JPWO2010150747A1 - heatsink - Google Patents

heatsink Download PDF

Info

Publication number
JPWO2010150747A1
JPWO2010150747A1 JP2011519886A JP2011519886A JPWO2010150747A1 JP WO2010150747 A1 JPWO2010150747 A1 JP WO2010150747A1 JP 2011519886 A JP2011519886 A JP 2011519886A JP 2011519886 A JP2011519886 A JP 2011519886A JP WO2010150747 A1 JPWO2010150747 A1 JP WO2010150747A1
Authority
JP
Japan
Prior art keywords
path
refrigerant
heat sink
connection path
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011519886A
Other languages
Japanese (ja)
Other versions
JP5488599B2 (en
Inventor
青木 淳一
淳一 青木
覚 平野
覚 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2011519886A priority Critical patent/JP5488599B2/en
Publication of JPWO2010150747A1 publication Critical patent/JPWO2010150747A1/en
Application granted granted Critical
Publication of JP5488599B2 publication Critical patent/JP5488599B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20254Cold plates transferring heat from heat source to coolant
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

【課題】ヒートシンクを大型化することなく、ヒートシンクの冷却効率を向上させる。【解決手段】複数の冷媒路2、3と、この冷媒路2、3を非直線状に接続する接続路4とを備えたヒートシンク1である。接続路4の冷媒が流入する側の流路の高さは、冷媒が流入する側の流路に接続される冷媒路2の高さより高く形成される。一方、接続路4の流路の高さは、接続路4の冷媒が流出する側の端部に至るにつれて減少するように形成される。接続路4の冷却水が流入する側の流路の高さを逐次増大するように形成する際に、冷媒路2の流路の幅方向の高さが等しくなるように接続路4の高さを増大させるように形成する。【選択図】図2The cooling efficiency of a heat sink is improved without increasing the size of the heat sink. A heat sink includes a plurality of refrigerant paths, and a connection path that connects the refrigerant paths in a non-linear manner. The height of the flow path on the side where the refrigerant flows in the connection path 4 is formed higher than the height of the refrigerant path 2 connected to the flow path on the side where the refrigerant flows. On the other hand, the height of the flow path of the connection path 4 is formed so as to decrease as it reaches the end of the connection path 4 on the side where the refrigerant flows out. When the height of the flow path on the side into which the cooling water flows in the connection path 4 is formed so as to increase successively, the height of the connection path 4 so that the height in the width direction of the flow path of the refrigerant path 2 is equal. Is formed so as to increase. [Selection] Figure 2

Description

本発明は、ヒートシンクに関するものである。特に、インバータに具備されるヒートシンクに関する。   The present invention relates to a heat sink. In particular, the present invention relates to a heat sink provided in an inverter.

ヒートシンクは、電子部品等の被冷却部品を取り付けて冷却するものである。特に、ヒートシンク内部に冷却水を流通させる水冷式ヒートシンクは、空冷式ヒートシンクと比較して、安定した冷却ができること、装置内部の温度の影響を受けにくいこと等の利点を有する。   The heat sink is for cooling by attaching a component to be cooled such as an electronic component. In particular, a water-cooled heat sink that circulates cooling water inside the heat sink has advantages such as stable cooling and being less susceptible to the temperature inside the apparatus, compared to an air-cooled heat sink.

図5に、特許文献1に記載の水冷式ヒートシンク20の分解斜視図を示す。   FIG. 5 shows an exploded perspective view of the water-cooled heat sink 20 described in Patent Document 1. As shown in FIG.

この水冷式ヒートシンク20は、開口部19が形成された金属製平板状のミドルプレート13をアッパプレート12とロアプレート14が挟装することで、冷却水の流路を形成している。このミドルプレート13の開口部19には、インナーフィン15、16、17が介装されている。   The water-cooled heat sink 20 forms a cooling water flow path by sandwiching a metal flat plate middle plate 13 having an opening 19 between an upper plate 12 and a lower plate 14. Inner fins 15, 16, and 17 are interposed in the opening 19 of the middle plate 13.

アッパプレート12には、図示省略の被冷却部品が備えられる。該被冷却部品の熱が、アッパプレート12、インナーフィン15、16、17を介して、低温の冷却水に熱交換されることにより、前記被冷却部品が冷却される。   The upper plate 12 includes a component to be cooled (not shown). The heat of the component to be cooled is exchanged with the low-temperature cooling water via the upper plate 12 and the inner fins 15, 16, and 17, thereby cooling the component to be cooled.

特開2008−235725号公報JP 2008-235725 A

冷却水を流通させて被冷却部品を冷却するヒートシンクにおいて、冷却水がスムーズに流通しない場合や冷却水が偏って流通した場合、水冷式ヒートシンクの冷却効率が低下する。   In the heat sink that circulates the cooling water and cools the component to be cooled, when the cooling water does not flow smoothly or when the cooling water flows unevenly, the cooling efficiency of the water-cooled heat sink decreases.

