JPWO2010106744A1 - 触媒分離システム - Google Patents

触媒分離システム Download PDF

Info

Publication number
JPWO2010106744A1
JPWO2010106744A1 JP2011504728A JP2011504728A JPWO2010106744A1 JP WO2010106744 A1 JPWO2010106744 A1 JP WO2010106744A1 JP 2011504728 A JP2011504728 A JP 2011504728A JP 2011504728 A JP2011504728 A JP 2011504728A JP WO2010106744 A1 JPWO2010106744 A1 JP WO2010106744A1
Authority
JP
Japan
Prior art keywords
gas
liquid
separation system
hydrocarbons
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011504728A
Other languages
English (en)
Other versions
JP5364786B2 (ja
Inventor
大西 康博
康博 大西
山田 栄一
栄一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Japan Petroleum Exploration Co Ltd
Inpex Corp
Japan Oil Gas and Metals National Corp
Nippon Steel Engineering Co Ltd
Eneos Corp
Original Assignee
Cosmo Oil Co Ltd
Japan Petroleum Exploration Co Ltd
Inpex Corp
Japan Oil Gas and Metals National Corp
JX Nippon Oil and Energy Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Japan Petroleum Exploration Co Ltd, Inpex Corp, Japan Oil Gas and Metals National Corp, JX Nippon Oil and Energy Corp, Nippon Steel Engineering Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2011504728A priority Critical patent/JP5364786B2/ja
Publication of JPWO2010106744A1 publication Critical patent/JPWO2010106744A1/ja
Application granted granted Critical
Publication of JP5364786B2 publication Critical patent/JP5364786B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/006Separating solid material from the gas/liquid stream by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/34Apparatus, reactors
    • C10G2/342Apparatus, reactors with moving solid catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/09Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一酸化炭素ガス及び水素ガスを主成分とする合成ガスと、液体中に固体の触媒粒子を懸濁させてなる触媒スラリーとの化学反応によって炭化水素を合成する反応容器と、前記炭化水素と前記触媒スラリーとを分離する濾過器と、前記濾過器から流出される前記液体炭化水素を、気体炭化水素と液体炭化水素とに分離する気液体分離器と、を備えている触媒分離システム。

