JPWO2011074683A1 - Insulation deterioration detector - Google Patents

Insulation deterioration detector Download PDF

Info

Publication number
JPWO2011074683A1
JPWO2011074683A1 JP2011546191A JP2011546191A JPWO2011074683A1 JP WO2011074683 A1 JPWO2011074683 A1 JP WO2011074683A1 JP 2011546191 A JP2011546191 A JP 2011546191A JP 2011546191 A JP2011546191 A JP 2011546191A JP WO2011074683 A1 JPWO2011074683 A1 JP WO2011074683A1
Authority
JP
Japan
Prior art keywords
voltage
insulation
circuit
constant current
insulation deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011546191A
Other languages
Japanese (ja)
Other versions
JP5757877B2 (en
Inventor
博厚 徳田
博厚 徳田
保 深沢
保 深沢
哲夫 福田
哲夫 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PUES Corp
Original Assignee
PUES Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PUES Corp filed Critical PUES Corp
Priority to JP2011546191A priority Critical patent/JP5757877B2/en
Publication of JPWO2011074683A1 publication Critical patent/JPWO2011074683A1/en
Application granted granted Critical
Publication of JP5757877B2 publication Critical patent/JP5757877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train

Abstract

電圧ドリフトの問題が生じず、また、外乱電圧印加時にも測定可能状態への速やかな復帰が可能な絶縁劣化検出装置を提供することを目的とする。注入と引抜きの電流のアンバランスがあっても、一定電圧までの電流注入、電流引抜きが行われるので、電圧ドリフトの問題が生じることがなく、また、絶縁コンデンサの直流電源側から大きな外乱電圧が加えられた場合にも、一定電圧への電流引抜き(または電流注入)が、その直後の周期において行われ、元の測定可能状態に速やかに復帰することができる。It is an object of the present invention to provide an insulation deterioration detection device that does not cause a problem of voltage drift and can quickly return to a measurable state even when a disturbance voltage is applied. Even if there is an imbalance between the injection and extraction currents, current injection and current extraction are performed up to a certain voltage, so there is no voltage drift problem, and a large disturbance voltage is generated from the DC power supply side of the insulation capacitor. Also when added, current extraction (or current injection) to a constant voltage is performed in the immediately following cycle, and the original measurable state can be quickly restored.

Description

本発明は、例えば車両ボディから電気的に絶縁された直流電源(以下、説明の便宜上、高圧直流電源ということがあるが、何ボルト以上という制限はない。)を備えた電気自動車等における車両ボディと高圧直流電源との間の絶縁劣化を検出する絶縁劣化検出装置に関する。   The present invention relates to a vehicle body in an electric vehicle or the like provided with a DC power source that is electrically insulated from the vehicle body (hereinafter sometimes referred to as a high-voltage DC power source for convenience of explanation, but there is no limit of how many volts or more). The present invention relates to an insulation deterioration detection device that detects insulation deterioration between a power source and a high-voltage DC power supply.

一般に、リチウムイオン電池セル、スーパーキャパシタセル等による高圧直流電源を駆動エネルギー源として用いる電気自動車(または、いわゆるハイブリッド車)では、感電防止のため、高圧直流電源を、接地電位にある車両ボディから電気的に絶縁した構成としている。しかし、電池パックの材質の変質または付着物などによって絶縁特性が劣化した場合、高圧直流電源から車両ボディに流れる漏洩電流がこれに触れた人間に伝わり、感電の危険が生じる。このため、電気自動車には、絶縁劣化検出装置が設けられる必要がある。
本願の発明者は、特許文献1に示すような、短時間で、絶縁劣化を検出、あるいは絶縁抵抗値を測定することができる絶縁劣化検出装置を提案した。この絶縁劣化検出装置を使用することにより、運転者がスタートキースイッチを回した時点から、短時間で、絶縁劣化がないことを確認でき、運転者に不安感を与えることなく、速やかに電気自動車を起動できる。
In general, in an electric vehicle (or so-called hybrid vehicle) that uses a high-voltage DC power source such as a lithium ion battery cell or a supercapacitor cell as a drive energy source, the high-voltage DC power source is electrically connected to the grounded vehicle body to prevent electric shock. The structure is electrically insulated. However, when the insulation characteristics are deteriorated due to a change in the material of the battery pack or a deposit, the leakage current flowing from the high-voltage DC power source to the vehicle body is transmitted to the person who touches it, resulting in a risk of electric shock. For this reason, the electric vehicle needs to be provided with an insulation deterioration detection device.
The inventor of the present application has proposed an insulation deterioration detection device capable of detecting insulation deterioration or measuring an insulation resistance value in a short time as shown in Patent Document 1. By using this insulation deterioration detection device, it can be confirmed that there is no insulation deterioration in a short time from the time when the driver turns the start key switch. Can be started.

特願2009−102850号Japanese Patent Application No. 2009-102850

しかし、特許文献1で提案された絶縁劣化検出装置では、絶縁コンデンサに一定周期で定電流の注入、引抜きを交互に行っているため、注入と引抜きの電流バランスが完全に一致していない場合、誤差が積算されて電圧ドリフトが生じる。その対策として、ブリーダ抵抗を使用している。
また、メインスイッチをオフからオンにするなどして、絶縁コンデンサの高圧直流電源側からステップ状の大きな外乱電圧が加えられた場合、オーバーレンジになり、このオーバーレンジ中は、絶縁抵抗値を測定することができなくなる。特許文献1で提案された絶縁劣化検出装置では、このような大きな外乱電圧印加後も、絶縁コンデンサに一定周期で定電流の注入、引抜きを交互に行うため、その回路時定数によって決まる所定時間を経過した後、元の測定可能状態に復帰することになる。
また、電気自動車の起動後に絶縁劣化が起きることもあり、その場合に電気自動車等の利用者に危険が及ぶ可能性がある。そこで、電気自動車起動後にも、即座に、絶縁劣化を検出し、警報できる必要がある。
また、高圧直流電源に絶縁劣化が生じていないが、電気自動車のモーター駆動装置のうちインバータまたはモーターに絶縁劣化が生じている場合にも、その絶縁劣化を検出できれることが望ましい。
本発明は、上記課題を解決するためになされたもので、注入と引抜きの電流バランスが完全に一致していない場合にも、誤差積算による電圧ドリフトの問題が生じず、また、外乱電圧印加時にも測定可能状態への速やかな復帰が可能な絶縁劣化検出装置を提供することを目的とする。
本発明は、さらに、電気自動車等の起動後にも、短時間で絶縁劣化の有無の検出、あるいは絶縁抵抗値の測定が可能な絶縁劣化検出装置を提供することを目的とする。
However, in the insulation degradation detection device proposed in Patent Document 1, constant current injection and extraction are alternately performed on the insulation capacitor at a constant period. Therefore, when the current balance between injection and extraction does not completely match, Errors are accumulated and voltage drift occurs. As a countermeasure, a bleeder resistor is used.
Also, if a large step-like disturbance voltage is applied from the high-voltage DC power supply side of the insulation capacitor, such as by turning the main switch from off to on, the over-range occurs, and the insulation resistance value is measured during this over-range. Can not do. In the insulation deterioration detection device proposed in Patent Document 1, even after such a large disturbance voltage is applied, a constant current is alternately injected into and extracted from the insulation capacitor at a constant period. Therefore, a predetermined time determined by the circuit time constant is set. After the elapse of time, the original measurable state is restored.
In addition, insulation deterioration may occur after the start-up of the electric vehicle, and in that case, there is a possibility that the user of the electric vehicle or the like may be in danger. Therefore, it is necessary to be able to detect and warn of insulation deterioration immediately after starting up the electric vehicle.
Further, although no insulation deterioration has occurred in the high-voltage DC power supply, it is desirable that the insulation deterioration can be detected even when the inverter or motor in the motor drive device of the electric vehicle has insulation deterioration.
The present invention has been made in order to solve the above-described problem. Even when the current balance between injection and extraction does not completely match, the problem of voltage drift due to error integration does not occur, and when a disturbance voltage is applied. In addition, an object of the present invention is to provide an insulation deterioration detecting device capable of promptly returning to a measurable state.
It is another object of the present invention to provide an insulation deterioration detection device capable of detecting the presence or absence of insulation deterioration or measuring the insulation resistance value in a short time even after starting an electric vehicle or the like.