例えば、特許文献1の水冷式ヒートシンク20では、図5で示すように、ヒートシンク20の流路のU字型にターンしている場所では、仕切り部分22の近傍に冷却水が流れにくく、Uターン部分での圧力損失が大きい。   For example, in the water-cooled heat sink 20 of Patent Document 1, as shown in FIG. 5, in a place where the flow path of the heat sink 20 is turned in a U shape, it is difficult for cooling water to flow in the vicinity of the partition portion 22. The pressure loss at the part is large.

そこで、特許文献1の水冷式ヒートシンク20では、図6に示すように、冷却水がターンする部分にガイド溝23、24を階段状に形成することで、仕切り部分22に近いインナーフィン16に冷却水が流れやすい構造としている。したがって、冷却水がインナーフィン16全体に対して均一に流入し、インナーフィン16の熱交換効率が向上する。   Therefore, in the water-cooled heat sink 20 of Patent Document 1, as shown in FIG. 6, the guide grooves 23 and 24 are formed in a stepped shape in the portion where the cooling water turns, thereby cooling the inner fin 16 close to the partition portion 22. The structure allows easy flow of water. Therefore, the cooling water uniformly flows into the entire inner fin 16 and the heat exchange efficiency of the inner fin 16 is improved.

さらに、特許文献1では、図6に示すように、冷却水がターンする部分は、奥行きが確保されるように、その端部21が突出した形状に形成されることで、圧力損失を低減している。   Furthermore, in Patent Document 1, as shown in FIG. 6, the portion where the cooling water turns is formed in a shape in which the end portion 21 protrudes so as to ensure the depth, thereby reducing the pressure loss. ing.

しかしながら、水冷式ヒートシンクの流路を奥行き方向に容積を広げることは、水冷式ヒートシンクの小型化を妨げている。   However, increasing the volume of the flow path of the water-cooled heat sink in the depth direction hinders downsizing of the water-cooled heat sink.

そこで、本発明のヒートシンクは、複数の冷媒路と、前記冷媒路を非直線状に接続する接続路とを備えたヒートシンクにおいて、前記接続路の冷媒が流入する側の流路の高さを、前記冷媒が流入する側の流路に接続される冷媒路の高さより高く形成し、前記接続路の流路の高さを、前記接続路の冷媒が流出する側の端部に至るにつれて減少するように形成したことを特徴としている。   Accordingly, the heat sink of the present invention is a heat sink comprising a plurality of refrigerant paths and a connection path that connects the refrigerant paths in a non-linear manner, the height of the flow path on the side into which the refrigerant flows in the connection path, It is formed higher than the height of the refrigerant path connected to the flow path on the side where the refrigerant flows in, and the height of the flow path of the connection path decreases as it reaches the end of the connection path where the refrigerant flows out. It is characterized by being formed as follows.

以上の発明によれば、ヒートシンクを大型化することなく、ヒートシンクの冷却効率を向上させることに貢献する。   According to the above invention, it contributes to improving the cooling efficiency of a heat sink, without enlarging a heat sink.

本発明の実施形態に係るヒートシンクの斜視図。The perspective view of the heat sink which concerns on embodiment of this invention. (a)本発明の実施形態1に係るヒートシンクの上面図、(b)本発明の実施形態1に係るヒートシンクのA−A断面図、(c)本発明の実施形態1に係るヒートシンクのB−B断面図、(d)本発明の実施形態1に係るヒートシンクのC−C断面図。(A) Top view of heat sink according to Embodiment 1 of the present invention, (b) AA sectional view of the heat sink according to Embodiment 1 of the present invention, (c) B- of the heat sink according to Embodiment 1 of the present invention B sectional drawing, (d) CC sectional drawing of the heat sink which concerns on Embodiment 1 of this invention. (a)本発明の実施形態2に係るヒートシンクの上面図、(b)本発明の実施形態2に係るヒートシンクのA−A断面図、(c)本発明の実施形態2に係るヒートシンクのB−B断面図、(d)本発明の実施形態2に係るヒートシンクのC−C断面図。(A) Top view of heat sink according to Embodiment 2 of the present invention, (b) AA sectional view of the heat sink according to Embodiment 2 of the present invention, (c) B- of the heat sink according to Embodiment 2 of the present invention B sectional drawing, (d) CC sectional drawing of the heat sink which concerns on Embodiment 2 of this invention. 本発明の実施形態1に係る流路にフィンを備えたヒートシンクの上面図。The top view of the heat sink provided with the fin in the flow path which concerns on Embodiment 1 of this invention. 従来技術に係る水冷式ヒートシンクの分解斜視図。The disassembled perspective view of the water cooling type heat sink which concerns on a prior art. 従来技術に係るU字型流水路を有する水冷式ヒートシンクのUターン部の拡大図。The enlarged view of the U-turn part of the water cooling type heat sink which has a U-shaped flowing water channel which concerns on a prior art.

本発明は、複数の冷媒路と、その冷媒路を非直線状に接続する接続路とを備えたヒートシンクに関するものである。   The present invention relates to a heat sink including a plurality of refrigerant paths and a connection path that connects the refrigerant paths in a non-linear manner.