Description

本発明は、触媒スラリーから液体炭化水素を分離する触媒分離システムに関する。
本願は、2009年3月19日に出願された特願2009−68829号について優先権を主張し、その内容をここに援用する。
近年、天然ガスから液体燃料を合成するための方法の一つとして、天然ガスを改質して一酸化炭素ガス(CO)と水素ガス(H)とを主成分とする合成ガスを製造し、この合成ガスを原料ガスとしてフィッシャー・トロプシュ合成反応(以下、「FT合成反応」という。)により触媒を用いて炭化水素を合成し、さらにこの炭化水素を水素化および精製することで、ナフサ(粗ガソリン)、灯油、軽油、ワックス等の液体燃料製品を製造するGTL(Gas To Liquids:液体燃料合成)技術が開発されている。
FT合成反応により合成された液体炭化水素は、液体炭化水素がナフサ、灯油等へ変換される後段側の精製工程へ移送される前に、液体炭化水素中に固体の触媒粒子が懸濁された触媒スラリーから分離される。従来、液体炭化水素を触媒スラリーから分離する手段として、例えば特許文献1に記載されているように、フィルタを通過させるものが提案されている。
米国特許出願公開第2005/0080149号
上記のように液体炭化水素を触媒スラリーから分離するとき、単にフィルタを通過させるだけでは、フィルタにより濾過された液体炭化水素中に、ガス化した炭化水素などが混入されることがある。これは、気体の炭化水素が直接フィルタを通過したり、フィルタの下流側の圧力が下がるのに伴って液体炭化水素の一部が気化したりするためである。このように気液混相の状態で炭化水素を下流側へ移送すると、移送中に体積が膨張するのに伴い配管中の圧力損失が高くなり、炭化水素の流量が減少する。
本発明は、このような問題点に鑑みてなされたものであって、FT合成反応により合成された液体炭化水素を触媒スラリーから分離して下流側へ移送する際に、圧力損失を抑えて、所定の流量を確保できる触媒分離システムを提供する。
本発明の触媒分離システムは、一酸化炭素ガス及び水素ガスを主成分とする合成ガスと、液体中に固体の触媒粒子を懸濁させてなる触媒スラリーとの化学反応によって炭化水素を合成する反応容器と、前記炭化水素と前記触媒スラリーとを分離する濾過器と、前記濾過器から流出される前記液体炭化水素を、気体炭化水素と液体炭化水素とに分離する気液体分離器とを備えている。
また、上記の触媒分離システムにおいて、前記化学反応はフィッシャー・トロプシュ合成反応であってもよい。
この発明によれば、反応容器内で、合成ガスと触媒スラリーとの化学反応によって炭化水素が合成される。合成された炭化水素は濾過器によって触媒スラリーを分離されて、下流側の気液体分離器へ移送される。濾過器によって触媒スラリーが分離された炭化水素中には気相の炭化水素も含まれるが、気液体分離器へ移送されると、ここで気体炭化水素と液体炭化水素とに分離される。このように、炭化水素が気体と液体とに分離されるため、気液体分離器からさらに下流側へ移送するときには、それら気体炭化水素と液体炭化水素を別々に移送することができる。したがって、移送路における圧力損失を抑えることができる。
また、上記の触媒分離システムにおいて、前記気液体分離器は、前記濾過器から延びる複数の枝管と、前記枝管内を流れる流体を集合させかつ前記枝管よりも大径の集合管とを有していてもよい。
この発明によれば、濾過器によって分離された液体炭化水素は気相の炭化水素を含んだ状態で、枝管から集合管へと移送される。集合管が枝管よりも大径になっているので、枝管から集合管へ向かう移送途中並びに集合管においても、それぞれ気液分離されることとなり、気液分離時間を短縮できる。
また、上記の触媒分離システムにおいて、前記集合管はリング状のヘッダであってもよい。
この発明によれば、炭化水素の流体を複数の枝管からヘッダへ移送するとき、ヘッダに対して同じ条件で移送することができ、ヘッダ内での流体の流れがスムースになる。
また、上記の触媒分離システムにおいて、前記リング状のヘッダは、前記濾過器よりも上方に、前記濾過器を収納する反応器と中心を一致させるように配置されていてもよい。
この発明によれば、リング状のヘッダが、容器と中心を一致させるように配置されているので、それらの専有スペースを小さくでき、装置のコンパクト化が図れる。また、濾過器によって分離された、気相の炭化水素を含む液体炭化水素を枝管を介してリング状のヘッダへ移送するので、気液分離を行いつつ液体炭化水素のスムースな移送が可能となる。
また、上記の触媒分離システムにおいて、前記リング状のヘッダには、該リング状のヘッダ内の液体炭化水素を移送する液体移送管と、気体炭化水素を移送する気体移送管とが接続されていてもよい。
この発明によれば、リング状のヘッダによって分離されたもののうち、液体炭化水素を液体移送管によって移送し、気体炭化水素を気体移送管によって移送する。このように、気液分離された気体炭化水素と液体炭化水素を別々に下流側へ移送することができる。
本発明の触媒分離システムによれば、FT合成反応により生成された液体炭化水素を触媒スラリーから分離して下流側へ移送する際に、気液体分離器よって一旦気体炭化水素と液体炭化水素とに分離し、それらを別々に移送できるので、移送路中の圧力損失を抑えることができる。この結果、所定の流量を確保できる。
図1は、本発明の第1実施形態の触媒分離システムを備える液体燃料合成システムの全体構成を示す概略図である。 図2は、本発明の第1実施形態の触媒分離システムの全体構成を示す概略図である。 図3は、本発明の第2実施形態の触媒分離システムの全体構成を示す概略図である。
(第1実施形態)
以下、本発明に係る触媒分離システムの第1実施形態を、図1から図3を参照しながら説明する。
まず、図1を参照して、本発明の触媒分離システム81を備えた液体燃料合成システム1の全体構成について説明する。
