JPWO2010018773A1 - Rotor for low pressure turbine - Google Patents

Rotor for low pressure turbine Download PDF

Info

Publication number
JPWO2010018773A1
JPWO2010018773A1 JP2010502367A JP2010502367A JPWO2010018773A1 JP WO2010018773 A1 JPWO2010018773 A1 JP WO2010018773A1 JP 2010502367 A JP2010502367 A JP 2010502367A JP 2010502367 A JP2010502367 A JP 2010502367A JP WO2010018773 A1 JPWO2010018773 A1 JP WO2010018773A1
Authority
JP
Japan
Prior art keywords
pressure turbine
steel
steam
low
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010502367A
Other languages
Japanese (ja)
Other versions
JP4995317B2 (en
Inventor
西本 慎
西本  慎
田中 良典
良典 田中
山本 隆一
隆一 山本
憲治 川崎
憲治 川崎
重 隆司
重  隆司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010502367A priority Critical patent/JP4995317B2/en
Publication of JPWO2010018773A1 publication Critical patent/JPWO2010018773A1/en
Application granted granted Critical
Publication of JP4995317B2 publication Critical patent/JP4995317B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/04Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/02Machines or engines with axial-thrust balancing effected by working-fluid characterised by having one fluid flow in one axial direction and another fluid flow in the opposite direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • F01D5/063Welded rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • F05D2300/132Chromium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/177Ni - Si alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

低圧タービンへ導入される蒸気温度が高温となる場合においても、機械的強度特性を維持することができ、さらに製造コスト、製作日数が増加することなく品質面でも問題のない低圧タービン用ロータを提供することを目的とし、高圧タービン、中圧タービン及び低圧タービンを備えた蒸気タービン設備で使用される低圧タービン用ロータにおいて、蒸気入口側に配置される1CrMoV鋼、2.25CrMoV鋼又は10CrMoV鋼で形成された部材と、蒸気出口側に配置される3.5Ni鋼で形成された部材とを、溶接によって接合して構成する。または、何れも3.5Ni鋼で形成された蒸気入口側に配置される部材と、蒸気出口側に配置される部材とを溶接によって接合して構成し、前記蒸気入口側に配置される部材を重量%で、Si:0.1%以下、Mn:0.1%以下、不可避的不純物が重量%で、P:0.02%以下、S:0.02%以下、Sn:0.02%以下、As:0.02%以下、Sb:0.02%以下、Al:0.02%以下、Cu:0.1%以下を含有する低不純物3.5Ni鋼とする。Providing a rotor for low-pressure turbines that can maintain its mechanical strength characteristics even when the temperature of the steam introduced into the low-pressure turbine is high, and that does not increase production costs and production days, and that does not have any quality problems. In a rotor for a low-pressure turbine used in a steam turbine facility equipped with a high-pressure turbine, an intermediate-pressure turbine, and a low-pressure turbine The formed member and the member formed of 3.5Ni steel arranged on the steam outlet side are joined and configured by welding. Alternatively, the members arranged on the steam inlet side formed of 3.5Ni steel and the members arranged on the steam outlet side are joined by welding, and the members arranged on the steam inlet side In wt%, Si: 0.1% or less, Mn: 0.1% or less, unavoidable impurities are wt%, P: 0.02% or less, S: 0.02% or less, Sn: 0.02% Hereinafter, a low-impurity 3.5Ni steel containing As: 0.02% or less, Sb: 0.02% or less, Al: 0.02% or less, and Cu: 0.1% or less.

Description

本発明は、高圧タービン、中圧タービン及び低圧タービンを備えた蒸気タービン設備で使用される低圧タービン用ロータに関するものであり、特に蒸気入口温度が380℃以上の高温となる蒸気タービン設備で使用して好適な低圧タービン用ロータに関するものである。   The present invention relates to a rotor for a low pressure turbine used in a steam turbine facility including a high pressure turbine, an intermediate pressure turbine, and a low pressure turbine, and is particularly used in a steam turbine facility in which a steam inlet temperature is a high temperature of 380 ° C. or higher. And a preferred low-pressure turbine rotor.