本発明に係るヒートシンクは、冷媒が流入する側の接続路の流路の高さを、前記流入する冷媒を流通させる冷媒路の流路の高さより大きく設定することで、該接続路での圧力損失を抑制している。   In the heat sink according to the present invention, the height of the flow path of the connection path on the refrigerant inflow side is set larger than the height of the flow path of the refrigerant path for circulating the inflowing refrigerant, so that the pressure in the connection path Loss is suppressed.

このように、冷媒が流入する側の接続路の高さを設定することで、前記接続路の流路の幅(奥行き)を拡大する必要がなくなり、ヒートシンクの大型化を回避することができる。   Thus, by setting the height of the connection path on the side into which the refrigerant flows, it is not necessary to increase the width (depth) of the flow path of the connection path, and an increase in the size of the heat sink can be avoided.

さらに、接続路の流路の高さを、当該接続路の前記冷媒の流出する側の端部に至るにつれて逐次減少するように形成することで、接続路から流出した冷媒を、該接続路の下流に連通して接続される冷媒路に均一に流通させることができる。   Furthermore, by forming the height of the flow path of the connection path so as to gradually decrease toward the end of the connection path where the refrigerant flows out, the refrigerant flowing out of the connection path can be reduced. It can be made to circulate uniformly through the refrigerant path connected in communication with the downstream.

上記構成により、本発明に係るヒートシンクによれば、ヒートシンクを大型化することなく、冷却効率を向上させることができる。なお、以下の本発明の実施形態は、水冷式ヒートシンクに関するものであるが、本発明に係る冷媒は水に限るものではない。   With the above configuration, according to the heat sink according to the present invention, the cooling efficiency can be improved without increasing the size of the heat sink. The following embodiment of the present invention relates to a water-cooled heat sink, but the refrigerant according to the present invention is not limited to water.

(実施形態1)
本発明の実施形態1に係る水冷式ヒートシンクについて、図1及び図2(a)〜(d)を参照して詳細に説明する。
(Embodiment 1)
The water-cooled heat sink according to the first embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2 (a) to 2 (d).

図1に示すように、本発明の実施形態1に係る水冷式ヒートシンク1は、冷媒路2と冷媒路3が接続路4を介して、U字状に接続された構造となっている。そして、冷媒路2、冷媒路3、及び接続路4がU字状に接続されたことにより、仕切り部7が形成されている。   As shown in FIG. 1, the water-cooled heat sink 1 according to Embodiment 1 of the present invention has a structure in which a refrigerant path 2 and a refrigerant path 3 are connected in a U shape via a connection path 4. And the partition part 7 is formed when the refrigerant path 2, the refrigerant path 3, and the connection path 4 were connected in the U-shape.

冷媒路2の一端には、冷媒路2と連通するように接続路4が接続される。そして、冷媒路2の他端には冷媒の入口配管5が接続されている。   A connection path 4 is connected to one end of the refrigerant path 2 so as to communicate with the refrigerant path 2. A refrigerant inlet pipe 5 is connected to the other end of the refrigerant path 2.

冷媒路3の一端は接続路4の冷却水が流出する側の流路と連通している。そして、冷媒路3の接続路4が接続されていない端部には、冷却水の出口配管6が接続される。   One end of the refrigerant path 3 communicates with the flow path on the side of the connection path 4 from which the cooling water flows out. And the outlet pipe 6 of a cooling water is connected to the edge part to which the connection path 4 of the refrigerant path 3 is not connected.

図1において、冷媒路2、3は板状の筒体を成しているが、本発明に係るヒートシンク1の冷媒路2、3の形状はこれに限定されるものではなく、適宜任意の筒体を用いればよい。   In FIG. 1, the refrigerant passages 2 and 3 form plate-like cylinders, but the shape of the refrigerant passages 2 and 3 of the heat sink 1 according to the present invention is not limited to this, and an arbitrary cylinder as appropriate. Use your body.

なお、前記冷媒路3の端部に、さらに接続路4と同じ形状の接続路を接続して、他のヒートシンク1又は他の冷媒路を接続してもよい。また、本実施例において、冷媒路3は、冷媒路2と同一平面上かつ平行に配置されているが、冷媒路3の配置場所は任意に設定可能である。   In addition, you may connect the connection path of the same shape as the connection path 4 to the edge part of the said refrigerant path 3, and connect the other heat sink 1 or another refrigerant path. In the present embodiment, the refrigerant path 3 is arranged on the same plane and in parallel with the refrigerant path 2, but the arrangement location of the refrigerant path 3 can be arbitrarily set.

図2(b)に示すように、ヒートシンク1近傍には、被冷却部品8が備えられ、被冷却部品8の熱が、接続路2又は3を流通する冷却水に熱交換される。この熱交換に供される冷却水は、図2(a)に示すように、入口配管5から冷媒路2に流入し、接続路4、冷媒路3を通って出口配管6より流出する。   As shown in FIG. 2B, a component to be cooled 8 is provided in the vicinity of the heat sink 1, and heat of the component to be cooled 8 is exchanged with cooling water flowing through the connection path 2 or 3. As shown in FIG. 2A, the cooling water used for this heat exchange flows into the refrigerant path 2 from the inlet pipe 5, and flows out from the outlet pipe 6 through the connection path 4 and the refrigerant path 3.