本発明による絶縁劣化検出装置の構成は、以下のとおりである。
(1)接地部に対して電気的に絶縁された直流電源の漏電を検出するために、直流電源に接続される絶縁コンデンサと測定回路とからなるものであって、測定回路は、定電流交番回路と演算制御回路からなり、定電流交番回路は、その出力電圧のピーク値が一定電圧となるように、絶縁コンデンサに定電流の注入、引抜きを交互に行い、演算制御回路は、その注入、引抜きの周期に基づき、絶縁劣化の有無を判定することを特徴とする。
このような構成とすることにより、注入と引抜きの電流のアンバランスがあっても、一定電圧までの電流注入、電流引抜きが行われるので、電圧ドリフトの問題が生じることがなく、その対策としてのブリーダ抵抗を必要としない。また、絶縁コンデンサの直流電源側から大きな外乱電圧が加えられた場合にも、一定電圧への電流引抜き(または電流注入)が、その直後の周期において行われ、元の測定可能状態に速やかに復帰することができる。
(2)本発明の絶縁劣化検出装置における定電流交番回路は、その出力電圧の最大ピーク値および最小ピーク値の双方が一定電圧となるように、絶縁コンデンサに定電流の注入、引抜きを交互に行うことを特徴とする。
このような構成とすることにより、一定電圧までの電流注入および一定電圧までの電流引抜きの双方が行われるので、注入時間および引抜時間の双方が、絶縁抵抗値を反映したものとなる。
(3)本発明の絶縁劣化検出装置における定電流交番回路は、その出力電圧の最大ピーク値および最小ピーク値のいずれか一方が一定電圧となるように、絶縁コンデンサに定電流の注入および引抜きのいずれか一方を行い、注入および引抜きのいずれか一方に要した時間と同じ時間、注入および引抜きのうちの他方を行うことを特徴とする。
このような構成とすることにより、一定電圧までの電流注入および一定電圧までの電流引抜きのいずれか一方のみが行われることになるので、電圧検出を簡便にすることができる。
(4)本発明の絶縁劣化検出装置における定電流交番回路は、その出力電圧の最大ピーク値および最小ピーク値の双方が正電圧または負電圧となるように、絶縁コンデンサに定電流の注入、引抜きを交互に行うことを特徴とする。
このような構成とすることにより、定電流交番回路を片電源で構成することができる。最大ピーク値を正電圧とし、最小ピーク値を0Vとしても良く、最大ピーク値を0Vとし、最小ピーク値を負電圧としても良い。
(5)本発明の絶縁劣化検出装置は、出力電圧を定電流交番回路の最大駆動電圧以下に制限するツェナーダイオードをさらに設けたことを特徴とする。
このような構成とすることにより、大きな外乱電圧が加えられた場合にも、定電流交番回路を動作させて、元の測定可能状態に速やかに復帰させることができる。
(6)本発明の絶縁劣化検出装置は、測定回路による絶縁劣化判定に要する注入、引抜き回数が、測定対象の機器起動時には、機器動作時よりも少なく設定されていることを特徴とする。
このような構成とすることにより、測定対象の機器起動時に、速やかに絶縁劣化判定を行うことができ、機器動作時には、起こりうる外乱を考慮に入れた絶縁劣化判定を行うことができる。
(7)接地部に対して電気的に絶縁された直流電源と、この直流電源からの電力により駆動されるモーターと、直流電源からの電力をこのモーターの駆動に適した電力に変換する電力変換器とを有するモーター駆動装置における絶縁劣化を検出するための装置であって、直流電源に接続されてモーター駆動装置における絶縁抵抗値を測定する測定回路を備え、この測定回路は、電力変換器の動作による高周波成分の測定回路への流入を制限する高周波成分分別回路を有することを特徴とする。
このような構成とすることにより、電力変換器の動作時においても、その高周波成分の影響をうけることなく、直流電源側に設けられた測定回路により、絶縁抵抗値を正確に測定し、モーター駆動装置における絶縁劣化を検出することができる。
(8)本発明の絶縁劣化検出装置は、具体的には、高周波成分分別回路がローパスフィルタであり、電力変換器が発生する高周波成分について、電力変換器およびモーターと閉ループを形成し、そのカットオフ周波数は、測定回路の定電流の注入、引抜き動作の周波数よりも高く、電力変換器が発生する高周波成分の周波数よりも低く設定されることを特徴とする。
このような構成とすることにより、電力変換器の動作時においても、その高周波成分の測定回路への流入は、ローパスフィルタにより遮断される。測定回路の定電流の注入、引抜き動作の周波数成分は、測定回路による絶縁抵抗値の測定に使用され、モーター駆動装置の絶縁劣化を検出することができる。
(9)また、本発明の絶縁劣化検出装置は、たとえば、モーターが交流モーターであり、電力変換器がインバータであって、高周波成分分別回路は、インバータの動作により発生する高周波成分の測定回路への流入を制限することを特徴とする。
このような構成とすることにより、インバータの動作時においても、インバータが発生する高周波成分の測定回路への流入は、高周波成分分別回路(たとえば、ローパスフィルタ)により制限される。したがって、その高周波成分の影響を受けることなく、直流電源側に設けられた測定回路により、絶縁抵抗値を正確に測定し、モーター駆動装置における絶縁劣化を検出することができる。
なお、モーターが直流モーターであり、電力変換器がチョッパ回路である場合にも、本発明は同様に適用でき、チョッパ回路が発生する高周波成分の直流電源側への流入が高周波成分分別回路(たとえば、ローパスフィルタ)により制限される。
(10)ここで、本発明者は、電力変換器がインバータであり、インバータをPWM制御する場合、その高周波成分は、インバータのPWM制御で発生するノッチ波であると考えた。そこで、高周波成分分別回路(たとえば、ローパスフィルタ)は、ノッチ波の周波数成分の直流電源側への流入を制限するノッチ波分別回路として構成される。
このような構成とすることにより、インバータの動作時においても、その高周波成分の影響をうけることなく、直流電源側に設けられた測定回路により、絶縁抵抗値を正確に測定し、モーター駆動装置における絶縁劣化を検出することができる。
The configuration of the insulation deterioration detection apparatus according to the present invention is as follows.
(1) In order to detect a leakage of a DC power source electrically insulated from the grounding portion, the measuring circuit is composed of an insulating capacitor connected to the DC power source and a measurement circuit. The constant current alternating circuit alternately injects and draws constant current into the insulation capacitor so that the peak value of the output voltage becomes a constant voltage, and the arithmetic control circuit It is characterized by determining the presence or absence of insulation deterioration based on the drawing cycle.
By adopting such a configuration, even if there is an imbalance between the injection and extraction currents, current injection and current extraction up to a certain voltage are performed. Does not require bleeder resistance. In addition, even when a large disturbance voltage is applied from the DC power supply side of the insulation capacitor, current extraction (or current injection) to a constant voltage is performed in the immediately following cycle, and the original measurable state is quickly restored. can do.
(2) The constant current alternating circuit in the insulation deterioration detecting device of the present invention alternately injects and draws constant current into the insulation capacitor so that both the maximum peak value and the minimum peak value of the output voltage are constant. It is characterized by performing.
With such a configuration, both current injection up to a certain voltage and current drawing up to a certain voltage are performed, so that both the injection time and the drawing time reflect the insulation resistance value.
(3) The constant current alternating circuit in the insulation deterioration detection device of the present invention is designed to inject and draw constant current into the insulation capacitor so that one of the maximum peak value and the minimum peak value of the output voltage becomes a constant voltage. One of these is performed, and the other of the injection and the extraction is performed for the same time as the time required for either the injection or the extraction.
By adopting such a configuration, only one of current injection up to a certain voltage and current drawing up to a certain voltage is performed, so that voltage detection can be simplified.
(4) The constant current alternating circuit in the insulation deterioration detecting device of the present invention is designed to inject and draw a constant current into the insulation capacitor so that both the maximum peak value and the minimum peak value of the output voltage are positive voltage or negative voltage. Are performed alternately.
With such a configuration, the constant current alternating circuit can be configured with a single power source. The maximum peak value may be a positive voltage, the minimum peak value may be 0V, the maximum peak value may be 0V, and the minimum peak value may be a negative voltage.
(5) The insulation deterioration detection device of the present invention is characterized by further including a Zener diode that limits the output voltage to be equal to or lower than the maximum drive voltage of the constant current alternating circuit.
With such a configuration, even when a large disturbance voltage is applied, the constant current alternating circuit can be operated to quickly return to the original measurable state.
(6) The insulation deterioration detection device according to the present invention is characterized in that the number of injections and withdrawals required for the insulation deterioration determination by the measurement circuit is set to be smaller when the measurement target device is activated than when the device is operating.
By adopting such a configuration, it is possible to quickly determine the insulation deterioration at the time of starting the device to be measured, and it is possible to perform the insulation deterioration determination taking into consideration a possible disturbance when the device is operating.
(7) A DC power source electrically insulated from the ground, a motor driven by the power from the DC power source, and power conversion for converting the power from the DC power source into power suitable for driving the motor. And a measuring circuit connected to a direct current power source for measuring an insulation resistance value of the motor driving device, the measuring circuit being connected to a direct current power source. It is characterized by having a high frequency component separation circuit for restricting the flow of high frequency components into the measurement circuit due to operation.
With such a configuration, the insulation resistance value is accurately measured by the measurement circuit provided on the DC power supply side without being affected by the high-frequency component even during operation of the power converter, and the motor drive Insulation degradation in the device can be detected.
(8) In the insulation deterioration detection device of the present invention, specifically, the high-frequency component separation circuit is a low-pass filter, and for the high-frequency component generated by the power converter, a closed loop is formed with the power converter and the motor. The off frequency is set to be higher than the frequency of constant current injection and extraction operation of the measurement circuit and lower than the frequency of the high frequency component generated by the power converter.
With such a configuration, even when the power converter is operating, the inflow of the high-frequency component into the measurement circuit is blocked by the low-pass filter. The frequency components of the constant current injection and extraction operations of the measurement circuit are used for measurement of the insulation resistance value by the measurement circuit, and the insulation deterioration of the motor drive device can be detected.
(9) Further, in the insulation deterioration detection device of the present invention, for example, the motor is an AC motor, the power converter is an inverter, and the high frequency component separation circuit is a measurement circuit for the high frequency component generated by the operation of the inverter. It is characterized by restricting the inflow of water.
With such a configuration, even when the inverter is in operation, the high-frequency component generated by the inverter is restricted from flowing into the measurement circuit by a high-frequency component classification circuit (for example, a low-pass filter). Therefore, the insulation resistance value can be accurately measured by the measurement circuit provided on the DC power supply side without being affected by the high frequency component, and the insulation deterioration in the motor drive device can be detected.
Note that the present invention can also be applied to the case where the motor is a DC motor and the power converter is a chopper circuit, and the inflow of the high frequency component generated by the chopper circuit to the DC power source side is a high frequency component separation circuit (for example, , Low-pass filter).
(10) Here, the present inventor considered that when the power converter is an inverter and the inverter is subjected to PWM control, the high frequency component is a notch wave generated by PWM control of the inverter. Therefore, the high-frequency component classification circuit (for example, a low-pass filter) is configured as a notch wave classification circuit that limits the inflow of the frequency component of the notch wave to the DC power supply side.
By adopting such a configuration, the insulation resistance value is accurately measured by the measurement circuit provided on the DC power supply side without being affected by the high frequency component even during the operation of the inverter. Insulation degradation can be detected.

本発明によれば、定電流の注入、引抜きのアンバランスがあったとしても、これによる電圧ドリフト対策を必要とせず、また、外乱による測定不能状態の時間を短縮することが可能な絶縁劣化検出装置を提供することができる。
また、本発明によれば、電気自動車等の起動後にも、絶縁劣化の有無の検出、あるいは絶縁抵抗値の測定が可能な絶縁劣化検出装置を提供することができる。
According to the present invention, even if there is an imbalance between constant current injection and extraction, it is not necessary to take measures against voltage drift due to this, and it is possible to detect insulation deterioration that can shorten the time in which measurement cannot be performed due to disturbance. An apparatus can be provided.
In addition, according to the present invention, it is possible to provide an insulation deterioration detection device capable of detecting the presence or absence of insulation deterioration or measuring the insulation resistance value even after starting an electric vehicle or the like.

