JPWO2011078087A1 - Perforated metal foil - Google Patents

Perforated metal foil Download PDF

Info

Publication number
JPWO2011078087A1
JPWO2011078087A1 JP2011547520A JP2011547520A JPWO2011078087A1 JP WO2011078087 A1 JPWO2011078087 A1 JP WO2011078087A1 JP 2011547520 A JP2011547520 A JP 2011547520A JP 2011547520 A JP2011547520 A JP 2011547520A JP WO2011078087 A1 JPWO2011078087 A1 JP WO2011078087A1
Authority
JP
Japan
Prior art keywords
metal foil
perforated metal
holes
hole
perforated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011547520A
Other languages
Japanese (ja)
Inventor
哲広 松永
哲広 松永
佐藤 哲朗
哲朗 佐藤
肇 渡辺
肇 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Publication of JPWO2011078087A1 publication Critical patent/JPWO2011078087A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/06Wholly-metallic mirrors
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/08Perforated or foraminous objects, e.g. sieves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/742Meshes or woven material; Expanded metal perforated material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本件発明は、薄く、開口率を高くしても引張強度の低下を抑え、取り扱い時の破断を防ぐことができる孔あき金属箔を提供することを目的とする。上記課題を解決するため、厚さ方向に貫通するオーバル形状の貫通孔を複数有する孔あき金属箔であって、隣接する3つの貫通孔は、その開口のそれぞれの中心点A,B,Cを結んで形成される三角形ABCが略正三角形であり、当該孔あき金属箔に張力が負荷される方向に対し、当該正三角形のいずれか一辺が平行となるように配置した三角形ABCを形成し、当該三角形ABCの形状を維持した状態で複数の貫通孔が形成されたことを特徴とする孔あき金属箔を採用した。An object of the present invention is to provide a perforated metal foil that is thin, can suppress a decrease in tensile strength even when the aperture ratio is increased, and can prevent breakage during handling. In order to solve the above problems, a perforated metal foil having a plurality of oval-shaped through-holes penetrating in the thickness direction, and the three adjacent through-holes have respective center points A, B, and C of the openings. The triangle ABC formed by tying is a substantially equilateral triangle, and forms a triangle ABC arranged so that any one side of the equilateral triangle is parallel to the direction in which the tension is applied to the perforated metal foil, A perforated metal foil characterized in that a plurality of through holes were formed while maintaining the shape of the triangle ABC was employed.

Description

本件発明は、厚さ方向に複数の貫通孔が形成された孔あき金属箔に関する。   The present invention relates to a perforated metal foil in which a plurality of through holes are formed in the thickness direction.

厚さ方向に複数の貫通孔が形成された孔あき金属箔は、電池の集電体、化学反応を促進させる触媒の担持体、微粉分級用スクリーン装置、固液分離処理用のスクリーン装置、微生物保管用容器の酸素供給口に使用されるネット、クリーンルーム用防塵フィルタ、液体抗菌フィルタ、液体に金属イオンを付与し飲料水等の液体を改質するための液体改質用フィルタ、電磁波シールド、磁性用材料、導電用材料、その他の広範囲な分野において使用されている。   A perforated metal foil in which a plurality of through holes are formed in the thickness direction includes a battery current collector, a catalyst carrier that promotes a chemical reaction, a fine powder classification screen device, a solid-liquid separation screen device, and a microorganism. Nets used for oxygen supply ports of storage containers, dustproof filters for clean rooms, liquid antibacterial filters, liquid reforming filters for imparting metal ions to liquids to modify liquids such as drinking water, electromagnetic shielding, magnetism It is used in a wide range of fields such as industrial materials, conductive materials.

例えば、特許文献1には、二次電池用孔開き集電体に関し、金属箔から活物質が脱落するのを防止するために、金属箔に多数の貫通孔を設けた金属箔が提案されている。このような二次電池においては、近年、高密度化、軽量化が求められており、それに伴い、二次電池の集電体用途としての孔あき金属箔は、より薄く、開口率の高いものが求められる傾向がある。また、上述のような各用途においても、薄さと、開口率の選択の幅が広がることが望まれている。   For example, Patent Document 1 proposes a metal foil in which a large number of through holes are provided in a metal foil in order to prevent an active material from dropping from the metal foil, with respect to a perforated current collector for a secondary battery. Yes. In such secondary batteries, in recent years, there has been a demand for higher density and lighter weight, and accordingly, perforated metal foils for secondary battery current collector applications are thinner and have a higher aperture ratio. Tend to be required. In each of the above applications, it is desired that the range of selection of the thinness and the aperture ratio be widened.

ところで、金属箔を二次電池の集電体として用いる際、金属箔に活物質を塗布する。例えば、特許文献2には、リチウムイオン二次電池用フィルム状電極を製造する際、アルミニウム箔フィルムや銅箔フィルムを巻出軸にロール状に巻き、このフィルムを巻き出し、複数の支持ロールで支持しながら搬送し、フィルムの片面に電極活物質塗料を塗布し、乾燥等の処理を行った後、巻取軸でロール状に巻き取る工程を、フィルムの両面に対して行い、フィルムの両面に電極活物質塗布膜が形成されたフィルム状電極が製造される例が挙げられている。   By the way, when using metal foil as a collector of a secondary battery, an active material is applied to the metal foil. For example, in Patent Document 2, when producing a film electrode for a lithium ion secondary battery, an aluminum foil film or a copper foil film is wound in a roll shape around an unwinding shaft, the film is unwound, and a plurality of support rolls are used. Carrying while supporting, applying an electrode active material paint on one side of the film, performing a process such as drying, and then performing the process of winding in a roll shape with a take-up shaft on both sides of the film, An example in which a film-like electrode in which an electrode active material coating film is formed is manufactured.

特開平11−67217号公報Japanese Patent Laid-Open No. 11-67217 特開2001−113215号公報JP 2001-113215 A 特開平11−86869号公報JP-A-11-86869

このように金属箔が加工される際、金属箔の巻き取り、巻き出し方向の張力によって、金属箔が破断しやすいという課題があった。特に、孔あき金属箔を二次電池の集電体として用いる場合、貫通孔を有する孔あき金属箔は引張強度が低下し、その加工工程で、破断が生じ易い。すなわち、より薄く、高開口率の孔あき金属箔が望まれるが、その一方で、加工時における孔あき金属箔の破断を防ぐ必要があるので、薄く且つ開口率を高めるには限界があった。   Thus, when processing metal foil, there existed a subject that metal foil was easy to fracture | rupture by the winding-up of metal foil, and the tension | tensile_strength of the unwinding direction. In particular, when a perforated metal foil is used as a current collector for a secondary battery, the perforated metal foil having a through hole has a reduced tensile strength and is easily broken during the processing step. That is, a thinner, high aperture ratio perforated metal foil is desired, but on the other hand, it is necessary to prevent breakage of the perforated metal foil during processing, so there is a limit to increasing the aperture ratio thin. .

このような課題に対し、特許文献3では、一つの行における貫通孔を、列の数の半分以下に減らすことによって応力の加わる箇所を広くし、貫通孔の存在による破断荷重の低下を防止することにより、金属箔に活物質を塗布する際、又は活物質を塗布した後に極板として巻き上げる際、張力が加わる方向における破断荷重の低下を少なくさせた孔開き集電体が採用されている。   With respect to such a problem, in Patent Document 3, by reducing the number of through holes in one row to half or less of the number of columns, a portion where stress is applied is widened, and a reduction in breaking load due to the presence of the through holes is prevented. Therefore, when the active material is applied to the metal foil, or when it is wound up as an electrode plate after the active material is applied, a perforated current collector in which a decrease in breaking load in a direction in which tension is applied is reduced is employed.

近年、小型軽量化、高密度化が図られることにより、微細な貫通孔で開口率の高い孔あき金属箔が望まれている。すなわち、蓄電デバイス等の部材では、限られた面積の金属箔において開口率を高めるために、微細貫通孔を多数設けて開口率を高める必要がある。しかし、特許文献3に記載の孔開き集電体のように、貫通孔の孔径が0.1〜3mm程度、各貫通孔間の距離である孔のピッチが0.5〜10mm、というレベルの金属箔で、一つの行における貫通孔を、列の数の半分以下に減らすと、近年のニーズに対応する開口径や開口率に対応できない。   In recent years, perforated metal foils having high through-hole ratio with fine through-holes are desired due to reduction in size, weight and density. That is, in a member such as an electricity storage device, in order to increase the aperture ratio in a metal foil having a limited area, it is necessary to provide a large number of fine through holes to increase the aperture ratio. However, like the perforated current collector described in Patent Document 3, the diameter of the through holes is about 0.1 to 3 mm, and the pitch of the holes, which is the distance between the through holes, is 0.5 to 10 mm. If the number of through-holes in one row is reduced to less than half the number of columns with metal foil, the aperture diameter and aperture ratio corresponding to recent needs cannot be accommodated.

そこで、本件発明は、薄く、開口率を高くしながら、引張強度を強化して、取り扱い時の破断を防ぐことができる孔あき金属箔を提供することを目的とする。   Therefore, an object of the present invention is to provide a perforated metal foil that is thin and has a high opening ratio, enhances the tensile strength, and can prevent breakage during handling.

本発明者等は、鋭意研究を行った結果、以下の孔あき金属箔を採用することで上記課題を解決するに到った。   As a result of intensive studies, the present inventors have come to solve the above problems by employing the following perforated metal foil.

本件発明に係る孔あき金属箔は、厚さ方向に貫通するオーバル形状の貫通孔を複数有する孔あき金属箔であって、隣接する3つの貫通孔は、その開口のそれぞれの中心点A,B,Cを結んで形成される三角形ABCが略正三角形であり、当該孔あき金属箔に張力が負荷される方向に対し、当該正三角形のいずれか一辺が平行となるように配置した三角形ABCを形成し、当該三角形ABCの形状を維持した状態で複数の貫通孔が形成されたことを特徴とする。   The perforated metal foil according to the present invention is a perforated metal foil having a plurality of oval-shaped through holes penetrating in the thickness direction, and the three adjacent through holes are respectively center points A and B of the openings. , C is a substantially equilateral triangle, and a triangle ABC arranged so that one side of the equilateral triangle is parallel to the direction in which tension is applied to the perforated metal foil. A plurality of through holes are formed while maintaining the shape of the triangle ABC.

本件発明に係る孔あき金属箔は、隣接する貫通孔間の配置を工夫し、且つ、貫通孔の形状をオーバル形状とすることにより、孔あき金属箔の所望の方向における耐破断性を強化することができる。すなわち、本件発明に係る孔あき金属箔は、貫通孔の形状とその配置を工夫することにより、当該孔あき金属箔の使用時に張力が負荷される方向の引張強度を強化することができる。その結果、従来のもの以上に、薄く、且つ高開口率でありながら、孔あき金属箔に対する加工工程における破断を防ぐことができ、取り扱い性に優れた孔あき金属箔を提供することができる。   In the perforated metal foil according to the present invention, the breakage resistance in the desired direction of the perforated metal foil is enhanced by devising the arrangement between adjacent through holes and making the shape of the through holes oval. be able to. That is, the perforated metal foil according to the present invention can reinforce the tensile strength in the direction in which tension is applied when the perforated metal foil is used by devising the shape and arrangement of the through holes. As a result, it is possible to provide a perforated metal foil that is thinner and has a higher aperture ratio than the conventional one, can prevent breakage in the processing step for the perforated metal foil, and is excellent in handleability.

本件発明に係る孔あき金属箔における貫通孔の配置例を示す模式図である。It is a schematic diagram which shows the example of arrangement | positioning of the through-hole in the perforated metal foil which concerns on this invention. 本件発明に係る孔あき金属箔における貫通孔の配置を説明するための模式図である。It is a schematic diagram for demonstrating arrangement | positioning of the through-hole in the perforated metal foil which concerns on this invention. 本件発明に係る孔あき金属箔における貫通孔の形状の例を示す模式図である。It is a schematic diagram which shows the example of the shape of the through-hole in the perforated metal foil which concerns on this invention. 本件発明に係る孔あき金属箔における貫通孔の配置例を示す模式図である。It is a schematic diagram which shows the example of arrangement | positioning of the through-hole in the perforated metal foil which concerns on this invention. 本件発明に係る孔あき金属箔における貫通孔の配置例を示す模式図である。It is a schematic diagram which shows the example of arrangement | positioning of the through-hole in the perforated metal foil which concerns on this invention. 比較例の孔あき金属箔における貫通孔の配置例を示す模式図である。It is a schematic diagram which shows the example of arrangement | positioning of the through-hole in the perforated metal foil of a comparative example.

以下、本発明に係る孔あき金属箔の好ましい実施の形態を説明する。本件発明に係る孔あき金属箔は、厚さ方向に貫通する貫通孔の開口形状が、平面視でオーバル形状としたものを複数有する孔あき金属箔であり、複数の貫通孔の配置及び形状を工夫することにより、破断荷重の低下を抑えることができる。   Hereinafter, preferred embodiments of the perforated metal foil according to the present invention will be described. The perforated metal foil according to the present invention is a perforated metal foil having a plurality of through-holes having an oval shape in plan view, and the arrangement and shape of the plurality of through-holes. By devising, the fall of breaking load can be suppressed.

図1は、本件発明に係る孔あき金属箔における複数の貫通孔の配置例を示す模式図である。貫通孔は、平面視オーバル形状のものが複数形成される。本件発明に係る孔あき金属箔は、複数の貫通孔の配置に特徴があり、これを図1及び図2に示すように三角形ABCを用いて説明する。図1,図2に示すように、三角形ABCは、隣接する3つの貫通孔1a,1b,1cの開口の各中心点A,B,Cを結んで形成される三角形であり、略正三角形である。すなわち、各貫通孔1a,1b,1cは一定の離間距離を保ち、且つ、略正三角形の頂点となる位置が中心となるように形成される。更に、この三角形ABCのいずれか一辺が、当該孔あき金属箔において、張力の強化が望まれる方向MDに対し平行となるように、貫通孔が配置される。   FIG. 1 is a schematic diagram showing an arrangement example of a plurality of through holes in a perforated metal foil according to the present invention. A plurality of through holes having an oval shape in plan view are formed. The perforated metal foil according to the present invention is characterized by the arrangement of a plurality of through holes, and this will be described using a triangle ABC as shown in FIGS. 1 and 2. As shown in FIGS. 1 and 2, the triangle ABC is a triangle formed by connecting the center points A, B, and C of the openings of the three adjacent through holes 1a, 1b, and 1c. is there. That is, each through-hole 1a, 1b, 1c is formed so as to maintain a constant separation distance and to be centered at a position that is a vertex of a substantially equilateral triangle. Further, the through hole is arranged so that any one side of the triangle ABC is parallel to the direction MD in which the tension is desired to be strengthened in the perforated metal foil.

ここで、孔あき金属箔は、部材として使用される場合に、所定の方向への張力が求められることがある。例えば、孔あき金属箔は、長尺な帯状の金属箔に、孔あきパターンが複数繰り返して形成されたものが量産品として製造される。この孔あき金属箔は、更に、製造ラインにおいて、表面処理や、切断等の二次加工が施される。例えば、孔あき金属箔を二次電池の集電体に用いる場合、孔あき金属箔に活物質が塗工される。そして、孔あき金属箔は、製造段階または二次加工段階において、その長尺の帯状の孔あき金属箔をロール状に巻き取り又は巻き出しされるため、このロール状に巻き取り又は巻き出しする方向に張力が掛かりやすく、孔あき金属箔が破断しやすい。特に、近年、二次電池の集電体等の用途に用いられる孔あき金属箔には、開口率が高く、薄いものが求められる傾向があり、その分、金属箔の引張強度が低下する。そこで、孔あき金属箔の複数の貫通孔を、上述の三角形ABCのいずれか一辺が、当該孔あき金属箔に張力が負荷される方向MDに対し平行となるように配置することにより、この方向MDの引張強度の低下を抑えたのである。   Here, when a perforated metal foil is used as a member, tension in a predetermined direction may be required. For example, perforated metal foil is manufactured as a mass-produced product in which a plurality of perforated patterns are repeatedly formed on a long strip-shaped metal foil. The perforated metal foil is further subjected to secondary processing such as surface treatment and cutting in the production line. For example, when a perforated metal foil is used for a current collector of a secondary battery, an active material is applied to the perforated metal foil. And in the manufacturing stage or the secondary processing stage, the perforated metal foil is wound or unwound in a roll shape so that the long band-shaped perforated metal foil is wound or unwound in this roll shape. Tension is easily applied in the direction, and the perforated metal foil is easily broken. In particular, in recent years, perforated metal foils used for applications such as current collectors for secondary batteries tend to require high aperture ratios and thin metal foils, and the tensile strength of metal foils decreases accordingly. Therefore, by arranging the plurality of through holes of the perforated metal foil such that any one side of the above-described triangle ABC is parallel to the direction MD in which the tension is applied to the perforated metal foil, The decrease in the tensile strength of MD was suppressed.

本件発明に係る孔あき金属箔において、オーバル形状の貫通孔とは、その開口縁端部と開口中心点との距離が一定ではない長円形状を言い、例えば、図3(a)に示すような楕円形状や、図3(b)に示すような陸上競技のトラックのように対向して離間する円弧間を平行な二辺で結んで形成される角丸長方形等の角丸矩形、卵形等が挙げられる。また、オーバル形状の貫通孔は、線対称形状にすると、貫通孔における亀裂の発生を抑えて引張強度の低下を防ぐことができるので、より好ましい。   In the perforated metal foil according to the present invention, the oval-shaped through hole means an oval shape in which the distance between the opening edge end portion and the opening center point is not constant, for example, as shown in FIG. A rounded rectangle such as a rounded rectangle formed by connecting two arcs facing each other in parallel, such as a track of an athletics as shown in FIG. Etc. In addition, it is more preferable that the oval-shaped through-holes have a line-symmetric shape because cracks in the through-holes can be suppressed and a decrease in tensile strength can be prevented.

なお、オーバル形状の貫通孔の中心点とは、長径と短径との交点であり、且つ、長径及び短径の中点となっている点をいう。具体的には、図3(a)に示すように、楕円形状の場合の貫通孔の中心は、長径r1と短径r2との交点Pを言う。また、角丸長方形の場合は、図3(b)に示すように、開口距離が最も長い長径r1の中点と、開口距離が最も短い短径r2の中点との交点Pを言う。   Note that the center point of the oval-shaped through-hole is the intersection of the major axis and the minor axis and the middle point between the major axis and the minor axis. Specifically, as shown in FIG. 3A, the center of the through hole in the case of an elliptical shape refers to an intersection P between the major axis r1 and the minor axis r2. In the case of a rounded rectangle, as shown in FIG. 3 (b), it refers to the intersection P between the midpoint of the long diameter r1 with the longest opening distance and the midpoint of the short diameter r2 with the shortest opening distance.

卵形の貫通孔の中心点は、長径と短径との交点であり、且つ、長径、短径のどちらかの中点となっている点である。オーバル形状の貫通孔が卵形である場合、貫通孔の長径とは、当該卵形の貫通孔の外寸法のうち、最も長い部分をいい、貫通孔の短径とは、当該長径に対し垂直方向の外寸法のうち、最も長い部分をいう。   The central point of the egg-shaped through hole is the intersection of the major axis and the minor axis, and is the midpoint of either the major axis or the minor axis. When the oval through-hole is oval, the long diameter of the through-hole means the longest part of the outer dimensions of the oval through-hole, and the short diameter of the through-hole is perpendicular to the long diameter. The longest part of the outer dimensions in the direction.

また、孔あき金属箔が長尺の帯状である場合は、当該孔あき金属箔をロール状に巻き取り又は巻き出しする方向MDと、複数の三角形ABCの一辺とが平行となるように配置される。   Further, when the perforated metal foil has a long strip shape, the perforated metal foil is arranged so that the direction MD in which the perforated metal foil is wound or unwound in a roll shape and one side of the plurality of triangles ABC are parallel to each other. The

更に、オーバル形状の貫通孔を備える孔あき金属箔の場合、図1及び図4に示すように、オーバル形状の貫通孔は、上述の長径と、孔あき金属箔に張力が負荷される方向MDとが平行となるように貫通孔が形成されると、開口率を高くした場合であっても孔あき金属箔の当該方向MDにおける引張強度の低下を抑制できる。   Further, in the case of a perforated metal foil having an oval-shaped through-hole, as shown in FIGS. 1 and 4, the oval-shaped through-hole has the above-described long diameter and a direction MD in which tension is applied to the perforated metal foil. When the through holes are formed so as to be parallel to each other, it is possible to suppress a decrease in tensile strength in the direction MD of the perforated metal foil even when the aperture ratio is increased.

なお、貫通孔が楕円形状または角丸長方形である場合、当該貫通孔の長径は、短径の1.05倍〜3倍であることが好ましい。貫通孔の長径が短径の1.05倍未満であると、真円形に近くなり、所望の方向の引張強度を強化するという効果が得られにくくなる。また、貫通孔の長径が短径の3倍より長いと、短径方向の張力に対する引張強度が低下する。なお、貫通孔の長径は、より好ましくは短径の1.1倍〜2.5倍、最も好ましくは短径の1.2倍〜2倍である。   In addition, when a through-hole is elliptical shape or a rounded rectangle, it is preferable that the long diameter of the said through-hole is 1.05 times-3 times the short diameter. When the long diameter of the through hole is less than 1.05 times the short diameter, the through hole becomes close to a perfect circle, and the effect of enhancing the tensile strength in a desired direction is hardly obtained. Moreover, when the major axis of the through hole is longer than three times the minor axis, the tensile strength against the tension in the minor axis direction is lowered. The long diameter of the through hole is more preferably 1.1 to 2.5 times the short diameter, and most preferably 1.2 to 2 times the short diameter.

本件発明に係る孔あき金属箔は、オーバル形状の孔あき金属箔の場合、貫通孔の十分な形成精度の確保、開口ピッチを小さくして所定の開口率を確保するために、貫通孔の開口径は、長径10μm〜300μmのものがより好ましい。ここで言う開口ピッチとは、隣接する貫通孔の中心間の離間距離をいう。貫通孔の十分な形成精度を確保するためには10μm以上が良い。一方、狭い開口ピッチで一定の開口率を確保するためには、貫通孔の開口径は300μm以下が良い。貫通孔の長径は、より好ましくは、50μm〜150μmである。   In the case of a perforated metal foil according to the present invention, in the case of an oval perforated metal foil, in order to ensure sufficient formation accuracy of the through holes and to reduce the opening pitch to ensure a predetermined aperture ratio, More preferably, the diameter is 10 μm to 300 μm. The opening pitch said here means the separation distance between the centers of adjacent through-holes. In order to ensure sufficient formation accuracy of the through hole, 10 μm or more is preferable. On the other hand, in order to ensure a constant aperture ratio with a narrow aperture pitch, the aperture diameter of the through holes is preferably 300 μm or less. The long diameter of the through hole is more preferably 50 μm to 150 μm.