図2(b)に示すように、接続路4の冷却水が流入する側の流路の高さは、冷媒路2の高さと比較して高く設定される。図示されたように、前記冷媒が流入する側の接続路4の流路の高さは、接続路4と冷媒路2との接続部4aから逐次増大するように形成される。また、接続路4の近傍における冷媒路2の流路高さは、接続路4に近づくにつれて、その流路の高さが逐次増大するように形成される。   As shown in FIG. 2B, the height of the flow path on the side into which the cooling water flows in the connection path 4 is set higher than the height of the refrigerant path 2. As shown in the drawing, the height of the flow path of the connection path 4 on the side into which the refrigerant flows is formed so as to sequentially increase from the connection portion 4 a between the connection path 4 and the refrigerant path 2. Moreover, the flow path height of the refrigerant path 2 in the vicinity of the connection path 4 is formed so that the height of the flow path increases gradually as the connection path 4 is approached.

前記のように接続路4の冷却水が流入する側の流路の高さを逐次増大するように形成する際に、接続路4と冷媒路2との接続部4aから流路の幅方向高さが等しくなるように接続路4の流路の高さを増大させると、冷媒路2から接続路4に流れ込む冷却水の流速が流路の左右で一定となる。同様に、冷媒路2の流路高さを逐次増大させるように形成する際にも、接続部4aに至る冷媒路2流路の幅方向高さが等しくなるように増大させると冷媒路2を流通する冷却水の流速が流路の左右で一定となる。よって、接続路4での圧力損失を抑えることができるとともに、冷媒路2内を冷却水が均一に流通するようになる。   As described above, when the height of the flow path on the side into which the cooling water flows in the connection path 4 is formed to increase sequentially, the height in the width direction of the flow path from the connection portion 4a between the connection path 4 and the refrigerant path 2 is increased. When the height of the flow path of the connection path 4 is increased so as to be equal, the flow rate of the cooling water flowing from the refrigerant path 2 to the connection path 4 becomes constant on the left and right sides of the flow path. Similarly, when the flow path height of the refrigerant path 2 is sequentially increased, if the height in the width direction of the flow path of the refrigerant path 2 reaching the connecting portion 4a is increased to be equal, the refrigerant path 2 is changed. The flow rate of the circulating cooling water is constant on the left and right sides of the flow path. Therefore, the pressure loss in the connection path 4 can be suppressed, and the cooling water can circulate uniformly in the refrigerant path 2.

冷媒路2の上面には、図2(b)、(c)に例示されたように、被冷却部品8が備えられるため、接続路4をその高さ方向に増大させたとしても、水冷式ヒートシンク1の小型化を妨げることはない。   As illustrated in FIGS. 2B and 2C, since the cooling target component 8 is provided on the upper surface of the refrigerant path 2, even if the connection path 4 is increased in the height direction, the water cooling type is used. This does not hinder downsizing of the heat sink 1.

また、接続路4は、図2(d)で示すように、接続路4の流れ方向の流路中央部4bから冷却水が流出する側の端部4cに近づくにつれて、接続路4の流路の高さが低くなるように形成されている。この接続路4の高さが減少する位置は、中央部4bに限定されず、冷媒路2から冷媒路3に至る接続路4の長手方向の任意の部分であればよい。このように、接続路4を狭めることにより、接続路4の流れ方向の流路中央部4bから冷却水が流出する側の端部4cまでの流路内の圧力損失が等しくなり、冷媒路3に冷却水を均一に流すことができる。   Further, as shown in FIG. 2 (d), the connection path 4 becomes closer to the end 4 c on the side from which the cooling water flows out from the flow path central part 4 b in the flow direction of the connection path 4. Is formed so that the height thereof is low. The position where the height of the connection path 4 decreases is not limited to the central portion 4b, and may be any part in the longitudinal direction of the connection path 4 from the refrigerant path 2 to the refrigerant path 3. Thus, by narrowing the connection path 4, the pressure loss in the flow path from the flow path central portion 4b in the flow direction of the connection path 4 to the end portion 4c on the side from which the cooling water flows out becomes equal, and the refrigerant path 3 The cooling water can be made to flow uniformly.

なお、接続路4の高さが低くなるように接続路4の流路を形成する場合、接続路4の形状は、本実施形態に限定されるものではなく、冷媒路3に冷却水が均一に流れる形状を適宜設定すればよい。すなわち、接続路4から冷媒路3に流れる冷却水は、接続路4を流通した冷却水の余勢により冷媒路3の仕切り部7近傍には流れにくい。そこで、接続路4の流れ方向の流路中央部4bから接続路4の冷却水が流出する側の端部4cに近づくにつれて流路内の圧力損失が等しくなる形状とし、冷媒路3に冷却水が均一に流れるようにすればよい。   In addition, when forming the flow path of the connection path 4 so that the height of the connection path 4 may become low, the shape of the connection path 4 is not limited to this embodiment, and cooling water is uniform in the refrigerant path 3. What is necessary is just to set suitably the shape which flows into. That is, the cooling water flowing from the connection path 4 to the refrigerant path 3 is unlikely to flow in the vicinity of the partition portion 7 of the refrigerant path 3 due to the surplus amount of cooling water flowing through the connection path 4. Therefore, the pressure loss in the flow path is made equal as it approaches the end 4c on the side from which the cooling water in the connection path 4 flows out from the flow path center part 4b in the flow direction of the connection path 4, and the cooling water is supplied to the refrigerant path 3. Should flow uniformly.