本発明による絶縁劣化検出装置および絶縁抵抗測定対象とするモーター駆動装置の全体構成を示す図である。It is a figure which shows the whole structure of the motor drive device made into the insulation degradation detection apparatus by this invention and insulation resistance measurement object. 本発明が適用される定電流交番方式による絶縁劣化検出装置を示す等価回路である。It is an equivalent circuit which shows the insulation degradation detection apparatus by the constant current alternating system with which this invention is applied. 図2に示した絶縁劣化検出装置における電流注入、引抜き動作を示す出力電圧波形図である。FIG. 3 is an output voltage waveform diagram showing current injection and extraction operations in the insulation deterioration detection device shown in FIG. 2. 本発明者により提案された先願に係る絶縁劣化検出装置の構成を示す図である。It is a figure which shows the structure of the insulation degradation detection apparatus which concerns on the prior application proposed by this inventor. 先願に係る絶縁劣化検出装置において、外乱電圧が加わった場合の定電流注入、引抜き動作の電圧波形を示す図である。It is a figure which shows the voltage waveform of constant current injection | pouring and extraction operation | movement when a disturbance voltage is added in the insulation degradation detection apparatus which concerns on a prior application. 本発明の第1の実施形態による絶縁劣化検出装置の構成を示す図である。It is a figure which shows the structure of the insulation deterioration detection apparatus by the 1st Embodiment of this invention. 絶縁抵抗値が500kΩの場合の、定電流注入、引抜き動作の電圧波形を示す図である。It is a figure which shows the voltage waveform of constant current injection | pouring and extraction operation | movement in case an insulation resistance value is 500 kohm. 絶縁抵抗値が100kΩの場合の、定電流注入、引抜き動作の電圧波形を示す図である。It is a figure which shows the voltage waveform of constant current injection | pouring and extraction operation | movement in case an insulation resistance value is 100 kohm. 図7の模式図である。It is a schematic diagram of FIG. 図8の模式図である。It is a schematic diagram of FIG. 本発明による第1の実施形態による絶縁劣化検出装置において、外乱電圧が加わった場合の定電流注入、引抜き動作の電圧波形を示す図である。In the insulation degradation detection apparatus by 1st Embodiment by this invention, it is a figure which shows the voltage waveform of the constant current injection | pouring and extraction operation | movement when a disturbance voltage is added. 絶縁抵抗値が大きい場合について、図6に示した定電流交番回路により、上限電圧のみを一定電圧とする注入、引抜き動作を行った場合の電圧波形を示す図である。FIG. 7 is a diagram showing a voltage waveform when an injection and extraction operation with only the upper limit voltage being a constant voltage is performed by the constant current alternating circuit shown in FIG. 6 when the insulation resistance value is large. 絶縁抵抗値が大きい場合について、図6に示した定電流交番回路により、下限電圧のみを一定電圧とする注入、引抜き動作を行った場合の電圧波形を示す図である。It is a figure which shows a voltage waveform at the time of performing injection | pouring and extraction operation | movement which makes only a lower limit voltage a fixed voltage by the constant current alternating circuit shown in FIG. 6 about the case where an insulation resistance value is large. 最大ピーク電圧が正電圧、最小ピーク電圧が0Vとなるように注入、引抜き動作を行う場合の絶縁劣化検出装置に使用するツェナーダイオードの接続を示す図である。It is a figure which shows the connection of the Zener diode used for the insulation degradation detection apparatus in the case of performing injection | pouring and drawing | extracting operation so that the maximum peak voltage is a positive voltage and the minimum peak voltage is 0V. 図2に示した絶縁劣化検出装置におけるインバータ起動前後の出力電圧波形図である。FIG. 3 is an output voltage waveform diagram before and after starting an inverter in the insulation deterioration detection device shown in FIG. 2. 図15に示した出力電圧波形図のインバータ起動時の部分拡大図である。FIG. 16 is a partially enlarged view of the output voltage waveform diagram shown in FIG. 15 when the inverter is activated. モーター駆動装置の一例を示す構成図である。It is a block diagram which shows an example of a motor drive device. インバータのPWM制御を示す説明図である。It is explanatory drawing which shows the PWM control of an inverter. インバータのPWM制御により発生するノッチ波を示す波形図である。It is a wave form diagram which shows the notch wave generate | occur | produced by PWM control of an inverter. 本発明の第2の実施形態による絶縁劣化検出装置を示す構成図である。It is a block diagram which shows the insulation degradation detection apparatus by the 2nd Embodiment of this invention. 図20に示したノッチ波分別回路の一例を示す回路図である。It is a circuit diagram which shows an example of the notch wave classification circuit shown in FIG. 図20に示した絶縁劣化検出装置におけるインバータ起動前後の出力電圧波形図である。FIG. 21 is an output voltage waveform diagram before and after starting the inverter in the insulation deterioration detection device shown in FIG. 20.