このオーバル形状の貫通孔の開口径及びピッチは開口率に応じて設定され、三角形ABCの大きさも決まる。また、貫通孔の開口縁端部間の離間距離が小さすぎると、引張強度が低下するので、貫通孔のピッチ(三角形ABCの一辺の長さ)は、開口径によりその最小値が決まる。   The opening diameter and pitch of the oval-shaped through holes are set according to the opening ratio, and the size of the triangle ABC is also determined. In addition, if the distance between the opening edge ends of the through holes is too small, the tensile strength is reduced. Therefore, the minimum value of the pitch of the through holes (the length of one side of the triangle ABC) is determined by the opening diameter.

本件発明に係る孔あき金属箔は、隣接する3つの貫通孔の中心を結んで形成される三角形ABCが略正三角形であり、且つ所望の方向MDと三角形ABCの一辺とが平行となる位置に、オーバル形状の貫通孔を配置することにより、所望の方向の引張強度を強化できる。したがって、開口ピッチに対して、隣接する貫通孔の開口縁端部間の離間距離を十分に小さくすることが可能となる。例えば、特許文献3に記載の孔開き集電体では、一つの行方向において、貫通孔の存在しない箇所を確保して、応力が加わる箇所を広くする構成としている。その結果、特許文献3に記載の孔開き集電体では、行方向において隣接する貫通孔間には、その間の列の貫通孔を配置できない。しかし、本件発明に係る孔あき金属箔では、図1にX−X線で示す位置において、幅方向に隣接する貫通孔1bと貫通孔1cとを存在させることができる。したがって、限られた面積において、貫通孔を多数配置可能であり、開口率を高めることが可能となる。   In the perforated metal foil according to the present invention, the triangle ABC formed by connecting the centers of the three adjacent through holes is a substantially equilateral triangle, and the desired direction MD and one side of the triangle ABC are parallel to each other. By arranging the oval-shaped through hole, the tensile strength in a desired direction can be enhanced. Therefore, it is possible to sufficiently reduce the separation distance between the opening edge ends of the adjacent through holes with respect to the opening pitch. For example, the perforated current collector described in Patent Document 3 has a configuration in which, in one row direction, a portion where no through hole is present is ensured and a portion where stress is applied is widened. As a result, in the perforated current collector described in Patent Document 3, the through-holes in the column between the through-holes adjacent in the row direction cannot be arranged. However, in the perforated metal foil according to the present invention, the through hole 1b and the through hole 1c which are adjacent to each other in the width direction can exist at the position indicated by the line XX in FIG. Therefore, a large number of through holes can be arranged in a limited area, and the aperture ratio can be increased.

なお、図1では、隣接する3つの貫通孔の全てにおいて、三角形ABCの関係が成立する位置に等間隔に形成された例を示したが、本件発明に係る孔あき金属箔はこれに限定されるものではない。例えば、図5に示すように、いずれか一辺が当該孔あき金属箔に張力が負荷される方向MDに対し平行となるように位置する三角形ABCの関係が成立する3つの貫通孔を、間隔をおいて複数配置しても良い。   1 shows an example in which all three adjacent through-holes are formed at equal intervals at positions where the relation of the triangle ABC is established, the perforated metal foil according to the present invention is limited to this. It is not something. For example, as shown in FIG. 5, three through-holes satisfying the relationship of a triangle ABC positioned so that any one side is parallel to the direction MD in which tension is applied to the perforated metal foil are spaced apart. A plurality of them may be arranged.

本件発明に係る孔あき金属箔は、例えば、銅、銅合金、ニッケル、ニッケル合金、銀、銀合金等で形成される金属箔に、複数の貫通孔が形成されたものである。   The perforated metal foil according to the present invention is obtained by forming a plurality of through holes in a metal foil formed of, for example, copper, copper alloy, nickel, nickel alloy, silver, silver alloy or the like.

本件発明に係る孔あき金属箔は、好ましくは、単位面積あたりの開口率が20%〜65%である。単位面積あたりの開口率とは、孔あき金属箔の単位面積あたりの重量を、同じ厚さの金属箔を基準に比較換算した値である。単位面積あたりの開口率が20%未満だと、本件発明のように複数の貫通孔を形成して、開口率を高めながら引張強度を高めるという本件発明の特徴を活かせない。一方、単位面積あたりの開口率が65%を上まわると、ロールでの巻き取り又は巻き出しにおける張力に耐える引張強度を確保することが困難となる。そして、より好ましい開口率は30%〜60%である。   The perforated metal foil according to the present invention preferably has an opening ratio per unit area of 20% to 65%. The aperture ratio per unit area is a value obtained by comparing and converting the weight per unit area of the perforated metal foil with reference to the metal foil having the same thickness. When the aperture ratio per unit area is less than 20%, the feature of the present invention that increases the tensile strength while increasing the aperture ratio by forming a plurality of through holes as in the present invention cannot be utilized. On the other hand, when the aperture ratio per unit area exceeds 65%, it becomes difficult to ensure the tensile strength that can withstand the tension in winding or unwinding with a roll. A more preferable aperture ratio is 30% to 60%.

本件発明に係る孔あき金属箔は、その厚さが1μm〜40μmのものに特に好適に使用できる。孔あき金属箔の厚さが1μm未満だと、引張強度が不足し、孔形状の安定性や取り扱い性が低下し、特に、ロールでの巻き取り又は巻き出しにおける張力に耐える引張強度を確保することが困難となる。また、孔あき金属箔の厚さが7μmより薄くなると、金属箔のみでは取り扱いが困難となるが、基材や、微粘着PETシート等の支持体を別途設けて利用可能である。一方、孔あき金属箔の厚さが30μmを上まわると、小型軽量化、製造コストの点で孔あき金属箔を用いる優位性が得られない。なお、より好ましい厚さは5μm〜25μmである。   The perforated metal foil according to the present invention can be particularly suitably used for a thickness of 1 μm to 40 μm. If the thickness of the perforated metal foil is less than 1 μm, the tensile strength is insufficient, the stability of the hole shape and the handleability are lowered, and in particular, the tensile strength that can withstand the tension in winding or unwinding with a roll is secured. It becomes difficult. Further, when the thickness of the perforated metal foil becomes thinner than 7 μm, it becomes difficult to handle with the metal foil alone, but it is possible to use a base material or a support such as a slightly adhesive PET sheet. On the other hand, if the thickness of the perforated metal foil exceeds 30 μm, the advantage of using the perforated metal foil cannot be obtained in terms of reduction in size and weight and manufacturing cost. A more preferable thickness is 5 μm to 25 μm.

本件発明に係る孔あき金属箔は、パンチング、レーザー穿設、印刷法、エッチング、液体レジスト法、めっき、乾式薄膜形成法等により製造でき、製造すべき孔あき金属箔の材料、厚さ、微細貫通孔の大きさや形状等の条件に従って適宜選択すれば良い。   The perforated metal foil according to the present invention can be manufactured by punching, laser drilling, printing method, etching, liquid resist method, plating, dry thin film forming method, etc., and the material, thickness, fineness of the perforated metal foil to be manufactured What is necessary is just to select suitably according to conditions, such as a magnitude | size and a shape of a through-hole.

以下に、レジスト法を用いて貫通孔のパターンの型枠を形成し、その後めっきする方法を例示する。   Hereinafter, a method of forming a pattern of a through-hole pattern using a resist method and then plating will be exemplified.

まず、基材表面に型枠を形成する。基材は、取り扱い性の点で銅箔、ステンレス箔等が好ましい。また、基材は、導電性樹脂、あるいは導電層を備える樹脂を用いても良い。型枠は、厚みを有し、作製すべき孔あき金属箔の貫通孔の形状に対応する複数の凸状のレジストからなる。この型枠の形成法としては、フレキソ印刷等の凸版印刷法、グラビア印刷等の凹版印刷法、スクリーン印刷法等の孔版印刷法、オフセット印刷法等の平版印刷法やフォトリソ法を用いてレジストインキを基材上に塗布後、乾燥、硬化させて形成する方法が考えられる。これらの型枠形成法のうち、生産コストの点では上記いずれかの印刷法が好ましく、型枠の形成精度の点ではフォトリソ法が好ましい。   First, a mold is formed on the substrate surface. The base material is preferably a copper foil, a stainless steel foil or the like in terms of handleability. Moreover, you may use a resin provided with a conductive resin or a conductive layer for a base material. The mold has a thickness and is made of a plurality of convex resists corresponding to the shape of the through-holes of the perforated metal foil to be produced. Forming methods of this form include resist printing using relief printing methods such as flexographic printing, intaglio printing methods such as gravure printing, stencil printing methods such as screen printing methods, lithographic printing methods such as offset printing methods and photolithography methods. A method of forming the film by applying it to a substrate, followed by drying and curing can be considered. Among these mold forming methods, one of the above printing methods is preferable in terms of production cost, and the photolithography method is preferable in terms of forming accuracy of the mold.

なお、型枠となる凸状のレジストを印刷法で形成する場合は、形成すべき貫通孔の形状及び大きさに応じて、基材表面を覆い、且つ、金属めっき工程の際に異状析出が生じない必要最小限度の厚さとし、外周縁端部が傾斜した形状とすると好ましい。その理由は、金属めっき後に形成される金属めっき層と型枠との物理的な剥離性が良好で生産性に優れるとともに、形成される貫通孔の開口縁端部の表面形状が滑らかになり、貫通孔における亀裂が生じ難くなるからである。一方、型枠となる凸状のレジストをフォトリソ法で形成する方法を説明する。まず、市販のDFR(ドライフィルムレジスト)を基材に積層した後、形成すべき貫通孔の形状及び大きさに応じたパターンを形成し、不要箇所を除去して凸状のレジストを形成する。次に、金属めっきし、残された凸状のレジストパターンを除去した後、金属めっき層と基材とを物理的に剥離する。フォトリソ法の場合は、市販のDFRを除去した後に、金属めっき層を物理的に剥離することができる。   In addition, when forming the convex resist used as a mold by a printing method, according to the shape and size of the through-hole to be formed, the substrate surface is covered, and abnormal precipitation occurs during the metal plating step. It is preferable that the thickness is a minimum necessary thickness that does not occur and the outer peripheral edge is inclined. The reason for this is that the physical peelability between the metal plating layer formed after metal plating and the formwork is good and the productivity is excellent, and the surface shape of the opening edge of the through-hole formed is smooth, This is because cracks in the through holes are less likely to occur. On the other hand, a method for forming a convex resist to be a mold by a photolithography method will be described. First, after laminating a commercially available DFR (dry film resist) on a base material, a pattern corresponding to the shape and size of a through hole to be formed is formed, and unnecessary portions are removed to form a convex resist. Next, after metal plating and removing the remaining convex resist pattern, the metal plating layer and the substrate are physically peeled off. In the case of the photolithography method, after removing the commercially available DFR, the metal plating layer can be physically peeled off.

次に、型枠が基材表面に形成された状態で、電解めっき法により型枠となる凸状のレジスト以外の部分に金属めっき層を電析させる。その後、基材及び型枠を除去することにより、貫通孔の開口縁端部が両面とも丸みを帯びた滑らかな形状の孔あき金属箔が得られ、孔あき金属箔に張力が負荷された際の開口縁端部における亀裂の発生を抑制することができる。なお、電解めっき法により孔あき金属箔を形成する際、電流密度、めっき液等のめっき条件を調整する等、引張強度を強化可能な公知の電解めっき法を適用しても良い。例えば、硫酸銅系のめっき浴を用いる場合、電解めっきの際の電流密度を20A/dm〜100A/dmの範囲とすることが好ましい。電流密度が20A/dmより低いと、生産性が低下する。一方、電流密度が100A/dmより高いと、発熱により、めっき液の組成が変動しやすくなり、良質な金属めっき層の形成が困難となる。Next, in a state where the mold is formed on the surface of the base material, a metal plating layer is electrodeposited on a portion other than the convex resist that becomes the mold by an electrolytic plating method. After that, by removing the base material and the formwork, a perforated metal foil with a smooth shape with rounded opening edges of the through-holes was obtained, and when the tension was applied to the perforated metal foil It is possible to suppress the occurrence of cracks at the edge of the opening edge. When forming a perforated metal foil by an electrolytic plating method, a known electrolytic plating method capable of enhancing the tensile strength, such as adjusting the plating conditions such as current density and plating solution, may be applied. For example, when using a copper sulfate-based plating bath, the current density during electrolytic plating is preferably in the range of 20 A / dm 2 to 100 A / dm 2 . When the current density is lower than 20 A / dm 2 , the productivity is lowered. On the other hand, if the current density is higher than 100 A / dm 2 , the composition of the plating solution tends to fluctuate due to heat generation, and it becomes difficult to form a high-quality metal plating layer.

なお、パンチング等の機械加工により貫通孔を形成する場合は、貫通孔にバリが生じやすく、孔あき金属箔の破断の端緒となる可能性があり、設計上の引張強度に対する製品の精度に影響を与え、小径の貫通孔の孔あき金属箔では調整が困難となるので適さない。   When forming through-holes by machining such as punching, burrs are likely to occur in the through-holes, which may lead to breakage of the perforated metal foil, affecting the product's accuracy with respect to design tensile strength. In addition, a perforated metal foil with a small-diameter through-hole is not suitable because adjustment becomes difficult.

本件発明に係る孔あき金属箔は、上述の通り、貫通孔の形成位置を調整することにより、高開口率でありながら、所望の方向の引張強度の低下を防ぐものである。すなわち、本件発明は、孔あき金属箔において、張力がそれ程問題にならない方向に対しては抗張力を実用上最低限必要なレベルとする一方で、主に張力が負荷されやすい方向に対しては引張強度を強化するものである。この結果、本件発明に係る孔あき金属箔は、開口率が高い孔あき金属箔であっても、加工時の物理的な負荷による破損を防ぐことが可能となる。以下、本件発明に係る孔あき金属箔の実施例を示す。   As described above, the perforated metal foil according to the present invention prevents a decrease in tensile strength in a desired direction while adjusting the formation position of the through hole while maintaining a high aperture ratio. That is, in the present invention, in the perforated metal foil, the tensile strength is set to a minimum level necessary for practical use in a direction in which the tension is not so much a problem, while the tensile strength is mainly applied in a direction in which the tension is easily applied. Strength is strengthened. As a result, even if the perforated metal foil according to the present invention is a perforated metal foil having a high aperture ratio, it is possible to prevent damage due to a physical load during processing. Examples of perforated metal foil according to the present invention will be described below.

実施例1は、厚さ9.4μmの銅箔に、楕円形状の貫通孔を備える孔あき金属箔の例である。すなわち、隣接する貫通孔の中心点ABC間のそれぞれを結ぶと、一辺の長さが245μmの正三角形とし、図1に模式的に示すように、各貫通孔の長径と当該孔あき金属箔の長さ方向MDとが略平行となる位置に、長径170μm、短径95μmの楕円形状の貫通孔を備える開口率24%の孔あき金属箔とした。なお、ここでいう開口率は、単位面積あたりの重量を、厚さ10μmの銅箔を基準に比較換算した値である。   Example 1 is an example of a perforated metal foil provided with an elliptical through hole in a copper foil having a thickness of 9.4 μm. That is, when connecting the center points ABC of adjacent through holes, each side has a regular triangle with a length of 245 μm. As schematically shown in FIG. 1, the long diameter of each through hole and the perforated metal foil A perforated metal foil having an aperture ratio of 24% and having an elliptical through hole having a major axis of 170 μm and a minor axis of 95 μm at a position substantially parallel to the length direction MD was obtained. Here, the aperture ratio is a value obtained by comparatively converting the weight per unit area with reference to a copper foil having a thickness of 10 μm.

実施例1の孔あき金属箔は以下の方法で製造した。まず、平版スクリーン印刷法を用いて、基材(厚さ35μmの銅箔)の表面にレジストインキ(東洋インキ社製スクリーン印刷用熱硬化型インキ)を塗布して、作製すべき貫通孔のパターンに応じた凸状のレジストを複数形成した。当該凸状のレジストは、平面視楕円形状であり、その外周縁端部に向かって徐々に厚さが薄くなるように形成した。そして、印刷後のレジストインキは、熱乾燥して硬化させた。   The perforated metal foil of Example 1 was produced by the following method. First, by using a lithographic screen printing method, a resist ink (thermosetting ink for screen printing manufactured by Toyo Ink Co., Ltd.) is applied to the surface of a base material (copper foil having a thickness of 35 μm), and a pattern of through holes to be produced A plurality of convex resists corresponding to the above were formed. The convex resist has an elliptical shape in plan view, and is formed so that the thickness gradually decreases toward the outer peripheral edge. And the resist ink after printing was heat-dried and hardened.

次に、レジストパターンが形成された基材を、カルボキシベンゾトリアゾールを3g/l濃度で含む水溶液に浸漬することによって、レジストパターンが形成された基材表面のうち、基材が露出した部分に有機剥離層を形成した。   Next, the base material on which the resist pattern is formed is immersed in an aqueous solution containing carboxybenzotriazole at a concentration of 3 g / l. A release layer was formed.

基材のレジストパターンを形成した側の面に対して銅めっきを行い、有機剥離層が形成された箇所に、厚さ10μmの銅めっき層を形成させて基材付孔あき金属箔とした。そして、銅めっき層は、有機剥離層上のみならず、凸状のレジストの外周縁端部上にも形成させた。   Copper plating was performed on the surface of the base material on which the resist pattern was formed, and a copper plating layer having a thickness of 10 μm was formed at the location where the organic release layer was formed to form a perforated metal foil with a base material. And the copper plating layer was formed not only on the organic peeling layer but also on the outer peripheral edge of the convex resist.

このときの銅めっき条件は、浴組成が硫酸銅5水和物濃度250g/L及び硫酸80g/L、浴温45℃であり、電流密度20A/dmとした。The copper plating conditions at this time were such that the bath composition was a copper sulfate pentahydrate concentration of 250 g / L, sulfuric acid of 80 g / L, a bath temperature of 45 ° C., and a current density of 20 A / dm 2 .

次に、孔あき金属層を基材から物理的に引き剥がして、基材をレジストパターンと共に除去して孔あき金属箔を得た。   Next, the perforated metal layer was physically peeled from the substrate, and the substrate was removed together with the resist pattern to obtain a perforated metal foil.

実施例1で得られた孔あき金属箔の引張強度、伸び率を測定し、物理的特性を評価した。引張強度は、引張試験(JIS C6511−1992)に従い、幅10mm×長さ100mmの孔あき金属箔を、長さ方向MD,幅方向TDについて測定した。ここで、長さ方向MDは、孔あき金属箔の使用形態において張力が負荷される方向であり、幅方向TDは長さ方向MDに対して垂直(直交)方向である。また、伸び率の測定方法は、孔あき金属箔を挟んだ掴み具の距離を50mmに固定して初期距離とし、破断時における当該掴み具の変位を測定し、その結果に基づいて、以下の数1を用いて算出した。   The tensile strength and elongation of the perforated metal foil obtained in Example 1 were measured to evaluate physical properties. Tensile strength was measured in the length direction MD and the width direction TD for a perforated metal foil having a width of 10 mm and a length of 100 mm in accordance with a tensile test (JIS C6511-1992). Here, the length direction MD is a direction in which tension is applied in the usage pattern of the perforated metal foil, and the width direction TD is a direction perpendicular (orthogonal) to the length direction MD. In addition, the elongation is measured by fixing the distance of the gripping tool with the perforated metal foil to 50 mm as an initial distance, and measuring the displacement of the gripping tool at the time of breakage. Calculation was performed using Equation 1.

Figure 2011078087
Figure 2011078087

その結果、実施例1の孔あき金属箔は、長さ方向MDでは、10mmあたりの引張強度が27.0N、伸び率1.7%であった。一方、幅方向TDでは、10mmあたりの引張強度が14.5N、伸び率0.9%であった。実施例1の結果を表1に示す。この結果より、実施例1の孔あき金属箔は、引張強度、伸び率共に、MD方向の方がTD方向より強化されていることが言える。   As a result, the perforated metal foil of Example 1 had a tensile strength per 10 mm of 27.0 N and an elongation rate of 1.7% in the longitudinal direction MD. On the other hand, in the width direction TD, the tensile strength per 10 mm was 14.5 N and the elongation rate was 0.9%. The results of Example 1 are shown in Table 1. From this result, it can be said that the perforated metal foil of Example 1 is strengthened in the MD direction more than the TD direction in both tensile strength and elongation.

Figure 2011078087
Figure 2011078087

実施例2は、図4に模式的に示すように、厚さ9.4μmの銅箔に、角丸長方形状の貫通孔を備える孔あき金属箔の例である。貫通孔は、長径r1=175μm、短径及び両端の円弧部の直径がr2=115μmの角丸長方形状とした。そして、隣接する貫通孔の中心点ABC間のそれぞれを結ぶと、一辺の長さが245μmの正三角形とし、図4に示すように、各貫通孔の長径と当該孔あき金属箔の長さ方向MDとが略平行となる位置に貫通孔を備える開口率30%の孔あき金属箔を実施例1と同じ方法で作製した。   Example 2 is an example of a perforated metal foil provided with a through hole having a rounded rectangular shape on a copper foil having a thickness of 9.4 μm, as schematically shown in FIG. The through hole had a rounded rectangular shape with a major axis r1 = 175 μm, a minor axis, and the diameters of arcs at both ends were r2 = 115 μm. Then, when connecting the center points ABC of the adjacent through holes, each side has a regular triangle with a length of 245 μm. As shown in FIG. 4, the long diameter of each through hole and the length direction of the perforated metal foil A perforated metal foil having a through-hole of 30% provided with a through hole at a position where MD is substantially parallel was produced in the same manner as in Example 1.

実施例2の孔あき金属箔の引張強度、伸び率を実施例1と同様に測定した。実施例2の結果を表1に示す。この結果より、実施例2の孔あき金属箔は、引張強度、伸び率共に、MD方向の方がTD方向より強化されていることが言える。   The tensile strength and elongation of the perforated metal foil of Example 2 were measured in the same manner as in Example 1. The results of Example 2 are shown in Table 1. From this result, it can be said that the perforated metal foil of Example 2 is strengthened in the MD direction more than the TD direction in both tensile strength and elongation.

実施例3の孔あき金属箔は、実施例1の孔あき金属箔と同じ形状であって、作製時の電流密度が異なる例である。すなわち、電解めっき時の電流密度を27A/dmとした以外は、実施例2と同じ条件で、同じ形状の孔あき金属箔を作製した例である。The perforated metal foil of Example 3 has the same shape as the perforated metal foil of Example 1, and is an example in which the current density during production is different. That is, in this example, a perforated metal foil having the same shape was produced under the same conditions as in Example 2 except that the current density during electrolytic plating was 27 A / dm 2 .

実施例3の孔あき金属箔の引張強度、伸び率を実施例1と同様に測定した。実施例3の結果を表1に示す。この結果より、実施例3の孔あき金属箔は、引張強度、伸び率共に、MD方向の方がTD方向より強化されていることが言える。また、実施例1に比べて、引張強度が向上した。   The tensile strength and elongation of the perforated metal foil of Example 3 were measured in the same manner as in Example 1. The results of Example 3 are shown in Table 1. From this result, it can be said that the perforated metal foil of Example 3 is strengthened in the MD direction more than the TD direction in both tensile strength and elongation. In addition, the tensile strength was improved as compared with Example 1.

実施例4の孔あき金属箔は、実施例2の孔あき金属箔と同じ形状であって、作製時の電流密度が異なる例である。すなわち、電解めっき時の電流密度を31A/dmとした以外は、実施例2と同じ条件で、同じ形状の孔あき金属箔を作製した例である。The perforated metal foil of Example 4 has the same shape as the perforated metal foil of Example 2, and is an example in which the current density during production is different. That is, in this example, a perforated metal foil having the same shape was produced under the same conditions as in Example 2 except that the current density during electrolytic plating was 31 A / dm 2 .

実施例4の孔あき金属箔の引張強度、伸び率を実施例1と同様に測定した。実施例4の結果を表1に示す。この結果より、実施例4の孔あき金属箔は、引張強度、伸び率共に、MD方向の方がTD方向より強化されていることが言える。また、実施例2の孔あき金属箔に比べて、引張強度が高くなった。   The tensile strength and elongation of the perforated metal foil of Example 4 were measured in the same manner as in Example 1. The results of Example 4 are shown in Table 1. From this result, it can be said that the perforated metal foil of Example 4 is strengthened in the MD direction more than the TD direction in both tensile strength and elongation. In addition, the tensile strength was higher than that of the perforated metal foil of Example 2.

実施例5の孔あき金属箔は、厚さ10.1μmの銅箔に楕円形状の貫通孔を備え、開口率39%の孔あき金属箔とした。実施例5の孔あき金属箔では、隣接する貫通孔の中心点ABC間のそれぞれを結ぶと、一辺の長さが151μmの正三角形とし、実施例1と同様に、各貫通孔の長径と当該孔あき金属箔の長さ方向MDとが略平行となる位置に、長径108μm、短径96μmの楕円形状の貫通孔を複数形成した。すなわち、実施例1、3に比べて、開口面積及び長径/短径比が小さい貫通孔を多数形成して開口率を高めた孔あき金属箔とした。但し、基材表面に凸状のレジストを形成する際のレジストインキとして、東洋インキ社製スクリーン印刷用UVインキを用いた。その他の作製条件は、実施例1と同じ条件で作製した。   The perforated metal foil of Example 5 was a perforated metal foil having an elliptical through hole in a copper foil having a thickness of 10.1 μm and an aperture ratio of 39%. In the perforated metal foil of Example 5, when connecting between the center points ABC of adjacent through holes, each side has a regular triangle of 151 μm in length. A plurality of elliptical through holes having a major axis of 108 μm and a minor axis of 96 μm were formed at positions where the length direction MD of the perforated metal foil was substantially parallel. That is, as compared with Examples 1 and 3, a perforated metal foil in which a large number of through holes having a small opening area and a long diameter / short diameter ratio were formed to increase the opening ratio was obtained. However, a UV ink for screen printing manufactured by Toyo Ink Co., Ltd. was used as a resist ink for forming a convex resist on the substrate surface. Other manufacturing conditions were the same as those in Example 1.

実施例5の孔あき金属箔の引張強度、伸び率を実施例1と同様に測定した。実施例5の結果を表1に示す。この結果より、実施例5の孔あき金属箔は、長径と短径の比が小さくても引張強度、伸び率共に、MD方向の方がTD方向より強化されていると言える。特に、MD方向における引張強度は、厚さ10μmレベルの銅箔で開口率39%の孔あき金属箔としては、高い値を示していると言える。
[比較例]
The tensile strength and elongation of the perforated metal foil of Example 5 were measured in the same manner as in Example 1. The results of Example 5 are shown in Table 1. From this result, it can be said that the perforated metal foil of Example 5 is stronger in the MD direction than in the TD direction in both tensile strength and elongation even when the ratio of the major axis to the minor axis is small. In particular, it can be said that the tensile strength in the MD direction shows a high value as a perforated metal foil having an aperture ratio of 39% with a copper foil having a thickness of 10 μm.
[Comparative example]

比較例は、厚さ9.8μmの銅箔で、円形の貫通孔が図6に模式的に示すようなパターンで均等に分散配置して形成された開口率25%の孔あき金属箔の例を示す。この孔あき金属箔の貫通孔は、直径128μmの円形で、隣接する貫通孔の中心点ABC間のそれぞれの距離を245μmのピッチとし、各貫通孔の開口縁端部間の離間距離を117μmとした。この孔あき金属箔を実施例1と同じ方法で作製した。   The comparative example is a copper foil having a thickness of 9.8 μm, and an example of a perforated metal foil having a 25% aperture ratio in which circular through holes are uniformly distributed and arranged in a pattern as schematically shown in FIG. Indicates. The through-holes of the perforated metal foil are circular with a diameter of 128 μm, the distance between the center points ABC of the adjacent through-holes is set to a pitch of 245 μm, and the distance between the opening edge ends of each through-hole is 117 μm. did. This perforated metal foil was produced in the same manner as in Example 1.

実施例と比較例との対比: 実施例1〜実施例5の孔あき金属箔は、いずれも、張力が負荷される長さ方向MDにおける引張強度が十分な値を示した。また、伸び率はいずれも実用に耐えられる値を示した。一方、比較例に示す孔あき金属箔は、開口率を考えると実施例1〜実施例5に比べて、MD方向における引張強度が低いことがわかる。したがって、この実施例1〜実施例5に示した形態の孔あき金属箔を、長さ方向MDに長尺な帯状の孔あき金属箔とした場合に、その製造、二次加工時におけるロールによる巻き取り又は巻き出し時に、当該孔あき金属箔に負荷される張力に十分耐え得る物理的強度を有すると言える。さらに、実施例1,2の孔あき金属箔は、比較例の孔あき金属箔に比べて開口率が同等または高いにも拘わらず、MD方向の引張強度を比較例と同等またはそれ以上にすることができた。この結果から、孔あき金属箔において、オーバル形状の貫通孔を採用すると、特定の方向(MD)における耐破断性を強化させることができることがわかる。また、開口率を高くしても、耐破断性の低下を抑制することができると言える。 Comparison between Examples and Comparative Examples: All of the perforated metal foils of Examples 1 to 5 showed sufficient values for the tensile strength in the longitudinal direction MD to which tension was applied. In addition, the elongation rate was a value that could withstand practical use. On the other hand, it can be seen that the perforated metal foil shown in the comparative example has a lower tensile strength in the MD direction than Examples 1 to 5 in view of the aperture ratio. Therefore, when the perforated metal foil of the form shown in Examples 1 to 5 is a band-shaped perforated metal foil that is long in the length direction MD, it depends on the roll at the time of manufacturing and secondary processing. It can be said that it has a physical strength that can sufficiently withstand the tension applied to the perforated metal foil during winding or unwinding. Furthermore, although the perforated metal foils of Examples 1 and 2 have the same or higher aperture ratio than the perforated metal foils of the comparative examples, the tensile strength in the MD direction is equal to or higher than that of the comparative examples. I was able to. From this result, it can be seen that when the oval-shaped through-hole is employed in the perforated metal foil, the fracture resistance in a specific direction (MD) can be enhanced. In addition, it can be said that even if the aperture ratio is increased, a decrease in fracture resistance can be suppressed.

本件発明に係る孔あき金属箔は、所望の方向の引張強度を強化可能であるので、開口率を上げながら、引張強度を維持して、物理的強度に優れた孔あき金属箔を提供できる。このような物理的強度に優れた高開口率の孔あき金属箔は、部材としての取り扱い性に優れるので、リチウムイオン二次電池等の集電体、磁性用材料、導電用材料、その他の広範囲な分野において好適に利用することができる。また、物理的強度に優れた高開口率の孔あき金属箔は、部材として最終製品に取り付けた後も耐破断性に優れるので、例えば、飲料水等の液体を改質するための液体改質用フィルタ用途等、長期使用が可能な部材として利用可能である。   Since the perforated metal foil according to the present invention can enhance the tensile strength in a desired direction, it is possible to provide a perforated metal foil excellent in physical strength while maintaining the tensile strength while increasing the aperture ratio. Such a perforated metal foil having a high opening ratio with excellent physical strength is excellent in handling properties as a member, so a current collector such as a lithium ion secondary battery, a magnetic material, a conductive material, and a wide range of other It can be suitably used in various fields. In addition, perforated metal foil with high opening ratio with excellent physical strength is excellent in fracture resistance even after being attached to the final product as a member, so for example, liquid modification for modifying liquids such as drinking water It can be used as a member that can be used for a long period of time, such as filter use.

1a,1b,1c・・・貫通孔
A,B,C,P・・・貫通孔の中心点
1a, 1b, 1c ... through hole A, B, C, P ... center point of through hole

Claims (5)

厚さ方向に貫通するオーバル形状の貫通孔を複数有する孔あき金属箔であって、
隣接する3つの貫通孔は、その開口のそれぞれの中心点A,B,Cを結んで形成される三角形ABCが略正三角形であり、当該孔あき金属箔に張力が負荷される方向に対し、当該正三角形のいずれか一辺が平行となるように配置した三角形ABCを形成し、
当該三角形ABCの形状を維持した状態で複数の貫通孔が形成されたことを特徴とする孔あき金属箔。
A perforated metal foil having a plurality of oval-shaped through holes penetrating in the thickness direction,
Three adjacent through-holes are triangles ABC formed by connecting the center points A, B, and C of the respective openings, and are substantially equilateral triangles. With respect to the direction in which tension is applied to the perforated metal foil, Forming a triangle ABC arranged such that any one side of the equilateral triangle is parallel;
A perforated metal foil, wherein a plurality of through holes are formed in a state where the shape of the triangle ABC is maintained.
孔あき金属箔は、長尺の帯状であり、
当該孔あき金属箔をロール状に巻き取り又は巻き出しする方向と、複数の前記三角形ABCの一辺とが平行となるように配置された請求項1に記載の孔あき金属箔。
Perforated metal foil is a long strip,
2. The perforated metal foil according to claim 1, wherein the perforated metal foil is disposed so that a direction in which the perforated metal foil is wound or unwound in a roll shape is parallel to one side of the plurality of triangles ABC.
前記オーバル形状の貫通孔は、楕円形状、角丸長方形または卵形であり、当該貫通孔の長径と、孔あき金属箔に張力が負荷される方向とが平行となるように貫通孔が形成された請求項1または請求項2に記載の孔あき金属箔。 The oval through-hole is elliptical, rounded rectangular or oval, and the through-hole is formed so that the long diameter of the through-hole is parallel to the direction in which tension is applied to the perforated metal foil. The perforated metal foil according to claim 1 or 2. 楕円形状または角丸長方形である前記オーバル形状の貫通孔の長径は、短径の1.05倍〜3倍である請求項3に記載の孔あき金属箔。 4. The perforated metal foil according to claim 3, wherein a major axis of the oval-shaped through hole having an elliptical shape or a rounded rectangular shape is 1.05 to 3 times the minor axis. 単位面積あたりの開口率が20%〜65%である請求項1〜請求項4のいずれかに記載の孔あき金属箔。 The perforated metal foil according to any one of claims 1 to 4, wherein the aperture ratio per unit area is 20% to 65%.
JP2011547520A 2009-12-24 2010-12-17 Perforated metal foil Pending JPWO2011078087A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009292394 2009-12-24
JP2009292394 2009-12-24
PCT/JP2010/072796 WO2011078087A1 (en) 2009-12-24 2010-12-17 Perforated metallic foil

Publications (1)

Publication Number Publication Date
JPWO2011078087A1 true JPWO2011078087A1 (en) 2013-05-09

Family

ID=44195613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011547520A Pending JPWO2011078087A1 (en) 2009-12-24 2010-12-17 Perforated metal foil

Country Status (3)

Country Link
JP (1) JPWO2011078087A1 (en)
TW (1) TW201136012A (en)
WO (1) WO2011078087A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5569971B2 (en) * 2010-12-24 2014-08-13 Fdkトワイセル株式会社 Method for manufacturing negative electrode plate, negative electrode plate, and cylindrical battery provided with the negative electrode plate
KR102203691B1 (en) * 2017-11-06 2021-01-15 주식회사 엘지화학 An Electrode for a Secondary Battery with Improved Safety, a Manufacturing Method thereof, and a Secondary Battery Including the Electrode
JP6364599B1 (en) * 2017-11-20 2018-08-01 株式会社プロセス・ラボ・ミクロン Fine pattern nickel thin film and manufacturing method thereof
DE102018117643A1 (en) * 2018-07-20 2020-01-23 Kunststofftechnik Bernt Gmbh Process for producing a plastic control element metallized on one side with backlit symbols, control element with backlit symbols as well as a machine for carrying out several process steps

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353456A (en) * 1989-07-18 1991-03-07 Sanyo Electric Co Ltd Conductive core of plate for cylindrical battery
JPH09213340A (en) * 1996-01-30 1997-08-15 Shin Kobe Electric Mach Co Ltd Plate for alkali storage battery
JP3349646B2 (en) * 1996-02-20 2002-11-25 東芝電池株式会社 Manufacturing method of alkaline secondary battery
JP2003168441A (en) * 2001-11-29 2003-06-13 Sanyo Electric Co Ltd Battery
JP4269813B2 (en) * 2003-07-10 2009-05-27 日立電線株式会社 Method for producing negative electrode of lithium ion battery
JP2008269890A (en) * 2007-04-18 2008-11-06 Nissan Motor Co Ltd Electrode for nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
TW201136012A (en) 2011-10-16
WO2011078087A1 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
US10767266B2 (en) Vapor deposition mask base material, vapor deposition mask base material manufacturing method, and vapor deposition mask manufacturing method
JP3933342B2 (en) Metal foil for current collector of secondary battery and current collector for secondary battery
WO2011122239A1 (en) Metal foil for negative electrode collector
WO2011078087A1 (en) Perforated metallic foil
US9512527B2 (en) Reinforced porous metal foil and process for production thereof
WO2010087455A1 (en) Mesh member for screen printing
CN110785515A (en) Apparatus for manufacturing electrolytic copper foil
TW201230479A (en) Lithium secondary battery and anode therefor
CN108122691B (en) Lithium ion capacitor current collector foil and manufacturing method thereof
WO2010137568A1 (en) Perforated metal foil with substrate, method for manufacturing perforated metal foil with substrate, perforated metal foil, and method for manufacturing perforated metal foil
JP4912100B2 (en) Electric double layer capacitor
JP2015213180A (en) Metal foil for negative electrode current collectors
TW201947047A (en) Vapor deposition mask substrate, vapor deposition mask substrate manufacturing method, vapor deposition mask manufacturing method, and display device manufacturing method
KR101367292B1 (en) Method for manufacturing wiring pattern
CN102422370A (en) Manufacturing method of aluminum electrode plate for electrolytic capacitor
JP2008041511A (en) Method of manufacturing metal foil for collector
JP5230878B2 (en) Method for producing metal foil sheet
JP5765460B2 (en) Method for producing metal foil sheet
JP2018035387A (en) Method for producing perforated metal substrate
JP5660159B2 (en) Method for producing metal foil sheet
JP2012000844A (en) Mesh member for screen printing
JP2014105374A (en) Stretchable metal mesh and method for manufacturing the same
KR102639339B1 (en) Vapor deposition mask
JP2002184410A (en) Negative electrode collector for nickel cadmium battery, its manufacturing method, and negative electrode for nickel cadmium battery
JP2011198765A (en) Metal foil sheet