図1に示すように、液体燃料合成システム1は、天然ガス等の炭化水素原料を液体燃料に転換するGTLプロセスを実行するプラント設備である。この液体燃料合成システム1は、合成ガス生成ユニット3と、FT合成ユニット5と、アップグレーディングユニット7とから構成される。合成ガス生成ユニット3は、炭化水素原料である天然ガスを改質して一酸化炭素ガスと水素ガスを含む合成ガスを製造する。FT合成ユニット5は、生成された合成ガスからFT合成反応により液体炭化水素を生成する。アップグレーディングユニット7は、FT合成反応により生成された液体炭化水素を水素化・精製して液体燃料製品(ナフサ、灯油、軽油、ワックス等)を製造する。以下、これら各ユニットの構成要素について説明する。
まず、合成ガス生成ユニット3について説明する。合成ガス生成ユニット3は、例えば、脱硫反応器10と、改質器12と、排熱ボイラー14と、気液分離器16および18と、脱炭酸装置20と、水素分離装置26とを主に備える。
脱硫反応器10は、水素化脱硫装置等で構成されて原料である天然ガスから硫黄成分を除去する。改質器12は、脱硫反応器10から供給された天然ガスを改質して、一酸化炭素ガス(CO)と水素ガス(H)とを主成分として含む合成ガスを製造する。排熱ボイラー14は、改質器12にて生成した合成ガスの排熱を回収して高圧スチームを発生する。気液分離器16は、排熱ボイラー14において合成ガスとの熱交換により加熱された水を気体(高圧スチーム)と液体とに分離する。気液分離器18は、排熱ボイラー14にて冷却された合成ガスから凝縮分を除去し気体分を脱炭酸装置20に供給する。脱炭酸装置20は、気液分離器18から供給された合成ガスから吸収液を用いて炭酸ガスを除去する吸収塔22と、当該炭酸ガスを含む吸収液から炭酸ガスを放散させて再生する再生塔24とを有する。水素分離装置26は、脱炭酸装置20により炭酸ガスが分離された合成ガスから、当該合成ガスに含まれる水素ガスの一部を分離する。ただし、上記脱炭酸装置20は場合によっては設けないこともある。
このうち、改質器12は、例えば、下記の化学反応式(1)、(2)で表される水蒸気・炭酸ガス改質法により、二酸化炭素と水蒸気とを用いて天然ガスを改質して、一酸化炭素ガスと水素ガスとを主成分とする高温の合成ガスを生成する。なお、この改質器12における改質法は、上記水蒸気・炭酸ガス改質法の例に限定されず、例えば、水蒸気改質法、酸素を用いた部分酸化改質法(POX)、部分酸化改質法と水蒸気改質法の組合せである自己熱改質法(ATR)、炭酸ガス改質法などを利用することもできる。
CH+HO→CO+3H ・・・(1)
CH+CO→2CO+2H ・・・(2)
また、水素分離装置26は、脱炭酸装置20又は気液分離器18と気泡塔型反応器30とを接続する配管から分岐した分岐ライン上に設けられる。この水素分離装置26は、例えば、圧力差を利用して水素の吸着と脱着を行う水素PSA(Pressure Swing Adsorption:圧力変動吸着)装置などで構成できる。この水素PSA装置は、並列配置された複数の吸着塔(図示せず。)内に吸着剤(ゼオライト系吸着剤、活性炭、アルミナ、シリカゲル等)を有しており、各吸着塔で水素の加圧、吸着、脱着(減圧)、パージの各工程を順番に繰り返すことで、合成ガスから分離した純度の高い水素ガス(例えば99.999%程度)を、連続して供給することができる。
なお、水素分離装置26における水素ガス分離方法としては、上記水素PSA装置のような圧力変動吸着法の例に限定されず、例えば、水素吸蔵合金吸着法、膜分離法、或いはこれらの組合せなどであってもよい。
水素吸蔵合金法は、例えば、冷却/加熱されることで水素を吸着/放出する性質を有する水素吸蔵合金(TiFe、LaNi、TiFe0.7〜0.9Mn0.3〜0.1、又はTiMn1.5など)を用いて、水素ガスを分離する手法である。水素吸蔵合金が収容された複数の吸着塔を設け、各吸着塔において、水素吸蔵合金の冷却による水素の吸着と、水素吸蔵合金の加熱による水素の放出とを交互に繰り返すことで、合成ガス内の水素ガスを分離・回収することができる。
また、膜分離法は、芳香族ポリイミド等の高分子素材の膜を用いて、混合ガス中から膜透過性に優れた水素ガスを分離する手法である。この膜分離法は、相変化を伴わないため、運転に必要なエネルギーが小さくて済み、ランニングコストが安い。また、膜分離装置の構造が単純でコンパクトなため、設備コストが低く設備の所要面積も小さくて済む。さらに、分離膜には駆動装置がなく、安定運転範囲が広いため、保守管理が容易であるという利点がある。
次に、FT合成ユニット5について説明する。FT合成ユニット5は、例えば、気泡塔型反応器30と、気液分離器34と、分離器36と、気液分離器38と、第1精留塔40とを主に備える。
気泡塔型反応器30は、合成ガスを液体炭化水素に合成する反応容器の一例であり、FT合成反応により合成ガスから液体炭化水素を合成するFT合成用反応器として機能する。この気泡塔型反応器30は、例えば、塔型の容器内部に主に触媒粒子と媒体油とからなる触媒スラリーが収容された気泡塔型スラリー床式反応器で構成される。この気泡塔型反応器30は、FT合成により合成ガスから気体又は液体の炭化水素を生成する。詳細には、この気泡塔型反応器30では、原料ガスである合成ガスは、気泡塔型反応器30の底部の分散板から気泡となって供給されて触媒スラリー内を通過し、懸濁状態の中で下記化学反応式(3)に示すように水素ガスと一酸化炭素ガスとが合成反応を起こす。
Figure 2010106744
このFT合成反応は発熱反応であるため、気泡塔型反応器30は内部に伝熱管32が配設された熱交換器型になっており、冷媒として例えば水(BFW:Boiler Feed Water)を供給し、上記FT合成反応の反応熱を、スラリーと水との熱交換により中圧スチームとして回収することができる。
気液分離器34は、気泡塔型反応器30内に配設された伝熱管32内を流通して加熱された水を、水蒸気(中圧スチーム)と液体とに分離する。分離器36は、触媒スラリーと液体炭化水素を分離する濾過器の一例であり、ここでは気泡塔型反応器30の内部に配置されている。気液分離器38は、気泡塔型反応器30の塔頂に接続され、未反応合成ガス及び気体炭化水素生成物を冷却処理する。第1精留塔40は、気泡塔型反応器30内の分離器36及び気液分離器38を介して供給された液体の炭化水素を蒸留し、沸点に応じて各留分に分留する。
最後に、アップグレーディングユニット7について説明する。アップグレーディングユニット7は、例えば、ワックス留分水素化分解反応器50と、中間留分水素化精製反応器52と、ナフサ留分水素化精製反応器54と、気液分離器56、58、60と、第2精留塔70と、ナフサスタビライザー72とを備える。ワックス留分水素化分解反応器50は、第1精留塔40の底部に接続されている。中間留分水素化精製反応器52は、第1精留塔40の中央部に接続されている。ナフサ留分水素化精製反応器54は、第1精留塔40の塔頂に接続されている。気液分離器56、58、60は、これら水素化反応器50、52、54のそれぞれに対応して設けられている。第2精留塔70は、気液分離器56、58から供給された液体の炭化水素を沸点に応じて分留する。ナフサスタビライザー72は、気液分離器60及び第2精留塔70から供給されたナフサ留分の液体の炭化水素を精留して、ブタンより軽質の成分はフレアガスとして排出し、炭素数5以上の成分は製品のナフサとして回収する。
次に、以上のような構成の液体燃料合成システム1により、天然ガスから液体燃料を合成する工程(GTLプロセス)について説明する。
液体燃料合成システム1には、天然ガス田又は天然ガスプラントなどの外部の天然ガス供給源(図示せず。)から、炭化水素原料としての天然ガス(主成分がCH)が供給される。上記合成ガス生成ユニット3は、この天然ガスを改質して合成ガス(一酸化炭素ガスと水素ガスを主成分とする混合ガス)を製造する。
具体的には、まず、上記天然ガスは、水素分離装置26によって分離された水素ガスとともに脱硫反応器10に供給される。脱硫反応器10は、当該水素ガスを用いて天然ガスに含まれる硫黄分を例えばZnO触媒で水添脱硫する。このようにして天然ガスを予め脱硫しておくことにより、改質器12及び気泡塔型反応器30等で用いられる触媒の活性が硫黄により低下することを防止できる。
このようにして脱硫された天然ガス(二酸化炭素を含んでもよい。)は、二酸化炭素供給源(図示せず。)から供給される二酸化炭素(CO)ガスと、排熱ボイラー14で発生した水蒸気とが混合された上で、改質器12に供給される。改質器12は、例えば、上述した水蒸気・炭酸ガス改質法により、二酸化炭素と水蒸気とを用いて天然ガスを改質して、一酸化炭素ガスと水素ガスとを主成分とする高温の合成ガスを製造する。このとき、改質器12には、例えば、改質器12が備えるバーナー用の燃料ガスと空気とが供給されており、当該バーナーにおける燃料ガスの燃焼熱により、吸熱反応である上記水蒸気・炭酸ガス改質反応に必要な反応熱がまかなわれている。
このようにして改質器12で製造された高温の合成ガス(例えば、900℃、2.0MPaG)は、排熱ボイラー14に供給され、排熱ボイラー14内を流通する水との熱交換により冷却(例えば400℃)されて、排熱回収される。このとき、排熱ボイラー14において合成ガスにより加熱された水は気液分離器16に供給され、この気液分離器16から気体分が高圧スチーム(例えば3.4〜10.0MPaG)として改質器12または他の外部装置に供給され、液体分の水が排熱ボイラー14に戻される。
一方、排熱ボイラー14において冷却された合成ガスは、凝縮液分が気液分離器18において合成ガスから分離・除去された後、脱炭酸装置20の吸収塔22、又は気泡塔型反応器30に供給される。吸収塔22は、貯留している吸収液内に、合成ガスに含まれる炭酸ガスを吸収することで、当該合成ガスから炭酸ガスを除去する。この吸収塔22内の炭酸ガスを含む吸収液は、再生塔24に送出され、当該炭酸ガスを含む吸収液は例えばスチームで加熱されてストリッピング処理され、放散された炭酸ガスは、再生塔24から改質器12に送られて、上記改質反応に再利用される。
このようにして、合成ガス生成ユニット3において製造された合成ガスは、上記FT合成ユニット5の気泡塔型反応器30に供給される。このとき、気泡塔型反応器30に供給される合成ガスの組成比は、FT合成反応に適した組成比(例えば、H:CO=2:1(モル比))に調整されている。なお、気泡塔型反応器30に供給される合成ガスは、脱炭酸装置20と気泡塔型反応器30とを接続する配管に設けられた圧縮機(図示せず。)により、FT合成反応に適切な圧力(例えば3.6MPaG程度)まで昇圧される。
また、上記脱炭酸装置20により炭酸ガスが分離された合成ガスの一部は、水素分離装置26にも供給される。水素分離装置26は、上記のように圧力差を利用した吸着、脱着(水素PSA)により、合成ガスに含まれる水素ガスを分離する。当該分離された水素は、ガスホルダー(図示せず。)等から圧縮機(図示せず。)を介して、液体燃料合成システム1内において水素を利用して所定反応を行う各種の水素利用反応装置(例えば、脱硫反応器10、ワックス留分水素化分解反応器50、中間留分水素化精製反応器52、ナフサ留分水素化精製反応器54など)に連続して供給する。
次いで、上記FT合成ユニット5は、上記合成ガス生成ユニット3において製造された合成ガスから、FT合成反応により、液体の炭化水素を合成する。
具体的には、上記脱炭酸装置20において炭酸ガスを分離された合成ガスは、気泡塔型反応器30の底部から流入されて、気泡塔型反応器30内に貯留された触媒スラリー内を上昇する。この際、気泡塔型反応器30内では、上述したFT合成反応により、当該合成ガスに含まれる一酸化炭素ガスと水素ガスとが反応して、炭化水素が生成される。さらに、この合成反応時には、気泡塔型反応器30の伝熱管32内に水を流通させることで、FT合成反応の反応熱を除去し、この熱交換により加熱された水の一部が気化して水蒸気となる。水蒸気と水のうち、気液分離器34で分離された水は伝熱管32に戻され、気体分は中圧スチーム(例えば1.0〜2.5MPaG)として外部装置に供給される。