(実施形態2)
本発明の実施形態2に係るヒートシンクは、接続路の流路の形状が実施形態1に係るヒートシンク1と異なるものである。よって、実施形態2に係るヒートシンクを構成する各構成要素において、実施形態1に係るヒートシンク1と同様のものについては、同様の符号を付し詳細な説明は省略する。
(Embodiment 2)
The heat sink according to Embodiment 2 of the present invention is different from the heat sink 1 according to Embodiment 1 in the shape of the flow path of the connection path. Therefore, in each component constituting the heat sink according to the second embodiment, the same components as those of the heat sink 1 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図3(a)に示すように、本発明の実施形態2に係るヒートシンク10は、冷媒路2と冷媒路3が接続路11を介して、U字状に接続された構造となっている。そして、冷媒路2、冷媒路3、及び接続路11がU字状に接続されたことにより、仕切り部7が形成されている。   As shown in FIG. 3A, the heat sink 10 according to the second embodiment of the present invention has a structure in which the refrigerant path 2 and the refrigerant path 3 are connected in a U shape via the connection path 11. And the partition part 7 is formed by the refrigerant path 2, the refrigerant path 3, and the connection path 11 being connected in the U-shape.

冷媒路2の一端には、冷媒路2と連通するように接続路11が接続される。そして、冷媒路2の他端には冷媒の入口配管5が接続されている。   A connection path 11 is connected to one end of the refrigerant path 2 so as to communicate with the refrigerant path 2. A refrigerant inlet pipe 5 is connected to the other end of the refrigerant path 2.

冷媒路3の一端は接続路11の冷却水が流出する側の流路と連通している。そして、冷媒路3の接続路11が接続されていない端部には、冷却水の出口配管6が接続される。   One end of the refrigerant path 3 communicates with the flow path on the side of the connection path 11 from which the cooling water flows out. And the outlet pipe 6 of a cooling water is connected to the edge part to which the connection path 11 of the refrigerant path 3 is not connected.

なお、前記冷媒路3の端部に、さらに接続路11と同じ形状の接続路を接続して、他のヒートシンク又は他の冷媒路を接続してもよい。また、本実施例において、冷媒路3は、冷媒路2と同一平面上かつ平行に配置されているが、冷媒路3の配置場所は任意に設定可能である。   In addition, you may connect the connection path of the same shape as the connection path 11 to the edge part of the said refrigerant path 3, and connect another heat sink or another refrigerant path. In the present embodiment, the refrigerant path 3 is arranged on the same plane and in parallel with the refrigerant path 2, but the arrangement location of the refrigerant path 3 can be arbitrarily set.

図3(b)に示すように、ヒートシンク10近傍には、被冷却部品8が備えられ、被冷却部品8の熱が、接続路2又は3を流通する冷却水に熱交換される。この熱交換に供される冷却水は、図3(a)に示すように、入口配管5から冷媒路2に流入し、接続路4、冷媒路3を通って出口配管6より流出する。   As shown in FIG. 3B, a component to be cooled 8 is provided in the vicinity of the heat sink 10, and heat of the component to be cooled 8 is exchanged with cooling water flowing through the connection path 2 or 3. As shown in FIG. 3A, the cooling water used for this heat exchange flows into the refrigerant path 2 from the inlet pipe 5, and flows out from the outlet pipe 6 through the connection path 4 and the refrigerant path 3.

図3(b)に示すように、冷却水が流入する側の接続路11の高さは、冷媒路2の高さと比較して高く形成される。図示されたように、前記冷媒が流入する側の接続路11の高さは、接続路11と冷媒路2との接続部11bから逐次増大するように形成される。また、接続路11の近傍における冷媒路2の高さは、接続路11に近づくにつれて逐次増大するように形成される。   As shown in FIG. 3B, the height of the connection path 11 on the side into which the cooling water flows is formed higher than the height of the refrigerant path 2. As shown in the drawing, the height of the connection path 11 on the side into which the refrigerant flows is formed so as to sequentially increase from the connection portion 11 b between the connection path 11 and the refrigerant path 2. Moreover, the height of the refrigerant path 2 in the vicinity of the connection path 11 is formed so as to increase sequentially as the connection path 11 is approached.

冷媒路2の上面には、被冷却部品8が備えられるため、接続路11をその高さ方向に増大させたとしても、水冷式ヒートシンク10の小型化を妨げることはない。   Since the component 8 to be cooled is provided on the upper surface of the refrigerant path 2, even if the connection path 11 is increased in the height direction, downsizing of the water-cooled heat sink 10 is not hindered.

このように、冷却水が流入する側の接続路11の高さを逐次増大するように形成する際に、幅方向(図3(c)の矢印E方向)の高さが等しくなるように接続路11の高さを増大させるとともに、冷媒路2の延長上に位置する接続路11の流路を接続路11の高さ方向にそり上がるように形成する。冷媒路2と接続路11の接続部11bから冷却水が突き当る接続路11の上端部11aに至るまで、この流路の断面を冷媒路2の流路の断面と略等しく形成することで、冷媒路2を流通した冷却水が接続路11の上端部11aに至るまで、冷却水の流速を略一定とすることができ、当該接続路11を流通する冷却水を略均一に流すことができる。   Thus, when forming so that the height of the connection path 11 in the side into which cooling water flows may increase sequentially, it connects so that the height of the width direction (arrow E direction of FIG.3 (c)) may become equal. While increasing the height of the path 11, the flow path of the connection path 11 located on the extension of the refrigerant path 2 is formed so as to bend in the height direction of the connection path 11. By forming the cross section of this flow path substantially equal to the cross section of the flow path of the refrigerant path 2 from the connection part 11b of the refrigerant path 2 and the connection path 11 to the upper end part 11a of the connection path 11 where the coolant hits, The cooling water flow rate can be made substantially constant until the cooling water flowing through the refrigerant path 2 reaches the upper end portion 11a of the connection path 11, and the cooling water flowing through the connection path 11 can be made to flow substantially uniformly. .

接続路11は、図3(d)で示すように、接続路11の流れ方向中央部11cから冷却水が流出する側の端部11dに近づくにつれて、接続路11の流路の高さが低くなるように形成されている。この接続路11の高さが減少する位置は、中央部11cに限定されず、冷媒路2から冷媒路3に至る接続路11の長手方向の任意の部分であればよい。このように、接続路11を狭めることにより、接続路4の流れ方向の流路中央部11cから冷却水が流出する側の端部11dまでの流路内の圧力損失が等しくなり、冷媒路3に冷却水を均一に流すことができる。   As shown in FIG. 3 (d), the connection path 11 becomes lower in the height of the flow path of the connection path 11 as it approaches the end 11 d on the side from which the cooling water flows out from the flow direction center part 11 c of the connection path 11. It is formed to become. The position where the height of the connection path 11 decreases is not limited to the central portion 11c, but may be any part in the longitudinal direction of the connection path 11 from the refrigerant path 2 to the refrigerant path 3. Thus, by narrowing the connection path 11, the pressure loss in the flow path from the flow path central portion 11c in the flow direction of the connection path 4 to the end portion 11d on the side from which the cooling water flows out becomes equal, and the refrigerant path 3 The cooling water can be made to flow uniformly.

なお、接続路11の形状は本実施形態に限定されるものではなく、冷媒路3に冷却水が均一に流れる形状を適宜設定すればよい。すなわち、接続路11の流れ方向中央部11cから接続路11の冷却水が流出する側の端部11dに近づくにつれて、冷却水の圧力損失が等しくなる形状とし、冷媒路3において冷却水が均一に流れるようにすればよい。   In addition, the shape of the connection path 11 is not limited to this embodiment, The shape which a cooling water flows uniformly to the refrigerant path 3 should just be set suitably. That is, the pressure loss of cooling water becomes equal as it approaches the end portion 11d on the side from which the cooling water flows out of the connection path 11 from the flow direction central portion 11c of the connection path 11, and the cooling water is uniformly distributed in the refrigerant path 3. It should be made to flow.

以上、実施形態1、2を例示して詳細に説明したように、本発明のヒートシンクによれば、ヒートシンクを流通する冷媒の圧力損失を抑えるとともに、冷媒路に均一に冷媒が流れるようになる。よって、ヒートシンクの冷却効率を向上させることができる。また、奥行き方向の容積(ヒートシンクの冷媒の流路がUターンしている部分の奥行き)の増大を極力抑えることが可能となり、ヒートシンクをコンパクト化できる。よって、温度分布が均一で、省スペースかつ圧力損失が少ないヒートシンクを得ることができる。   As described above in detail by exemplifying Embodiments 1 and 2, according to the heat sink of the present invention, the pressure loss of the refrigerant flowing through the heat sink is suppressed, and the refrigerant flows uniformly in the refrigerant path. Therefore, the cooling efficiency of the heat sink can be improved. Moreover, it becomes possible to suppress the increase in the volume in the depth direction (the depth of the portion where the refrigerant flow path of the heat sink has a U-turn) as much as possible, and the heat sink can be made compact. Therefore, a heat sink having a uniform temperature distribution, space saving, and low pressure loss can be obtained.

なお、本発明に係るヒートシンクは、ヒートシンクの冷媒が流通する流路に係る発明であり、本発明の効果を損なわない範囲で適宜その構成を変更してもよい。例えば、箇体内部を仕切ることにより、冷媒路2、3及び接続路4と同形の流路を形成させたヒートシンクの形態としてもよい。   The heat sink according to the present invention is an invention related to the flow path through which the refrigerant of the heat sink circulates, and the configuration thereof may be changed as appropriate without departing from the effect of the present invention. For example, it is good also as a form of the heat sink which formed the flow path same shape as the refrigerant paths 2 and 3 and the connection path 4 by partitioning the inside of a box.

また、冷媒路2、3及び接続路4の流路内若しくは流路面上に、図4に図示したような複数のフィン9を形成すると、被冷却部品(図示省略)の熱がフィン9を介して冷媒に熱交換されるので、冷却効率が向上する。   Further, when a plurality of fins 9 as shown in FIG. 4 are formed in the flow paths of the refrigerant paths 2, 3 and the connection path 4 or on the flow path surface, the heat of the parts to be cooled (not shown) passes through the fins 9. As a result, the cooling efficiency is improved.

さらに、本発明のヒートシンクに係る接続路の形状は、実施例で説明したように冷媒がUターンする場合にのみ適応するものではなく、冷媒の流れる方向が変化する場所であれば適宜用いることができる。そして、冷媒路、接続路は、それぞれ別々に構成されてもよいが、冷媒路と接続路を一体に形成してもよい。   Furthermore, the shape of the connection path related to the heat sink of the present invention is not only applicable when the refrigerant makes a U-turn as described in the embodiment, and may be used as long as the direction in which the refrigerant flows changes. it can. And although a refrigerant path and a connection path may each be comprised separately, you may form a refrigerant path and a connection path integrally.

1、10…ヒートシンク
2、3…冷媒路
4、11…接続路
7…仕切り部
8…被冷却部品
9…フィン
DESCRIPTION OF SYMBOLS 1, 10 ... Heat sink 2, 3 ... Refrigerant path 4, 11 ... Connection path 7 ... Partition part 8 ... Cooled component 9 ... Fin

Claims (4)

複数の冷媒路と、
前記冷媒路を非直線状に接続する接続路と
を備えたヒートシンクにおいて、
前記接続路の冷媒が流入する側の流路の高さを、前記冷媒が流入する側の流路に接続される冷媒路の高さより高く形成し、
前記接続路の流路の高さを、前記接続路の冷媒が流出する側の端部に至るにつれて減少するように形成した
ことを特徴とするヒートシンク。
A plurality of refrigerant paths;
In a heat sink comprising a connection path for connecting the refrigerant path in a non-linear manner,
The height of the flow path on the side where the refrigerant flows in the connection path is formed higher than the height of the refrigerant path connected to the flow path on the side where the refrigerant flows,
A heat sink, wherein the height of the flow path of the connection path is formed so as to decrease as it reaches the end of the connection path on the side where the refrigerant flows out.
前記冷媒が流入する側の接続路の高さは、前記接続路と前記冷媒が流入する側の流路に接続される冷媒路との接続部から逐次増大する
ことを特徴とする請求項1に記載のヒートシンク。
The height of the connection path on the side into which the refrigerant flows is successively increased from a connection portion between the connection path and the refrigerant path connected to the flow path on the side into which the refrigerant flows. The heat sink described.
前記冷媒が流入する側の流路に接続される冷媒路の延長に位置する接続路の流路の断面は、前記冷媒が流入する側の流路に接続される冷媒路の流路の断面と略等しく、且つ、前記接続路の高さ方向に湾曲して形成された
ことを特徴とする請求項1又は請求項2に記載のヒートシンク。
The cross section of the flow path of the connection path located in the extension of the refrigerant path connected to the flow path on the refrigerant inflow side is the cross section of the flow path of the refrigerant path connected to the flow path on the refrigerant inflow side. The heat sink according to claim 1 or 2, wherein the heat sink is substantially equal and curved in the height direction of the connection path.
前記冷媒が流入する側の流路に接続される冷媒路と、前記接続路の冷媒が流出する側の流路に接続される冷媒路が平行に配置された
ことを特徴とする請求項1から請求項3のいずれか1項に記載のヒートシンク。
The refrigerant path connected to the flow path on the side where the refrigerant flows in and the refrigerant path connected to the flow path on the side where the refrigerant flows out of the connection path are arranged in parallel. The heat sink according to claim 3.
JP2011519886A 2009-06-22 2010-06-21 heatsink Active JP5488599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011519886A JP5488599B2 (en) 2009-06-22 2010-06-21 heatsink

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009147138 2009-06-22
JP2009147138 2009-06-22
PCT/JP2010/060477 WO2010150747A1 (en) 2009-06-22 2010-06-21 Heat sink
JP2011519886A JP5488599B2 (en) 2009-06-22 2010-06-21 heatsink

Publications (2)

Publication Number Publication Date
JPWO2010150747A1 true JPWO2010150747A1 (en) 2012-12-10
JP5488599B2 JP5488599B2 (en) 2014-05-14

Family

ID=43386516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011519886A Active JP5488599B2 (en) 2009-06-22 2010-06-21 heatsink

Country Status (5)

Country Link
US (1) US20120097381A1 (en)
JP (1) JP5488599B2 (en)
CN (1) CN102804369B (en)
DE (1) DE112010002307T5 (en)
WO (1) WO2010150747A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150034280A1 (en) * 2013-08-01 2015-02-05 Hamilton Sundstrand Corporation Header for electronic cooler
JP2016076641A (en) * 2014-10-08 2016-05-12 カルソニックカンセイ株式会社 Semiconductor cooling device
JP2017044455A (en) * 2015-08-28 2017-03-02 三菱重工業株式会社 Air conditioning device
US10847441B2 (en) 2017-03-16 2020-11-24 Mitsubishi Electric Corporation Cooling system
JP6663899B2 (en) * 2017-11-29 2020-03-13 本田技研工業株式会社 Cooling system
US20190301809A1 (en) * 2018-04-03 2019-10-03 Aavid Thermalloy, Llc Wrap around heat exchanger
CN111447805A (en) * 2020-05-11 2020-07-24 珠海格力电器股份有限公司 Radiating assembly with high radiating efficiency, electric appliance box and air conditioner
CN114811756A (en) * 2022-04-14 2022-07-29 青岛海尔空调器有限总公司 Radiator and air conditioner
EP4311384A1 (en) * 2022-07-22 2024-01-24 Aptiv Technologies Limited Cooling system with flow guiding element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03113843U (en) * 1990-03-09 1991-11-21
JP2006202899A (en) * 2005-01-19 2006-08-03 Toyota Motor Corp Semiconductor cooling apparatus
JP2007150203A (en) * 2005-11-30 2007-06-14 Toyota Central Res & Dev Lab Inc Heat sink

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2640000C2 (en) * 1976-09-04 1986-09-18 Brown, Boveri & Cie Ag, 6800 Mannheim Cylindrical cooling box with opposing inlet and outlet openings for liquid-cooled power semiconductor components and a method for producing the same
US5159529A (en) * 1991-05-15 1992-10-27 International Business Machines Corporation Composite liquid cooled plate for electronic equipment
DE19830863A1 (en) * 1998-07-10 2000-01-13 Behr Gmbh & Co Flat tube with transverse offset reversing bend section and thus built-up heat exchanger
CN2372785Y (en) * 1999-05-28 2000-04-05 郭清松 Radiator for electrical equipment
CA2392610C (en) * 2002-07-05 2010-11-02 Long Manufacturing Ltd. Baffled surface cooled heat exchanger
CA2425233C (en) * 2003-04-11 2011-11-15 Dana Canada Corporation Surface cooled finned plate heat exchanger
KR100619076B1 (en) * 2005-04-11 2006-08-31 삼성전자주식회사 Heat sink apparatus for radiating of the electronic device
JP2008235725A (en) * 2007-03-23 2008-10-02 Calsonic Kansei Corp Water-cooled heat sink
US20090114373A1 (en) * 2007-11-02 2009-05-07 Calsonic Kansei Corporation Heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03113843U (en) * 1990-03-09 1991-11-21
JP2006202899A (en) * 2005-01-19 2006-08-03 Toyota Motor Corp Semiconductor cooling apparatus
JP2007150203A (en) * 2005-11-30 2007-06-14 Toyota Central Res & Dev Lab Inc Heat sink

Also Published As

Publication number Publication date
CN102804369B (en) 2015-11-25
JP5488599B2 (en) 2014-05-14
WO2010150747A1 (en) 2010-12-29
CN102804369A (en) 2012-11-28
DE112010002307T5 (en) 2012-06-21
US20120097381A1 (en) 2012-04-26

Similar Documents

Publication Publication Date Title
JP5488599B2 (en) heatsink
JP5692368B2 (en) Semiconductor module cooler and semiconductor module
KR101488027B1 (en) Liquid-cooled-type cooling device
JP5605438B2 (en) Cooler
TW201200838A (en) An air intake for cooling memories and an electronic device using the same
JP2010056131A (en) Liquid-cooled-type cooling device
JP2011134979A (en) Liquid cooling type heat sink
JP2009231677A (en) Liquid-cooled type cooling device
JP2007180505A (en) Cooling device for electronic component
JP6109265B2 (en) Electric equipment with refrigerant flow path
JP2008288330A (en) Semiconductor device
JP2009170583A (en) Liquid-cooled-type cooling device
CN114442771A (en) Liquid-cold air-cooling integrated heat dissipation device and heat dissipation method
CN116483178A (en) Computing equipment and cold plate thereof
JP5176752B2 (en) Cylinder head water jacket structure
JP6190914B1 (en) Electric equipment with refrigerant flow path
JP2019079908A (en) Cooling device and semiconductor module including the same
JP2019054224A (en) Liquid-cooled type cooling device
JP2011196632A (en) Ebullient cooling device
CN115315160A (en) High-density fin water-cooling radiator
KR20140003957A (en) Radiator for transformer
JP5839386B2 (en) heatsink
JP5333048B2 (en) Heat exchanger
JP3244145U (en) Heat dissipation structure and hair removal device
JP2019079836A (en) Liquid-cooled cooler

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140210

R150 Certificate of patent or registration of utility model

Ref document number: 5488599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150