以下、添付の図面を参照して本発明による絶縁劣化検出装置の実施の形態を説明する。まず、本発明の一実施形態による絶縁劣化検出装置の構成を説明するに先立って、電気自動車における絶縁劣化検出装置10と高電圧回路15とからなる全体構成を図1により説明する。
図1に示す高電圧回路15は、リチウムイオン電池セル、スーパーキャパシタセルを積み重ねて高電圧をつくりだすための高圧直流電源16、メインスイッチ17、インバータ18および交流モーター19からなる。
測定回路12は、電気自動車を含む一般の自動車で使用されている12V電源に接続され、絶縁劣化を検出した場合、または絶縁抵抗値が所定値以下となると警報信号を出力するようになっている。絶縁劣化が生じたというほどの絶縁不良に至っていない前段階であっても、絶縁抵抗値が所定値以下となったことを検出して警報を発するようにすれば、より信頼性の高い絶縁劣化検出となる。また、絶縁抵抗値を常時監視し、設定抵抗値よりも低下したときに予告信号あるいは警報信号を出力するように構成できる。高圧直流電源16は、感電防止のため、接地電位にある車両ボディ、すなわちシャーシとは絶縁されており、その絶縁抵抗(絶縁抵抗)をRx、浮遊容量をCxで示している。
図2は、定電流交番方式の絶縁劣化検出装置の原理を示す。まず、定電流の注入過程において、図示しない演算制御回路からの電流切替信号により、定電流交番回路20はサンプリング周期Ts毎に定電流Ioの向きを反転させ、絶縁コンデンサ11(Ci)、絶縁抵抗Rx、浮遊容量Cxに定電流Ioを注入し、引き抜く動作を繰り返す。ここで、サンプリング周期Tsを回路の時定数(τx=CxRx)の数倍大きく設定する(Ts>>τx)。
図3は、定電流の注入サイクル(+Ioサイクル)、引抜きサイクル(−Ioサイクル)における定電流交番回路20の出力電圧Voutを示す。Vciは絶縁コンデンサ端子間電圧、Vcxは浮遊容量電圧である。電流の反転時の+Ioサイクルでの出力電圧Voutは下記の数1の式で表わされ、−Ioサイクルでの出力電圧Voutは下記の数2の式で表わされる。ただし、Ciの残留電圧をVciとする。また、Vout(nTs)⇒Vout(n)と簡略表現する。
ここから、Ciの残留電圧Vciを相殺するために正のピーク電圧と負のピーク電圧との差の絶対値VoutPPをとり、算出抵抗値RCxを数3の式により計算する。これから算出抵抗値RCxは、数4の式で表すことができる。
算出抵抗値RCxはVoutPPから算出抵抗値の式を用いて計算したものであり、実抵抗値Rxに指数関数の多項式を乗じたものでもある。ここで、Ts≫τxであれば、指数関数の多項式は1に近づくので算出抵抗値RCxでも充分に高精度で実絶縁抵抗Rxを算出できる。例えば、Ts=3τxで90%、Ts=4τxで97.3%、Ts=5τxで99.0%、Ts=6τxでは99.6%、Ts=7τxで99.9%の精度で算出できる。これから、サンプリング周期Tsを長くすれば、精度が高くなるが、実用的には、Ts=3τxで得られる精度で十分であることがわかり、短時間での検出のため、サンプリング周期(Ts)を被測定回路の時定数(τx)の少なくとも3倍以上とすることが望ましい。
すなわち、算出抵抗値RCxは、ピーク間電圧VoutPPが正確に測定できることが、その正確な算出の前提となっている。図4は、図2に示した定電流交番方式の絶縁劣化検出装置を、より実用的にした構成を示す。図4において、ブリーダ抵抗41およびツェナーダイオード42が追加された構成になっている。絶縁が健全である場合、すなわち絶縁抵抗Rxが大きい場合、出力電圧VoutPPが高くなり、定電流交番回路20の駆動電源から定電流を流すことができなくなる。そこで、出力電圧VoutPPが高くなると、ブリーダ抵抗41に流れる電流が増え、絶縁抵抗Rxに流れる電流が減少して、出力電圧VoutPPを一定電圧IoRm以下に抑えることができる。
また、高圧直流電圧源の変動は極めて大きな場合がある。モーター始動時、モーターの軽負荷から全負荷へ切替時、モーター停止時、高圧直流電圧源の急速充電モードへの切替時などの場合、高圧直流電圧源に大電流が短い時間に流出/流入/停止する。これにより高圧直流電圧源の電圧変動も大きくなる。これは、絶縁抵抗の測定精度の低下要因になる。さらに高圧直流電圧源の電圧が高いと定電流回路の最大駆動電圧(±VDD)を越える場合があり、発振現象を引き起こし、最悪の場合は定電流回路の耐電圧を超え破壊を引き起こす。
その対策として、ツェナーダイオードを入れて出力電圧Voutの上下限を制限する。挿入するツェナーダイオードのツェナー電圧VZはVDD>VZ>IoRmの条件を満たすものを選択する。
この構成において、絶縁コンデンサに一定周期で定電流の注入、引抜きを交互に行っているため、注入と引抜きの電流バランスが完全に一致していないと、誤差が積算されて電圧ドリフトが生じる。その対策として、ブリーダ抵抗41を使用している。
図5は、絶縁コンデンサの高圧直流電源側からステップ状の大きな外乱電圧が加えられた場合の図4中の測定回路12の動作を示す電圧波形である。図5において、0秒時点から5秒経過時点まで、定電流交番回路20は、最大ピーク電圧4Vと最小ピーク電圧−4Vとの間で、0.2秒ずつ注入、引抜きの動作が行われている。5秒経過時点において、たとえば50Vの外乱電圧が加えられた場合、これはツェナーダイオード42の働きにより低減されるものの、定電流交番回路20の出力電圧はたとえば12Vになる。0.2秒ずつ注入、引抜きの動作が行われ、徐々にそのピーク電圧が低下し、図5の例では約20秒かけて外乱電圧印加前の状態に復帰する。
図6を参照して、本発明の第1の実施形態による絶縁劣化検出装置70の構成を説明する。図6において、絶縁劣化検出装置70は、マイクロコンピュータからなる演算制御回路71、定電流交番回路72、および回路保護用のツェナーダイオード73とからなる。定電流交番回路72は、演算制御回路71からの電流切替信号により、定電流(Io)の方向を切り替えるようになっている。ここで、絶縁コンデンサ11の値Ciは、浮遊容量値Cxの10倍以上大きくしている。
測定回路と高圧直流電圧源との絶縁は、絶縁コンデンサ11で確保している。絶縁コンデンサ11の耐圧により、測定できる高圧直流電圧の範囲が決まり、最も高信頼性が要求される部品である。絶縁コンデンサ11としては、耐高温特性、耐湿特性を有し、かつ故障モードがオープンになるものが好ましい。
絶縁劣化検出装置70は、ハードウエアとして、絶縁コンデンサ11を除き、一般の自動車仕様品(耐圧60V以下)で構成でき、高価な特別仕様品を使用する必要はない。デジタル部には、16ビット構成でデータフラッシュメモリ内蔵、10ビット高速AD変換器を備えた自動車仕様の1チップマイクロコンピュータを使用することができる。電源部では、デジタル部、アナログ部に供給する供給電圧DC8〜16Vの安定化電源を別々に生成することで、逆接対策を施すことができる。
消費電流は150mA以下とし、低消費電力とすることができる。実際の装置では、取り付け位置としてバッテリーパック内とすることが可能であり、最高動作保証温度を85℃とすることができる。また、評価用として、CAN、RS232Cのシリアル通信、動作チェック端子を内蔵するが、コネクターピンには接続されない構成とすることができる。量産時には、これらの機能を取り除き、小型化を図ることができる。
次に、図7〜図10を参照して絶縁劣化検出装置70の動作を説明する。ここで、図7は、絶縁抵抗値が500kΩで、上限電圧Vを5V、下限電圧Vを0Vとした場合における絶縁劣化検出装置70の注入、引抜き動作の電圧波形を示す。また、図8は絶縁抵抗値が100kΩで、上限電圧Vを5V、下限電圧を0Vとした場合における絶縁劣化検出装置70の注入、引抜き動作の電圧波形を示す。そして、図9は図7の模式図であり、図10は図8の模式図である。
まず、図9に示すように、定電流の注入過程において、演算制御回路71からの電流切替信号により、定電流交番回路72は、時刻Tにおいて、定電流Ioの向きを反転させ、絶縁コンデンサ11(静電容量値Ci)、絶縁抵抗Rx、浮遊容量Cxに定電流Ioを注入する。出力電圧Voutが正の一定電圧(上限電圧V)に到達したことを演算制御回路71が検出した時刻Tにおいて、定電流Ioの向きを反転させる電流切替信号を定電流交番回路72に与え、電流を引き抜く。出力電圧Voutが負の一定電圧(下限電圧V)に到達したことを演算制御回路71が検出した時刻Tにおいて、定電流Ioの向きを反転させる電流切替信号を定電流交番回路72に与え、電流を注入する。
すなわち、定電流交番回路72による定電流Ioの注入、引抜きの切り替え制御を以下のように行う。
・電流引抜きにより出力電圧Voutが低下して下限電圧Vに達したら、電流注入に切り換える(時刻T、T、T)。
・電流注入により出力電圧Voutが上昇して上限電圧Vに達したら、電流引抜きに切り換える(時刻T、T、T)。
演算制御回路71は、以下の注入時間および引抜時間を測定する。
・注入時間=T〜T間の時間、T〜T間の時間、T〜T間の時間…
・引抜時間=T〜T間の時間、T〜T間の時間、T〜T間の時間…
この注入引抜周期(注入時間+引抜時間)に基づき、絶縁抵抗値の大小を判定する。
図10から解るように、絶縁抵抗値が小さい場合、注入時間(T〜T間の時間)および引抜時間(T〜T間の時間)が長くなり、したがって注入引抜周期が長くなる。
したがって、注入引抜周期を測定することにより、絶縁抵抗値を間接的に測定することができ、絶縁劣化の判定をおこなうことができる。たとえば、所定の絶縁抵抗値に対応する注入引抜周期をしきい値として設定し、測定された注入引抜周期がこのしきい値に達したことで、絶縁劣化を判定するようにすればよい。
この絶縁劣化検出装置70によれば、たとえ注入と引抜きの電流バランスに大きな誤差がある場合でも、出力電圧が一定の上限電圧Vおよび下限電圧Vになるまで、電流の注入、引抜きが行われるので、電圧ドリフトの問題は生じず、図4中に示すようなブリーダ抵抗を設ける必要はない。電流バランスの誤差は、これに相当する注入、引抜時間の誤差となって現れ、絶縁抵抗値の測定誤差となるだけである。絶縁劣化の有無判定には、高精度の絶縁抵抗値測定を必要としないので、実用上問題とならない。
図11は、絶縁劣化検出装置70に外乱電圧が加えられた場合の定電流注入、引抜き動作の電圧波形を示す。図11において、0秒時点から5秒経過時点まで、定電流交番回路70は、上限電圧(最大ピーク電圧)5Vと下限電圧(最小ピーク電圧)0Vとの間で、注入、引抜きの動作を行っている。5秒経過時点において、たとえば50Vの外乱電圧が加えられた場合、ツェナーダイオードの働きにより低減されるものの、定電流交番回路72の出力電圧は。たとえば12Vになる。これは、上限電圧V以上であるので、定電流交番回路72は引抜き動作を行い、下限電圧Vに達したことにより、定電流交番回路72は注入動作を行う。このように、大きな外乱電圧が加えられた場合にも、定電流交番回路72による下限電圧Vへの引抜き動作により、一気に通常動作に復帰することができる。
図11の場合、外乱電圧印加前の状態に復帰するまでの時間は約5秒であり、図5に示した場合にくらべ大幅に短縮される。
図12は、絶縁劣化検出装置70による定電流の注入、引抜き動作の第2の例を示す。この場合、定電流交番回路72の切り替え制御を以下のように行う。
・電流注入により出力電圧Voutが上昇して上限電圧Vに達したら、電流引抜きに切り換える(時刻T、T、T)。
・切換後、直前の電流注入時間と等時間が経過したら、電流注入に切り換える(時刻T、T、T)。
演算制御回路71は、以下の注入時間を測定する。
・注入時間=T〜T間の時間、T〜T間の時間、T〜T間の時間…
・引抜時間=直前の注入時間
この注入引抜周期(注入時間+引抜時間)=(2×注入時間)に基づき、絶縁抵抗値の大小を判定する。
この場合、各周期における出力電圧Voutの最大ピーク値は、上限電圧Vと一致するが、最小ピーク値は、注入、引抜きの電流のアンバランスによって、同じ電圧になるとは限らない。この例のように、電流の注入時間のみに基づいて絶縁抵抗値の大小を判定することもできる。
図13は、絶縁劣化検出装置70による定電流の注入、引抜き動作の第3の例を示す。この場合、定電流交番回路72の切り替え制御を以下のように行う。
・電流引抜きにより出力電圧Voutが低下して下限電圧Vに達したら、電流注入に切り換える(時刻T、T、T)。
・切換後、直前の電流引抜時間と等時間が経過したら、電流引抜に切り換える(時刻T、T、T)。
演算制御回路71は、以下の引抜時間を測定する。
・引抜時間=T〜T間の時間、T〜T間の時間、T〜T間の時間…
・注入時間=直前の引抜時間
この注入引抜周期(注入時間+引抜時間)=(2×引抜時間)に基づき、絶縁抵抗値の大小を判定する。
この場合、各周期における出力電圧Voutの最小ピーク値は、下限電圧Vと一致するが、最大ピーク値は、注入、引抜きの電流のアンバランスによって、同じ電圧になるとは限らない。この例のように、電流の引抜時間のみに基づいて絶縁抵抗値の大小を判定することもできる。
図7ないし図8および図12、図13に示す定電流の注入引抜き動作において、上限電圧Vを正の電圧および下限電圧Vを負の電圧としているが、図9ないし図11に示す場合のように、片電源、たとえば上限電圧Vを正の電圧、下限電圧Vを0Vとすることができる。また、下限電圧Vを0Vではなく、正の所定電圧とすることもできる。この場合には、図6中に示すような逆向きに直列接続した2つの保護用のツェナーダイオード73を、図14に示す1つの保護用のツェナーダイオード83に代えることができる。なお、上限電圧Vを0V、下限電圧Vを負の電圧とすることができ、上限電圧Vを0Vではなく、負の所定電圧とすることもできる。
本願において、「注入、引抜きの周期」は、注入時間と引抜時間の和、注入時間のみ、引抜時間のみ、これらの倍数、あるいはその組み合わせを含む。
また、上記の説明では、「正の電圧」と0V、「負の電圧」と0Vを区別して説明したが、本願において、「正の電圧」が0Vを含む意味に使用される場合があり、「負の電圧」が0V0を含む意味に使用される場合もある。
絶縁劣化の判定は、測定対象の機器(インバータなどを含む機器)の起動前と動作時で、判定の基礎とする注入引抜周期の回数を変えることができる。これは、機器の起動前と動作時では外乱電圧の大きさが異なることに注目したものであり、たとえば、以下のような判定を行うことができる。
機器起動前(外乱電圧小):1回、もしくは2〜3回の注入引抜動作について測定された注入引抜周期の平均値、あるいは積算値で絶縁劣化の判定を行う。
機器動作時(外乱電圧大):複数回の注入引抜動作について測定された注入引抜周期の平均値、あるいは積算値で絶縁劣化の判定を行う。
このようにすることにより、機器起動前に、絶縁劣化の有無を高速で判定することができ、機器動作時には、外乱電圧の影響を低減しつつ絶縁劣化の有無を判定することができる。
先願に示されているように、図1ないし図4に示された絶縁劣化検出装置によれば、電気自動車のインバータ起動前、すなわちメインスイッチ17をオンするところまで、その直流回路部分の絶縁劣化の有無を検出できることがわかった。そこで、メインスイッチ17をオン状態とし、インバータ18および交流モーター19を駆動した後における絶縁劣化検出に対する影響を調べた。
図15は、インバータ18駆動前後の出力電圧Voutの時間変化を示し、図16は、その部分拡大図である。図15および図16に示すように、インバータ18の駆動前において、出力電圧は、定電流の注入、引抜きに応じて、低い周波数かつ比較的小さな振幅で変化する。一方、インバータ18の駆動後において、図示のように、高い周波数の大きな振幅の電圧が観察された。
本発明者は、インバータ18の駆動後においてこのような高周波でかつ大振幅の電圧が生じる原因について考察した。図17は、電気自動車の高電圧回路系を示す。図17において、高電圧回路15は、たとえば、電気自動車のモーター駆動装置であり、高電圧回路15は、高圧直流電源16、メインスイッチ17、インバータ18および交流モーター19からなる。この高電圧回路系の直流部には、高圧直流電源16、メインスイッチ17があり、交流部には、交流モーター19がある。インバータ18は、稼働時には、直流部(高圧直流電源16)からの直流電力を交流電力に変換し、交流部(交流モーター19)に供給し、回生時には、交流部の交流電力を直流電力に変換し、直流部に供給する。
ところで、交流モーター19は、三角波比較法によるPWM制御で駆動しており、その各部の波形は、図18に示すとおりである。(a)は、三角搬送波、U相変調波、V相変調波、W相変調波を示し、(b)は、U相電圧、V相電圧、W相電圧を示し、(c)は、U−V線間電圧、V−W線間電圧、W−U線間電圧を示す。
したがって、図17中の高圧直流電源16の最低電位部における電圧Vpcは、図19に示すようなノッチ波とよばれる波形となる。比較の結果、図15および図16に示した観測波形は、このノッチ波に起因しているのではないかと考えた。また、このインバータで発生したノッチ波は、接地(シャーシ)を介して直流部に伝わり、出力電圧に影響を与えているのではないかと考えた。
本発明の第2の実施形態による絶縁劣化検出装置は、このノッチ波による影響を除去するノッチ波分別回路を備える。図20は、この実施形態による絶縁劣化検出装置の構成を示す。図20において、図4に示した構成と同一の部分(定電流交番回路20、絶縁コンデンサ11、ブリーダ抵抗41、ツェナーダイオード42)の説明は省略する。図20において、ノッチ波分別回路50が、絶縁コンデンサ11と定電流交番回路20との間に設けられている。ノッチ波分別回路50は、交流部から伝わってきた高周波成分が絶縁劣化検出装置の出力電圧Voutに影響を与えないように働く。
図21は、ノッチ波分別回路50の具体的回路の一例を示す。図21において、ノッチ波分別回路50は、ローパスフィルタ60であり、抵抗61およびコンデンサ62からなる。ローパスフィルタ60は、絶縁コンデンサ11と定電流交番回路20との間に設けられ、低周波成分の通過を許容する一方、高周波成分を遮断するように働く。抵抗61およびコンデンサ62の抵抗値、静電容量値は、ローパスフィルタ60のカットオフ周波数がノッチ波の周波数よりも低く、定電流交番回路20の定電流注入、引抜きの周波数(上記では、サイクルで説明している)よりも高く設定される。定電流交番回路20の定電流注入、引抜きの周波数は、たとえば、数Hzであり、ノッチ波の周波数は、たとえば数KHzである。
したがって、ノッチ波分別回路50は、高周波成分についてみると、インバータ18および交流モーター19と閉ループを構成し、ノッチ波による高周波成分が出力電圧Voutに影響を与えない。このため、インバータの起動後も、絶縁抵抗値の正確な測定、すなわち正確な絶縁劣化検出を行うことができる。また、この場合には、高電圧回路15のうち高圧直流電源16の絶縁劣化のみならず、インバータ18および交流モーター19の絶縁劣化も検出することができる。
なお、このノッチ波分別回路50は、図2ないし図4を参照して説明した絶縁劣化装置のみならず図6ないし図14を参照して説明した絶縁劣化装置にも同様に適用できる。
本発明は、電気自動車またはハイブリッド車のモーター駆動装置のための絶縁劣化装置に限られず、風力発電、太陽光発電、燃料電池など、たとえばキャパシタに電力貯蔵を行うシステムに広く適用することができる。このような高圧直流電源が系統連系インバータ等を介して電力系統につながった装置の場合にも、高圧直流電源と筺体との間の絶縁劣化の判定が可能である。
筺体が大地アースに接続されている場合には、高圧直流電源を電力系統から切り離した装置停止中に判定可能であり、筺体が大地アースに接続されていない場合には、装置運転中にも判定可能である。
Embodiments of an insulation deterioration detection apparatus according to the present invention will be described below with reference to the accompanying drawings. First, prior to describing the configuration of an insulation deterioration detection device according to an embodiment of the present invention, an overall configuration including an insulation deterioration detection device 10 and a high voltage circuit 15 in an electric vehicle will be described with reference to FIG.
A high voltage circuit 15 shown in FIG. 1 includes a high voltage DC power supply 16, a main switch 17, an inverter 18, and an AC motor 19 for stacking lithium ion battery cells and supercapacitor cells to produce a high voltage.
The measurement circuit 12 is connected to a 12V power source used in general automobiles including electric vehicles, and outputs an alarm signal when insulation deterioration is detected or when the insulation resistance value becomes a predetermined value or less. . Even if it is in the previous stage where insulation failure has not occurred to the extent that insulation failure has occurred, it is more reliable if it detects that the insulation resistance value has fallen below the specified value and issues an alarm. It becomes detection. Further, the insulation resistance value can be constantly monitored, and a warning signal or an alarm signal can be output when the insulation resistance value falls below the set resistance value. The high-voltage DC power supply 16 is insulated from the vehicle body at the ground potential, that is, the chassis in order to prevent an electric shock. The insulation resistance (insulation resistance) is indicated by Rx and the stray capacitance is indicated by Cx.
FIG. 2 shows the principle of a constant current alternating system insulation deterioration detection device. First, in the constant current injection process, the constant current alternating circuit 20 reverses the direction of the constant current Io at every sampling period Ts by a current switching signal from an arithmetic control circuit (not shown), and the insulation capacitor 11 (Ci), insulation resistance The operation of injecting and extracting the constant current Io into Rx and the stray capacitance Cx is repeated. Here, the sampling period Ts is set several times larger than the circuit time constant (τx = CxRx) (Ts >> τx).
FIG. 3 shows the output voltage Vout of the constant current alternating circuit 20 in a constant current injection cycle (+ Io cycle) and a drawing cycle (−Io cycle). Vci is a voltage across the insulating capacitor terminals, and Vcx is a stray capacitance voltage. The output voltage Vout in the + Io cycle at the time of current inversion is expressed by the following equation (1), and the output voltage Vout in the −Io cycle is expressed by the following equation (2). However, the residual voltage of Ci is set to Vci 0 . Further, it is simply expressed as Vout (nTs) => Vout (n).
From this, in order to cancel the residual voltage Vci 0 of Ci, the absolute value VoutPP of the difference between the positive peak voltage and the negative peak voltage is taken, and the calculated resistance value RCx is calculated by the equation (3). From this, the calculated resistance value RCx can be expressed by the equation (4).
The calculated resistance value RCx is calculated from the VoutPP using the calculated resistance value formula, and is also obtained by multiplying the actual resistance value Rx by an exponential function polynomial. Here, if Ts >> τx, the exponential function polynomial approaches 1, so that the actual insulation resistance Rx can be calculated with sufficiently high accuracy even with the calculated resistance value RCx. For example, it can be calculated with an accuracy of 90% at Ts = 3τx, 97.3% at Ts = 4τx, 99.0% at Ts = 5τx, 99.6% at Ts = 6τx, and 99.9% at Ts = 7τx. From this, it can be seen that if the sampling period Ts is lengthened, the accuracy is improved, but practically, the accuracy obtained with Ts = 3τx is sufficient, and the sampling period (Ts) is set for detection in a short time. It is desirable that the time constant (τx) of the circuit to be measured is at least three times or more.
That is, the calculated resistance value RCx is based on the premise that the peak-to-peak voltage VoutPP can be accurately measured. FIG. 4 shows a configuration in which the constant current alternating type insulation deterioration detection apparatus shown in FIG. 2 is made more practical. In FIG. 4, a bleeder resistor 41 and a Zener diode 42 are added. When the insulation is sound, that is, when the insulation resistance Rx is large, the output voltage VoutPP becomes high and a constant current cannot be supplied from the drive power supply of the constant current alternating circuit 20. Therefore, when the output voltage VoutPP increases, the current flowing through the bleeder resistor 41 increases, the current flowing through the insulation resistor Rx decreases, and the output voltage VoutPP can be suppressed to a certain voltage IoRm or less.
Further, the fluctuation of the high-voltage DC voltage source may be extremely large. When the motor is started, when the motor is switched from light load to full load, when the motor is stopped, or when the high voltage DC voltage source is switched to the quick charge mode, a high current flows into / inflow / Stop. As a result, the voltage fluctuation of the high-voltage DC voltage source also increases. This becomes a factor of decreasing the measurement accuracy of the insulation resistance. Further, if the voltage of the high-voltage DC voltage source is high, the maximum drive voltage (± VDD) of the constant current circuit may be exceeded, causing an oscillation phenomenon, and in the worst case, exceeding the withstand voltage of the constant current circuit and causing destruction.
As a countermeasure, a Zener diode is inserted to limit the upper and lower limits of the output voltage Vout. The Zener voltage VZ of the Zener diode to be inserted is selected to satisfy the condition of VDD>VZ> IoRm.
In this configuration, constant current injection and extraction are alternately performed on the insulating capacitor at a constant period. Therefore, if the current balance between injection and extraction does not completely match, errors are integrated and voltage drift occurs. As a countermeasure, a bleeder resistor 41 is used.
FIG. 5 is a voltage waveform showing the operation of the measurement circuit 12 in FIG. 4 when a large stepwise disturbance voltage is applied from the high-voltage DC power supply side of the insulating capacitor. In FIG. 5, the constant current alternating circuit 20 performs injection and extraction operations every 0.2 seconds between the maximum peak voltage 4V and the minimum peak voltage −4V from the time point of 0 seconds to the point of 5 seconds. Yes. When a disturbance voltage of 50 V, for example, is applied at the time when 5 seconds have elapsed, this is reduced by the action of the Zener diode 42, but the output voltage of the constant current alternating circuit 20 is, for example, 12V. Injection and extraction operations are performed every 0.2 seconds, and the peak voltage gradually decreases. In the example of FIG. 5, the state before application of the disturbance voltage is restored over about 20 seconds.
With reference to FIG. 6, the structure of the insulation deterioration detection apparatus 70 by the 1st Embodiment of this invention is demonstrated. In FIG. 6, the insulation deterioration detection device 70 includes an operation control circuit 71 formed of a microcomputer, a constant current alternating circuit 72, and a Zener diode 73 for circuit protection. The constant current alternating circuit 72 switches the direction of the constant current (Io) by a current switching signal from the arithmetic control circuit 71. Here, the value Ci of the insulating capacitor 11 is set to be ten times or more larger than the stray capacitance value Cx.
Insulation between the measurement circuit and the high-voltage DC voltage source is ensured by an insulation capacitor 11. The range of the high-voltage DC voltage that can be measured is determined by the withstand voltage of the insulating capacitor 11, and is the component that requires the highest reliability. The insulating capacitor 11 is preferably a capacitor having high temperature resistance and moisture resistance and having a failure mode open.
The insulation deterioration detection device 70 can be configured as a general automobile specification product (withstand voltage of 60 V or less) except for the insulation capacitor 11 as hardware, and it is not necessary to use an expensive special specification product. For the digital part, a one-chip microcomputer for automobile specification equipped with a 10-bit high-speed AD converter with a built-in data flash memory in a 16-bit configuration can be used. The power supply unit can take measures against reverse connection by separately generating a stabilized power supply of supply voltage DC8 to 16V supplied to the digital unit and the analog unit.
Current consumption can be 150 mA or less, and low power consumption can be achieved. In an actual apparatus, the mounting position can be in the battery pack, and the maximum guaranteed operating temperature can be 85 ° C. Further, for evaluation, CAN and RS232C serial communication and operation check terminals are built in, but they can be configured not to be connected to connector pins. In mass production, these functions can be removed to reduce the size.
Next, the operation of the insulation deterioration detection device 70 will be described with reference to FIGS. Here, FIG. 7 shows voltage waveforms of the injection and extraction operations of the insulation deterioration detecting device 70 when the insulation resistance value is 500 kΩ, the upper limit voltage V H is 5 V, and the lower limit voltage VL is 0 V. FIG. 8 shows voltage waveforms of the injection and extraction operations of the insulation deterioration detecting device 70 when the insulation resistance value is 100 kΩ, the upper limit voltage V H is 5 V, and the lower limit voltage is 0 V. 9 is a schematic diagram of FIG. 7, and FIG. 10 is a schematic diagram of FIG.
First, as shown in FIG. 9, in the constant current injection process, the constant current alternating circuit 72 reverses the direction of the constant current Io at the time T 1 by the current switching signal from the arithmetic control circuit 71, and the insulating capacitor 11 (electrostatic capacitance value Ci), insulation resistance Rx, and stray capacitance Cx are injected with a constant current Io. At time T 2 when the arithmetic control circuit 71 detects that the output voltage Vout has reached a positive constant voltage (upper limit voltage V H ), a current switching signal for inverting the direction of the constant current Io is given to the constant current alternating circuit 72. Pull out the current. At time T 3 when the arithmetic control circuit 71 detects that the output voltage Vout has reached a negative constant voltage (lower limit voltage V L ), a current switching signal for inverting the direction of the constant current Io is given to the constant current alternating circuit 72. Inject current.
That is, switching control of the injection and extraction of the constant current Io by the constant current alternating circuit 72 is performed as follows.
When the output voltage Vout decreases due to current drawing and reaches the lower limit voltage V L , switching to current injection is performed (time T 1 , T 3 , T 5 ).
When the output voltage Vout increases due to current injection and reaches the upper limit voltage V H , switching to current drawing is performed (time T 2 , T 4 , T 6 ).
The arithmetic control circuit 71 measures the following injection time and drawing time.
Injection time = T 1 through T time between 2, T 3 time between ~T 4, T 5 ~T between 6 times ...
- pull-out time = T 2 ~T 3 between the time, T 4 time between ~T 5, the time between T 6 ~T 7 ...
Based on this injection drawing cycle (injection time + drawing time), the magnitude of the insulation resistance value is determined.
As can be seen from FIG. 10, when the insulation resistance value is small, the injection time (time between T 1 and T 2 ) and the drawing time (time between T 2 and T 3 ) become long, and thus the injection drawing period becomes long. .
Therefore, by measuring the injection / withdrawal cycle, the insulation resistance value can be indirectly measured, and the insulation deterioration can be determined. For example, the injection drawing cycle corresponding to a predetermined insulation resistance value may be set as a threshold value, and the insulation deterioration may be determined when the measured injection drawing cycle reaches this threshold value.
According to this insulation deterioration detection device 70, even if there is a large error in the current balance between injection and extraction, current injection and extraction are performed until the output voltage reaches a certain upper limit voltage V H and lower limit voltage VL. Therefore, the problem of voltage drift does not occur, and there is no need to provide a bleeder resistance as shown in FIG. The error in current balance appears as an error in injection and extraction time corresponding to this, and it only becomes a measurement error in the insulation resistance value. Since the determination of the presence or absence of insulation deterioration does not require highly accurate insulation resistance value measurement, there is no practical problem.
FIG. 11 shows voltage waveforms of constant current injection and extraction operations when a disturbance voltage is applied to the insulation deterioration detection device 70. In FIG. 11, the constant current alternating circuit 70 performs injection and extraction operations between an upper limit voltage (maximum peak voltage) of 5 V and a lower limit voltage (minimum peak voltage) of 0 V from 0 second to 5 seconds. ing. When a disturbance voltage of 50 V, for example, is applied after 5 seconds, the output voltage of the constant current alternating circuit 72 is reduced by the action of the Zener diode. For example, it becomes 12V. Since this is equal to or higher than the upper limit voltage V H , the constant current alternating circuit 72 performs a drawing operation, and when the lower limit voltage V L is reached, the constant current alternating circuit 72 performs an injection operation. As described above, even when a large disturbance voltage is applied, the constant current alternating circuit 72 can return to the normal operation at once by the drawing operation to the lower limit voltage VL .
In the case of FIG. 11, the time required to return to the state before the disturbance voltage is applied is about 5 seconds, which is significantly shortened compared to the case shown in FIG.
FIG. 12 shows a second example of constant current injection and extraction operations by the insulation deterioration detection device 70. In this case, the switching control of the constant current alternating circuit 72 is performed as follows.
When the output voltage Vout increases due to current injection and reaches the upper limit voltage V H , switching to current drawing is performed (time T 2 , T 4 , T 6 ).
· After switching, when the current injection time and equal time immediately before has elapsed, it switches the current injection (time T 1, T 3, T 5 ).
The arithmetic control circuit 71 measures the following injection time.
Injection time = T 1 through T time between 2, T 3 time between ~T 4, T 5 ~T between 6 times ...
Extraction time = immediate injection time The injection resistance period is determined based on the injection extraction cycle (injection time + drawing time) = (2 × injection time).
In this case, the maximum peak value of the output voltage Vout in each cycle coincides with the upper limit voltage V H , but the minimum peak value is not necessarily the same voltage due to the imbalance between the injection and extraction currents. As in this example, the magnitude of the insulation resistance value can also be determined based only on the current injection time.
FIG. 13 shows a third example of constant current injection and extraction operations by the insulation deterioration detection device 70. In this case, the switching control of the constant current alternating circuit 72 is performed as follows.
When the output voltage Vout decreases due to current drawing and reaches the lower limit voltage V L , switching to current injection is performed (time T 1 , T 3 , T 5 ).
・ After switching, when the current drawing time equal to the previous current drawing time elapses, switching to current drawing is performed (time T 2 , T 4 , T 6 ).
The arithmetic control circuit 71 measures the following extraction time.
- pull-out time = T 2 ~T 3 between the time, T 4 time between ~T 5, the time between T 6 ~T 7 ...
Injection time = Previous drawing time Based on this injection drawing cycle (injection time + drawing time) = (2 × drawing time), the magnitude of the insulation resistance value is determined.
In this case, the minimum peak value of the output voltage Vout in each cycle coincides with the lower limit voltage V L , but the maximum peak value does not necessarily become the same voltage due to the imbalance between injection and extraction currents. As in this example, the magnitude of the insulation resistance value can also be determined based only on the current drawing time.
In the constant current injection and extraction operation shown in FIGS. 7 to 8, 12 and 13, the upper limit voltage VH is a positive voltage and the lower limit voltage VL is a negative voltage. Thus, the single power source, for example, the upper limit voltage VH can be set to a positive voltage and the lower limit voltage VL can be set to 0V. Further, the lower limit voltage V L can be set to a positive predetermined voltage instead of 0V. In this case, the two protective Zener diodes 73 connected in series in the reverse direction as shown in FIG. 6 can be replaced with one protective Zener diode 83 shown in FIG. The upper limit voltage V H can be set to 0 V, the lower limit voltage V L can be set to a negative voltage, and the upper limit voltage V H can be set to a negative predetermined voltage instead of 0 V.
In the present application, the “injection and extraction cycle” includes the sum of the injection time and the extraction time, only the injection time, only the extraction time, a multiple thereof, or a combination thereof.
Further, in the above description, “positive voltage” and 0V, and “negative voltage” and 0V are distinguished, but in this application, “positive voltage” may be used to include 0V. “Negative voltage” is sometimes used to mean 0V0.
The determination of insulation deterioration can be performed by changing the number of injection / withdrawal cycles that is the basis of determination before and during operation of a device to be measured (device including an inverter or the like). This is because attention is paid to the fact that the magnitude of the disturbance voltage is different between before the device is activated and during operation. For example, the following determination can be made.
Before device activation (small disturbance voltage): Insulation deterioration is determined based on the average value or integrated value of the injection drawing cycle measured for one or two to three injection drawing operations.
When the device is operating (disturbance voltage is large): Judgment of insulation deterioration is made based on the average value or integrated value of the injection / drawing cycles measured for multiple injection / drawing operations.
By doing so, it is possible to determine the presence or absence of insulation degradation at high speed before starting the device, and it is possible to determine the presence or absence of insulation degradation while reducing the influence of disturbance voltage during device operation.
As shown in the prior application, according to the insulation deterioration detecting device shown in FIGS. 1 to 4, the DC circuit portion is insulated before the inverter of the electric vehicle is started, that is, until the main switch 17 is turned on. It was found that the presence or absence of deterioration can be detected. Therefore, the influence on the insulation deterioration detection after the main switch 17 was turned on and the inverter 18 and the AC motor 19 were driven was examined.
FIG. 15 shows the time change of the output voltage Vout before and after the inverter 18 is driven, and FIG. 16 is a partially enlarged view thereof. As shown in FIGS. 15 and 16, before the inverter 18 is driven, the output voltage changes with a low frequency and a relatively small amplitude according to the injection and extraction of the constant current. On the other hand, after the inverter 18 was driven, a voltage with a high frequency and a large amplitude was observed as shown in the figure.
The present inventor has considered the cause of such high-frequency and large-amplitude voltage after the inverter 18 is driven. FIG. 17 shows a high voltage circuit system of an electric vehicle. In FIG. 17, the high voltage circuit 15 is, for example, a motor drive device for an electric vehicle, and the high voltage circuit 15 includes a high voltage DC power supply 16, a main switch 17, an inverter 18, and an AC motor 19. The high voltage circuit system includes a high-voltage DC power supply 16 and a main switch 17 in the DC portion, and an AC motor 19 in the AC portion. The inverter 18 converts DC power from the DC section (high-voltage DC power supply 16) to AC power during operation and supplies it to the AC section (AC motor 19), and converts AC power from the AC section to DC power during regeneration. To the DC section.
By the way, the AC motor 19 is driven by PWM control based on a triangular wave comparison method, and the waveform of each part is as shown in FIG. (A) shows triangular carrier wave, U-phase modulated wave, V-phase modulated wave, and W-phase modulated wave, (b) shows U-phase voltage, V-phase voltage, and W-phase voltage, and (c) shows U-phase voltage, -V line voltage, V-W line voltage, W-U line voltage are shown.
Therefore, the voltage Vpc at the lowest potential portion of the high-voltage DC power supply 16 in FIG. 17 has a waveform called a notch wave as shown in FIG. As a result of comparison, it was considered that the observed waveforms shown in FIGS. 15 and 16 may be caused by this notch wave. In addition, the notch wave generated by this inverter was transmitted to the DC part through the ground (chassis) and thought that the output voltage was affected.
The insulation deterioration detection apparatus according to the second embodiment of the present invention includes a notch wave classification circuit that removes the influence of the notch wave. FIG. 20 shows the configuration of an insulation deterioration detection device according to this embodiment. 20, the description of the same parts (constant current alternating circuit 20, insulating capacitor 11, bleeder resistor 41, Zener diode 42) as the configuration shown in FIG. 4 is omitted. In FIG. 20, a notch wave separation circuit 50 is provided between the insulating capacitor 11 and the constant current alternating circuit 20. The notch wave classification circuit 50 works so that the high-frequency component transmitted from the AC section does not affect the output voltage Vout of the insulation deterioration detection device.
FIG. 21 shows an example of a specific circuit of the notch wave classification circuit 50. In FIG. 21, the notch wave separation circuit 50 is a low-pass filter 60 and includes a resistor 61 and a capacitor 62. The low-pass filter 60 is provided between the insulating capacitor 11 and the constant current alternating circuit 20, and works to block high-frequency components while allowing low-frequency components to pass. The resistance value and capacitance value of the resistor 61 and the capacitor 62 are such that the cut-off frequency of the low-pass filter 60 is lower than the frequency of the notch wave, and the constant current injection and extraction frequencies of the constant current alternating circuit 20 (in the above, in cycles) Higher than described). The constant current injection and extraction frequency of the constant current alternating circuit 20 is, for example, several Hz, and the frequency of the notch wave is, for example, several KHz.
Therefore, the notch wave separation circuit 50 forms a closed loop with the inverter 18 and the AC motor 19 in terms of high frequency components, and the high frequency components due to the notch waves do not affect the output voltage Vout. For this reason, it is possible to accurately measure the insulation resistance value, that is, accurately detect insulation deterioration even after the inverter is started. In this case, not only the insulation deterioration of the high-voltage DC power supply 16 in the high voltage circuit 15 but also the insulation deterioration of the inverter 18 and the AC motor 19 can be detected.
The notch wave classification circuit 50 can be similarly applied not only to the insulation deterioration device described with reference to FIGS. 2 to 4 but also to the insulation deterioration device described with reference to FIGS. 6 to 14.
The present invention is not limited to an insulation deterioration device for a motor drive device of an electric vehicle or a hybrid vehicle, and can be widely applied to a system that stores electric power in, for example, a capacitor such as wind power generation, solar power generation, and a fuel cell. Even in the case of such a device in which such a high-voltage DC power source is connected to the power system via a grid-connected inverter or the like, it is possible to determine insulation deterioration between the high-voltage DC power source and the housing.
If the chassis is connected to earth ground, it can be judged while the equipment is disconnected with the high-voltage DC power supply disconnected from the power system. If the chassis is not connected to earth ground, it can be judged while the equipment is operating. Is possible.

本発明は、高圧直流電源を使用するシステム、たとえば、電気自動車またはハイブリッド車の電源および駆動装置、風力発電、太陽光発電、燃料電池などの電力システムにおける絶縁劣化を検出することができる。また、本発明は、高圧直流電源、インバータ、モーターなどからなる高圧回路を含む電気自動車またはハイブリッド車のモーター駆動装置において、インバータの起動後であっても絶縁劣化の有無を検出することができる。   INDUSTRIAL APPLICABILITY The present invention can detect insulation deterioration in a system that uses a high-voltage DC power source, for example, a power source and a driving device of an electric vehicle or a hybrid vehicle, wind power generation, solar power generation, and a fuel cell. Further, the present invention can detect the presence or absence of insulation deterioration even after the inverter is started in a motor drive device of an electric vehicle or a hybrid vehicle including a high voltage circuit including a high voltage DC power source, an inverter, a motor and the like.

10…絶縁劣化検出装置
11…絶縁コンデンサ
12…測定回路
13…センシング端子
15…高電圧回路
16…高圧直流電源
17…メインスイッチ
18…インバータ
19…交流モーター
20…定電流交番回路
41…ブリーダ抵抗
42…ツェナーダイオード
50…ノッチ波分別回路
60…ローパスフィルタ
61…抵抗
62…コンデンサ
70…絶縁劣化検出装置
71…演算制御回路
72…定電流交番回路
73…ツェナーダイオード
83…ツェナーダイオード
DESCRIPTION OF SYMBOLS 10 ... Insulation degradation detection apparatus 11 ... Insulation capacitor 12 ... Measurement circuit 13 ... Sensing terminal 15 ... High voltage circuit 16 ... High voltage DC power supply 17 ... Main switch 18 ... Inverter 19 ... AC motor 20 ... Constant current alternating circuit 41 ... Breeder resistance 42 ... Zener diode 50 ... Notch wave separation circuit 60 ... Low-pass filter 61 ... Resistance 62 ... Capacitor 70 ... Insulation deterioration detection device 71 ... Operation control circuit 72 ... Constant current alternating circuit 73 ... Zener diode 83 ... Zener diode

Claims (10)

接地部に対して電気的に絶縁された直流電源の漏電を検出するために、前記直流電源に接続される絶縁コンデンサと測定回路とからなる絶縁劣化検出装置において、
前記測定回路は、定電流交番回路と演算制御回路からなり、
前記定電流交番回路は、その出力電圧のピーク値が一定電圧となるように、前記絶縁コンデンサに定電流の注入、引抜きを交互に行い、
前記演算制御回路は、その注入、引抜きの周期に基づき、絶縁劣化を判定することを特徴とする絶縁劣化検出装置。
In order to detect a leakage of a DC power supply that is electrically insulated with respect to the grounding portion, in an insulation deterioration detection device comprising an insulation capacitor connected to the DC power supply and a measurement circuit,
The measurement circuit consists of a constant current alternating circuit and an arithmetic control circuit,
The constant current alternating circuit alternately injects and draws a constant current into the insulating capacitor so that the peak value of the output voltage becomes a constant voltage,
2. The insulation deterioration detecting apparatus according to claim 1, wherein the arithmetic control circuit determines insulation deterioration based on the injection and extraction cycles.
前記定電流交番回路は、その出力電圧の最大ピーク値および最小ピーク値の双方が一定電圧となるように、前記絶縁コンデンサに定電流の注入、引抜きを交互に行うことを特徴とする請求項1に記載の絶縁劣化検出装置。   2. The constant current alternating circuit alternately injects and draws a constant current into and from the insulation capacitor so that both the maximum peak value and the minimum peak value of the output voltage are constant. The insulation deterioration detection device according to 1. 前記定電流交番回路は、その出力電圧の最大ピーク値および最小ピーク値のいずれか一方が一定電圧となるように、前記絶縁コンデンサに定電流の注入および引抜きのいずれか一方を行い、前記注入および引抜きのいずれか一方に要した時間と同じ時間、注入および引抜きのうちの他方を行うことを特徴とする請求項1に記載の絶縁劣化検出装置。   The constant current alternating circuit performs either one of injection and extraction of a constant current to the insulation capacitor so that one of the maximum peak value and the minimum peak value of the output voltage is a constant voltage, and the injection and extraction 2. The insulation deterioration detecting device according to claim 1, wherein the other one of injection and drawing is performed for the same time as the time required for either drawing. 前記定電流交番回路は、その出力電圧の最大ピーク値および最小ピーク値の双方が正電圧または負電圧となるように、前記絶縁コンデンサに定電流の注入、引抜きを交互に行うことを特徴とする請求項1ないし3の何れか1の請求項に記載の絶縁劣化検出装置。   The constant current alternating circuit is characterized by alternately injecting and extracting a constant current to and from the insulation capacitor so that both of the maximum peak value and the minimum peak value of the output voltage are a positive voltage or a negative voltage. The insulation deterioration detecting device according to any one of claims 1 to 3. 出力電圧を前記定電流交番回路の最大駆動電圧以下に制限するツェナーダイオードをさらに設けたことを特徴とする請求項1ないし4の何れか1の請求項に記載の絶縁劣化検出装置。   5. The insulation deterioration detection device according to claim 1, further comprising a Zener diode that limits an output voltage to a maximum driving voltage of the constant current alternating circuit or less. 前記測定回路による絶縁劣化判定に要する注入、引抜き回数が、測定対象の機器起動時には、機器動作時よりも少なく設定されていることを特徴とする請求項1ないし5の何れか1の請求項に記載の絶縁劣化検出装置。   6. The method according to claim 1, wherein the number of injections and withdrawals required for determining the insulation deterioration by the measurement circuit is set to be smaller when starting the device to be measured than when operating the device. The insulation deterioration detection device described. 接地部に対して電気的に絶縁された直流電源と、この直流電源からの電力により駆動されるモーターと、前記直流電源からの電力を前記モーターの駆動に適した電力に変換する電力変換器とを有するモーター駆動装置における絶縁劣化を検出するための装置であって、
前記直流電源に接続されて前記モーター駆動装置における絶縁抵抗値を測定する測定回路を備え、
前記測定回路は、前記電力変換器の動作による高周波成分の前記測定回路への流入を制限する高周波成分分別回路を有することを特徴とする絶縁劣化検出装置。
A DC power source electrically insulated from the grounding unit, a motor driven by power from the DC power source, and a power converter for converting the power from the DC power source into power suitable for driving the motor; A device for detecting insulation deterioration in a motor drive device having
A measurement circuit connected to the DC power source and measuring an insulation resistance value in the motor driving device;
The insulation circuit according to claim 1, wherein the measurement circuit includes a high-frequency component classification circuit that restricts inflow of a high-frequency component into the measurement circuit due to an operation of the power converter.
前記高周波成分分別回路は、ローパスフィルタであり、前記電力変換器が発生する高周波成分について、前記電力変換器および前記モーターと閉ループを形成し、そのカットオフ周波数は、前記測定回路の定電流の注入、引抜き動作の周波数よりも高く、前記電力変換器が発生する高周波成分の周波数よりも低く設定されることを特徴とする請求項7に記載の絶縁劣化検出装置。   The high-frequency component separation circuit is a low-pass filter, and forms a closed loop with the power converter and the motor for the high-frequency component generated by the power converter, and the cutoff frequency is a constant current injection of the measurement circuit. 8. The insulation deterioration detecting apparatus according to claim 7, wherein the insulation deterioration detecting apparatus is set to be higher than a frequency of a drawing operation and lower than a frequency of a high frequency component generated by the power converter. 前記モーターが交流モーターであり、前記電力変換器がインバータであって、
前記高周波成分分別回路は、前記インバータの動作により発生する高周波成分の前記測定回路への流入を制限することを特徴とする請求項7または8に記載の絶縁劣化検出装置。
The motor is an AC motor, and the power converter is an inverter;
The insulation deterioration detection device according to claim 7 or 8, wherein the high-frequency component classification circuit restricts inflow of a high-frequency component generated by the operation of the inverter into the measurement circuit.
前記高周波成分は、前記インバータのPWM制御で発生するノッチ波であることを特徴とする請求項7ないし9の何れか1の請求項に記載の絶縁劣化検出装置。   10. The insulation deterioration detection device according to claim 7, wherein the high-frequency component is a notch wave generated by PWM control of the inverter.
JP2011546191A 2009-12-15 2010-12-13 Insulation deterioration detector Active JP5757877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011546191A JP5757877B2 (en) 2009-12-15 2010-12-13 Insulation deterioration detector

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009284375 2009-12-15
JP2009284375 2009-12-15
PCT/JP2010/072824 WO2011074683A1 (en) 2009-12-15 2010-12-13 Insulation-degradation detecting device
JP2011546191A JP5757877B2 (en) 2009-12-15 2010-12-13 Insulation deterioration detector

Publications (2)

Publication Number Publication Date
JPWO2011074683A1 true JPWO2011074683A1 (en) 2013-05-02
JP5757877B2 JP5757877B2 (en) 2015-08-05

Family

ID=44167433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011546191A Active JP5757877B2 (en) 2009-12-15 2010-12-13 Insulation deterioration detector

Country Status (4)

Country Link
JP (1) JP5757877B2 (en)
CN (1) CN102341714B (en)
TW (1) TWI453428B (en)
WO (1) WO2011074683A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI447405B (en) * 2011-11-25 2014-08-01 Ind Tech Res Inst Apparatus and method for monitoring insulation resistance
FR2987133B1 (en) * 2012-02-22 2014-02-07 Renault Sas METHOD FOR ESTIMATING ISOLATION RESISTANCE BETWEEN BATTERY AND ELECTRIC MASS
KR101453786B1 (en) * 2012-04-04 2014-11-03 주식회사 엘지화학 Apparatus for measuring isolation resistance having malfunction self -diagnosing function and malfunction self-diagnosing method using the same
JP5406345B1 (en) * 2012-08-02 2014-02-05 山洋電気株式会社 Motor control apparatus and motor insulation deterioration detection method
JP5958318B2 (en) * 2012-12-12 2016-07-27 日立金属株式会社 Discharge charge amount measuring method and discharge charge amount measuring apparatus
CN104375063B (en) * 2013-08-14 2019-01-25 中兴通讯股份有限公司 A kind of limit pressure resistant testing device and method
WO2015075821A1 (en) * 2013-11-22 2015-05-28 三菱電機株式会社 Insulation detector and electrical device
DE102014207478A1 (en) * 2014-04-17 2015-10-22 Robert Bosch Gmbh Method and device for determining an insulation resistance and high-voltage battery system with such a device
JP2016161352A (en) * 2015-02-27 2016-09-05 富士通テン株式会社 Deterioration detector and method for detecting deterioration
CN106443195A (en) * 2016-11-03 2017-02-22 深圳市沃特玛电池有限公司 Insulation resistance measuring method and insulation resistance measuring equipment
EP3553538B1 (en) * 2018-04-13 2021-03-10 Nokia Technologies Oy An apparatus, electronic device and method for estimating impedance
CN109541486B (en) * 2018-11-14 2020-11-06 东软睿驰汽车技术(沈阳)有限公司 Method and system for detecting insulation of power battery
CN109633358B (en) * 2019-01-10 2021-06-18 许继电源有限公司 Method and device for monitoring grounding insulation of partial buses in three buses
CN110596547B (en) * 2019-09-19 2021-08-24 上海电力大学 On-line monitoring method for turn insulation state of inverter driving motor
CN113391124B (en) * 2021-06-03 2023-09-29 珠海万力达电气自动化有限公司 Insulation level monitoring method, device and system for medium-voltage power system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5356885U (en) * 1976-10-18 1978-05-15
JP3842877B2 (en) * 1997-09-29 2006-11-08 日置電機株式会社 Resistance measuring device
JP3621586B2 (en) * 1998-06-02 2005-02-16 グローリー工業株式会社 Resistance value measuring circuit and measuring method thereof
JP4167872B2 (en) * 2001-10-04 2008-10-22 株式会社日立産機システム Leakage current monitoring device and monitoring system therefor
JP2004245600A (en) * 2003-02-10 2004-09-02 Yazaki Corp Insulation resistance detection device
MX2007000414A (en) * 2004-07-12 2007-06-15 Sicor Inc Cis-diiodo- (trans-l-1,2-cyclohexanediamine) platinum (ii) complex and processes for preparing high purity oxaliplatin.
JP2006170714A (en) * 2004-12-14 2006-06-29 Nissan Motor Co Ltd Ground fault detector, method of setting threshold for ground fault detector
JP5012803B2 (en) * 2006-08-04 2012-08-29 トヨタ自動車株式会社 Insulation resistance detection system, insulation resistance detection device, and insulation resistance detection method
TWI308640B (en) * 2006-12-27 2009-04-11 Ind Tech Res Inst Portable partial discharge detection device and method thereof

Also Published As

Publication number Publication date
CN102341714B (en) 2016-01-20
JP5757877B2 (en) 2015-08-05
TWI453428B (en) 2014-09-21
WO2011074683A1 (en) 2011-06-23
CN102341714A (en) 2012-02-01
TW201142313A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP5757877B2 (en) Insulation deterioration detector
US9255957B2 (en) Earth fault detection circuit and power source device
JP5406614B2 (en) Insulation state detector
CN106896274B (en) Apparatus, system and method for insulation resistance measurement and insulation loss diagnosis
US9261551B2 (en) Ground fault detecting device for an ungrounded circuit
US7554333B2 (en) Grounding detector
KR101013696B1 (en) Insulating resistance detection apparatus
CN102869996B (en) Utilize isolation monitoring system and the method for variable simulated inductor
JP6491164B2 (en) Voltage detector
JP5385688B2 (en) Insulation resistance detector
CN102998575B (en) Electric leakage sensing apparatus
JP5541743B2 (en) Contactor welding detector
CN103250061A (en) Insulation resistance measurement circuit having self-est function without generating leakage current
WO2007026603A1 (en) Insulation resistance degradation detector and failure self-diagnostic method for insulation resistance degradation detector
JP5382813B2 (en) Earth leakage detector
JP2007068249A (en) Leak detector for electric car
CN104635057A (en) Electric automobile insulation detection system and control method based on adaptive voltage compensation and low-frequency injection
JP2017062168A (en) Electric leakage detection circuit
CN113841059A (en) Electric leakage detection device and power supply system for vehicle
JP5716601B2 (en) Insulation resistance drop detector
JP2018127085A (en) Ground fault detector and power source system
CN103176095A (en) Device and method for electric leakage detection
CN103675493A (en) Fault detection method for starter of automobile
CN103674566A (en) Automobile starting monitoring method based on maximum peak current
JP2007089277A (en) Leak detector for electric car

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141128

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150602

R150 Certificate of patent or registration of utility model

Ref document number: 5757877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250