このようにして、気泡塔型反応器30で合成された液体の炭化水素は、気泡塔型反応器30の中央部から取り出されて、分離器36に送出される。分離器36は、取り出されたスラリー中の触媒(固形分)と、液体の炭化水素生成物を含んだ液体分とに分離する。分離された触媒は、その一部を気泡塔型反応器30に戻され、液体分は第1精留塔40に供給される。また、気泡塔型反応器30の塔頂からは、未反応の合成ガスと、合成された炭化水素のガス分とが気液分離器38に導入される。気液分離器38は、これらのガスを冷却して、一部の凝縮分の液体の炭化水素を分離して第1精留塔40に導入する。一方、気液分離器38で分離されたガス分については、未反応の合成ガス(COとH)は、気泡塔型反応器30の底部に再投入されてFT合成反応に再利用される。また、製品対象外である炭素数が少ない(C以下)炭化水素ガスを主成分とするガス(フレアガス)は、改質器12の燃料ガスに使用しても良いし、外部の燃焼設備(図示せず。)に導入されて、燃焼された後に大気放出されても良い。
次いで、第1精留塔40は、上記のようにして気泡塔型反応器30から分離器36、気液分離器38を介して供給された液体の炭化水素(炭素数は多様)を加熱して、沸点の違いを利用して分留し、ナフサ留分(沸点が約150℃未満)と、灯油・軽油に相当する中間留分(沸点が約150〜360℃)と、ワックス留分(沸点が約360℃より大)とに分留する。この第1精留塔40の底部から取り出されるワックス留分の液体の炭化水素(主としてC21以上)は、ワックス留分水素化分解反応器50に移送され、第1精留塔40の中央部から取り出される灯油・軽油に相当する中間留分の液体の炭化水素(主としてC11〜C20)は、中間留分水素化精製反応器52に移送され、第1精留塔40の塔頂から取り出されるナフサ留分の液体の炭化水素(主としてC〜C10)は、ナフサ留分水素化精製反応器54に移送される。
ワックス留分水素化分解反応器50は、第1精留塔40の底部から供給された炭素数の多いワックス留分の液体の炭化水素(概ねC21以上)を、上記水素分離装置26から供給された水素ガスを利用して水素化分解して、炭素数をC20以下に低減する。この水素化分解反応では、触媒と熱を利用して、炭素数の多い炭化水素のC−C結合を切断して、炭素数の少ない炭化水素へと転換する。このワックス留分水素化分解反応器50により、水素化分解された液体の炭化水素を含む生成物は、気液分離器56で気体と液体とに分離され、そのうち液体の炭化水素は、第2精留塔70に移送され、気体分(水素ガスを含む。)は、中間留分水素化精製反応器52及びナフサ留分水素化精製反応器54に移送される。
中間留分水素化精製反応器52は、第1精留塔40の中央部から供給された炭素数が中程度である灯油・軽油に相当する中間留分の液体の炭化水素(概ねC11〜C20)を、水素分離装置26からワックス留分水素化分解反応器50を介して供給された水素ガスを用いて、水素化精製する。この水素化精製反応は、上記液体の炭化水素の不飽和結合に水素を付加して飽和させ、飽和炭化水素を生成するとともに、直鎖状飽和炭化水素を異性化する反応である。この結果、水素化精製された液体の炭化水素を含む生成物は、気液分離器58で気体と液体に分離され、そのうち液体の炭化水素は、第2精留塔70に移送され、気体分(水素ガスを含む。)は、上記水素化反応に再利用される。
ナフサ留分水素化精製反応器54は、第1精留塔40の塔頂から供給された炭素数が少ないナフサ留分の液体の炭化水素(概ねC10以下)を、水素分離装置26からワックス留分水素化分解反応器50を介して供給された水素ガスを用いて、水素化精製する。この結果、水素化精製された液体の炭化水素を含む生成物は、気液分離器60で気体と液体に分離され、そのうち液体の炭化水素は、ナフサスタビライザー72に移送され、気体分(水素ガスを含む。)は、上記水素化反応に再利用される。
次いで、第2精留塔70は、上記のようにしてワックス留分水素化分解反応器50及び中間留分水素化精製反応器52から供給された液体の炭化水素を蒸留して、炭素数がC10以下の炭化水素(沸点が約150℃より低い)と、灯油(沸点が約150〜250℃)と、軽油(沸点が約250〜360℃)と、ワックス留分水素化分解反応器50からの未分解ワックス留分(沸点が約360℃より高い)とに分留する。第2精留塔70の塔底からは未分解のワックス分が得られ、これはワックス分水素化分解反応器50の前にリサイクルされる。第2精留塔70の中央部からは灯油及び軽油が取り出される。一方、第2精留塔70の塔頂からは、C10以下の炭化水素ガスが取り出されて、ナフサスタビライザー72に供給される。
さらに、ナフサスタビライザー72では、上記ナフサ留分水素化精製反応器54及び第2精留塔70から供給されたC10以下の炭化水素を蒸留して、製品としてのナフサ(C〜C10)を分留する。これにより、ナフサスタビライザー72の底部からは、高純度のナフサが取り出される。一方、ナフサスタビライザー72の塔頂からは、製品対象外である炭素数が所定数以下(C以下)の炭化水素を主成分とするガス(フレアガス)が排出される。このガスは、改質器12の燃料ガスに使用しても良く、LPGとして回収しても良く(図示せず)、外部の燃料設備(図示せず)に導入されて燃焼された後に大気放出されても良い。
次に、図2を参照して、本発明に係る触媒分離システム81について詳細に説明する。触媒分離システム81は、気泡塔型反応器30と、合成された液体炭化水素と触媒スラリーとを分離する分離器36と、分離器36の下流側に設けられ、分離器から流出される、液体炭化水素を含む流体から気体炭化水素と液体炭化水素とを分離する気液分離器82と、気液分離器82によって分離された液体炭化水素と気体炭化水素を一旦受ける受用タンク83を備えている。
分離器36は、気泡塔型反応器30内に配置された複数のフィルタ91を備える。フィルタ91の上端には枝管92の一端が接続されており、それら枝管92の他端は反応器30の外に延出し、リング状に形成されたヘッダ94に接続されている。ヘッダ94は、気泡塔型反応器30の外方であってかつフィルタ91よりも上方に配置され、しかも環の中心を気泡塔型反応器30の中心と一致させるように配置されている。また、ヘッダ94の管の内径Dは、枝管92の内径Dよりも大きい。
前記フィルタ91によって濾過された気相の炭化水素を含む液体炭化水素は、枝管92を通過してリング状のヘッダ94へ移送される。ここで、気相の炭化水素を含む液体炭化水素は、枝管92を通過しながら気体と液体とに次第に分離されながらリング状ヘッダ94へ移送され、ここで気体と液体とに完全に分離される。
リング状のヘッダ94には、内部で分離された液体炭化水素を移送する液体移送管96の一端と内部で分離された気体炭化水素を移送する気体移送管97の一端とがそれぞれ接続される。すなわち、枝管92、リング状のヘッダ94、液体移送管96、気体移送管97は、気液分離器82を構成する。液体移送管96及び気体移送管97の他端は、前記受用タンク83に接続されている。受用タンク83は液体移送管98及び気体移送管99を介して前記第1精留塔40に接続されている。
また、前記枝管92は途中で分岐され、連通管100を介してタンク101に接続されている。このタンク101を含む経路は、フィルタ91を洗浄するために用いられる。連通管100に介装された通常閉状態に保持される弁102を開に、枝管92に介装された通常開状態に保持される弁103を閉にそれぞれ切り換えると、予めタンク101内に貯留してある流体がフィルタ91側に送られ、フィルタ91が洗浄される。この様な洗浄の仕方は逆洗と呼ばれる。ここで、タンク101内に貯留してある流体は、触媒に悪影響を与えるものでなければ気体でも液体でもよい。好ましくは液体(例えば、液体炭化水素)が良い。
次に、触媒分離システム81の作用について説明する。
気泡塔型反応器30内で合成された炭化水素は、同反応器内部でフィルタ91によって触媒スラリーを分離される。触媒スラリーを分離された炭化水素は、気相の炭化水素を含んだまま、枝管92を通過する。このとき、炭化水素は、気体と液体とに徐々に分離されながらリング状のヘッダ94内へ移送され、このリング状ヘッダ94において、気体と液体とに完全に分離される。
その後、ヘッダ94で気体炭化水素を分離された液体炭化水素は、液体移送管96を通じて受用タンク83へ移送される。また、ヘッダ94で液体炭化水素から分離された気体炭化水素は、気体移送管97を通じて受用タンク83へ移送される。受用タンク83へ移送された液体炭化水素及び気体炭化水素は、受用タンク83内ではほとんど混合することなく分離して存在する。受用タンク83内の液体炭化水素は液体移送管98を通じて第1精留塔40へと移送され、受用タンク83内の気体炭化水素は気体移送管99を通じて第1精留塔40へと移送される。
このように、フィルタ91によって分離された気相の炭化水素を含む液体炭化水素は、下流側の気液分離器82によって液体炭化水素と気体炭化水素とに分離され、その後、別々に第1精留塔40へと移送される。そのため、従前の気液混相の状態のまま移送する場合に比べて、移送中に体積が膨張することがなく、その分移送用配管内の圧力損失を抑えることができる。この結果、設計通りの炭化水素の流量を確保できる。
(第2実施形態)
図3を参照しながら本発明に係る触媒分離システムの第2実施形態について説明する。なお、説明の便宜上、前記第1実施形態と同一の構成要素については、同一符号を付してその説明を省略する。
図3は、本発明の第2実施形態の触媒分離システムの全体構成を示す概略図である。前記第1の実施形態では、合成された液体炭化水素と触媒スラリーとを分離する濾過器である分離器36が気泡塔型反応器30の内部に組み込まれた、いわゆる内部濾過型の例であるのに対し、この第2実施形態では、濾過器である分離器110が気泡塔型反応器30の外部に配置された、いわゆる外部濾過型の例である。
すなわち、気泡塔型反応器30とは別に、同気泡塔型反応器30の下流側に連通管111を通じて分離器110が配置されている。
分離器110は、例えば上下が閉塞された円筒状の容器115と、容器115内に収納された複数のフィルタ91とを備える。フィルタ91は枝管92を介してリング状に形成されたヘッダ94に接続される。ヘッダ94は、容器115の外方であってかつフィルタ91よりも上方に配置され、しかも環の中心を容器115の中心と一致させるように配置されている。本実施形態においても、ヘッダ94の管の内径Dは枝管92の内径Dより大きい。
この第2の実施形態においても、前記第1の実施形態と同様に、フィルタ91によって分離された気相の炭化水素を含む液体炭化水素を、下流側の気液分離器82によって液体炭化水素と気体炭化水素とに分離し、その後、別々に第1精留塔40へと移送する。そのため、移送用配管内の圧力損失を抑えることができ、設計通りの炭化水素の流量を確保できる。
以上、本発明の第1実施形態及び第2実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更等も含まれる。
例えば、上記第1実施形態及び第2実施形態では、容器30、115の上部外方にリング状のヘッダ94を設けたが、このリング状のヘッダ94は必ずしも容器の上部外方に配置する必要はない。例えば、ヘッダを容器の下方に配置してもよいし、容器30、115の側方に配置してもよい。また、ヘッダ94は、必ずしもリング状に限られない。例えば、円筒状、直方体状あるいは立方体状であってもよい。要は、フィルタで分離された気体を含む液体炭化水素を気体と液体とに分離したり、分離したものをそのまま保持したりできる形状と内容量とを備えていれば足りる。
また、前記第1実施形態では内部濾過型の例、前記第2実施形態では外部濾過型の例を挙げてそれぞれ説明したが、それらを併用することも可能である。
本発明は、一酸化炭素ガス及び水素ガスを主成分とする合成ガスと、液体中に固体の触媒粒子を懸濁させてなる触媒スラリーとの化学反応によって炭化水素を合成する反応容器と、前記炭化水素と前記触媒スラリーとを分離する濾過器と、前記濾過器から流出される前記液体炭化水素を、気体炭化水素と液体炭化水素とに分離する気液体分離器とを備えている触媒分離システムに関する。
本発明によれば、FT合成反応により合成された液体炭化水素を触媒スラリーから分離して下流側へ移送する際に、圧力損失を抑えて、所定の流量を確保ことができる。
30 気泡塔型反応器(反応容器)
36 分離器(濾過器)
81 触媒分離システム
82 気液分離器
83 受用タンク
91 フィルタ
92 枝管
94 リング状のヘッダ(集合管)
96 液体移送管
97 気体移送管

Claims (6)

  1. 一酸化炭素ガス及び水素ガスを主成分とする合成ガスと、液体中に固体の触媒粒子を懸濁させてなる触媒スラリーとの化学反応によって炭化水素を合成する反応容器と、
    前記炭化水素と前記触媒スラリーとを分離する濾過器と、
    前記濾過器から流出される前記液体炭化水素を、気体炭化水素と液体炭化水素とに分離する気液体分離器と、
    を備えている触媒分離システム。
  2. 請求項1に記載の触媒分離システムにおいて、
    前記化学反応はフィッシャー・トロプシュ合成反応である触媒分離システム。
  3. 請求項1又は請求項2に記載の触媒分離システムにおいて、
    前記気液体分離器は、前記濾過器から延びる複数の枝管と、前記枝管内を流れる流体を集合させかつ前記枝管よりも大径の集合管とを有する触媒分離システム。
  4. 請求項3に記載の触媒分離システムにおいて、
    前記集合管は、リング状のヘッダである触媒分離システム。
  5. 請求項4に記載の触媒分離システムにおいて、
    前記ヘッダは、前記濾過器よりも上方に、前記濾過器を収納する容器と中心を一致させるように配置されている触媒分離システム。
  6. 請求項4または5に記載の触媒分離システムにおいて、
    前記リング状のヘッダには、該リング状のヘッダ内で分離された液体炭化水素を移送する液体移送管と、前記リング状のヘッダ内で分離された気体炭化水素を移送する気体移送管とが接続されている触媒分離システム。
JP2011504728A 2009-03-19 2010-03-01 触媒分離システム Active JP5364786B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011504728A JP5364786B2 (ja) 2009-03-19 2010-03-01 触媒分離システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009068829 2009-03-19
JP2009068829 2009-03-19
PCT/JP2010/001364 WO2010106744A1 (ja) 2009-03-19 2010-03-01 触媒分離システム
JP2011504728A JP5364786B2 (ja) 2009-03-19 2010-03-01 触媒分離システム

Publications (2)

Publication Number Publication Date
JPWO2010106744A1 true JPWO2010106744A1 (ja) 2012-09-20
JP5364786B2 JP5364786B2 (ja) 2013-12-11

Family

ID=42739412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011504728A Active JP5364786B2 (ja) 2009-03-19 2010-03-01 触媒分離システム

Country Status (11)

Country Link
US (1) US8524160B2 (ja)
EP (1) EP2410037A4 (ja)
JP (1) JP5364786B2 (ja)
CN (1) CN102348783B (ja)
AU (1) AU2010226050B2 (ja)
BR (1) BRPI1009483B1 (ja)
CA (1) CA2755562C (ja)
EA (1) EA021005B1 (ja)
MY (1) MY158533A (ja)
WO (1) WO2010106744A1 (ja)
ZA (1) ZA201106901B (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5935016B2 (ja) * 2011-08-31 2016-06-15 独立行政法人石油天然ガス・金属鉱物資源機構 触媒分離装置
CN108854859B (zh) * 2018-07-27 2023-08-18 中化蓝天霍尼韦尔新材料有限公司 一种悬浮液气液相反应装置及运行方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3692178A (en) * 1970-06-01 1972-09-19 Dover Corp Filtration system
US5599849A (en) * 1993-01-27 1997-02-04 Sasol Chemical Industries (Proprietary) Limited Process for producing liquid and, optionally, gaseous products from gaseous reactants
GB9301723D0 (en) * 1993-01-28 1993-03-17 Norske Stats Oljeselskap Solid/liquid treatment apparatus and catalytic multi-phase reactor
US6344490B1 (en) 1999-01-22 2002-02-05 Exxon Research And Engineering Company Removable filter for slurry hydrocarbon synthesis process
BRPI0412565A (pt) 2003-07-15 2006-09-19 Sasol Tech Pty Ltd processo para produzir lìquidos e, opcionalmente, gasosos de reagentes gasosos
JP4456947B2 (ja) * 2004-07-09 2010-04-28 新日鉄エンジニアリング株式会社 気泡塔型フィッシャー・トロプシュ合成スラリー床反応システム
FR2877950B1 (fr) * 2004-11-17 2006-12-29 Inst Francais Du Petrole Dispositif de production d'hydrocarbures liquides par synthese fischer-tropsch dans un reacteur a lit triphasique
CA2624815C (en) * 2005-10-04 2014-02-18 The Petroleum Oil And Gas Corporation Of South Africa (Pty) Ltd. Filtration method and installation
JP4752862B2 (ja) 2008-04-22 2011-08-17 ダイキン工業株式会社 空気清浄機

Also Published As

Publication number Publication date
BRPI1009483B1 (pt) 2018-05-15
AU2010226050A1 (en) 2011-10-20
CN102348783A (zh) 2012-02-08
WO2010106744A1 (ja) 2010-09-23
CA2755562A1 (en) 2010-09-23
MY158533A (en) 2016-10-14
US8524160B2 (en) 2013-09-03
EP2410037A4 (en) 2016-07-27
EA201171097A1 (ru) 2012-02-28
BRPI1009483A2 (pt) 2016-03-01
US20120003127A1 (en) 2012-01-05
JP5364786B2 (ja) 2013-12-11
CA2755562C (en) 2014-04-22
EP2410037A1 (en) 2012-01-25
AU2010226050B2 (en) 2013-06-20
CN102348783B (zh) 2014-03-12
ZA201106901B (en) 2012-11-29
EA021005B1 (ru) 2015-03-31

Similar Documents

Publication Publication Date Title
JP5568462B2 (ja) 炭化水素化合物の合成反応システム、及び粉化粒子の除去方法
JP5301330B2 (ja) 液体炭化水素の合成方法及び液体炭化水素の合成システム
JP5364717B2 (ja) 触媒分離システム
JP5364715B2 (ja) 炭化水素化合物合成反応ユニット及びその運転方法
JP5107234B2 (ja) 液体燃料合成システム
JP5501366B2 (ja) 炭化水素合成反応装置、及び炭化水素合成反応システム、並びに炭化水素合成反応方法
JP5138586B2 (ja) 液体燃料合成システム
JP5417446B2 (ja) 炭化水素合成反応装置、及び炭化水素合成反応システム、並びに液体炭化水素の回収方法
JP5364716B2 (ja) 炭化水素合成反応装置及び炭化水素合成反応システム、並びに炭化水素合成方法
JP5364786B2 (ja) 触媒分離システム
JP5364714B2 (ja) 液体燃料合成方法及び液体燃料合成装置
JPWO2007114276A1 (ja) 液体燃料合成システムの起動方法、及び液体燃料合成システム
JP5298133B2 (ja) 炭化水素合成反応装置及び炭化水素合成反応システム、並びに炭化水素合成方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5364786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250