現在、主要な発電方法として原子力、火力、水力の3つの方法が用いられており、資源量及びエネルギー密度の観点から、今後も前記3つの発電方法が主要な発電方法として用いられていくと予想される。中でも火力発電は安全で負荷変動への対応能力の高い発電方法として利用価値が高く、発電分野において今後も引き続き重要な役割を果たしていくものと予想される。
蒸気タービンを含む石炭焚火力発電に用いられる蒸気タービン設備においては、一般的に、高圧タービン、中圧タービン、低圧タービンを備えており、600℃級の蒸気が用いられている。このような蒸気タービン設備においては、ボイラから供給された600℃級の蒸気は、高圧タービンに導入されて動翼と静翼からなる高圧翼段落で高圧タービンを回転させて膨張仕事をした後、高圧タービンから排気されて中圧タービンに導入され、高圧タービンと同様に中圧タービンを回転させて膨張仕事をし、さらに低圧タービンに導入されて膨張仕事をし、復水器へ排気されて復水される。
このような蒸気タービン設備における低圧タービン用ロータは一般的に3.5Ni鋼(例えば3.5NiCrMoV鋼など)により形成されており、低圧タービン入口蒸気温度は3.5Ni鋼が機械的強度特性及び靱性を維持できる温度である380℃以下に設定していた。
上記のような蒸気タービン設備においては、近年CO排気量削減と、更なる熱効率向上のために、630℃以上の蒸気条件を採用した技術が求められている。
高圧タービンに630℃以上の蒸気を高圧タービンに導入し、従来600℃級の蒸気を用いていた場合と同じ高圧タービン及び中圧タービンを使用すると、低圧タービン入口蒸気温度が400〜430℃程度と従来よりも上昇し、該温度の上昇によって低圧タービンのロータが機械的強度特性及び靱性を維持できなくなる可能性がある。
特に2段再熱の場合は、2段目の再熱圧が低くなることから、低圧タービン入口蒸気温度が1段再熱より上昇し、設計条件としてより厳しくなる。
630℃以上の蒸気を用い、3.5Ni鋼で形成された低圧タービンのロータの機械的強度特性及び靱性を維持するためには、高圧タービン及び中圧タービンにおける膨張仕事量を従来よりも増加させて、低圧タービン入口における蒸気温度を380℃以下まで低下させることが考えられる。しかし、そのためには高圧タービンと中圧タービンの翼段落数を増加させる必要があり、タービン全体が増大するという問題がある。
そこで特許文献1においては、低圧タービン用ロータを構成する3.5Ni鋼中に含有される不純物含量を低減して微量に制限することで、加熱による不純物元素の粒界偏析などの経年的な脆化を誘発する金属組織上の変化を抑制し、380℃以上の蒸気が導入されても安定して運転することができる低圧タービン用ロータが開示されている。
特許文献1に開示された技術においては、従来以上に厳密な不純物管理が要求される。しかしながら、特に低圧タービン用のロータは大型であることから、特許文献1に開示された技術において、一体型の低圧タービン用ロータを製作する場合、コストが増加する、製作日数が増加し納期が遅くなる、例えばバラツキにより不純物含量が基準値を越える可能性が高いなどの製造されるタービン用ロータの品質面での信頼性に不安が残るという課題が生じる。
Currently, three methods of nuclear power, thermal power, and hydropower are used as main power generation methods, and it is expected that the three power generation methods will continue to be used as main power generation methods from the viewpoint of the amount of resources and energy density. Is done. Above all, thermal power generation has a high utility value as a power generation method that is safe and capable of handling load fluctuations, and is expected to continue to play an important role in the power generation field.
A steam turbine facility used for coal-fired thermal power generation including a steam turbine generally includes a high-pressure turbine, an intermediate-pressure turbine, and a low-pressure turbine, and 600 ° C. class steam is used. In such a steam turbine facility, the 600 ° C. class steam supplied from the boiler is introduced into the high pressure turbine, and the expansion work is performed by rotating the high pressure turbine in a high pressure blade stage composed of moving blades and stationary blades. It is exhausted from the high-pressure turbine and introduced into the intermediate-pressure turbine. Like the high-pressure turbine, the intermediate-pressure turbine is rotated to perform expansion work, and further introduced into the low-pressure turbine to perform expansion work, and then exhausted to the condenser to be recovered. Watered.
The low-pressure turbine rotor in such a steam turbine facility is generally made of 3.5Ni steel (for example, 3.5NiCrMoV steel), and the low-pressure turbine inlet steam temperature is 3.5Ni steel with mechanical strength characteristics and toughness. The temperature was set to 380 ° C. or lower, which is a temperature capable of maintaining the temperature.
In the steam turbine equipment as described above, in recent years, a technique that employs steam conditions of 630 ° C. or higher has been demanded in order to reduce CO 2 displacement and further improve thermal efficiency.
When steam at 630 ° C or higher is introduced into the high-pressure turbine and the same high-pressure turbine and medium-pressure turbine as those conventionally used for the 600 ° C-class steam are used, the low-pressure turbine inlet steam temperature is about 400 to 430 ° C. There is a possibility that the rotor of a low-pressure turbine cannot maintain mechanical strength characteristics and toughness due to the increase in temperature.
In particular, in the case of two-stage reheating, the reheat pressure in the second stage is lowered, so that the steam temperature at the low-pressure turbine inlet rises more than that in the first stage, and the design conditions become more severe.
In order to maintain the mechanical strength characteristics and toughness of the rotor of the low pressure turbine using steam of 630 ° C. or higher and formed of 3.5Ni steel, the work of expansion in the high pressure turbine and the intermediate pressure turbine is increased as compared with the prior art. Thus, it is conceivable to reduce the steam temperature at the low-pressure turbine inlet to 380 ° C. or lower. However, for that purpose, it is necessary to increase the number of blade stages of the high-pressure turbine and the intermediate-pressure turbine, and there is a problem that the entire turbine increases.
Therefore, in Patent Document 1, the impurity content contained in the 3.5Ni steel constituting the rotor for a low-pressure turbine is reduced and limited to a very small amount so that secular boundary embrittlement such as grain boundary segregation of impurity elements due to heating occurs. There is disclosed a rotor for a low-pressure turbine that suppresses changes in the metal structure that induces crystallization and can be stably operated even when steam of 380 ° C. or higher is introduced.
The technique disclosed in Patent Document 1 requires stricter impurity management than ever before. However, since the rotor for the low-pressure turbine is particularly large, when the integrated low-pressure turbine rotor is manufactured in the technique disclosed in Patent Document 1, the cost increases, the number of manufacturing days increases, and the delivery time is delayed. For example, there is a problem that the reliability in the quality of the turbine rotor to be manufactured remains uneasy, for example, the impurity content is likely to exceed the reference value due to variation.

特開2006−170006号公報JP 2006-170006 A

従って、本発明はかかる従来技術の問題に鑑み、低圧タービンへ導入される蒸気温度が高温となる場合においても、機械的強度特性を維持することができ、さらに製造コスト、製作日数が増加することなく品質面でも問題のない低圧タービン用ロータを提供することを目的とする。
上記課題を解決するため本発明においては、
高圧タービン、中圧タービン及び低圧タービンを備えた蒸気タービン設備で使用される低圧タービン用ロータにおいて、蒸気入口側に配置される1CrMoV鋼(以下1Cr鋼)、2.25CrMoV鋼(以下2.25Cr鋼)又は10CrMoV鋼(以下10Cr鋼)で形成された部材と、蒸気出口側に配置される3.5Ni鋼で形成された部材とを、溶接によって接合して構成されていることを特徴とする。
1Cr鋼、2.25Cr鋼、10Cr鋼は従来より高圧タービン用ロータや中圧タービン用ロータで用いられていた材料であるため材料の管理方法が確立されており、また入手も容易である。さらに、3.5Ni鋼よりも耐高温性で優れている。
また、3.5Ni鋼は1Cr鋼、2.25Cr鋼よりも応力腐食割れ(SCC)感受性が低い。また、10Cr鋼は3.5Ni鋼より高価である。
そこで、高温の蒸気が導入される蒸気入口側を1Cr鋼、2.25Cr鋼又は10Cr鋼で形成された部材で構成し、流路(翼長)が広がりより高い強度が求められる蒸気出口側を3.5Ni鋼で構成された部材で構成することで、高温及び応力腐食割れに対して優れた低圧タービン用ロータが形成され、高温の蒸気を導入しても機械的強度特性及び靱性を維持することができる。
さらに、脆化の観点では、3.5Ni鋼と1Cr鋼はほぼ同等であるが、2.25Cr鋼及び10Cr鋼は3.5Ni鋼よりも優れている。従って蒸気入口側を1Cr鋼で構成された部材を用いると、低圧タービン用ロータ全体の脆化感受性は、ロータ全体を3.5Ni鋼で構成した従来の低圧タービン用ロータとほぼ同等であるが、蒸気入口側を2.25Cr鋼又は10Cr鋼で構成された部材を用いると、低圧タービン用ロータ全体の脆化感受性は、ロータ全体を3.5Ni鋼で構成した従来の低圧タービン用ロータよりも優れている。そのため、蒸気入口側の部材は2.25Cr鋼又は10Cr鋼で形成することがより好ましい。
また、高圧タービン、中圧タービン及び低圧タービンを備えた蒸気タービン設備で使用される低圧タービン用ロータにおいて、蒸気入口側に配置される部材と、蒸気出口側に配置される部材とを溶接によって接合して構成するとともに、両部材を3.5Ni鋼で形成し、前記蒸気入口側に配置される部材を低不純物の3.5Ni鋼で形成したことを特徴とする。
また、前記蒸気入口側に配置される低不純物3.5Ni鋼は、重量%で、Si:0.1%以下、Mn:0.1%以下、不可避的不純物が重量%で、P:0.02%以下、S:0.02%以下、Sn:0.02%以下、As:0.02%以下、Sb:0.02%以下、Al:0.02%以下、Cu:0.1%以下を含有することを特徴とする。
高温の蒸気が導入される蒸気入口側に不純物含量を低減して微量に制限した3.5Ni鋼で構成された部材を用いることで、加熱による不純物元素の粒界偏析などの経年的な脆化を誘発する金属組織上の変化を抑制し、380℃以上の蒸気が導入されても安定して運転することができる。
しかも、前記不純物含量を低減した3.5Ni鋼で構成された部材をロータ全体でなく高温の蒸気が導入される蒸気入口側だけとすることで、製作コスト、日数の増加を小さく抑え、品質面での信頼性の不安も小さく低圧タービン用ロータの製作が可能である。
また、前記低圧タービンの入口蒸気温度が380℃以上である蒸気タービン設備で使用され、
前記低圧タービン内を流通する蒸気温度が380℃以上となる領域を前記蒸気入口側に配置される部材で構成し、前記低圧タービン内を流通する蒸気温度が380℃未満となる領域を前記蒸気出口側に配置される部材で構成することを特徴とする。
通常の3.5Ni鋼は蒸気温度が380℃以上となると不純物元素の粒界偏析などの経年的な脆化を誘発する可能性が高い。そこで蒸気温度が380℃以上となる領域を前記蒸気入口側に配置される部材で構成し、蒸気温度が380℃未満である領域を前記蒸気出口側に配置される部材で構成することで、通常の3.5Ni鋼が380℃以上の蒸気と接することがなくなり、蒸気出口側に配置される3.5Ni鋼で形成される部材の脆化を抑制することが可能となる。
前記高圧タービンおよび中圧タービンの少なくともいずれか一方の入口蒸気温度が630℃以上である蒸気タービン設備で使用されることを特徴とする。
これにより、高圧タービン及び中圧タービンを増大化させることなく、蒸気タービン設備からのCO排気量を削減し、蒸気タービン設備の熱効率を向上させることができる。
以上記載のごとく本発明によれば、低圧タービンへ導入される蒸気温度が高温となる場合においても、機械的強度特性を維持することができ、さらに製造コスト、製作日数が増加することなく品質面でも問題のない低圧タービン用ロータを提供することができる。
Therefore, in view of the problems of the prior art, the present invention can maintain the mechanical strength characteristics even when the temperature of the steam introduced into the low-pressure turbine is high, and further increases the manufacturing cost and the number of manufacturing days. An object of the present invention is to provide a rotor for a low-pressure turbine that has no problem in terms of quality.
In order to solve the above problems, in the present invention,
1CrMoV steel (hereinafter referred to as 1Cr steel), 2.25CrMoV steel (hereinafter referred to as 2.25Cr steel) disposed on the steam inlet side in a rotor for a low pressure turbine used in a steam turbine facility including a high pressure turbine, an intermediate pressure turbine, and a low pressure turbine ) Or a member formed of 10CrMoV steel (hereinafter referred to as 10Cr steel) and a member formed of 3.5Ni steel arranged on the steam outlet side are joined to each other by welding.
Since 1Cr steel, 2.25Cr steel, and 10Cr steel are materials conventionally used in high-pressure turbine rotors and medium-pressure turbine rotors, a material management method has been established and is easily available. Furthermore, it is superior in high temperature resistance than 3.5Ni steel.
Moreover, 3.5Ni steel is less susceptible to stress corrosion cracking (SCC) than 1Cr steel and 2.25Cr steel. Also, 10Cr steel is more expensive than 3.5Ni steel.
Therefore, the steam inlet side into which high-temperature steam is introduced is composed of a member formed of 1Cr steel, 2.25Cr steel, or 10Cr steel, and the steam outlet side where the flow path (blade length) is widened and higher strength is required. By constituting with a member made of 3.5Ni steel, a rotor for a low pressure turbine excellent against high temperature and stress corrosion cracking is formed, and mechanical strength characteristics and toughness are maintained even when high temperature steam is introduced. be able to.
Furthermore, from the viewpoint of embrittlement, 3.5Ni steel and 1Cr steel are almost equivalent, but 2.25Cr steel and 10Cr steel are superior to 3.5Ni steel. Therefore, when a member made of 1Cr steel is used on the steam inlet side, the embrittlement susceptibility of the entire low-pressure turbine rotor is almost the same as that of a conventional low-pressure turbine rotor in which the entire rotor is made of 3.5Ni steel. When a member made of 2.25Cr steel or 10Cr steel is used on the steam inlet side, the embrittlement susceptibility of the entire low-pressure turbine rotor is superior to that of a conventional low-pressure turbine rotor in which the entire rotor is made of 3.5Ni steel. ing. Therefore, the member on the steam inlet side is more preferably formed of 2.25Cr steel or 10Cr steel.
Further, in a rotor for a low pressure turbine used in a steam turbine facility including a high pressure turbine, an intermediate pressure turbine, and a low pressure turbine, a member disposed on the steam inlet side and a member disposed on the steam outlet side are joined by welding. Both members are formed of 3.5Ni steel, and the member disposed on the steam inlet side is formed of low-impurity 3.5Ni steel.
The low-impurity 3.5Ni steel disposed on the vapor inlet side is, by weight, Si: 0.1% or less, Mn: 0.1% or less, unavoidable impurities are wt%, and P: 0.0. 02% or less, S: 0.02% or less, Sn: 0.02% or less, As: 0.02% or less, Sb: 0.02% or less, Al: 0.02% or less, Cu: 0.1% It contains the following.
By using a member made of 3.5Ni steel with a reduced impurity content and limited to a small amount on the steam inlet side where high-temperature steam is introduced, secular boundary embrittlement such as grain boundary segregation of impurity elements due to heating It is possible to suppress the change in the metal structure that induces the phenomenon and to operate stably even when steam at 380 ° C. or higher is introduced.
In addition, since the member made of 3.5Ni steel with a reduced impurity content is not the entire rotor but only the steam inlet side where high-temperature steam is introduced, the increase in production cost and days can be kept small, and the quality side Therefore, it is possible to manufacture a rotor for a low-pressure turbine.
In addition, the low pressure turbine is used in steam turbine equipment having an inlet steam temperature of 380 ° C. or higher,
A region where the steam temperature flowing through the low-pressure turbine is 380 ° C. or higher is configured by a member disposed on the steam inlet side, and a region where the steam temperature flowing through the low-pressure turbine is less than 380 ° C. is the steam outlet It comprises the member arrange | positioned at the side, It is characterized by the above-mentioned.
Normal 3.5Ni steel has a high possibility of inducing embrittlement over time such as grain boundary segregation of impurity elements when the vapor temperature is 380 ° C. or higher. Therefore, a region where the steam temperature is 380 ° C. or more is configured with a member disposed on the steam inlet side, and a region where the steam temperature is less than 380 ° C. is configured with a member disposed on the steam outlet side, The 3.5Ni steel does not come into contact with the steam at 380 ° C. or higher, and it becomes possible to suppress embrittlement of the member formed of the 3.5Ni steel disposed on the steam outlet side.
It is used in steam turbine equipment in which the inlet steam temperature of at least one of the high-pressure turbine and the intermediate-pressure turbine is 630 ° C. or higher.
Thereby, without increasing the high-pressure turbine and the intermediate-pressure turbine, the CO 2 exhaust amount from the steam turbine equipment can be reduced, and the thermal efficiency of the steam turbine equipment can be improved.
As described above, according to the present invention, even when the temperature of the steam introduced into the low-pressure turbine is high, the mechanical strength characteristics can be maintained, and further, the quality can be improved without increasing the manufacturing cost and the number of production days. However, it is possible to provide a rotor for a low-pressure turbine that has no problem.

実施例1における蒸気タービン発電設備の構成を示す図である。It is a figure which shows the structure of the steam turbine power generation equipment in Example 1. FIG. 実施例1における低圧タービン用ロータの構成を模式的に示した平面図である。1 is a plan view schematically showing a configuration of a low-pressure turbine rotor in Embodiment 1. FIG. 実施例2における低圧タービン用ロータの構成を模式的に示した平面図である。6 is a plan view schematically showing a configuration of a low-pressure turbine rotor in Embodiment 2. FIG. 1Cr鋼、2.25Cr鋼、10Cr鋼及び3.5Ni鋼の脆化係数を示すグラフである。It is a graph which shows the embrittlement coefficient of 1Cr steel, 2.25Cr steel, 10Cr steel, and 3.5Ni steel.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

図1は、実施例1における蒸気タービン発電設備の構成を示す図である。
図1を参照して、本発明の低圧タービン用ロータを用いた蒸気タービン設備により構成される発電設備について説明する。尚、図1は1段再熱の一例であり、2段再熱、再熱のみ高温化(630℃以上)の場合の実施にも本発明は適用され、特に限定されるものではない。
図1に示された蒸気タービン発電設備10は、高圧タービン14、中圧タービン12、低圧タービン16、発電機18、復水器20、ボイラ24から主に構成される。蒸気は、ボイラ24、主蒸気管26、高圧タービン14、低温再熱管28、ボイラ24、高温再熱管30、中圧タービン12、クロスオーバー管32、低圧タービン16、復水器20、給水ポンプ22、ボイラ24の順に循環する。
ボイラ24で630℃以上に過熱された蒸気は、主蒸気管26を通って高圧タービン14に導入される。高圧タービン14に導入された蒸気は、膨張仕事を行った後に排気され、低温再熱管28を通ってボイラ24に戻される。該ボイラ24に戻された蒸気は、ボイラ24で再熱されて630℃以上の蒸気となり、高温再熱管30を通って中圧タービン12に送られる。中圧タービン12に導入された蒸気は膨張仕事を行った後に排気され、400〜430℃程度の蒸気となってクロスオーバー管32を通って低圧タービン16に送られる。低圧タービン16に導入された蒸気は、膨張仕事を行った後に排気され、復水器20に送られる。復水器20に送られた蒸気は復水器20で復水され、給水ポンプ22で昇圧されてボイラ24に戻される。発電機18はそれぞれのタービンの膨張仕事によって回転駆動され、発電する。
図2は実施例1における低圧タービン16に用いられるロータの構成を模式的に示した平面図である。
前記のような蒸気タービン発電設備に用いられる低圧タービン用ロータについて図2を参照して説明する。
(構成)
まず図2を用いて本実施例に係る400〜430℃程度の蒸気が導入される低圧タービン16に用いられるロータの構成について説明する。
図2に示すように、低圧タービン用ロータ16Aは、1Cr鋼、2.25Cr鋼又は10Cr鋼で構成される1つの部材(以下クロム鋼部)16aと、3.5Ni鋼で構成される2つの部材(以下通常3.5Ni鋼部)16b、16cから構成されている。
クロム鋼部16aはその両端でそれぞれ通常3.5Ni鋼部16b、16cと溶接によって接合されて、一端部から通常3.5Ni鋼部16b、クロム鋼部16a、Ni鋼部16cの順に一体化された低圧タービン用ロータ16Aを形成している。
また、クロム鋼部16aは380℃以上の蒸気に晒される位置に配置され、通常3.5Ni鋼部16b、16cは380℃未満の蒸気に晒された位置に配置される。
(材料)
次に低圧タービン用ロータ16Aを構成する、クロム鋼部16a、3.5Ni鋼部16b、16cの材料について説明する。
(A)クロム鋼部
クロム鋼部は、耐高温性に優れ、入手が容易である1Cr鋼、2.25Cr又は10Cr鋼で形成されている。
1Cr鋼としては、重量%で、C:0.2〜0.4%、Si:0.35%以下、Mn:1.5%以下、Ni:2.0%以下、Cr:0.5〜1.5%、Mo:0.5〜1.5%、V:0.2〜0.3%、残部がFe及び不可避的不純物からなる組成の材料を一例として挙げることができる。
2.25Cr鋼としては、重量%で、C:0.2〜0.35%、Si:0.35%以下、Mn:1.5%以下、Ni:0.2〜2.0%、Cr:1.5〜3.0%、Mo:0.9〜1.5%、V:0.2〜0.3%、残部がFe及び不可避的不純物からなる組成の材料を一例として挙げることができる。
10Cr鋼としては、重量%でC:0.05〜0.4%、Si:0.35%以下、Mn:2.0%以下、Ni:3.0%以下、Cr:7〜13%、Mo:0.1〜3.0%、V:0.01〜0.5%、N:0.01〜0.1%、Nb:0.01〜0.2%を含有し、残部がFe及び不可避的不純物からなる組成の材料を一例として挙げることができる。
別の例の10Cr鋼として、重量%でC:0.05〜0.4%、Si:0.35%以下、Mn:2.0%以下、Ni:7.0%以下、Cr:8〜15%、Mo:0.1〜3.0%、V:0.01〜0.5%、N:0.01〜0.1%、Nb:0.2%以下を含有し、残部がFe及び不可避的不純物からなる組成の材料を一例として挙げることができる。
図4は1Cr鋼、2.25Cr鋼、10Cr鋼及び3.5Ni鋼の脆化係数を示すグラフである。縦軸は脆化係数(ΔFATT)であって、脆化しやすさの指標となる値であり、この数値が高いほど脆化感受性が高く脆化しやすい。横軸はJ−Factorであり不純物の濃度の指標となる値である。図4から明らかであるように、何れの材料も不純物濃度が高いほど脆化しやすい。さらに、1Cr鋼と3.5Ni鋼はほぼ同等の脆化係数であり、それよりも2.25Cr鋼の脆化係数が低く、10Cr鋼の脆化係数はさらに低い。
従ってクロム鋼部16aを1Cr鋼で構成された部材を用いると、低圧タービン用ロータ全体の脆化感受性は、ロータ全体を3.5Ni鋼で構成した従来の低圧タービン用ロータとほぼ同等であるといえる。しかし、クロム鋼部16b、16cを2.25Cr鋼又は10Cr鋼で構成された部材を用いると、低圧タービン用ロータ全体の脆化感受性は、ロータ全体を3.5Ni鋼で構成した従来の低圧タービン用ロータよりも低い、即ち脆化しにくいといえる。そのため、クロム鋼部16aは2.25Cr鋼又は10Cr鋼で形成することがより好ましい。
(B)通常3.5Ni鋼部
3.5Ni鋼としては、重量%でC:0.4%以下、Si:0.35%以下、Mn:1.0%以下、Cr:1.0〜2.5%、V:0.01〜0.3%、Mo:0.1〜1.5%、Ni:3.0〜4.5%を含有し、残部がFe及び不可避的不純物からなる材料を一例として挙げることができる。
(製造方法)
クロム鋼部16aと、通常3.5Ni鋼部16b、16cとの間の溶接部で溶接によって接合する。
溶接の方法は、溶接部が低圧タービンの運転状態に耐えうる状態であれば特に限定されるものではないが、一例として溶接トーチによるアークに溶加剤として溶接ワイヤを供給する溶融法一般を挙げることができる。
例えば、溶接部の形状としては狭開先溶接継手などが採用し、溶接に際しては、1パス毎にアークによる溶融によって溶接ワイヤとして供給される溶加剤を積層して前記狭開先溶融継手内を溶加剤で満たして、クロム鋼部16aと通常3.5Ni鋼部16b、16cを接合する。前記溶加剤としては通常3.5Ni鋼部と同じ材料である3.5Ni鋼を使用する。
以上のような低圧タービン用ロータを使用することにより、下記の効果が得られる。
1Cr鋼、2.25Cr鋼、10Cr鋼は従来より高圧タービン用ロータや中圧タービン用ロータで用いられていた材料であるため材料の管理方法が確立されており、また入手も容易である。さらに、3.5Ni鋼よりも耐高温性で優れている。また、3.5Ni鋼は1Cr鋼、2.25Cr鋼、10Cr鋼よりも応力腐食割れ(SCC)感受性が低い。そこで、高温の蒸気が導入される蒸気入口側を1Cr鋼、2.25Cr鋼又は10Cr鋼で形成された部材で構成し、流路径(翼径)が広がりより高い強度が求められる蒸気出口側を3.5Ni鋼で構成された部材で構成することで、高温及び応力腐食割れに対して優れた低圧タービン用ロータが形成され、高温の蒸気を導入しても機械的強度特性を維持することができる。
また、通常の3.5Ni鋼は蒸気温度が380℃以上となると不純物元素の粒界偏析などの経年的な脆化を誘発する可能性が高い。そこで蒸気温度が380℃以上となる領域を前記蒸気入口側に配置される部材で構成し、蒸気温度が380℃未満である領域を前記蒸気出口側に配置される部材で構成することで、通常の3.5Ni鋼が380℃以上の蒸気と接することがなくなり、蒸気出口側に配置される3.5Ni鋼で形成される部材の脆化を抑制することが可能となる。
さらに、低圧タービンの入口蒸気温度を従来よりも高くしても低圧タービン用ロータの機械的強度特性を維持することができるため、高圧タービン及び中圧タービンを増大化させることなく630℃以上の蒸気を使用することができ、蒸気タービン設備からのCO排気量を削減し、蒸気タービン設備の熱効率を向上させることができる。
FIG. 1 is a diagram illustrating a configuration of a steam turbine power generation facility in the first embodiment.
With reference to FIG. 1, the power generation equipment comprised by the steam turbine equipment using the rotor for low pressure turbines of this invention is demonstrated. Note that FIG. 1 is an example of one-stage reheating, and the present invention is also applicable to implementation in the case where only two-stage reheating and reheating are performed at a high temperature (630 ° C. or higher), and are not particularly limited.
The steam turbine power generation facility 10 shown in FIG. 1 mainly includes a high pressure turbine 14, an intermediate pressure turbine 12, a low pressure turbine 16, a generator 18, a condenser 20, and a boiler 24. Steam includes a boiler 24, a main steam pipe 26, a high-pressure turbine 14, a low-temperature reheat pipe 28, a boiler 24, a high-temperature reheat pipe 30, a medium-pressure turbine 12, a crossover pipe 32, a low-pressure turbine 16, a condenser 20, and a feed water pump 22. Circulate in the order of the boiler 24.
The steam superheated to 630 ° C. or higher in the boiler 24 is introduced into the high-pressure turbine 14 through the main steam pipe 26. The steam introduced into the high-pressure turbine 14 is exhausted after performing expansion work, and returned to the boiler 24 through the low-temperature reheat pipe 28. The steam returned to the boiler 24 is reheated by the boiler 24 to become steam at 630 ° C. or higher, and is sent to the intermediate pressure turbine 12 through the high-temperature reheat pipe 30. The steam introduced into the intermediate pressure turbine 12 is exhausted after performing expansion work, and is sent to the low pressure turbine 16 through the crossover pipe 32 as steam at about 400 to 430 ° C. The steam introduced into the low-pressure turbine 16 is exhausted after performing expansion work and sent to the condenser 20. The steam sent to the condenser 20 is condensed by the condenser 20, boosted by the water supply pump 22, and returned to the boiler 24. The generator 18 is rotationally driven by the expansion work of each turbine and generates electricity.
FIG. 2 is a plan view schematically showing the configuration of the rotor used in the low-pressure turbine 16 in the first embodiment.
A low-pressure turbine rotor used in the steam turbine power generation facility as described above will be described with reference to FIG.
(Constitution)
First, the configuration of the rotor used in the low-pressure turbine 16 into which steam of about 400 to 430 ° C. according to the present embodiment is introduced will be described with reference to FIG.
As shown in FIG. 2, the low-pressure turbine rotor 16A includes one member (hereinafter referred to as a chrome steel portion) 16a made of 1Cr steel, 2.25Cr steel, or 10Cr steel, and two pieces made of 3.5Ni steel. It consists of members (hereinafter usually 3.5Ni steel parts) 16b and 16c.
The chrome steel portion 16a is joined to the normal 3.5Ni steel portions 16b and 16c by welding at both ends, respectively, and the normal 3.5Ni steel portion 16b, the chrome steel portion 16a and the Ni steel portion 16c are integrated in order from one end portion. The low-pressure turbine rotor 16A is formed.
Moreover, the chromium steel part 16a is arrange | positioned in the position exposed to the vapor | steam of 380 degreeC or more, and 3.5Ni steel parts 16b and 16c are normally arrange | positioned in the position exposed to the vapor | steam below 380 degreeC.
(material)
Next, materials of the chromium steel portion 16a and the 3.5Ni steel portions 16b and 16c constituting the low pressure turbine rotor 16A will be described.
(A) Chrome steel part The chromium steel part is made of 1Cr steel, 2.25Cr or 10Cr steel, which is excellent in high temperature resistance and easily available.
As 1Cr steel, C: 0.2-0.4%, Si: 0.35% or less, Mn: 1.5% or less, Ni: 2.0% or less, Cr: 0.5- An example is a material having a composition of 1.5%, Mo: 0.5 to 1.5%, V: 0.2 to 0.3%, and the balance consisting of Fe and inevitable impurities.
As the 2.25Cr steel, by weight, C: 0.2 to 0.35%, Si: 0.35% or less, Mn: 1.5% or less, Ni: 0.2 to 2.0%, Cr : 1.5-3.0%, Mo: 0.9-1.5%, V: 0.2-0.3%, the material of which the balance consists of Fe and inevitable impurities may be mentioned as an example. it can.
As 10Cr steel, C: 0.05-0.4% by weight, Si: 0.35% or less, Mn: 2.0% or less, Ni: 3.0% or less, Cr: 7-13%, Mo: 0.1 to 3.0%, V: 0.01 to 0.5%, N: 0.01 to 0.1%, Nb: 0.01 to 0.2%, the balance being Fe As an example, a material having a composition comprising inevitable impurities can be given.
As another example of 10Cr steel, C: 0.05 to 0.4% by weight, Si: 0.35% or less, Mn: 2.0% or less, Ni: 7.0% or less, Cr: 8 to 15%, Mo: 0.1-3.0%, V: 0.01-0.5%, N: 0.01-0.1%, Nb: 0.2% or less, with the balance being Fe As an example, a material having a composition comprising inevitable impurities can be given.
FIG. 4 is a graph showing embrittlement coefficients of 1Cr steel, 2.25Cr steel, 10Cr steel, and 3.5Ni steel. The vertical axis represents the embrittlement coefficient (ΔFATT), which is a value indicating the degree of embrittlement. The higher this value, the higher the embrittlement susceptibility and the more easily embrittlement occurs. The horizontal axis is J-Factor, which is a value serving as an index of impurity concentration. As is clear from FIG. 4, any material is more likely to become brittle as the impurity concentration is higher. Further, 1Cr steel and 3.5Ni steel have substantially the same embrittlement coefficient, and 2.25Cr steel has a lower embrittlement coefficient than that, and 10Cr steel has a further lower embrittlement coefficient.
Therefore, when a member composed of 1Cr steel is used for the chrome steel portion 16a, the embrittlement susceptibility of the entire low-pressure turbine rotor is substantially equal to that of a conventional low-pressure turbine rotor composed of 3.5Ni steel. I can say that. However, when members made of 2.25Cr steel or 10Cr steel are used for the chrome steel parts 16b and 16c, the embrittlement susceptibility of the entire rotor for low-pressure turbines is the conventional low-pressure turbine in which the entire rotor is composed of 3.5Ni steel. It can be said that it is lower than the rotor for use, that is, it is difficult to become brittle. Therefore, it is more preferable that the chrome steel portion 16a is formed of 2.25Cr steel or 10Cr steel.
(B) Normal 3.5Ni steel part As 3.5Ni steel, C: 0.4% or less, Si: 0.35% or less, Mn: 1.0% or less, Cr: 1.0-2 in weight%. .5%, V: 0.01 to 0.3%, Mo: 0.1 to 1.5%, Ni: 3.0 to 4.5%, the balance being Fe and inevitable impurities Can be cited as an example.
(Production method)
It joins by welding in the welding part between the chromium steel part 16a and the 3.5Ni steel parts 16b and 16c normally.
The welding method is not particularly limited as long as the welded part can withstand the operation state of the low-pressure turbine. As an example, a general melting method for supplying a welding wire as a filler to an arc by a welding torch is given. be able to.
For example, a narrow groove welded joint or the like is adopted as the shape of the welded portion. During welding, a filler supplied as a welding wire is laminated by arc melting for each pass, and the inside of the narrow groove melted joint is laminated. Is filled with a filler, and the chromium steel portion 16a and the normal 3.5Ni steel portions 16b and 16c are joined. As the filler, 3.5Ni steel, which is usually the same material as the 3.5Ni steel part, is used.
By using the low-pressure turbine rotor as described above, the following effects can be obtained.
Since 1Cr steel, 2.25Cr steel, and 10Cr steel are materials conventionally used in high-pressure turbine rotors and medium-pressure turbine rotors, a material management method has been established and is easily available. Furthermore, it is superior in high temperature resistance than 3.5Ni steel. Moreover, 3.5Ni steel is less susceptible to stress corrosion cracking (SCC) than 1Cr steel, 2.25Cr steel, and 10Cr steel. Therefore, the steam inlet side into which high-temperature steam is introduced is composed of a member formed of 1Cr steel, 2.25Cr steel, or 10Cr steel, and the steam outlet side where the flow path diameter (blade diameter) is widened and higher strength is required. By using a member made of 3.5Ni steel, a rotor for low-pressure turbines excellent against high temperature and stress corrosion cracking is formed, and mechanical strength characteristics can be maintained even when high temperature steam is introduced. it can.
Further, when the vapor temperature of ordinary 3.5Ni steel is 380 ° C. or higher, there is a high possibility of inducing embrittlement over time such as grain boundary segregation of impurity elements. Therefore, a region where the steam temperature is 380 ° C. or more is configured with a member disposed on the steam inlet side, and a region where the steam temperature is less than 380 ° C. is configured with a member disposed on the steam outlet side, The 3.5Ni steel does not come into contact with the steam at 380 ° C. or higher, and it becomes possible to suppress embrittlement of the member formed of the 3.5Ni steel disposed on the steam outlet side.
Furthermore, since the mechanical strength characteristics of the rotor for the low-pressure turbine can be maintained even if the inlet steam temperature of the low-pressure turbine is higher than before, the steam at 630 ° C. or higher can be maintained without increasing the high-pressure turbine and the intermediate-pressure turbine. Can be used, the amount of CO 2 exhaust from the steam turbine equipment can be reduced, and the thermal efficiency of the steam turbine equipment can be improved.

(構成)
実施例2において別の形態の低圧タービン用ロータ16Bについて説明する。
実施例2においては、図3に示すように、低圧タービン用ロータ16Bは、不純物含有量の少ない低不純物3.5Ni鋼で構成される1つの部材(以下低不純物3.5Ni鋼部)16dと、通常3.5Ni鋼部16b、16cから構成されている。
つまり、実施例2は、図2に示した実施例1の形態の低圧タービン用ロータのクロム鋼部16aに代えて低不純物3.5Ni鋼部16dを採用した形態である。以下、低不純物3.5Ni鋼部16d以外においては実施例1と同様であるため説明を省略する。
また、低不純物3.5Ni鋼部16dは380℃以上の蒸気に晒される位置に配置され、通常3.5Ni鋼部16b、16cは380℃未満の蒸気に晒された位置に配置される。
(材料)
低不純物3.5Ni鋼部16dの材料について説明する。
低不純物3.5Ni鋼部16dは、不純物含有量が少ない3.5Ni鋼部で形成されている。低不純物3.5Ni鋼部16dとしては、重量%で、C:0.4%以下、Si:0.1%以下、Mn:0.1%以下、Cr:1.0〜2.5%、V:0.01〜0.3%、Mo:0.1〜1.5%、Ni:3.0〜4.5%を含有し、残部がFe及び不可避的不純物からなり、前記不可避的不純物が、重量%で、P:0.02%以下、S:0.02%以下、Sn:0.02%以下、As:0.02%以下、Sb:0.02%以下、Al:0.02%以下、Cu:0.1%以下である組成の材料を一例として挙げることができる。
(製造方法)
低不純物3.5Ni鋼部16dと、通常3.5Ni鋼部16b、16cとの間の溶接部で溶接によって接合する。
図4に示したように3.5Ni鋼は不純物濃度が低いほど脆性感受性が低く脆化しにくい。
従って、高温の蒸気が導入される蒸気入口側に不純物含量を低減して微量に制限した低不純物3.5Ni鋼で構成された部材16dを用いることで、加熱による不純物元素の粒界偏析などの経年的な脆化を誘発する金属組織上の変化を抑制し、380℃以上の蒸気が導入されても安定して運転することができる。
しかも、前記不純物含量を低減した3.5Ni鋼で構成された部材をロータ全体でなく高温の蒸気が導入される蒸気入口側だけとすることで、製作コスト、日数の増加を小さく抑え、品質面での信頼性の不安も小さく低圧タービン用ロータの作成が可能である。
また、通常の3.5Ni鋼は蒸気温度が380℃以上となると不純物元素の粒界偏析などの経年的な脆化を誘発する可能性が高い。そこで蒸気温度が380℃以上となる領域を前記蒸気入口側に配置される部材で構成し、蒸気温度が380℃未満である領域を前記蒸気出口側に配置される部材で構成することで、通常の3.5Ni鋼が380℃以上の蒸気と接することがなくなり、蒸気出口側に配置される3.5Ni鋼で形成される部材の脆化を抑制することが可能となる。
さらに、低圧タービンの入口蒸気温度を従来よりも高くしても低圧タービン用ロータの機械的強度特性を維持することができるため、高圧タービン及び中圧タービンを増大化させることなく630℃以上の蒸気を使用することができ、蒸気タービン設備からのCO排気量を削減し、蒸気タービン設備の熱効率を向上させることができる。
(Constitution)
Another embodiment of the low-pressure turbine rotor 16B will be described in the second embodiment.
In the second embodiment, as shown in FIG. 3, the low pressure turbine rotor 16B includes one member (hereinafter referred to as a low impurity 3.5Ni steel part) 16d composed of a low impurity 3.5Ni steel with a low impurity content. It is usually composed of 3.5Ni steel parts 16b and 16c.
That is, Example 2 is a form which employ | adopted the low impurity 3.5Ni steel part 16d instead of the chromium steel part 16a of the rotor for low pressure turbines of the form of Example 1 shown in FIG. Hereinafter, since it is the same as that of Example 1 except the low impurity 3.5Ni steel part 16d, description is abbreviate | omitted.
The low-impurity 3.5Ni steel part 16d is disposed at a position exposed to steam of 380 ° C. or higher, and the normal 3.5Ni steel parts 16b and 16c are disposed at positions exposed to steam lower than 380 ° C.
(material)
The material of the low impurity 3.5Ni steel part 16d will be described.
The low impurity 3.5Ni steel part 16d is formed of a 3.5Ni steel part having a small impurity content. As the low impurity 3.5Ni steel part 16d, by weight, C: 0.4% or less, Si: 0.1% or less, Mn: 0.1% or less, Cr: 1.0 to 2.5%, V: 0.01-0.3%, Mo: 0.1-1.5%, Ni: 3.0-4.5%, the balance consists of Fe and unavoidable impurities, the unavoidable impurities However, by weight percent, P: 0.02% or less, S: 0.02% or less, Sn: 0.02% or less, As: 0.02% or less, Sb: 0.02% or less, Al: 0. A material having a composition of 02% or less and Cu: 0.1% or less can be given as an example.
(Production method)
It joins by welding in the welding part between the low impurity 3.5Ni steel part 16d and the normal 3.5Ni steel parts 16b and 16c.
As shown in FIG. 4, the 3.5Ni steel has a lower brittleness sensitivity and lower embrittlement as the impurity concentration is lower.
Therefore, by using the member 16d made of low-impurity 3.5Ni steel with a reduced impurity content and limited to a very small amount on the steam inlet side where high-temperature steam is introduced, grain boundary segregation of impurity elements due to heating, etc. A change in the metal structure that induces aging embrittlement is suppressed, and stable operation is possible even when steam at 380 ° C. or higher is introduced.
In addition, since the member made of 3.5Ni steel with a reduced impurity content is not the entire rotor but only the steam inlet side where high-temperature steam is introduced, the increase in production cost and days can be kept small, and the quality side Therefore, it is possible to create a rotor for a low-pressure turbine.
Further, when the vapor temperature of ordinary 3.5Ni steel is 380 ° C. or higher, there is a high possibility of inducing embrittlement over time such as grain boundary segregation of impurity elements. Therefore, a region where the steam temperature is 380 ° C. or more is configured with a member disposed on the steam inlet side, and a region where the steam temperature is less than 380 ° C. is configured with a member disposed on the steam outlet side, The 3.5Ni steel does not come into contact with the steam at 380 ° C. or higher, and it becomes possible to suppress embrittlement of the member formed of the 3.5Ni steel disposed on the steam outlet side.
Furthermore, since the mechanical strength characteristics of the rotor for the low-pressure turbine can be maintained even if the inlet steam temperature of the low-pressure turbine is higher than before, the steam at 630 ° C. or higher can be maintained without increasing the high-pressure turbine and the intermediate-pressure turbine. Can be used, the amount of CO 2 exhaust from the steam turbine equipment can be reduced, and the thermal efficiency of the steam turbine equipment can be improved.

低圧タービンへ導入される蒸気温度が高温となる場合においても、機械的強度特性を維持することができ、さらに製造コスト、製作日数が増加することなく品質面でも問題のない低圧タービン用ロータとして利用することができる。   Even when the temperature of the steam introduced into the low-pressure turbine is high, the mechanical strength characteristics can be maintained, and it can be used as a rotor for low-pressure turbines with no problems in quality without increasing manufacturing costs and production days. can do.

Claims (5)

高圧タービン、中圧タービン及び低圧タービンを備えた蒸気タービン設備で使用される低圧タービン用ロータにおいて、
蒸気入口側に配置される1CrMoV鋼、2.25CrMoV鋼又は10CrMoV鋼で形成された部材と、
蒸気出口側に配置される3.5Ni鋼で形成された部材とを、溶接によって接合して構成されていることを特徴とする低圧タービン用ロータ。
In a rotor for a low-pressure turbine used in a steam turbine facility including a high-pressure turbine, an intermediate-pressure turbine, and a low-pressure turbine,
A member formed of 1CrMoV steel, 2.25CrMoV steel or 10CrMoV steel disposed on the steam inlet side;
A rotor for a low-pressure turbine, characterized in that a member formed of 3.5Ni steel disposed on the steam outlet side is joined by welding.
高圧タービン、中圧タービン及び低圧タービンを備えた蒸気タービン設備で使用される低圧タービン用ロータにおいて、
蒸気入口側に配置される部材と、蒸気出口側に配置される部材とを溶接によって接合して構成するとともに、両部材を3.5Ni鋼で形成し、前記蒸気入口側に配置される部材を低不純物の3.5Ni鋼で形成したことを特徴とする低圧タービン用ロータ。
In a rotor for a low-pressure turbine used in a steam turbine facility including a high-pressure turbine, an intermediate-pressure turbine, and a low-pressure turbine,
A member disposed on the steam inlet side and a member disposed on the steam outlet side are joined and configured by welding, and both members are formed of 3.5Ni steel, and the member disposed on the steam inlet side A low-pressure turbine rotor characterized by being made of low-impurity 3.5Ni steel.
前記蒸気入口側に配置される低不純物3.5Ni鋼は、重量%で、Si:0.1%以下、Mn:0.1%以下、不可避的不純物が重量%で、P:0.02%以下、S:0.02%以下、Sn:0.02%以下、As:0.02%以下、Sb:0.02%以下、Al:0.02%以下、Cu:0.1%以下を含有することを特徴とする請求項2記載の低圧タービン用ロータ。   The low-impurity 3.5Ni steel disposed on the steam inlet side is, by weight%, Si: 0.1% or less, Mn: 0.1% or less, unavoidable impurities are weight%, P: 0.02% Hereinafter, S: 0.02% or less, Sn: 0.02% or less, As: 0.02% or less, Sb: 0.02% or less, Al: 0.02% or less, Cu: 0.1% or less The low-pressure turbine rotor according to claim 2, wherein the rotor is contained. 前記低圧タービンの入口蒸気温度が380℃以上である蒸気タービン設備で使用され、
前記低圧タービン内を流通する蒸気温度が380℃以上となる領域を前記蒸気入口側に配置される部材で構成し、
前記低圧タービン内を流通する蒸気温度が380℃未満となる領域を前記蒸気出口側に配置される部材で構成することを特徴とする請求項1又は2記載の低圧タービン用ロータ。
Used in steam turbine equipment where the steam temperature at the inlet of the low-pressure turbine is 380 ° C. or higher;
A region in which the steam temperature circulating in the low-pressure turbine is 380 ° C. or higher is configured with a member disposed on the steam inlet side,
The rotor for a low-pressure turbine according to claim 1 or 2, wherein a region in which a steam temperature flowing through the low-pressure turbine is less than 380 ° C is configured by a member disposed on the steam outlet side.
前記高圧タービンおよび中圧タービンの少なくともいずれか一方の入口蒸気温度が630℃以上である蒸気タービン設備で使用されることを特徴とする請求項1〜4何れか一つに記載の低圧タービン用ロータ。   The rotor for a low-pressure turbine according to any one of claims 1 to 4, wherein the rotor is used in a steam turbine facility in which an inlet steam temperature of at least one of the high-pressure turbine and the intermediate-pressure turbine is 630 ° C or higher. .
JP2010502367A 2008-08-11 2009-07-30 Rotor for low pressure turbine Expired - Fee Related JP4995317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010502367A JP4995317B2 (en) 2008-08-11 2009-07-30 Rotor for low pressure turbine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008207421 2008-08-11
JP2008207421 2008-08-11
JP2010502367A JP4995317B2 (en) 2008-08-11 2009-07-30 Rotor for low pressure turbine
PCT/JP2009/063896 WO2010018773A1 (en) 2008-08-11 2009-07-30 Rotor for low-pressure turbine

Publications (2)

Publication Number Publication Date
JPWO2010018773A1 true JPWO2010018773A1 (en) 2012-01-26
JP4995317B2 JP4995317B2 (en) 2012-08-08

Family

ID=41668918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010502367A Expired - Fee Related JP4995317B2 (en) 2008-08-11 2009-07-30 Rotor for low pressure turbine

Country Status (6)

Country Link
US (1) US20100202891A1 (en)
EP (1) EP2312127A4 (en)
JP (1) JP4995317B2 (en)
KR (2) KR20100033421A (en)
CN (1) CN101772622A (en)
WO (1) WO2010018773A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207594A (en) * 2011-03-30 2012-10-25 Mitsubishi Heavy Ind Ltd Rotor of rotary machine, and rotary machine
US20130323075A1 (en) * 2012-06-04 2013-12-05 General Electric Company Nickel-chromium-molybdenum-vanadium alloy and turbine component
EP3269924A1 (en) * 2016-07-14 2018-01-17 Siemens Aktiengesellschaft Rotating shaft and method for producing a rotating shaft

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176305A (en) * 1981-04-24 1982-10-29 Hitachi Ltd Steam turbine rotor
JP2000064805A (en) * 1998-06-09 2000-02-29 Mitsubishi Heavy Ind Ltd Different material welded rotor of steam turbine
JP2003145271A (en) * 2001-11-13 2003-05-20 Mitsubishi Heavy Ind Ltd Method for welding different kinds of steel grades
JP2006170006A (en) * 2004-12-14 2006-06-29 Toshiba Corp Steam turbine power generation system and low pressure turbine rotor
JP2007278064A (en) * 2006-04-03 2007-10-25 Hitachi Ltd Steam turbine welded rotor and method of manufacturing it, and steam turbine and power generating plant using it
JP2007321630A (en) * 2006-05-31 2007-12-13 Toshiba Corp Steam turbine rotor and steam turbine
JP2008093668A (en) * 2006-10-06 2008-04-24 Hitachi Ltd Welded rotor of steam turbine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126958A (en) * 1981-01-28 1982-08-06 Toshiba Corp Low alloy steel for rotor
US4962586A (en) * 1989-11-29 1990-10-16 Westinghouse Electric Corp. Method of making a high temperature - low temperature rotor for turbines
JP3315800B2 (en) * 1994-02-22 2002-08-19 株式会社日立製作所 Steam turbine power plant and steam turbine
JP3905739B2 (en) * 2001-10-25 2007-04-18 三菱重工業株式会社 12Cr alloy steel for turbine rotor, method for producing the same, and turbine rotor
JP4783053B2 (en) * 2005-04-28 2011-09-28 株式会社東芝 Steam turbine power generation equipment
JP2009520603A (en) * 2005-12-22 2009-05-28 アルストム テクノロジー リミテッド Method for manufacturing a welded rotor in a low-pressure turbine
EP1860279A1 (en) * 2006-05-26 2007-11-28 Siemens Aktiengesellschaft Welded LP-turbine shaft
JP4908137B2 (en) * 2006-10-04 2012-04-04 株式会社東芝 Turbine rotor and steam turbine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176305A (en) * 1981-04-24 1982-10-29 Hitachi Ltd Steam turbine rotor
JP2000064805A (en) * 1998-06-09 2000-02-29 Mitsubishi Heavy Ind Ltd Different material welded rotor of steam turbine
JP2003145271A (en) * 2001-11-13 2003-05-20 Mitsubishi Heavy Ind Ltd Method for welding different kinds of steel grades
JP2006170006A (en) * 2004-12-14 2006-06-29 Toshiba Corp Steam turbine power generation system and low pressure turbine rotor
JP2007278064A (en) * 2006-04-03 2007-10-25 Hitachi Ltd Steam turbine welded rotor and method of manufacturing it, and steam turbine and power generating plant using it
JP2007321630A (en) * 2006-05-31 2007-12-13 Toshiba Corp Steam turbine rotor and steam turbine
JP2008093668A (en) * 2006-10-06 2008-04-24 Hitachi Ltd Welded rotor of steam turbine

Also Published As

Publication number Publication date
KR20130051014A (en) 2013-05-16
WO2010018773A1 (en) 2010-02-18
CN101772622A (en) 2010-07-07
JP4995317B2 (en) 2012-08-08
US20100202891A1 (en) 2010-08-12
EP2312127A4 (en) 2015-01-07
EP2312127A1 (en) 2011-04-20
KR20100033421A (en) 2010-03-29

Similar Documents

Publication Publication Date Title
JP4908137B2 (en) Turbine rotor and steam turbine
CA2142924C (en) Steam-turbine power plant and steam turbine
KR101193727B1 (en) Rotor of rotary machine and method for manufacturing same
KR101207147B1 (en) Ni-BASE ALLOY-HIGH CHROMIUM STEEL STRUCTURE AND PROCESS FOR PRODUCING THE Ni-BASE ALLOY-HIGH CHROMIUM STEEL STRUCTURE
EP1067206A2 (en) Steam turbine blade, and steam turbine and steam turbine power plant using the same
US20060216145A1 (en) Heat resisting steel, steam turbine rotor shaft using the steel, steam turbine, and steam turbine power plant
Gibbons Recent advances in steels for coal fired power plant: a review
JP4995317B2 (en) Rotor for low pressure turbine
Nomoto Development in materials for ultra-supercritical (USC) and advanced ultra-supercritical (A-USC) steam turbines
EP0759499B2 (en) Steam-turbine power plant and steam turbine
JP5389763B2 (en) Rotor shaft for steam turbine, steam turbine and steam turbine power plant using the same
EP2180149B1 (en) Steam turbine equipment
JP3716684B2 (en) High strength martensitic steel
JP3661456B2 (en) Last stage blade of low pressure steam turbine
US8083492B2 (en) Welded low-pressure turbine shaft
Nomoto Development in materials for ultra-supercritical and advanced ultra-supercritical steam turbines
JP2004150443A (en) Steam turbine blade, steam turbine using it, and steam turbine power generating plant

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4995317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees