力は低下することなく、却って増大する。
なお、通常の共振周波数制御と双峰共振制御とを自動的に切り替える方法として、種々の方法が考えられる。
例えば、図11に示すように、目標値設定部243Cに、通常の共振周波数制御のための目標値φmj1と、双峰共振制御のための目標値φmj2とを記憶しておく。そして、双峰特性が現れたことを検出するための双峰検出部245を設ける。
目標値設定部243Cは、通常の共振周波数制御においては目標値φmj1を目標値φmjとして出力するが、双峰検出部245が検出信号S1を出力したときには、目標値φmj2を目標値φmjとして出力する。これによって、通常の共振周波数制御と双峰共振制御とが自動的に切り替えられる。
なお、双峰検出部245は、例えば、伝送電力が所定量よりも低下したこと、または、受電系コイルJCの距離が所定よりも近づいたことなどを検出するものでもよい。または、適当なタイミングで、2つの目標値φmj1,φmj2を切り替えて出力し、電力の大きい方の目標値φmを選択するようにしてもよい。
次に、本実施形態の電力伝送システム1,1Bにおける共振周波数制御について、フローチャートを参照して説明する。
図12において、交流電源11の位相φvsを検出し(#11)、送電共振コイル13および受電共振コイル22の位相φis,φijを検出し(#12)、位相差Δφs,Δφjを求める(#13)。
そして、位相差Δφs,Δφjが目標値φms,φmjと一致するように、フィードバック制御を行う(#14)。
図13において、フィードバック制御では、双峰特性が現れたか否かによって(#21)、目標値φmj2,φmj1を切り替える(#22、23)。
このように、双峰特性が現れたときに双峰共振制御を行うことにより、伝送電力の低下を抑制することができ、電力伝送の効率を向上させることができる。
したがって、通常の共振周波数制御と、双峰特性が現れた場合の双峰共振制御とを、切り替えて行うことにより、送電装置3から受電装置4に対し常に最大の電力を伝送することができ、高い効率でエネルギの伝送を行うことができる。
上に述べた各実施形態においては、目標値φmsとして−πを、目標値φmjとして−3π/2または−2πを設定した。目標値φmsとして設定された「−π」は、目標値「β」の例である。また、目標値φmjとして設定された「−3π/2」および「−2π」は、それぞれ目標値「β−π/2」「β−π」の例である。
これら目標値φms,φmjは、送電側制御部14、受電側制御部24、フィードバック制御部144,244、共振周波数制御部CTs,CTjの構成に応じて、種々変更することが可能である。
なお、本実施形態では、位相および位相差をラジアン(radian) で表した。位相または位相差をα〔radian〕としたとき、これは(α+2nπ)〔radian〕と等価である。nは任意の整数である。また、位相および位相差をラジアンではなく、度で表してもよい。
また、目標値φms,φmsの設定に際し、それらの値に補正値a,bを加えてもよいことを述べた。そのような補正値a,bは、例えば、実際に最大の電力が得られるように決めればよい。
上に述べた実施形態において、位相検出部141,142の構成は種々変更することが可能である。つまり、電圧波形または電流波形であってもよく、位相を示す値またはデータなどであってもよい。つまり電圧Vsまたは電流Isについての位相情報を含んだ信号またはデータであればよい。
上に述べた実施形態において、加算部152とゲイン調整部153、および加算部252とゲイン調整部253は、それぞれ演算部の例である。ドライバ156,256によってコンデンサ132,222であるMEMS可変容量デバイスを駆動したが、他の形態のコンデンサを駆動するようにしてもよい。また、ドライバ156によって、コンデンサではなく、コイルのインダクタンスを可変するように駆動してもよい。
上に述べた実施形態において、送電系コイルSC、受電系コイルJC、送電側制御部14、受電側制御部24、フィードバック制御部144,244、共振周波数制御部CTs,CTj、送電装置3、受電装置4、電力伝送システム1,1Bの各部または全体の構成、構造、回路、形状、個数、配置などは、本発明の主旨に沿って適宜変更することができる。
上に述べた実施形態の電力伝送システム(電力伝送装置)1,1Bは、例えば、携帯電話、モバイルコンピュータ、および携帯音楽プレーヤなどのモバイル機器に内蔵した二次電池の充電、または、自動車などの輸送機器の二次電池の充電などに適用することが可能である。

Claims (16)

  1. 送電系コイルから受電系コイルへ磁界共鳴を利用して電力を伝送する磁界共鳴型電力伝送システムにおける共振周波数制御方法において、
    前記送電系コイルに供給される電圧の位相および前記送電系コイルまたは前記受電系コイルに流れる電流の位相を検出し、それらの位相差が目標値となるように、前記送電系コイルまたは前記受電系コイルの共振周波数を可変する、
    磁界共鳴型電力伝送システムにおける共振周波数制御方法。
  2. 前記送電系コイルは、交流電源が接続される電力供給コイル、および前記電力供給コイルと電磁的に密に結合した送電共振コイルを有し、
    前記受電系コイルは、受電共振コイル、および前記受電共振コイルと電磁的に密に結合した電力取出コイルを有しており、
    前記交流電源の電圧と前記送電共振コイルの電流との位相差が目標値βとなるように、前記送電共振コイルの共振周波数を可変し、
    前記交流電源の電圧と前記受電共振コイルの電流との位相差が目標値(β−π/2)となるように、前記受電共振コイルの共振周波数を可変する、
    請求項1記載の磁界共鳴型電力伝送システムにおける共振周波数制御方法。
  3. 前記目標値βは、−πである、
    請求項2記載の磁界共鳴型電力伝送システムにおける共振周波数制御方法。
  4. 前記送電系コイルと前記受電系コイルとの結合度が大きくなって双峰特性が現れたときに、前記交流電源の周波数において電流のピークが現れるように、前記送電系コイルまたは前記受電系コイルの共振周波数を可変する、
    請求項1記載の磁界共鳴型電力伝送システムにおける共振周波数制御方法。
  5. 前記送電系コイルは、交流電源が接続される電力供給コイル、および前記電力供給コイルと電磁的に密に結合した送電共振コイルを有し、
    前記受電系コイルは、受電共振コイル、および前記受電共振コイルと電磁的に密に結合した電力取出コイルを有しており、
    前記送電共振コイルと前記受電共振コイルとの結合度が大きくなって双峰特性が現れたときに、
    前記交流電源の電圧と前記送電共振コイルの電流との位相差が目標値βとなるように、前記送電共振コイルの共振周波数を可変し、
    前記交流電源の電圧と前記受電共振コイルの電流との位相差が目標値(β−π)となるように、前記受電共振コイルの共振周波数を可変する、
    請求項1記載の磁界共鳴型電力伝送システムにおける共振周波数制御方法。
  6. 送電系コイルから受電系コイルへ磁界共鳴を利用して電力を伝送する磁界共鳴型電力伝送装置において、
    前記送電系コイルに供給される電圧の位相および前記送電系コイルまたは前記受電系コイルに流れる電流の位相を検出する位相検出部と、
    検出されたそれらの位相の位相差が目標値となるように、前記送電系コイルまたは前記受電系コイルの共振周波数を可変する共振周波数制御部と、
    を有する磁界共鳴型電力伝送装置。
  7. 送電系コイルから受電系コイルへ磁界共鳴を利用して電力を伝送する磁界共鳴型電力伝送装置における送電装置であって、
    前記送電系コイルに供給される電圧の位相および前記送電系コイルに流れる電流の位相を検出する送電系位相検出部と、
    検出されたそれら位相の位相差が目標値となるように、前記送電系コイルの共振周波数を可変する送電系共振周波数制御部と、
    を有する磁界共鳴型電力伝送装置における送電装置。
  8. 前記送電系コイルは、交流電源が接続される電力供給コイルと、前記電力供給コイルと電磁的に密に結合した送電共振コイルとを有し、
    前記送電系共振周波数制御部は、
    前記目標値を設定して記憶する目標値設定部と、
    前記交流電源の電圧と前記送電共振コイルの電流との位相差が設定された前記目標値となるように、前記送電共振コイルの共振周波数を可変するフィードバック制御部と、を有する、
    請求項7記載の磁界共鳴型電力伝送装置における送電装置。
  9. 前記フィードバック制御部は、
    前記電圧の位相と前記電流の位相とを比較し、それらの差である位相差を出力する位相比較部と、
    前記位相比較部の出力する位相差と、前記目標値設定部に設定された目標値とを演算する演算部と、
    前記送電共振コイルにおけるインダクタンスまたは静電容量を可変するために駆動するドライバと、を含む、
    請求項8記載の磁界共鳴型電力伝送装置における送電装置。
  10. 前記目標値設定部は、前記目標値として−πを設定する、
    請求項8または9記載の磁界共鳴型電力伝送装置における送電装置。
  11. 前記送電系コイルに供給される電圧の位相に関する情報を無線で送信する位相情報送信部を有する、
    請求項7ないし10のいずれかに記載の磁界共鳴型電力伝送装置における送電装置。
  12. 送電系コイルから受電系コイルへ磁界共鳴を利用して電力を伝送する磁界共鳴型電力伝送装置における受電装置であって、
    前記送電系コイルに供給される電圧の位相に関する情報を受信する位相情報受信部と、
    前記受電系コイルに流れる電流の位相を検出する受電系位相検出部と、
    前記位相情報受信部によって受信された電圧の位相と検出された電流の位相との位相差が目標値となるように、前記受電系コイルの共振周波数を可変する受電系共振周波数制御部と、
    を有する磁界共鳴型電力伝送装置における受電装置。
  13. 前記受電系コイルは、受電共振コイル、および前記受電共振コイルと電磁的に密に結合した電力取出コイルを有し、
    前記受電系共振周波数制御部は、
    前記目標値を設定して記憶する目標値設定部と、
    前記位相情報受信部によって受信された電圧の位相と検出された電流の位相との位相差が前記目標値となるように、前記受電共振コイルの共振周波数を可変するフィードバック制御部と、を有する、
    請求項12記載の磁界共鳴型電力伝送装置における受電装置。
  14. 前記フィードバック制御部は、
    前記電圧の位相と前記電流の位相とを比較し、それらの差である位相差を出力する位相比較部と、
    前記位相比較部の出力する位相差と、前記目標値設定部に設定された目標値とを演算する演算部と、
    前記受電共振コイルにおけるインダクタンスまたは静電容量を可変するために駆動するドライバと、を含む、
    請求項13記載の磁界共鳴型電力伝送装置における受電装置。
  15. 前記目標値設定部は、前記目標値として−3π/2を設定する、
    請求項13または14記載の磁界共鳴型電力伝送装置における受電装置。
  16. 前記目標値設定部は、前記送電系コイルと前記受電系コイルとの結合度が大きくなって双峰特性が現れたときに、前記目標値を切り替えて−2πに設定する、
    請求項13記載の磁界共鳴型電力伝送装置における送電装置。
JP2011553626A 2010-02-10 2010-02-10 磁界共鳴型電力伝送システムにおける共振周波数制御方法、送電装置、および受電装置 Expired - Fee Related JP5454590B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/000847 WO2011099071A1 (ja) 2010-02-10 2010-02-10 磁界共鳴型電力伝送システムにおける共振周波数制御方法、送電装置、および受電装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013238048A Division JP5673783B2 (ja) 2010-02-10 2013-11-18 磁界共鳴型電力伝送システムにおける送電装置、および受電装置

Publications (2)

Publication Number Publication Date
JPWO2011099071A1 true JPWO2011099071A1 (ja) 2013-06-13
JP5454590B2 JP5454590B2 (ja) 2014-03-26

Family

ID=50614635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011553626A Expired - Fee Related JP5454590B2 (ja) 2010-02-10 2010-02-10 磁界共鳴型電力伝送システムにおける共振周波数制御方法、送電装置、および受電装置

Country Status (3)

Country Link
JP (1) JP5454590B2 (ja)
KR (1) KR101494144B1 (ja)
BR (1) BR112012019690A2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101438294B1 (ko) * 2010-02-10 2014-09-04 후지쯔 가부시끼가이샤 자계 공명형 전력 전송 시스템에 있어서의 공진 주파수 제어 방법, 송전 장치, 및 수전 장치
KR102496136B1 (ko) * 2016-05-16 2023-02-06 엘지이노텍 주식회사 무선 전력 제어 방법 및 장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU732701B2 (en) * 1997-02-03 2001-04-26 Sony Corporation Electric power transmission device and electric power transmission method
JP4207916B2 (ja) 2004-03-30 2009-01-14 株式会社ダイフク 無接触給電設備
CN101860089B (zh) * 2005-07-12 2013-02-06 麻省理工学院 无线非辐射能量传递
NZ547604A (en) * 2006-05-30 2008-09-26 John Talbot Boys Inductive power transfer system pick-up circuit
JP2011050140A (ja) * 2009-08-26 2011-03-10 Sony Corp 非接触給電装置、非接触受電装置、非接触給電方法、非接触受電方法および非接触給電システム

Also Published As

Publication number Publication date
KR20140071461A (ko) 2014-06-11
JP5454590B2 (ja) 2014-03-26
BR112012019690A2 (pt) 2016-05-03
KR101494144B1 (ko) 2015-02-16

Similar Documents

Publication Publication Date Title
JP5673783B2 (ja) 磁界共鳴型電力伝送システムにおける送電装置、および受電装置
JP6137201B2 (ja) 無線電力伝送システム、受電器および無線電力伝送方法
US10090711B2 (en) Power transmission apparatus and power transmission method
US10224751B2 (en) Methods for parameter identification, load monitoring and output power control in wireless power transfer systems
JP6296061B2 (ja) 送電装置
US20180254668A1 (en) Resonant contactless power supply equipment, electrical transmitter and contactless power supply method
JP5805576B2 (ja) 共鳴型無線電力伝送装置
JP6135471B2 (ja) 送電装置およびそれを用いたワイヤレス電力伝送システム
JP6706270B2 (ja) レシーバ電圧およびリアクタンスを調整するための補助レシーバコイル
KR20120080136A (ko) 비접촉 전력 전송 장치 및 이를 위한 전력 전송 방법
EP3032701B1 (en) Wireless power transmission device
JP5454590B2 (ja) 磁界共鳴型電力伝送システムにおける共振周波数制御方法、送電装置、および受電装置
JP2014017893A (ja) 非接触電力伝送装置
WO2017042962A1 (ja) 送電装置、給電システム
JPWO2014030690A1 (ja) 非接触電力伝送装置
JP2019126164A (ja) 無線電力伝送システムおよび無線電力伝送方法
CN106058945A (zh) 共振频率控制方法、电力传送装置、送电装置和受电装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5454590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees