JPWO2009157445A1 - Iron alloy article, iron alloy member and manufacturing method thereof - Google Patents

Iron alloy article, iron alloy member and manufacturing method thereof Download PDF

Info

Publication number
JPWO2009157445A1
JPWO2009157445A1 JP2010518022A JP2010518022A JPWO2009157445A1 JP WO2009157445 A1 JPWO2009157445 A1 JP WO2009157445A1 JP 2010518022 A JP2010518022 A JP 2010518022A JP 2010518022 A JP2010518022 A JP 2010518022A JP WO2009157445 A1 JPWO2009157445 A1 JP WO2009157445A1
Authority
JP
Japan
Prior art keywords
phosphate
iron alloy
metal
iron
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010518022A
Other languages
Japanese (ja)
Other versions
JP5648212B2 (en
Inventor
勤二 平井
勤二 平井
宗也 古川
宗也 古川
勇 秋山
勇 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADVANCED TECHNOLOGIES, INC.
Original Assignee
ADVANCED TECHNOLOGIES, INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADVANCED TECHNOLOGIES, INC. filed Critical ADVANCED TECHNOLOGIES, INC.
Priority to JP2010518022A priority Critical patent/JP5648212B2/en
Publication of JPWO2009157445A1 publication Critical patent/JPWO2009157445A1/en
Application granted granted Critical
Publication of JP5648212B2 publication Critical patent/JP5648212B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/026Chemical pre-treatments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74283Iron or alloys of iron, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Laminated Bodies (AREA)

Abstract

アルコキシシラン含有トリアジンチオールを用いて、樹脂と鉄合金との間に優れた接合力を有する鉄合金物品およびその製造方法を提供する。鉄または鉄合金より成る基体と、該基体の表面の少なくとも一部分に、脱水シラノール含有トリアジンチオール誘導体被覆を介して接合する樹脂とを含む鉄合金物品であって、前記基体と前記脱水シラノール含有トリアジンチオール誘導体被覆との間に、水酸化物、カルボン酸塩、リン酸塩、硫酸塩、チオ硫酸塩、塩化物および過塩化物よりなる群から選ばれる少なくとも1つを含む金属化合物皮膜を有する鉄合金物品である。An iron alloy article having an excellent bonding force between a resin and an iron alloy using an alkoxysilane-containing triazine thiol and a method for producing the same are provided. An iron alloy article comprising a base made of iron or an iron alloy and a resin bonded to at least a part of the surface of the base via a dehydrated silanol-containing triazine thiol derivative coating, the base and the dehydrated silanol-containing triazine thiol An iron alloy having a metal compound film containing at least one selected from the group consisting of hydroxide, carboxylate, phosphate, sulfate, thiosulfate, chloride and perchloride between the derivative coating It is an article.

Description

本発明は、表面の少なくとも一部に樹脂が接合されている鉄および鋼(ステンレス鋼を含む)を含む鉄合金物品と表面の少なくともに一部に樹脂を被覆するために表面処理を行った鉄合金部材ならびにこれらの製造方法に関し、とりわけ、樹脂と鉄合金基体との密着性に優れる鉄合金物品および鉄合金部材ならびにこれらの製造方法に関する。   The present invention relates to an iron alloy article including iron and steel (including stainless steel) in which a resin is bonded to at least a part of the surface, and iron subjected to a surface treatment to cover at least a part of the surface with the resin. More particularly, the present invention relates to an iron alloy article and an iron alloy member that are excellent in adhesion between a resin and an iron alloy substrate, and a method for producing the same.

鉄および鉄合金(本明細書の鉄合金とは当然に鋼を含む概念であり、鋼にはステンレス鋼も含まれる。)は、強度および剛性が高く、産業用材料として広く使用されている。そして、鉄合金基体表面の少なくとも一部に樹脂を接合した鉄合金物品は、鉄合金基体により樹脂成形品単独では得られない、優れた剛性を確保するとともに、樹脂により鉄合金単独では形成できない複雑形状や審美性を得ることが可能であり、前述の用途を含む多くの分野で使用されている。   Iron and iron alloys (the iron alloy in this specification is a concept including steel naturally, and steel includes stainless steel) have high strength and rigidity and are widely used as industrial materials. Further, an iron alloy article in which a resin is bonded to at least a part of the surface of the iron alloy substrate cannot be obtained by the resin molded product alone with the iron alloy substrate, and has a high rigidity and cannot be formed by the iron alloy alone with the resin. It is possible to obtain shape and aesthetics, and it is used in many fields including the aforementioned applications.

従来、鉄合金基体に予め切り欠きまたは穿孔を設け、例えば射出成形により樹脂を鉄合金基体にインモールド成形を行う際に、樹脂がこれらの部分に入ることにより樹脂を鉄合金基体に固定する方法が用いられている。   Conventionally, a method of fixing a resin to an iron alloy substrate by providing a notch or a perforation in the iron alloy substrate in advance and performing in-mold molding of the resin on the iron alloy substrate by, for example, injection molding. Is used.

しかし、この方法では、切り欠きまたは穿孔を設ける場所を確保する必要があり、デザイン上の制約が大きいという問題、および切り欠きまたは穿孔部以外では、樹脂と基体との間に接合力が作用しないため基体と樹脂との間に隙間を生じる場合があるという問題がある。従って、この手法では、鉄合金基体と樹脂が完全に一体化していないため、変形応力が作用した時に、変形しやすい樹脂部分が容易に変形し、鉄合金基体の剛性を生かすことが出来ないため、鉄合金基体による樹脂成形品単独では得られない剛性を確保することができない場合がある。   However, in this method, it is necessary to secure a place where a notch or a perforation is to be provided, and there is a problem that design restrictions are large, and a bonding force does not act between the resin and the substrate except for the notch or the perforated part. Therefore, there is a problem that a gap may be generated between the base and the resin. Therefore, in this method, since the iron alloy substrate and the resin are not completely integrated, the deformable resin portion is easily deformed when a deformation stress is applied, and the rigidity of the iron alloy substrate cannot be utilized. In some cases, it is not possible to ensure rigidity that cannot be obtained by a resin molded product using an iron alloy substrate alone.

そこで切り欠きや穿孔を必要とせず、また、樹脂と基体との接合面の全体に亘り接合力を作用できる方法として、金属材料表面に酸性表面処理剤を接触させ、金属材料の表面上に被覆層を形成し、次いで、被覆層の一部もしくは全部を剥離した後、シランカップリング剤を含有する樹脂組成物を塗布、乾燥し、次に、ゴム/金属用水性接着剤プライマーとゴム/金属用水性接着剤を塗布、乾燥後にゴム材料を加硫接着するゴムと金属の接着方法(特許文献1)が提案されている。   Therefore, an acidic surface treatment agent is brought into contact with the surface of the metal material and coated on the surface of the metal material as a method that does not require notches or perforations and can apply a bonding force over the entire bonding surface between the resin and the substrate. After forming a layer and then peeling off part or all of the coating layer, a resin composition containing a silane coupling agent is applied and dried, and then an aqueous adhesive primer for rubber / metal and rubber / metal A rubber-metal bonding method (Patent Document 1) has been proposed in which a water-based adhesive is applied and dried to vulcanize and bond a rubber material.

さらに、半導体パッケージ用リードフレームと封止材の密着性向上のために、リードフレーム材の鉄合金材表面を、ダルロール圧延またはエッチングにより微細な凹凸を有する粗化表面とし、その算術平均粗さを0.05〜0.8μmかつ表面積代替値が1.005〜1.08として、その上にエポキシ樹脂などの熱硬化性樹脂の封止材を成形する方法(特許文献2)、およびコネクタの金属端子と樹脂製保持部をインモールド成形する際に接着強度を高めるために、金属部品の表面にあらかじめトリアジンチオール類で表面処理を施したり、表面粗さRaが1〜10μmとなるように酸化力の強い過マンガン酸水溶液のようなエッチング溶液でマイクロエッチングを行う、または酸化剤によって表面に酸化被膜を形成させたりした後、多官能性モノマーを含有するナイロン樹脂を成形・一体化し、放射線照射によるナイロン樹脂の架橋と100℃以上での熱処理を行う方法(特許文献3)が提案されている。
特開2001−260235号公報 特平10−270629号公報 特開2001−047462号公報
Furthermore, in order to improve the adhesion between the lead frame for semiconductor packages and the sealing material, the surface of the iron alloy material of the lead frame material is a roughened surface having fine irregularities by dull roll rolling or etching, and the arithmetic average roughness thereof is A method of forming a sealing material of thermosetting resin such as epoxy resin on the surface area of 0.05 to 0.8 μm and a surface area alternative value of 1.005 to 1.08, and connector metal In order to increase the adhesive strength when in-mold molding the terminal and the resin holding part, the surface of the metal part is surface-treated with triazine thiols in advance, or the oxidizing power so that the surface roughness Ra becomes 1 to 10 μm. Multi-functional after micro-etching with an etching solution such as strong permanganic acid aqueous solution or forming an oxide film on the surface with an oxidizing agent There has been proposed a method (Patent Document 3) in which a nylon resin containing a functional monomer is molded and integrated, and the nylon resin is crosslinked by radiation and subjected to heat treatment at 100 ° C. or higher.
JP 2001-260235 A Japanese Patent Publication No. 10-270629 JP 2001-047462 A

しかしながら、上記の方法は、工程が複雑過ぎたり、適用できる樹脂がゴム、熱硬化性樹脂やナイロン樹脂に限定されるという問題があった。   However, the above method has a problem that the process is too complicated, and the applicable resin is limited to rubber, thermosetting resin and nylon resin.

特に、トリアジンチオールを用いて金属表面に反応性官能基を導入する方法を鉄合金と樹脂との接合に用いた場合、銅合金等の金属と樹脂との接合に比べて、得られる接合強度が低いという問題があった。   In particular, when a method of introducing a reactive functional group on a metal surface using triazine thiol is used for joining an iron alloy and a resin, the obtained joining strength is higher than that of joining a metal such as a copper alloy and a resin. There was a problem of being low.

そこで、本発明は、アルコキシシラン含有トリアジンチオールを用いて、樹脂と鉄合金との間に優れた接合力を有する鉄合金物品およびその製造方法を提供することを目的とする。また、本発明は、表面に樹脂を接合するための鉄合金部材の提供およびその製造方法の提供も目的とする。   Accordingly, an object of the present invention is to provide an iron alloy article having an excellent bonding force between a resin and an iron alloy using an alkoxysilane-containing triazine thiol and a method for producing the same. Another object of the present invention is to provide an iron alloy member for bonding a resin to the surface and to provide a manufacturing method thereof.

本発明は、鉄または鉄合金より成る基体と、該基体の表面の少なくとも一部分に、脱水シラノール含有トリアジンチオール誘導体被覆を介して接合する樹脂とを含む鉄合金物品であって、前記脱水シラノール含有トリアジンチオール誘導体被覆との間に、水酸化物、カルボン酸塩、リン酸塩、硫酸塩、チオ硫酸塩、塩化物および過塩化物よりなる群から選ばれる少なくとも1つを含む金属化合物を含むことを特徴とする鉄合金物品である。   The present invention relates to an iron alloy article comprising a base made of iron or an iron alloy and a resin bonded to at least a part of the surface of the base via a dehydrated silanol-containing triazine thiol derivative coating, the dehydrated silanol-containing triazine Including a metal compound containing at least one selected from the group consisting of hydroxide, carboxylate, phosphate, sulfate, thiosulfate, chloride and perchloride between the thiol derivative coating and It is a featured iron alloy article.

本発明は、また、鉄または鉄合金より成る鉄合金基体の少なくとも一部分に、アルコキシシラン含有トリアジンチオール誘導体を用いて樹脂を接合する、鉄合金物品の製造方法であって、前記鉄合金基体の表面の少なくとも一部に、カルボン酸、カルボン酸塩、リン酸、リン酸塩、硫酸、硫酸塩、チオ硫酸塩、塩酸、塩化物、過塩素酸および過塩素酸塩よりなる群から選ばれる少なくとも1つを含む溶液を用い、金属化合物皮膜を形成する工程と、前記金属化合物皮膜に、アルコキシシラン含有トリアジンチオール誘導体を接触させる工程と、前記アルコキシシラン含有トリアジンチオール誘導体を接触させた部分に樹脂を接合する工程を含むことを特徴とする製造方法である。   The present invention is also a method for producing an iron alloy article, in which a resin is bonded to at least a part of an iron alloy substrate made of iron or an iron alloy using an alkoxysilane-containing triazine thiol derivative, the surface of the iron alloy substrate At least part of at least one selected from the group consisting of carboxylic acid, carboxylate, phosphoric acid, phosphate, sulfuric acid, sulfate, thiosulfate, hydrochloric acid, chloride, perchloric acid and perchlorate A step of forming a metal compound film using a solution containing two, a step of bringing the alkoxysilane-containing triazine thiol derivative into contact with the metal compound film, and bonding a resin to a portion where the alkoxysilane-containing triazine thiol derivative is in contact It is a manufacturing method characterized by including the process to do.

本発明は、更に、鉄または鉄合金より成る基体と、該基体の表面の少なくとも一部分に、脱水シラノール含有トリアジンチオール誘導体またはシラノール含有トリアジンチオール誘導体を被覆した鉄合金部材であって、前記基体と前記脱水シラノール含有トリアジンチオール誘導体被覆または前記シラノール含有トリアジンチオール誘導体被覆との間に、水酸化物、カルボン酸塩、リン酸塩、硫酸塩、チオ硫酸塩、塩化物および過塩素酸塩よりなる群から選ばれる少なくとも1つを含む金属化合物皮膜を含むことを特徴とする鉄合金部材である。   The present invention further includes a base made of iron or an iron alloy, and an iron alloy member in which at least a part of the surface of the base is coated with a dehydrated silanol-containing triazine thiol derivative or a silanol-containing triazine thiol derivative, the base and the base Between the dehydrated silanol-containing triazine thiol derivative coating or the silanol-containing triazine thiol derivative coating, from the group consisting of hydroxide, carboxylate, phosphate, sulfate, thiosulfate, chloride and perchlorate An iron alloy member comprising a metal compound film containing at least one selected.

本発明は、更にまた、鉄または鉄合金より成る鉄合金基体の少なくとも一部分に、アルコキシシラン含有トリアジンチオール誘導体を接触させる鉄合金部材の製造方法であって、前記鉄合金基体の表面の少なくとも一部にカルボン酸、カルボン酸塩、リン酸、リン酸塩、硫酸、硫酸塩、チオ硫酸塩、塩酸、塩化物、過塩素酸および過塩化物よりなる群から選ばれる少なくとも1つを含む溶液を用い、金属化合物皮膜を形成する工程と、前記金属化合物皮膜に、アルコキシシラン含有トリアジンチオール誘導体を接触させる工程とを含むことを特徴とする製造方法である。   The present invention is also a method for producing an iron alloy member in which an alkoxysilane-containing triazine thiol derivative is brought into contact with at least a portion of an iron alloy substrate made of iron or an iron alloy, wherein at least a portion of the surface of the iron alloy substrate. And a solution containing at least one selected from the group consisting of carboxylic acid, carboxylate, phosphoric acid, phosphate, sulfuric acid, sulfate, thiosulfate, hydrochloric acid, chloride, perchloric acid and perchloride And a step of forming a metal compound film, and a step of bringing the metal compound film into contact with an alkoxysilane-containing triazine thiol derivative.

本発明により、鉄合金基体の表面に金属化合物皮膜を導入し、アルコキシシラン含有トリアジンチオール誘導体(例えば、アルコキシシラン含有トリアジンチオール金属塩)を用いて、金属化合物皮膜表面に反応性官能基を導入することにより、その表面に樹脂を高い接合力で接合可能な鉄合金部材、および鉄合金基体と樹脂との間に高い接合強度を有する鉄合金物品、ならびにそれらの製造方法を提供することが可能となる。   According to the present invention, a metal compound film is introduced on the surface of an iron alloy substrate, and a reactive functional group is introduced on the surface of the metal compound film using an alkoxysilane-containing triazine thiol derivative (for example, an alkoxysilane-containing triazine thiol metal salt). As a result, it is possible to provide an iron alloy member capable of bonding a resin to the surface thereof with a high bonding force, an iron alloy article having a high bonding strength between the iron alloy substrate and the resin, and a manufacturing method thereof. Become.

本発明に係る鉄合金物品の断面図である。It is sectional drawing of the iron alloy article which concerns on this invention. 従来の鉄合金物品の断面図である。It is sectional drawing of the conventional iron alloy article.

1 鉄合金基体、2 金属化合物皮膜、3 脱水シラノール含有トリアジンチオール誘導体被膜、4 樹脂   1 Iron alloy substrate, 2 metal compound film, 3 dehydrated silanol-containing triazine thiol derivative film, 4 resin

鉄合金基体と樹脂とを接合する際に、アルコキシシラン含有トリアジンチオール誘導体を用いても十分に高い結合力が得られない理由について、本発明の発明者らは検討を行い、これが鉄合金基体の表面の酸化膜に起因する可能性が高いことを見出した。   The inventors of the present invention have examined the reason why a sufficiently high bonding force cannot be obtained even when using an alkoxysilane-containing triazine thiol derivative when bonding an iron alloy substrate and a resin. It was found that there is a high possibility that it is caused by the surface oxide film.

アルコキシシラン含有トリアジンチオール誘導体を用いて、金属と樹脂とを接合する場合、アルコキシシラン部分が金属と化学結合し、金属表面にトリアジンチオール誘導体部分よりなる反応性官能基が導入される。この官能基(トリアジンチオール誘導体部分)が樹脂と化学結合することにより、金属と樹脂との間を、脱水シラノール含有トリアジンチオール誘導体(上記アルコキシシラン部分が金属と化学結合の結果、アルコキシシラン含有トリアジンチオール誘導体より生じる生成物)を介して化学的に結合でき、これにより強い結合力を得ることが可能となる。   When a metal and a resin are bonded using an alkoxysilane-containing triazine thiol derivative, the alkoxysilane part chemically bonds to the metal, and a reactive functional group composed of the triazine thiol derivative part is introduced onto the metal surface. This functional group (triazine thiol derivative part) is chemically bonded to the resin, so that the dehydrating silanol-containing triazine thiol derivative (the result of the above-mentioned alkoxysilane part being chemically bonded to the metal is the result of the alkoxysilane-containing triazine thiol). The product can be chemically bonded via a product generated from the derivative, thereby making it possible to obtain a strong bonding force.

通常、アルコキシシラン含有トリアジンチオール誘導体のアルコキシシラン基と金属との結合は、アルコキシシラン含有トリアジンチオール誘導体の溶液を調製し、この溶液中に金属を浸漬することで金属表面の水酸基(OH基)とアルコキシシラン基が反応することで行われる。このため、プラズマ処理によって金属表面の酸化被膜を除去すると共に、金属表面に水酸基(OH基)を導入する方法が一般的に用いられている。   Usually, the bond between the alkoxysilane group of the alkoxysilane-containing triazine thiol derivative and the metal is prepared by preparing a solution of the alkoxysilane-containing triazine thiol derivative, and immersing the metal in this solution to form a hydroxyl group (OH group) on the metal surface. This is performed by reacting an alkoxysilane group. For this reason, a method of removing an oxide film on a metal surface by plasma treatment and introducing a hydroxyl group (OH group) on the metal surface is generally used.

しかし、鉄は酸素との結合力が強く、鉄合金表面に形成される酸化被膜が緻密で、かつ強固なために、OH基が十分に導入されず、鉄合金とアルコキシシラン基との間で十分な結合数(密度)を得ることができないものと推測できる。また、単に酸化鉄の被膜を取り除くだけでは、鉄が酸素と結びついて直ちに新たな酸化被膜を形成してしまうため、高い結合力を得ることが出来ない。   However, since iron has a strong binding force with oxygen, and the oxide film formed on the surface of the iron alloy is dense and strong, the OH group is not sufficiently introduced, and the iron alloy and the alkoxysilane group It can be presumed that a sufficient number of bonds (density) cannot be obtained. In addition, simply removing the iron oxide film results in the formation of a new oxide film immediately after iron is combined with oxygen, so that a high bonding strength cannot be obtained.

そこで、本発明者らは、鉄合金基体を表面処理することで、金属表面にアルコキシシラン基と反応して結合する、水酸化物、カルボン酸塩、リン酸塩、硫酸塩、チオ硫酸塩、塩化物、および過塩化物のうちの少なくとも1つを含む金属化合物皮膜を形成した後に、アルコキシシラン含有トリアジンチオールを用いて、鉄合金基体とその表面に配置される樹脂とを強く結合するという本願記載の発明に至った。
以下に本発明の詳細を説明する。
Therefore, the present inventors surface-treat the iron alloy substrate to react with and bond to the alkoxysilane group on the metal surface, hydroxide, carboxylate, phosphate, sulfate, thiosulfate, The present application in which after forming a metal compound film containing at least one of chloride and perchloride, the iron alloy substrate and the resin disposed on the surface thereof are strongly bonded using alkoxysilane-containing triazine thiol. It came to the invention of description.
Details of the present invention will be described below.

図1は、全体が100で表される本発明にかかる鉄合金物品の一部分を模式的に示す断面図である。鉄または鉄合金から成る鉄合金基体1と樹脂層4とが、詳細を後述する金属化合物皮膜2と脱水シラノール含有トリアジンチオール誘導体被覆3とを介して接合している。
脱水シラノール含有トリアジンチオール誘導体3を用いて、鉄合金基体1と樹脂層4とを接合した従来の鉄合金物品200の断面を図2に示す。従来の鉄合金物品200は、金属化合物皮膜2を有していない。
FIG. 1 is a cross-sectional view schematically showing a part of an iron alloy article according to the present invention, the whole of which is represented by 100. As shown in FIG. An iron alloy substrate 1 made of iron or an iron alloy and a resin layer 4 are bonded via a metal compound film 2 and a dehydrated silanol-containing triazine thiol derivative coating 3 which will be described in detail later.
FIG. 2 shows a cross section of a conventional iron alloy article 200 in which the iron alloy substrate 1 and the resin layer 4 are joined using the dehydrated silanol-containing triazine thiol derivative 3. The conventional iron alloy article 200 does not have the metal compound film 2.

本発明にかかる鉄合金物品100の特徴である金属化合物皮膜2は、水酸化物、カルボン酸塩、リン酸塩、硫酸塩、チオ硫酸塩、塩化物および過塩化物よりなる群から選ばれる少なくとも1つである。
この金属化合物皮膜2を用いることで鉄合金基体1と樹脂4との間が強く接合されている本発明の鉄合金物品100を製造する方法を以下に詳述する。
The metal compound film 2 that is a feature of the iron alloy article 100 according to the present invention is at least selected from the group consisting of hydroxide, carboxylate, phosphate, sulfate, thiosulfate, chloride, and perchloride. One.
A method of manufacturing the iron alloy article 100 of the present invention in which the iron alloy substrate 1 and the resin 4 are strongly bonded by using the metal compound film 2 will be described in detail below.

1.前処理
詳細を後述する金属化合物皮膜を形成する処理(金属化合物処理)を行う前に、前処理として脱脂処理を行うのが好ましい。
1. Pretreatment It is preferable to perform a degreasing treatment as a pretreatment before performing a treatment (metal compound treatment) for forming a metal compound film, which will be described in detail later.

脱脂処理は、鉄合金基体成形品の脱脂等に通常用いられる方法でよく、例えば水酸化ナトリウム等の強アルカリを用いて脱脂する。好ましい脱脂条件は、例えば濃度10〜100g/L、温度50℃〜90℃の水酸化ナトリウム中での脱脂である。より好ましい条件は、濃度10〜100g/L(最も好ましくは10〜20g/L)、温度50℃〜90℃の水酸化ナトリウム中で予備脱脂を行った後、さらに、濃度10〜100g/L(最も好ましくは60〜90g/L)、温度50℃〜90℃の水酸化ナトリウム中で脱脂を行う。   The degreasing treatment may be a method usually used for degreasing of an iron alloy base molded article, for example, degreasing using a strong alkali such as sodium hydroxide. Preferred degreasing conditions are, for example, degreasing in sodium hydroxide at a concentration of 10 to 100 g / L and a temperature of 50C to 90C. More preferable conditions are that after preliminary degreasing in sodium hydroxide at a concentration of 10 to 100 g / L (most preferably 10 to 20 g / L) and a temperature of 50 ° C. to 90 ° C., a concentration of 10 to 100 g / L ( Most preferably, degreasing is performed in sodium hydroxide at a temperature of 50 ° C. to 90 ° C.

これ以外にも、炭酸ナトリウム、重炭酸ナトリウム、ホウ砂のようなナトリウム塩、オルソケイ酸ナトリウム、珪酸ナトリウムのようなケイ酸塩類、第1リン酸ナトリウム、第2リン酸ナトリウム、第3リン酸ナトリウム等の各種リン酸ナトリウム、ピロリン酸ナトリウム、ヘキサメタリン酸ナトリウムのようなリン酸塩類を用いて脱脂を行ってもよい。   In addition, sodium salts such as sodium carbonate, sodium bicarbonate, borax, silicates such as sodium orthosilicate, sodium silicate, primary sodium phosphate, secondary sodium phosphate, tertiary sodium phosphate Degreasing may be performed using various phosphates such as sodium phosphate, sodium pyrophosphate, and sodium hexametaphosphate.

なお、鉄合金基体1は、鉄または鉄合金より成り、鉄合金としては工業上用いられるいずれの鉄合金も使用可能である。好ましい鉄合金の例は、炭素鋼、合金鋼、ニッケルクロム鋼(ニッケルクロムステンレス鋼)、ニッケルクロムモリブデン鋼、クロム鋼、クロムモリブデン鋼、マンガン鋼である。   The iron alloy substrate 1 is made of iron or an iron alloy, and any iron alloy used in industry can be used as the iron alloy. Examples of preferred iron alloys are carbon steel, alloy steel, nickel chromium steel (nickel chromium stainless steel), nickel chromium molybdenum steel, chromium steel, chromium molybdenum steel, manganese steel.

そして、その形状は、圧延板等の板(シート)状、パイプ等の管状、ワイヤー等の円筒状を含む如何なる形状であってもよい。   And the shape may be any shape including a plate shape such as a rolled plate, a tubular shape such as a pipe, and a cylindrical shape such as a wire.

2.金属化合物処理
脱脂処理(前処理)の後、鉄合金基体1の表面に、以下に示す金属化合物処理(「化合物処理」ともいう)により、水酸化物、カルボン酸塩、リン酸塩、硫酸塩、チオ硫酸塩、塩化物および過塩化物の少なくとも1つを含む金属化合物皮膜2(「化合物皮膜」ともいう)を形成する。
金属化合物処理は以下に示す、酸または化合物の少なくとも1つを用いて実施する。
2. Metal compound treatment After the degreasing treatment (pretreatment), the surface of the iron alloy substrate 1 is subjected to the following metal compound treatment (also referred to as “compound treatment”) to produce hydroxide, carboxylate, phosphate, sulfate. Then, a metal compound film 2 (also referred to as “compound film”) containing at least one of thiosulfate, chloride, and perchloride is formed.
The metal compound treatment is carried out using at least one of the following acids or compounds.

なお、本明細書に示す「金属化合物被膜」の「金属」とは、鉄合金基体1に含まれる金属および詳細を以下に示す金属化合物処理用いる溶液(金属化合物処理液)に含まれる金属のうちの少なくとも一種を意味する。   The “metal” in the “metal compound coating” shown in this specification refers to the metal contained in the iron alloy substrate 1 and the metal contained in the solution (metal compound treatment liquid) used in the metal compound treatment shown in detail below. Means at least one of

(1)カルボン酸、カルボン酸塩
タンニン酸のようなカルボン酸水溶液を用い、鉄合金基体1に金属化合物処理を行う。これにより、鉄合金基体1の表面に、カルボン酸の鉄塩および/または金属塩、および/または水酸化物を主成分とする金属化合物皮膜が生成する。
(1) Carboxylic acid, carboxylate salt An iron alloy substrate 1 is treated with a metal compound using an aqueous carboxylic acid solution such as tannic acid. As a result, a metal compound film mainly composed of iron salt and / or metal salt of carboxylic acid and / or hydroxide is formed on the surface of the iron alloy substrate 1.

また、ラウリン酸、パルミチン酸、ステアリン酸などのカルボン酸のナトリウム塩またはカリウム塩のようなアルカリ金属塩の水溶液を用い金属化合物処理を行ってもよい。この場合、鉄合金基体1の表面には、これらカルボン酸のアルカリ金属塩、ならびに水酸化物を主とする金属化合物皮膜2が形成する。この金属化合物皮膜2は、上記カルボン酸の鉄塩および/または金属塩を含む場合がある。   Alternatively, the metal compound treatment may be performed using an aqueous solution of an alkali metal salt such as a sodium salt or potassium salt of a carboxylic acid such as lauric acid, palmitic acid, or stearic acid. In this case, a metal compound film 2 mainly composed of alkali metal salts of these carboxylic acids and hydroxides is formed on the surface of the iron alloy substrate 1. The metal compound film 2 may contain the iron salt and / or metal salt of the carboxylic acid.

ギ酸、酢酸、シュウ酸、コハク酸の金属塩の水溶液を用いて金属化合物処理を行ってもよい。この場合、鉄合金基体1の表面には、これらカルボン酸の金属塩、および/または水酸化物を主とする金属化合物皮膜2が形成する。この金属化合物皮膜2は、上記カルボン酸の鉄塩を含む場合がある。例えばシュウ酸金属塩水溶液を用いて金属化合物処理を行う場合、水溶液は、濃度:0.5〜100g/L、温度30〜70℃であることが好ましい。   The metal compound treatment may be performed using an aqueous solution of a metal salt of formic acid, acetic acid, oxalic acid, or succinic acid. In this case, a metal compound film 2 mainly composed of a metal salt of these carboxylic acids and / or a hydroxide is formed on the surface of the iron alloy substrate 1. The metal compound film 2 may contain the iron salt of the carboxylic acid. For example, when the metal compound treatment is performed using an aqueous metal oxalate salt solution, the aqueous solution preferably has a concentration of 0.5 to 100 g / L and a temperature of 30 to 70 ° C.

(2)リン酸、リン酸塩
リン酸、例えばリン酸水素亜鉛、リン酸水素マンガン、リン酸水素カルシウムのようなリン酸水素金属塩、例えばリン酸二水素カルシウムのようなリン酸二水素金属塩、および例えばリン酸亜鉛、リン酸マンガン、リン酸カルシウム、リン酸カルシウムナトリウム、リン酸ジルコニウムのようなリン酸金属塩等の−HPO、−HPOまたは−POを含有するリン酸およびリン酸塩の溶液を用い、金属化合物処理を行う。なお、本明細書でいうリン酸とはオルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸等を含む広義のリン酸であり、リン酸塩とは、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸等の広義のリン酸の化合物を含む概念である。
(2) Phosphoric acid, phosphate Phosphoric acid, metal hydrogen phosphate such as zinc hydrogen phosphate, manganese hydrogen phosphate, calcium hydrogen phosphate, metal dihydrogen phosphate such as calcium dihydrogen phosphate salts and, for example zinc phosphate, manganese phosphate, calcium phosphate, sodium calcium phosphate, -H 2 PO 4, such as phosphoric acid metal salts such as zirconium phosphate, phosphoric acid and phosphate containing -HPO 4 or -PO 4 The metal compound treatment is performed using a salt solution. The phosphoric acid referred to in this specification is phosphoric acid in a broad sense including orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, and the like, and phosphate refers to orthophosphoric acid, metaphosphoric acid, pyrolinic acid. It is a concept including a compound of phosphoric acid in a broad sense such as acid, triphosphoric acid, and tetraphosphoric acid.

リン酸を用いることで、鉄合金基体1の表面にリン酸鉄および/またはリン酸金属塩および/または水酸化物を主成分とする金属化合物皮膜2が形成される。   By using phosphoric acid, the metal compound film 2 mainly composed of iron phosphate and / or metal phosphate and / or hydroxide is formed on the surface of the iron alloy substrate 1.

一方、リン酸亜鉛、リン酸水素亜鉛、リン酸マンガン、リン酸水素マンガン、リン酸水素金属塩、リン酸二水素金属塩、リン酸金属塩、リン酸水素カルシウム、リン酸二水素カルシウム、リン酸カルシウム、リン酸カルシウムナトリウムおよびリン酸ジルコニウムのようなリン酸塩(リン酸の金属塩)の水溶液を用いて金属化合物処理を行うことにより、鉄合金基体1の表面に、これらリン酸塩および/または水酸化物を主成分とする金属化合物皮膜2を形成できる。これらリン酸塩および/または水酸化物の金属化合物皮膜2は、リン酸鉄および/またはリン酸金属塩を含んでもよい。また、例えば種類の異なる金属のリン酸塩を混合した溶液中で金属化合物処理を行うことにより、リン酸鉄およびリン酸金属塩以外の複数のリン酸塩を含んでもよい。   Meanwhile, zinc phosphate, zinc hydrogen phosphate, manganese phosphate, manganese hydrogen phosphate, metal hydrogen phosphate, metal dihydrogen phosphate, metal phosphate, calcium hydrogen phosphate, calcium dihydrogen phosphate, calcium phosphate The surface of the iron alloy substrate 1 is subjected to a metal compound treatment using an aqueous solution of a phosphate (metal salt of phosphoric acid) such as sodium calcium phosphate and zirconium phosphate. It is possible to form a metal compound film 2 containing an object as a main component. These metal salt film 2 of phosphate and / or hydroxide may contain iron phosphate and / or metal phosphate. Further, for example, a plurality of phosphates other than iron phosphate and metal phosphate may be included by performing a metal compound treatment in a solution in which different types of metal phosphates are mixed.

例えば、リン酸ジルコニウムの水溶液を用いて金属化合物処理を行う場合、水溶液は、濃度:1〜100g/L、温度:20〜90℃であることが好ましい。また、これ以外のリン酸、リン酸亜鉛、リン酸水素亜鉛、リン酸マンガン、リン酸水素マンガン、リン酸水素金属塩、リン酸二水素金属塩、リン酸金属塩、リン酸水素カルシウム、リン酸二水素カルシウム、リン酸カルシウム、リン酸カルシウムナトリウムのようなリン酸、リン酸塩の水溶液を用いる場合は、水溶液は、濃度:5〜30g/L、温度20〜90℃であるのことが好ましく、温度については25℃〜75℃であることがより好ましい。   For example, when the metal compound treatment is performed using an aqueous solution of zirconium phosphate, the aqueous solution preferably has a concentration of 1 to 100 g / L and a temperature of 20 to 90 ° C. Other than this, phosphoric acid, zinc phosphate, zinc hydrogen phosphate, manganese phosphate, manganese hydrogen phosphate, hydrogen phosphate metal salt, dihydrogen phosphate metal salt, metal phosphate phosphate, calcium hydrogen phosphate, phosphorus When using an aqueous solution of phosphoric acid and phosphate such as calcium dihydrogen phosphate, calcium phosphate, and sodium calcium phosphate, the aqueous solution preferably has a concentration of 5 to 30 g / L and a temperature of 20 to 90 ° C. Is more preferably 25 ° C to 75 ° C.

(3)硫酸、硫酸塩
硫酸、または硫酸ナトリウム、硫酸マンガン、硫酸カルシウム、硫酸チタニル、硫酸ジルコニウム、硫酸カリウム、硫酸ナトリウムのような硫酸の金属塩水溶液を用い、金属化合物処理を行う。硫酸を用いた場合には、硫酸鉄、硫酸金属塩もしくは水酸化物またはこれらの混合物を主成分とする金属化合物皮膜2が鉄合金基体1の表面に形成される。一方、硫酸ナトリウム、硫酸マンガン、硫酸カルシウム、硫酸チタニル、硫酸ジルコニウム、硫酸カリウム、硫酸ナトリウムのような硫酸の金属塩水溶液を用いると、これら金属塩および/または水酸化物を主成分とする金属化合物皮膜2が形成される。得られた金属化合物皮膜2は、硫酸鉄および/または硫酸金属塩を含んでもよい。
例えば、硫酸カリウム金属塩の水溶液を用いて金属化合物処理を行う場合、水溶液は、濃度0.5〜30g/L、温度30〜60℃であることが好ましい。
(3) Sulfuric acid, sulfate salt Metal compound treatment is performed using sulfuric acid or an aqueous metal salt solution of sulfuric acid such as sodium sulfate, manganese sulfate, calcium sulfate, titanyl sulfate, zirconium sulfate, potassium sulfate, sodium sulfate. When sulfuric acid is used, a metal compound film 2 mainly composed of iron sulfate, metal sulfate or hydroxide, or a mixture thereof is formed on the surface of the iron alloy substrate 1. On the other hand, when an aqueous metal salt solution of sulfuric acid such as sodium sulfate, manganese sulfate, calcium sulfate, titanyl sulfate, zirconium sulfate, potassium sulfate, sodium sulfate is used, a metal compound mainly composed of these metal salts and / or hydroxides A film 2 is formed. The obtained metal compound film 2 may contain iron sulfate and / or a metal sulfate.
For example, when the metal compound treatment is performed using an aqueous solution of potassium sulfate metal salt, the aqueous solution preferably has a concentration of 0.5 to 30 g / L and a temperature of 30 to 60 ° C.

(4)チオ硫酸塩
チオ硫酸ナトリウム、チオ硫酸カルシウムのようなチオ硫酸塩の水溶液を用い金属化合物処理を行う。鉄基体1の表面にこれらチオ硫酸塩および/または水酸化物を主成分とする金属化合物皮膜2を形成する。なお、得られた金属化合物皮膜2は、チオ硫酸鉄および/またはチオ硫酸金属塩を含んでもよい。
例えば、チオ硫酸カルシウムの水溶液を用いて金属化合物処理を行う場合、水溶液は、濃度20〜50g/L、温度40〜60℃であることが好ましい。
(4) Thiosulfate The metal compound treatment is performed using an aqueous solution of thiosulfate such as sodium thiosulfate and calcium thiosulfate. A metal compound film 2 mainly composed of these thiosulfates and / or hydroxides is formed on the surface of the iron substrate 1. The obtained metal compound film 2 may contain iron thiosulfate and / or metal thiosulfate.
For example, when the metal compound treatment is performed using an aqueous solution of calcium thiosulfate, the aqueous solution preferably has a concentration of 20 to 50 g / L and a temperature of 40 to 60 ° C.

(5)塩酸、塩化物
塩酸、または塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、塩化鉄、塩化アルミニウムのような塩酸の金属塩水溶液を用い、金属化合物処理を行う。塩酸を用いた場合には、塩化鉄、金属塩化物もしくは水酸化物またはこれらの混合物を主成分とする金属化合物皮膜2が鉄合金基体1の表面に形成される。一方、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、塩化鉄、塩化アルミニウムのような金属塩水溶液を用いると、これら金属塩および/または水酸化物を主成分とする金属化合物皮膜2が形成される。得られた金属化合物皮膜2は、塩化鉄および/または金属塩化物を含んでもよい。
例えば、塩化カリウム金属塩の水溶液を用いて金属化合物処理を行う場合、水溶液は、濃度5〜100g/L、温度50〜90℃であることが好ましい。
(5) Hydrochloric acid, chloride Metal compound treatment is performed using hydrochloric acid or an aqueous metal salt solution of hydrochloric acid such as sodium chloride, potassium chloride, calcium chloride, magnesium chloride, iron chloride, and aluminum chloride. When hydrochloric acid is used, a metal compound film 2 mainly composed of iron chloride, metal chloride or hydroxide, or a mixture thereof is formed on the surface of the iron alloy substrate 1. On the other hand, when an aqueous metal salt solution such as sodium chloride, potassium chloride, calcium chloride, magnesium chloride, iron chloride, or aluminum chloride is used, a metal compound film 2 mainly composed of these metal salts and / or hydroxides is formed. The The obtained metal compound film 2 may contain iron chloride and / or metal chloride.
For example, when the metal compound treatment is performed using an aqueous solution of potassium chloride metal salt, the aqueous solution preferably has a concentration of 5 to 100 g / L and a temperature of 50 to 90 ° C.

(6)過塩素酸、過塩素酸塩
過塩素酸、または過塩素酸ナトリウム、過塩素酸カリウム、過塩素酸カルシウム、過塩素酸アンモニウム、過塩素酸鉄、過塩素酸銅、過塩素酸ニッケルのような過塩素酸の金属塩水溶液を用い、金属化合物処理を行う。過塩素酸を用いた場合には、塩化鉄、金属塩化物もしくは水酸化物またはこれらの混合物を主成分とする金属化合物皮膜2が鉄合金基体1の表面に形成される。一方、過塩素酸ナトリウム、過塩素酸カリウム、過塩素酸カルシウム、過塩素酸アンモニウム、過塩素酸鉄、過塩素酸銅、過塩素酸ニッケルのような過塩素酸の金属塩水溶液を用いると、これら金属塩および/または水酸化物を主成分とする金属化合物皮膜2が形成される。得られた金属化合物皮膜2は、塩化鉄および/または金属塩化物を含んでもよい。
例えば、過塩素酸鉄を用いて金属化合物処理を行う場合、水溶液は、濃度1〜50g/L、温度30〜60℃であることが好ましい。
(6) Perchloric acid, perchlorate Perchloric acid or sodium perchlorate, potassium perchlorate, calcium perchlorate, ammonium perchlorate, iron perchlorate, copper perchlorate, nickel perchlorate The metal compound treatment is performed using an aqueous metal salt solution of perchloric acid. When perchloric acid is used, a metal compound film 2 mainly composed of iron chloride, metal chloride or hydroxide, or a mixture thereof is formed on the surface of the iron alloy substrate 1. On the other hand, when using an aqueous metal salt solution of perchloric acid such as sodium perchlorate, potassium perchlorate, calcium perchlorate, ammonium perchlorate, iron perchlorate, copper perchlorate, nickel perchlorate, A metal compound film 2 mainly composed of these metal salts and / or hydroxides is formed. The obtained metal compound film 2 may contain iron chloride and / or metal chloride.
For example, when the metal compound treatment is performed using iron perchlorate, the aqueous solution preferably has a concentration of 1 to 50 g / L and a temperature of 30 to 60 ° C.

上記に示す金属化合物処理の中でも硫酸化合物(または硫酸)、チオ硫酸化合物を用いる方法が好ましく、硫酸化合物(または硫酸)を用いる方法がより好ましい。   Among the metal compound treatments described above, a method using a sulfuric acid compound (or sulfuric acid) or a thiosulfuric acid compound is preferable, and a method using a sulfuric acid compound (or sulfuric acid) is more preferable.

リン酸、リン酸塩を用いる方法では、好ましくは厚さが0.05〜5μm、より好ましくは厚さ0.05〜2μmと、比較的一様な金属化合物皮膜2を形成することが可能である。
このため、アルコキシシラン含有トリアジンチオール誘導体が金属化合物皮膜2に浸透して、金属化合物皮膜2と反応するサイトが多くなり、トリアジンチオール誘導体のアルコキシシランが加水分解して生成するシラノールと金属化合物皮膜成分のリン酸基および/または水酸基とが、加熱処理によって脱水反応を起こし、化学的に結合する。この様にして、生成する脱水シラノール含有トリアジンチオール誘導体被覆3と金属化合物皮膜2との間に、より強固な結合を得ることができる。
In the method using phosphoric acid and phosphate, it is possible to form a relatively uniform metal compound film 2 having a thickness of preferably 0.05 to 5 μm, more preferably 0.05 to 2 μm. is there.
Therefore, the silanol and metal compound film component produced by the alkoxysilane-containing triazine thiol derivative penetrating into the metal compound film 2 and reacting with the metal compound film 2 are increased, and the alkoxysilane of the triazine thiol derivative is hydrolyzed. The phosphoric acid group and / or hydroxyl group of the compound undergoes a dehydration reaction by heat treatment and is chemically bonded. In this way, a stronger bond can be obtained between the resulting dehydrated silanol-containing triazine thiol derivative coating 3 and the metal compound film 2.

さらに、樹脂4が接合後に冷却されて収縮する際に、この比較的厚い金属化合物皮膜2が樹脂4と金属化合物皮膜2との間に生じる応力を分散吸収し、樹脂4の剥離および金属化合物皮膜2のクラックの発生を防ぐ効果を有する。リン酸またはリン酸塩の濃度および温度が上述した好ましい5〜50g/L、溶液の温度30〜60℃が好ましい。この範囲内であれば、比較的短い時間で緻密な金属化合物皮膜2を得ることが可能である。   Further, when the resin 4 is cooled and contracts after bonding, the relatively thick metal compound film 2 disperses and absorbs stress generated between the resin 4 and the metal compound film 2, and the resin 4 is peeled off and the metal compound film. 2 has the effect of preventing the occurrence of cracks. The concentration and temperature of phosphoric acid or phosphate are preferably 5 to 50 g / L, and the solution temperature is preferably 30 to 60 ° C. Within this range, it is possible to obtain a dense metal compound film 2 in a relatively short time.

なお、上記の溶液を用いた金属化合物処理は、鉄合金基体1の全体または一部を溶液(金属化合物処理液)に浸漬することのみでなく、鉄合金基体2の表面の全部または一部を、スプレー、塗布等により溶液を被覆すること、または溶液と接触させることも含む。   The metal compound treatment using the above solution not only immerses the whole or part of the iron alloy substrate 1 in the solution (metal compound treatment solution) but also all or part of the surface of the iron alloy substrate 2. Coating the solution by spraying, coating, etc., or contacting with the solution.

従って、上記から明らかなように、金属化合物皮膜2は、必ずしも鉄合金基体2の表面全体に形成される必要はなく、適宜、必要な部分にのみ形成してもよい。   Therefore, as is apparent from the above, the metal compound film 2 is not necessarily formed on the entire surface of the iron alloy substrate 2, and may be formed only on necessary portions as appropriate.

また、上述の金属化合物処理は組み合わせることが可能であることは言うまでもない。
すなわち、複数の上述した金属化合物処理に用いる溶液(金属化合物処理液)を混合した溶液を用いて金属化合物処理を行ってもよい。また、上述した金属化合物処理に用いる溶液(金属化合物処理液)のうちの一種類を用いて金属化合物処理を行った後、別の種類の金属化合物処理液を用いて更に金属化合物処理を行ってもよい。
Needless to say, the above metal compound treatments can be combined.
That is, you may perform a metal compound process using the solution which mixed the solution (metal compound process liquid) used for the several metal compound process mentioned above. Moreover, after performing a metal compound process using one kind of the solution (metal compound process liquid) used for the metal compound process mentioned above, a metal compound process is further performed using another kind of metal compound process liquid. Also good.

上述の金属化合物処理により得られた金属化合物被膜2は粗面化していることが多い。すなわち、金属化合物被膜2の表面粗さは金属化合物処理を行う前の鉄合金基体1の表面粗さより粗いことが多い。
例えば、日本工業規格(JIS B0601:2001)で規定される算術平均粗さRaが0.09μm以下である鉄合金基体1の表面に上述の金属化合物処理を施すことで、算術平均粗さRaが0.10μm以上の金属化合物皮膜2を形成することができる。
金属化合物被膜2の表面粗面化は、金属化合物被膜2の上に形成される脱水シラノール含有トリアジンチオール誘導体被膜3と金属化合物皮膜2との接触面積を増加できることから、接合強度の向上に寄与する。
The metal compound coating 2 obtained by the above-described metal compound treatment is often roughened. That is, the surface roughness of the metal compound coating 2 is often rougher than the surface roughness of the iron alloy substrate 1 before the metal compound treatment.
For example, the arithmetic average roughness Ra is obtained by performing the above-described metal compound treatment on the surface of the iron alloy substrate 1 having an arithmetic average roughness Ra of 0.09 μm or less as defined in Japanese Industrial Standard (JIS B0601: 2001). A metal compound film 2 having a thickness of 0.10 μm or more can be formed.
The surface roughening of the metal compound coating 2 can increase the contact area between the dehydrated silanol-containing triazine thiol derivative coating 3 formed on the metal compound coating 2 and the metal compound coating 2, and thus contributes to an improvement in bonding strength. .

3.アルコキシシラン含有トリアジンチオール誘導体の被覆
上述の方法により、鉄合金基体1の表面に金属化合物皮膜2を形成した後、金属化合物皮膜2にアルコキシシラン含有トリアジンチオール誘導体を被覆する。
用いるアルコキシシラン含有トリアジンチオール誘導体は、例えばアルコキシシラン含有トリアジンチオール金属塩のような、既知のものでよい。
即ち、以下の(式1)または(式2)に示した一般式で表される。
3. Coating of Alkoxysilane-Containing Triazine Thiol Derivative After forming the metal compound film 2 on the surface of the iron alloy substrate 1 by the method described above, the metal compound film 2 is coated with the alkoxysilane-containing triazine thiol derivative.
The alkoxysilane-containing triazine thiol derivative used may be a known one such as an alkoxysilane-containing triazine thiol metal salt.
That is, it is represented by the general formula shown in the following (Formula 1) or (Formula 2).

Figure 2009157445
Figure 2009157445

Figure 2009157445
Figure 2009157445

式中のRは、例えば、H−、CH−、C−、CH=CHCH−、C−、C−、C13−のいずれかである。Rは、例えば、−CHCH−、−CHCHCH−、−CHCHCHCHCHCH−、−CHCHSCHCH−、−CHCHNHCHCHCH−のいずれかである。Rは、例えば、−(CHCHCHOCONHCHCHCH−、または、−(CHCHN−CHCHCH−であり、この場合、NとRとが環状構造となる。R 1 in the formula is, for example, any one of H—, CH 3 —, C 2 H 5 —, CH 2 ═CHCH 2 —, C 4 H 9 —, C 6 H 5 —, C 6 H 13 —. is there. R 2 is, for example, —CH 2 CH 2 —, —CH 2 CH 2 CH 2 —, —CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 —, —CH 2 CH 2 SCH 2 CH 2 —, —CH. 2 CH 2 NHCH 2 CH 2 CH 2 —. R 3 is, for example, — (CH 2 CH 2 ) 2 CHOCONHCH 2 CH 2 CH 2 — or — (CH 2 CH 2 ) 2 N—CH 2 CH 2 CH 2 —, in which case N and R 3 is a ring structure.

式中のXは、CH−、C−、n−C−、i−C−、n−C−、i−C−、t−C−のいずれかである。Yは、CHO−、CO−、n−CO−、i−CO−、n−CO−、i−CO−、t−CO−等のアルコキシ基である。式中のnは1、2、3のいずれかの数字である。Mはアルカリ金属であり、好ましくはLi、Na、KまたはCeである。X in the formula is, CH 3 -, C 2 H 5 -, n-C 3 H 7 -, i-C 3 H 7 -, n-C 4 H 9 -, i-C 4 H 9 -, t- One of C 4 H 9 —. Y is, CH 3 O-, C 2 H 5 O-, n-C 3 H 7 O-, i-C 3 H 7 O-, n-C 4 H 9 O-, i-C 4 H 9 O- a t-C 4 H 9 O- and alkoxy groups. N in a formula is either 1, 2, or 3 numbers. M is an alkali metal, preferably Li, Na, K or Ce.

金属化合物皮膜2を被覆すると次に、アルコキシシラン含有トリアジンチオール誘導体の溶液を作製する。用いる溶媒は、アルコキシシラン含有トリアジンジチオール誘導体が溶解するものであればよく、水およびアルコール系溶剤がこれに該当する。例えば、水、メタノール、エタノール、プロパノール、カルビトール、エチレングリコール、ポリエチレングリコールおよびこれらの混合溶媒も使用可能である。アルコキシシラン含有トリアジンジチオール誘導体の好ましい濃度は0.001g〜20g/Lであり、より好ましい濃度は0.01g〜10g/Lである。   When the metal compound film 2 is coated, a solution of an alkoxysilane-containing triazine thiol derivative is then prepared. The solvent to be used is not particularly limited as long as the alkoxysilane-containing triazine dithiol derivative can be dissolved, and water and alcohol solvents correspond to this. For example, water, methanol, ethanol, propanol, carbitol, ethylene glycol, polyethylene glycol, and a mixed solvent thereof can be used. A preferable concentration of the alkoxysilane-containing triazine dithiol derivative is 0.001 g to 20 g / L, and a more preferable concentration is 0.01 g to 10 g / L.

得られた、アルコキシシラン含有トリアジンジチオール誘導体溶液中に、金属化合物皮膜2を備えた鉄合金基体1を浸漬する。溶液の好ましい温度範囲、より好ましい温度範囲は、それぞれ0℃〜100℃、20℃〜80℃である。一方、浸漬時間は、1分〜200分が好ましく、3分〜120分がより好ましい。   In the obtained alkoxysilane-containing triazine dithiol derivative solution, the iron alloy substrate 1 provided with the metal compound film 2 is immersed. The preferable temperature range of a solution and the more preferable temperature range are 0 degreeC-100 degreeC, and 20 degreeC-80 degreeC, respectively. On the other hand, the immersion time is preferably 1 minute to 200 minutes, more preferably 3 minutes to 120 minutes.

この浸漬により、アルコキシシラン含有トリアジンチオール誘導体のアルコキシシラン部分がシラノールとなり、熱処理により、上述した金属化合物皮膜2に含まれる水酸化物、カルボン酸塩、リン酸塩、硫酸塩、チオ硫酸塩、塩化物および過塩化物少なくとも1つと脱水結合することから、浸漬後のアルコキシシラン含有トリアジンチオール誘導体は、シラノール含有トリアジンチオール誘導体となり、金属化合物皮膜2との間に水素結合的な緩い結合を生じ化学的結合力を得ることができる。   By this immersion, the alkoxysilane portion of the alkoxysilane-containing triazine thiol derivative becomes silanol, and by the heat treatment, the hydroxide, carboxylate, phosphate, sulfate, thiosulfate, chloride contained in the metal compound film 2 described above. Since it is dehydrated with at least one of the product and perchloride, the alkoxysilane-containing triazine thiol derivative after immersion becomes a silanol-containing triazine thiol derivative, which forms a hydrogen-bonded loose bond with the metal compound film 2 to form a chemical bond. A binding force can be obtained.

従って、これにより、鉄合金基体1と金属化合物皮膜2およびシラノール含有トリアジンチオール誘導体被覆よりなる、表面に樹脂を接合するのに用いる鉄合金部材を得ることができる。   Therefore, an iron alloy member used for joining a resin to the surface, which is composed of the iron alloy substrate 1, the metal compound film 2, and the silanol-containing triazine thiol derivative coating, can thus be obtained.

そして、この鉄合金部材を、乾燥および脱水反応促進熱処理を目的に100℃〜450℃まで加熱する。この加熱により、シラノール含有トリアジンチオール誘導体のシラノール部分に、脱水結合反応が起こることから、シラノール含有トリアジンチオール誘導体は、脱水シラノール含有トリアジンチオール誘導体に変わり、金属化合物皮膜2との間で化学的に結合する。   Then, this iron alloy member is heated to 100 ° C. to 450 ° C. for the purpose of drying and dehydration reaction promoting heat treatment. This heating causes a dehydration bond reaction to occur in the silanol portion of the silanol-containing triazine thiol derivative. Therefore, the silanol-containing triazine thiol derivative is changed into a dehydrated silanol-containing triazine thiol derivative and chemically bonded to the metal compound film 2. To do.

従って、これにより、鉄合金基体1と金属化合物皮膜2および脱水シラノール含有トリアジンチオール誘導体被覆3よりなる、表面に樹脂を接合するのに用いる鉄合金部材を得ることができる。   Therefore, an iron alloy member used for bonding a resin to the surface, which is composed of the iron alloy substrate 1, the metal compound film 2, and the dehydrated silanol-containing triazine thiol derivative coating 3, can be obtained.

次に、この脱水シラノール含有トリアジンチオール誘導体と樹脂との接合力をより強くするために、金属化合物皮膜2の上に形成された脱水シラノール含有トリアジンチオール誘導体を、必要に応じ適宜、接合補助剤として例えば、ジマレイミド類であるN,N’−m−フェニレンジマレイミドやN、N‘−ヘキサメエチレンジマレイミドのようなラジカル反応により結合性を有する化合物とジクルミルパーオキサイド、ベンゾイルパーオキサイドのような過酸化物またはその他のラジカル開始剤とを含む溶液に浸漬する。浸漬後、鉄合金部材を、30℃〜270℃で、1分〜600分間、乾燥・熱処理する。   Next, in order to strengthen the bonding force between the dehydrated silanol-containing triazine thiol derivative and the resin, the dehydrated silanol-containing triazine thiol derivative formed on the metal compound film 2 is appropriately used as a bonding aid as necessary. For example, compounds having binding properties by radical reaction such as N, N′-m-phenylene dimaleimide, which is a dimaleimide, and N, N′-hexameethylene dimaleimide, and diclemyl peroxide, benzoyl peroxide, etc. Immerse in a solution containing peroxide or other radical initiator. After immersion, the iron alloy member is dried and heat-treated at 30 ° C. to 270 ° C. for 1 minute to 600 minutes.

これにより、脱水シラノール含有トリアジンチオール誘導体は、トリアジンチオール金属塩(トリアジンチオール誘導体)部分の金属イオンが除去され、硫黄がメルカプト基になって、このメルカプト基がN,N’−m−フェニレンジマレイミドのマレイン酸の2つの二重結合部の一方と反応してN,N’−m−フェニレンジマレイミドを結合した脱水シラノール含有トリアジンチオール誘導体となる。
ラジカル開始剤は、樹脂を成形する際に行う加熱等の熱による分解でラジカルを生じ、上記マレイン酸による2つの二重結合部の他方の結合を開き、樹脂と反応、結合させる作用を有する。
As a result, the dehydrated silanol-containing triazine thiol derivative removes the metal ion of the triazine thiol metal salt (triazine thiol derivative) portion, and the sulfur becomes a mercapto group, and this mercapto group becomes N, N′-m-phenylenedimaleimide. It reacts with one of the two double bonds of maleic acid to form a dehydrated silanol-containing triazine thiol derivative bonded with N, N′-m-phenylene dimaleimide.
The radical initiator has a function of generating a radical by decomposition by heat such as heating performed when molding a resin, opening the other bond of the two double bonds by the maleic acid, and reacting and bonding with the resin.

さらに、必要に応じ適宜、過酸化物、レドックス触媒などのラジカル開始剤をベンゼン、エタノールなどの有機溶媒に溶解させた溶液を、浸漬またはスプレーにより噴霧する等により鉄合金部材表面に付着させて、風乾する。   Furthermore, if necessary, a solution in which a radical initiator such as a peroxide or a redox catalyst is dissolved in an organic solvent such as benzene or ethanol is attached to the surface of the iron alloy member by spraying by dipping or spraying. Air dry.

ラジカル開始剤は、樹脂を成形する際に行う加熱等の熱による分解でラジカルを生じ、上記マレイン酸による2つの二重結合部の他方の結合を開き、または、トリアジンチオール誘導体の金属塩部分に働いて、樹脂と反応、結合させる作用を有する。   The radical initiator generates radicals by thermal decomposition such as heating performed when molding the resin, opens the other bond of the two double bonds by the maleic acid, or forms a metal salt part of the triazine thiol derivative. It works to react and bond with the resin.

4.樹脂との接合
鉄金属基体1の表面に金属化合物皮膜2および脱水シラノール含有トリアジンチオール誘導体層3を有する鉄合金部材と樹脂4とを接合(複合一体化)して鉄物品100を得る。樹脂4は、加熱した状態で脱水シラノール含有トリアジンチオール誘導体層3と接触するように配置される。これにより、樹脂4と脱水シラノール含有トリアジンチオール誘導体3のトリアジンチオール誘導体部分(トリアジンチオール金属塩部分またはビスマレイミド類を結合したトリアジンチオール誘導体)が、ラジカル開始剤のラジカルを媒介として反応し、化学的結合を生じる。
なお、樹脂は、脱水シラノール含有トリアジンチオール誘導体被膜3の一部にのみ配置してもよい。
4). Bonding with Resin An iron alloy member having the metal compound film 2 and the dehydrated silanol-containing triazine thiol derivative layer 3 on the surface of the iron metal substrate 1 and the resin 4 are bonded (composite integrated) to obtain an iron article 100. The resin 4 is disposed so as to be in contact with the dehydrated silanol-containing triazine thiol derivative layer 3 in a heated state. As a result, the resin 4 and the triazine thiol derivative part of the dehydrated silanol-containing triazine thiol derivative 3 (triazine thiol metal salt part or triazine thiol derivative combined with bismaleimides) react with the radical of the radical initiator as a chemical, Create a bond.
The resin may be disposed only on a part of the dehydrated silanol-containing triazine thiol derivative coating 3.

加熱した樹脂4を脱水シラノール含有トリアジンチオール誘導体被覆3の上に配置する方法としては、例えば金型に鉄合金部材(金属基体1と金属化合物皮膜2と脱水シラノール含有トリアジンチオール誘導体被覆3を含む)を配置し、金型中に溶融樹脂を射出してインサート成形物品またはアウトサート成形物品を得る際に、金型および樹脂の熱によりラジカル開始剤を分解し、ラジカル反応によりトリアジンチオール誘導体被覆と樹脂を化学的に結合させて鉄合金部材と樹脂4とを接合する射出成形法、または樹脂成形後にオーブンまたは熱板上で射出成形品を加熱してラジカル開始剤を分解し、ラジカル反応により化学結合させて鉄合金部材と樹脂を接合する溶着法を用いることができる。   As a method of arranging the heated resin 4 on the dehydrated silanol-containing triazine thiol derivative coating 3, for example, an iron alloy member (including the metal substrate 1, the metal compound film 2, and the dehydrated silanol-containing triazine thiol derivative coating 3) is used as a mold. When a molten resin is injected into a mold to obtain an insert molded article or an outsert molded article, the radical initiator is decomposed by the heat of the mold and the resin, and the triazine thiol derivative coating and the resin are reacted by a radical reaction. Is an injection molding method in which the iron alloy member and the resin 4 are bonded together, or after the resin molding, the injection molded product is heated in an oven or a hot plate to decompose the radical initiator and chemically bond by radical reaction. Thus, a welding method for joining the iron alloy member and the resin can be used.

射出成形の場合は、金型温度20〜220℃、5秒〜10分間、溶着法の場合は、オーブンまたは熱板温度30〜430℃、1分〜10時間保持する。温度は、ラジカル開始剤の分解温度以上であることが必要であり、保持時間は、ラジカルがトリアジンチオール誘導体と樹脂との化学結合を生じるのに十分な時間が必要である。   In the case of injection molding, the mold temperature is 20 to 220 ° C., 5 seconds to 10 minutes, and in the case of the welding method, the oven or hot plate temperature is maintained at 30 to 430 ° C. for 1 minute to 10 hours. The temperature needs to be equal to or higher than the decomposition temperature of the radical initiator, and the holding time needs a sufficient time for the radical to form a chemical bond between the triazine thiol derivative and the resin.

なお、鉄合金部材と樹脂との接合は、上述の射出成形および射出成形品を加熱する溶着法に限定されるものではなく、工業的に用いられる鉄合金と樹脂との任意の接合手法を用いることができる。このような接合方法の好適な例として熱板溶着等が挙げられる。熱板溶着とは高温の板等の熱源に樹脂を接触させて溶融し、溶融した樹脂が冷えて固まる前に鉄合金部材を押し付けて接合する方法である。   The joining of the iron alloy member and the resin is not limited to the above-described injection molding and the welding method for heating the injection-molded product, and any joining technique for industrially used iron alloy and resin is used. be able to. A preferred example of such a joining method is hot plate welding. Hot plate welding is a method in which a resin is brought into contact with a heat source such as a hot plate and melted, and the iron alloy member is pressed and joined before the melted resin cools and solidifies.

また、接合する樹脂は、工業的に使用可能ないずれの樹脂も用いることが可能であるが、ラジカルに反応する元素、官能基を持った樹脂が好ましい。このような好ましい樹脂の例は、フェノール樹脂、ハイドロキノン樹脂、クレゾール樹脂、ポリビニルフェノール樹脂、レゾルシン樹脂、メラミン樹脂、グリプタル樹脂、エポキシ樹脂、変成エポキシ樹脂、ポリビニルホルマール樹脂、ポリヒドロキシメチルメタクリレートとその共重合体、ポリヒドロキシエチルアクリレートとその共重合体、アクリル樹脂、ポリビニルアルコールとその共重合体、ポリ酢酸ビニル、ポリエチレンテレフタレート樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリケトンイミド樹脂、ポリブチレンテレフタレート樹脂、不飽和ポリエステル樹脂、ポリフェニレンサルファイド樹脂、ポリフェニレンオキサイド樹脂、ポリスチレン樹脂、ABS樹脂、ポリカーボネート樹脂(PC樹脂)、6−ナイロン樹脂、66−ナイロン樹脂、610−ナイロン樹脂、芳香族ポリアミド樹脂、尿素樹脂、スチレン系エラストマー樹脂、オレフィン系エラストマー樹脂、塩ビ系エラストマー樹脂、ウレタン系エラストマー樹脂、エステル系エラストマー樹脂、アミド系エラストマー樹脂、およびこれらの樹脂から選ばれた2種以上を複合した複合樹脂、ならびにこれら樹脂をガラス繊維、カーボン繊維、セラミックス等で強化した強化樹脂である。   As the resin to be joined, any industrially usable resin can be used, but a resin having an element that reacts with a radical or a functional group is preferable. Examples of such preferred resins are phenol resin, hydroquinone resin, cresol resin, polyvinyl phenol resin, resorcin resin, melamine resin, glyphtal resin, epoxy resin, modified epoxy resin, polyvinyl formal resin, polyhydroxymethyl methacrylate and its co-polymer. Polymer, polyhydroxyethyl acrylate and copolymer, acrylic resin, polyvinyl alcohol and copolymer, polyvinyl acetate, polyethylene terephthalate resin, polyimide resin, polyetherimide resin, polyketoneimide resin, polybutylene terephthalate resin, unsaturated Polyester resin, polyphenylene sulfide resin, polyphenylene oxide resin, polystyrene resin, ABS resin, polycarbonate resin (PC resin), 6-nylon resin , 66-nylon resin, 610-nylon resin, aromatic polyamide resin, urea resin, styrene elastomer resin, olefin elastomer resin, vinyl chloride elastomer resin, urethane elastomer resin, ester elastomer resin, amide elastomer resin, and A composite resin in which two or more selected from these resins are combined, and a reinforced resin in which these resins are reinforced with glass fibers, carbon fibers, ceramics, or the like.

以上により、鉄合金基体1と樹脂4とを金属化合物皮膜2と脱水シラノール含有トリアジンチオール誘導体被覆3とを介して接合した鉄合金物品100を製造することが可能となる。   As described above, it is possible to manufacture the iron alloy article 100 in which the iron alloy substrate 1 and the resin 4 are joined through the metal compound film 2 and the dehydrated silanol-containing triazine thiol derivative coating 3.

なお、本方法で得られる鉄合金物品は、鉄合金基体と樹脂間の接合強度が高いという利点の他にも、鉄物品の表面に特に機械加工を施す必要がなく、また、接着剤、応力緩和用の弾性樹脂等を使用することなく、樹脂を接合できることから、加工工数が少なく、接合部がきれいに仕上がり、寸法精度良く仕上げることが出来るという利点を有する。   In addition to the advantage of high bonding strength between the iron alloy substrate and the resin, the iron alloy article obtained by this method does not require any special machining on the surface of the iron article. Since the resin can be joined without using a relaxation elastic resin or the like, there are advantages in that the number of processing steps is small, the joint is finished cleanly, and can be finished with high dimensional accuracy.

さらに、成形の難しい鉄基体の成形精度が悪い部分を樹脂で覆うことにより、樹脂成形精度で物品が仕上がり、製品の歩留まりを高くできるという利点を有する。   Furthermore, by covering a portion of the iron base, which is difficult to be molded, with poor molding accuracy with a resin, the article is finished with the resin molding accuracy and the yield of the product can be increased.

(1)前処理
長さ80mm、幅20mm、厚さ1.5mmのSUS304(日本工業規格で規定されている18Cr−8Niステンレス鋼、表面仕上げNo.2B)の板をおよび長さ80mm、幅20mm、厚さ1.2mmのSPCC(日本工業規格、JIS G 3141:2005で規定されている冷間圧延鋼板を前処理した。
(1) Pretreatment A plate of SUS304 (18Cr-8Ni stainless steel, surface finish No. 2B defined by Japanese Industrial Standard) having a length of 80 mm, a width of 20 mm, and a thickness of 1.5 mm, and a length of 80 mm and a width of 20 mm A cold rolled steel sheet as defined in SPCC (Japanese Industrial Standard, JIS G 3141: 2005) having a thickness of 1.2 mm was pretreated.

前処理(脱脂処理)は、実施例及び比較例の全てのサンプルについて、濃度15.0g/L、温度60℃の水酸化ナトリウム水溶液中で予備脱脂を行い、次いで濃度75.0g/L、温度70℃の水酸化ナトリウム水溶液中で60秒間脱脂を行なった後、水洗を60秒行い、80℃のオーブンで30分間乾燥した。   The pretreatment (degreasing treatment) is carried out by preliminarily degreasing all the samples of Examples and Comparative Examples in an aqueous sodium hydroxide solution having a concentration of 15.0 g / L and a temperature of 60 ° C. After degreasing in a 70 ° C. aqueous sodium hydroxide solution for 60 seconds, washing with water was performed for 60 seconds, followed by drying in an oven at 80 ° C. for 30 minutes.

(2)金属化合物処理
実施例1−1〜1−3のサンプルを得るために前記脱脂処理を行ったSUS304板(鉄合金基体)に以下の金属化合物処理を行った。
(2) Metal compound treatment The following metal compound treatment was performed on the SUS304 plate (iron alloy substrate) subjected to the degreasing treatment in order to obtain the samples of Examples 1-1 to 1-3.

実施例1−1のサンプルは、温度60℃、濃度40〜50g/Lの硫酸水溶液(水以外の成分の95%以上が硫酸)中で300秒間エッチングし、次いで湯洗(60℃)、水洗を各60秒間行った後、濃度60g/L、温度70℃の水酸化ナトリウム溶液中に180秒間浸漬し、鉄、クロム、ニッケル、マンガンの水酸化物および硫酸塩を主成分とする金属化合物皮膜を鉄合金板の表面に得た。   The sample of Example 1-1 was etched for 300 seconds in a sulfuric acid aqueous solution (95% or more of components other than water was sulfuric acid) at a temperature of 60 ° C. and a concentration of 40 to 50 g / L, and then washed with hot water (60 ° C.) and water. For 60 seconds, and then immersed in a sodium hydroxide solution having a concentration of 60 g / L and a temperature of 70 ° C. for 180 seconds to form a metal compound film mainly composed of iron, chromium, nickel, manganese hydroxide and sulfate. Was obtained on the surface of the iron alloy plate.

実施例1−2のサンプルでは、実施例1−1の強酸(硫酸)エッチングを600秒間に変更した。   In the sample of Example 1-2, the strong acid (sulfuric acid) etching of Example 1-1 was changed to 600 seconds.

実施例1−3のサンプルでは、濃度7.5〜10.0g/L、温度35℃のリン酸マンガン水溶液に30秒間浸漬し、リン酸マンガンを主成分とし、鉄、クロム、ニッケル、マンガンの水酸化物を含む、金属化合物皮膜をSUS304板表面に得た。   In the sample of Example 1-3, it was immersed in an aqueous manganese phosphate solution having a concentration of 7.5 to 10.0 g / L and a temperature of 35 ° C. for 30 seconds, and manganese phosphate was the main component, and iron, chromium, nickel, manganese A metal compound film containing a hydroxide was obtained on the surface of a SUS304 plate.

さらに実施例2−1〜2−24のサンプルを得るために上記前処理を行ったSUS304板に以下の金属化合物処理を行い、実施例2−25〜2−46を得るために上記処理を行ったSPCC(冷間圧延鋼板)に以下の金属化合物処理を行った。
また、金属化合物処理を行わない比較例サンプル2−1〜2−4についての詳細も以下に示す。
なお表1に実施例2−1〜2−46および比較例2−1〜2−8の作製条件を示す。
Further, the following pretreatment was performed on the SUS304 plate that had been pretreated to obtain the samples of Examples 2-1 to 2-24, and the above treatment was performed to obtain Examples 2-25 to 2-46. SPCC (cold rolled steel sheet) was subjected to the following metal compound treatment.
Moreover, the detail about the comparative example samples 2-1 to 2-4 which do not perform a metal compound process is also shown below.
Table 1 shows the production conditions of Examples 2-1 to 2-46 and Comparative Examples 2-1 to 2-8.

Figure 2009157445
Figure 2009157445

また実施例2−1〜2−46のサンプルについては、金属化合物処理後に表面粗さRa(JIS B0601:2001に規定されている算術平均粗さRa)を測定した。一方、金属化合物処理を行わない比較例2−1〜2−8については上記の脱脂処理(前処理)後に表面粗さRaを測定した。
表面粗さRaの測定は、株式会社キーエンス製レーザー顕微鏡VK−8710を用い測定した。また、比較のため未処理サンプル(脱脂処理をしていないサンプル)についても表面粗さを測定した。
表面粗さRaの測定結果を表1に示す。未処理サンプルの表面粗さRaはSUS304で0.08μm、SPCC(冷間圧延鋼板)で0.34μmであった。
Moreover, about the sample of Examples 2-1 to 2-46, surface roughness Ra (arithmetic mean roughness Ra prescribed | regulated to JISB0601: 2001) was measured after the metal compound process. On the other hand, for Comparative Examples 2-1 to 2-8 in which the metal compound treatment was not performed, the surface roughness Ra was measured after the above degreasing treatment (pretreatment).
The surface roughness Ra was measured using a laser microscope VK-8710 manufactured by Keyence Corporation. For comparison, the surface roughness of untreated samples (samples not subjected to degreasing treatment) was also measured.
Table 1 shows the measurement results of the surface roughness Ra. The surface roughness Ra of the untreated sample was 0.08 μm for SUS304, and 0.34 μm for SPCC (cold rolled steel sheet).

実施例2−1〜2−8のサンプルを、温度60℃、濃度40〜50g/Lの硫酸水溶液(水以外の成分の95%以上が硫酸)中で300秒間エッチングし、次いで湯洗(60℃)、水洗を各60秒間行った。この処理により実施例2−1〜2−8のサンプルの表面に鉄、クロム、ニッケル、マンガンの水酸化物および硫酸塩を主成分とする金属化合物皮膜を鉄合金板の表面に得た。金属化合物処理後のRaは0.15〜0.23μmで未処理サンプルと比較し、0.06〜0.14μm増加した。   The samples of Examples 2-1 to 2-8 were etched for 300 seconds in a sulfuric acid aqueous solution (95% or more of components other than water were sulfuric acid) at a temperature of 60 ° C. and a concentration of 40 to 50 g / L, and then washed with hot water (60 ℃) and water washing for 60 seconds each. By this treatment, a metal compound film mainly composed of iron, chromium, nickel, manganese hydroxide and sulfate was obtained on the surfaces of the samples of Examples 2-1 to 2-8 on the surface of the iron alloy plate. Ra after the metal compound treatment was 0.15 to 0.23 μm, which was increased by 0.06 to 0.14 μm compared to the untreated sample.

実施例2−9〜2−12のサンプルを、濃度90〜120g/Lの硫酸に、濃度90〜120g/Lのシュウ酸を加えた混酸水溶液(水以外の成分の95%以上が硫酸およびシュウ酸)を用いて温度60℃で600秒間エッチングし、次いで60秒間水洗した後、濃度20g/L、室温の希硝酸に600秒浸漬し、次いで60秒間水洗した。この処理により実施例2−9〜2−12のサンプルの表面に、鉄、クロム、ニッケル、マンガンの水酸化物および硫酸塩、シュウ酸塩、硝酸塩を主成分とする金属化合物皮膜を得た。金属化合物処理後のRaは0.29〜0.38μmで未処理サンプルと比較し、0.21〜0.30μm増加した。   Samples of Examples 2-9 to 2-12 were mixed acid aqueous solutions in which oxalic acid having a concentration of 90 to 120 g / L was added to sulfuric acid having a concentration of 90 to 120 g / L (95% or more of components other than water were sulfuric acid and Acid) for 600 seconds at a temperature of 60 ° C., then washed with water for 60 seconds, immersed in diluted nitric acid at a concentration of 20 g / L and room temperature for 600 seconds, and then washed with water for 60 seconds. By this treatment, metal compound films mainly composed of hydroxides of iron, chromium, nickel, manganese, sulfates, oxalates, and nitrates were obtained on the surfaces of the samples of Examples 2-9 to 2-12. Ra after the metal compound treatment was 0.29 to 0.38 μm, which was 0.21 to 0.30 μm higher than that of the untreated sample.

実施例2−13〜2−16のサンプルを、温度60℃、濃度40〜50g/Lの硫酸水溶液(水以外の成分の95%以上が硫酸)中で300秒間エッチングし、湯洗(60℃)および水洗を各60秒間行った後、温度40℃、濃度10〜30g/Lのリン酸水溶液(水以外の成分の90%以上がリン酸)中で180秒間浸漬し、60秒間水洗した。この処理により実施例2−13〜2−16のサンプル表面にリン酸の金属塩、ならびに水酸化物を主成分とする金属化合物皮膜を得た。金属化合物処理後のRaは0.17〜0.20μmで未処理サンプルと比較し、0.09〜0.12μm増加した。   The samples of Examples 2-13 to 2-16 were etched for 300 seconds in an aqueous sulfuric acid solution having a temperature of 60 ° C. and a concentration of 40 to 50 g / L (95% or more of components other than water were sulfuric acid), and washed with hot water (60 ° C. ) And water washing for 60 seconds each, followed by immersion for 180 seconds in a phosphoric acid aqueous solution (90% or more of components other than water are phosphoric acid) at a temperature of 40 ° C. and a concentration of 10 to 30 g / L, followed by water washing for 60 seconds. By this treatment, a metal compound film mainly composed of a metal salt of phosphoric acid and a hydroxide was obtained on the sample surfaces of Examples 2-13 to 2-16. Ra after the metal compound treatment was 0.17 to 0.20 μm, which was increased by 0.09 to 0.12 μm compared to the untreated sample.

実施例2−17〜2−20のサンプルを、温度60℃、濃度40〜50g/Lの硫酸水溶液(水以外の成分の95%以上が硫酸)中で300秒間エッチングし、次いで湯洗(60℃)および水洗を各60秒間行った後、温度60℃、濃度90〜120g/Lの塩酸水溶液(水以外の成分の95%以上が塩酸)中で300秒間浸漬し、60秒間水洗した。この処理により実施例2−17〜2−20のサンプル表面に、鉄、クロム、ニッケル、マンガンの水酸化物および硫酸塩、塩化物を主成分とする金属化合物皮膜を得た。金属化合物処理後のRaは0.18〜0.19μmで未処理サンプルと比較し、0.10〜0.11μm増加した。   The samples of Examples 2-17 to 2-20 were etched for 300 seconds in an aqueous sulfuric acid solution having a temperature of 60 ° C. and a concentration of 40 to 50 g / L (95% or more of components other than water were sulfuric acid), and then washed with hot water (60 C.) and water washing for 60 seconds each, and then immersed in an aqueous hydrochloric acid solution at a temperature of 60 ° C. and a concentration of 90 to 120 g / L (95% or more of components other than water is hydrochloric acid) for 300 seconds and washed with water for 60 seconds. By this treatment, a metal compound film mainly containing iron, chromium, nickel, manganese hydroxide, sulfate, and chloride was obtained on the surface of the samples of Examples 2-17 to 2-20. Ra after the metal compound treatment was 0.18 to 0.19 μm, which was 0.10 to 0.11 μm higher than that of the untreated sample.

実施例2−21〜2−24のサンプルを、温度60℃、濃度40〜50g/Lの硫酸水溶液(水以外の成分の95%以上が硫酸)中で300秒間エッチングし、次いで湯洗(60℃)および水洗を各60秒間行った後、温度60℃、濃度170〜230g/Lの硝酸水溶液(水以外の成分の95%以上が硝酸)中で300秒間浸漬し、60秒間水洗した。この処理により実施例2−21〜2−24のサンプル表面に、鉄、クロム、ニッケル、マンガンの水酸化物および硫酸塩、硝酸塩を主成分とする金属化合物皮膜を得た。金属化合物処理後のRaは0.16〜0.17μmで未処理サンプルと比較し、0.08〜0.09μm増加した。   The samples of Examples 2-21 to 2-24 were etched for 300 seconds in a sulfuric acid aqueous solution (95% or more of components other than water were sulfuric acid) at a temperature of 60 ° C. and a concentration of 40 to 50 g / L, and then washed with hot water (60 C.) and water washing for 60 seconds each, followed by immersion for 300 seconds in a nitric acid aqueous solution having a temperature of 60.degree. By this treatment, a metal compound film containing iron, chromium, nickel, manganese hydroxide, sulfate, and nitrate as main components was obtained on the sample surfaces of Examples 2-21 to 2-24. Ra after the metal compound treatment was 0.16 to 0.17 μm, an increase of 0.08 to 0.09 μm compared to the untreated sample.

実施例2−25〜2−33のサンプルを、温度60℃、濃度30〜50g/Lのリン酸水溶液(水以外の成分の90%以上がリン酸)中で300秒間エッチングし、次いで湯洗(60℃)および水洗を各60秒間行った。この処理により実施例2−25〜2−33のサンプル表面に、リン酸の金属塩、ならびに水酸化物を主成分とする金属化合物皮膜を得た。金属化合物処理後のRaは0.51〜0.61μmで未処理サンプルと比較し、0.17〜0.27μm増加した。   The samples of Examples 2-25 to 2-33 were etched for 300 seconds in an aqueous phosphoric acid solution having a temperature of 60 ° C. and a concentration of 30 to 50 g / L (90% or more of components other than water were phosphoric acid), and then washed with hot water (60 ° C.) and water washing were performed for 60 seconds each. By this treatment, a metal compound film mainly composed of a metal salt of phosphoric acid and a hydroxide was obtained on the sample surfaces of Examples 2-25 to 2-33. Ra after the metal compound treatment was 0.51 to 0.61 μm and increased by 0.17 to 0.27 μm compared to the untreated sample.

実施例2−34〜2−36のサンプルを、温度60℃、濃度80〜100g/Lの塩酸水溶液(水以外の成分の95%以上が塩酸)中で300秒間エッチングし、次いで湯洗(60℃)および水洗を各60秒間行った。この処理により実施例2−34〜2−36のサンプル表面に、鉄、マンガンの塩化物および水酸化物を主成分とする金属化合物皮膜を得た。金属化合物処理後のRaは0.58〜0.67μmで未処理サンプルと比較し、0.24〜0.33μm増加した。   The samples of Examples 2-34 to 2-36 were etched for 300 seconds in an aqueous hydrochloric acid solution having a temperature of 60 ° C. and a concentration of 80 to 100 g / L (95% or more of components other than water were hydrochloric acid), and then washed with hot water (60 ° C) and water washing for 60 seconds each. By this treatment, metal compound films mainly composed of iron, manganese chloride and hydroxide were obtained on the sample surfaces of Examples 2-34 to 2-36. Ra after the metal compound treatment was 0.58 to 0.67 μm, which was 0.24 to 0.33 μm higher than that of the untreated sample.

実施例2−37〜2−40のサンプルを、温度60℃、濃度40〜50g/Lの硫酸水溶液(水以外の成分の95%以上が硫酸)中で300秒間エッチングし、次いで湯洗(60℃)および水洗を各60秒間行った後、温度40℃、濃度10〜30g/Lのリン酸水溶液(水以外の成分の90%以上がリン酸)中に180秒間浸漬し、60秒間水洗した。この処理により実施例2−37〜2−40のサンプル表面に、リン酸の金属塩および水酸化物を主成分とする金属化合物皮膜を得た。金属化合物処理後のRaは0.77〜0.86μmで未処理サンプルと比較し、0.34〜0.52μm増加した。   The samples of Examples 2-37 to 2-40 were etched for 300 seconds in a sulfuric acid aqueous solution (95% or more of components other than water were sulfuric acid) at a temperature of 60 ° C. and a concentration of 40 to 50 g / L, and then washed with hot water (60 ℃) and water washing for 60 seconds each, then immersed in a phosphoric acid aqueous solution (90% or more of components other than water is phosphoric acid) at a temperature of 40 ° C and a concentration of 10 to 30 g / L for 180 seconds and washed with water for 60 seconds. . By this treatment, a metal compound film containing phosphoric acid metal salt and hydroxide as main components was obtained on the sample surfaces of Examples 2-37 to 2-40. Ra after the metal compound treatment was 0.77 to 0.86 μm, which was increased by 0.34 to 0.52 μm compared to the untreated sample.

実施例2−41〜2−43のサンプルを、温度60℃、濃度150〜200g/Lの硝酸水溶液(水以外の成分の95%以上が硝酸)中で300秒間エッチングし、次いで60秒間水洗した。この処理により実施例2−41〜2−43のサンプル表面に、鉄、マンガンの硝酸塩および水酸化物を主成分とする金属化合物皮膜を得た。金属化合物処理後のRaは2.07〜2.30μmで未処理サンプルと比較し、1.73〜1.96μm増加した。   The samples of Examples 2-41 to 2-43 were etched for 300 seconds in an aqueous nitric acid solution having a temperature of 60 ° C. and a concentration of 150 to 200 g / L (95% or more of components other than water were nitric acid), and then washed with water for 60 seconds. . By this treatment, a metal compound film mainly composed of iron, manganese nitrate and hydroxide was obtained on the sample surfaces of Examples 2-41 to 2-43. Ra after the metal compound treatment was 2.07 to 2.30 μm, and increased by 1.73 to 1.96 μm as compared with the untreated sample.

実施例2−44〜2−46のサンプルを、温度30℃、濃度0.5〜0.75g/Lのリン酸亜鉛微粒子のコロイド溶液中に300秒浸漬し、60秒間水洗した。この処理により実施例2−44〜2−46のサンプル表面にリン酸亜鉛微粒子を付着させた。このリン酸塩亜鉛微粒子同士はミクロンレベルの間隔を空けてサンプル表面に付着しており、サンプルの表面はリン酸亜鉛微粒子(すなわち金属化合物皮膜)により完全には覆われていない。金属化合物処理後のRaは0.30〜0.37μmで未処理サンプルと比較し、同程度であった。   The samples of Examples 2-44 to 2-46 were immersed in a colloidal solution of zinc phosphate fine particles having a temperature of 30 ° C. and a concentration of 0.5 to 0.75 g / L for 300 seconds and washed with water for 60 seconds. By this treatment, zinc phosphate fine particles were adhered to the sample surfaces of Examples 2-44 to 2-46. The zinc phosphate fine particles are adhered to the sample surface with a micron-level gap therebetween, and the surface of the sample is not completely covered with the zinc phosphate fine particles (that is, the metal compound film). Ra after the metal compound treatment was 0.30 to 0.37 μm, which was comparable to that of the untreated sample.

比較例として、上述の脱脂処理のみ行ったSUS304板を比較例1−1とし、実施例1−2に用いる脱脂処理を行ったSUS304板に金属化合物処理を行う代わりにアミノシラン系シランカップリング剤を付着させて比較例1−2とした。シランカップリング剤の付着は、信越化学工業(株)製のKBM−603(N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン)の1%水溶液を作製し、SUS304板を常温で60秒間この水溶液に浸漬後、110℃のオーブンで10分間乾燥した。   As a comparative example, the SUS304 plate subjected only to the above-described degreasing treatment is referred to as Comparative Example 1-1, and instead of performing the metal compound treatment on the SUS304 plate subjected to the degreasing treatment used in Example 1-2, an aminosilane-based silane coupling agent is used. It was made to adhere and it was set as Comparative Example 1-2. The adhesion of the silane coupling agent was carried out by preparing a 1% aqueous solution of KBM-603 (N-2- (aminoethyl) -3-aminopropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd. After being immersed in this aqueous solution for 60 seconds, it was dried in an oven at 110 ° C. for 10 minutes.

さらにSUS304(比較例2−1、2−5および2−7)及びSPCC板(比較例2−2〜2−4、2−6および2−8)をそれぞれ用い、表2に示す比較例2−1〜2−8のサンプルを作製した。
比較例2−1〜2−8のサンプルは、いずれも上述の前処理のうち、脱脂処理(前処理)は実施したが、金属化合物処理は実施しなかった。
Further, Comparative Example 2 shown in Table 2 using SUS304 (Comparative Examples 2-1, 2-5 and 2-7) and SPCC plates (Comparative Examples 2-2 to 2-4, 2-6 and 2-8), respectively. Samples of -1 to 2-8 were produced.
The samples of Comparative Examples 2-1 to 2-8 were all subjected to the degreasing treatment (pretreatment) among the above pretreatments, but were not subjected to the metal compound treatment.

比較例2−1、2−2、2−5および2−6は、脱脂処理のみを実施した。
比較例2−3のサンプルについては脱脂処理に加えて脱脂処理前に#60番のペーパー研磨を施した。
比較例2−4のサンプルについては脱脂処理に加えて脱脂処理前に表面粗さRaが6.0μm以上になるようブラスト加工を施した。
In Comparative Examples 2-1, 2-2, 2-5, and 2-6, only the degreasing treatment was performed.
The sample of Comparative Example 2-3 was subjected to # 60 paper polishing before the degreasing treatment in addition to the degreasing treatment.
In addition to the degreasing treatment, the sample of Comparative Example 2-4 was blasted so that the surface roughness Ra was 6.0 μm or more before the degreasing treatment.

さらに、比較例2−7と2−8は、前処理のうち、脱脂処理を行ったサンプルをアミノシラン系シランカップリング剤(信越化学工業(株)製のKBM−603(N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン))の1%水溶液に常温で60秒間浸漬後、110℃のオーブンで10分間乾燥して作製した。Raは比較例2−3においては、0.45μmで未処理サンプルと比較し、0.11μm増加し、比較例2−4においては、6.16μmで未処理サンプルと比較し、5.82μm増加した。その他の比較例サンプルのRaは未処理サンプルと同程度であった。   Further, in Comparative Examples 2-7 and 2-8, the sample subjected to the degreasing treatment in the pretreatment was treated with an aminosilane-based silane coupling agent (KBM-603 (N-2- (amino) manufactured by Shin-Etsu Chemical Co., Ltd.). It was prepared by immersing in a 1% aqueous solution of ethyl) -3-aminopropyltrimethoxysilane)) at room temperature for 60 seconds and then drying in an oven at 110 ° C. for 10 minutes. In Comparative Example 2-3, Ra increased by 0.11 μm compared to the untreated sample at 0.45 μm, and in Comparative Example 2-4 increased by 5.82 μm compared to the untreated sample at 6.16 μm. did. The Ra of the other comparative samples was about the same as the untreated sample.

(3)アルコキシシラン含有トリアジンチオール誘導体の被覆
次に実施例1−1〜1−3、比較例1−1、1−2および実施例2−1〜2−46のサンプルをアルコキシシラン含有トリアジンチオール溶液中に浸漬した。
用いたアルコキシシラン含有トリアジンチオール誘導体は、トリエトキシシリルプロピルアミノトリアジンチオールモノナトリウムであり、濃度が0.7g/Lとなるようにエタノール95:水5(体積比)の溶媒に溶解し、溶液を得た。このトリエトキシシリルプロピルアミノトリアジンチオールモノナトリウム溶液に室温で30分間浸漬した。
(3) Coating of alkoxysilane-containing triazine thiol derivative Next, samples of Examples 1-1 to 1-3, Comparative Examples 1-1, 1-2, and Examples 2-1 to 2-46 were used as alkoxysilane-containing triazine thiol derivatives. It was immersed in the solution.
The alkoxysilane-containing triazine thiol derivative used was triethoxysilylpropylaminotriazine thiol monosodium, dissolved in a solvent of ethanol 95: water 5 (volume ratio) so that the concentration was 0.7 g / L, and the solution was dissolved. Obtained. This triethoxysilylpropylaminotriazine thiol monosodium solution was immersed for 30 minutes at room temperature.

その後、これらサンプルをオーブン内にて160℃で10分間熱処理し、反応を完了させるとともに乾燥した。そして、濃度1.0g/LのN,N’−m−フェニレンジマレイミド(N,N’−1,3−フェニレンジマレイミド)と濃度2g/Lのジクミルパーオキシドを含有するアセトン溶液に室温で10分間浸漬し、オーブン内にて150℃で10分間熱処理した。その後、サンプルの表面全体に、濃度2g/Lのジクミルパーオキシドのエタノール溶液を室温で噴霧し、風乾した。   Thereafter, these samples were heat-treated in an oven at 160 ° C. for 10 minutes to complete the reaction and dry. Then, an acetone solution containing N, N′-m-phenylene dimaleimide (N, N′-1,3-phenylene dimaleimide) having a concentration of 1.0 g / L and dicumyl peroxide having a concentration of 2 g / L was added to room temperature. And then heat-treated in an oven at 150 ° C. for 10 minutes. Thereafter, an ethanol solution of dicumyl peroxide having a concentration of 2 g / L was sprayed on the entire surface of the sample at room temperature and air-dried.

(4)樹脂との接合
次に実施例1−1〜1−3、比較例1−1および比較例1−2のサンプルを120℃に加熱した金型内に配置し、表面の1部が樹脂と接合するように旭化成ケミカルズ株式会社製ABS樹脂(スタイラック(R)―ABS汎用026)を220℃で射出成形し、鉄物品サンプルを得た。
樹脂は金型内で、長さ80mm、幅20mm、厚さ3mmの板となるように成形され、1つの面の端末部の長さ12mm、幅20mmの部分が、上述の処理を行った鉄合金板サンプルの端末部上に配置され長さ12mm、幅20mmの部分と接触し、この部分が接合している。金型を80℃以下に冷却してから得られた鉄合金物品を取り出した。
(4) Joining with resin Next, the samples of Examples 1-1 to 1-3, Comparative Example 1-1, and Comparative Example 1-2 were placed in a mold heated to 120 ° C., and one part of the surface was An ABS resin sample manufactured by Asahi Kasei Chemicals Corporation (Stylac (R) —ABS General Purpose 026) was injection molded at 220 ° C. so as to be bonded to the resin to obtain an iron article sample.
The resin is molded in a mold so as to be a plate having a length of 80 mm, a width of 20 mm, and a thickness of 3 mm. It arrange | positions on the terminal part of an alloy plate sample, and contacts the part of length 12mm and width 20mm, and this part has joined. The iron alloy article obtained after the mold was cooled to 80 ° C. or lower was taken out.

さらに上述の処理を施した実施例2−1〜2−4、2−9〜2−28、2−34〜2−45、及び比較例2−1〜2−4、2−7、2−8のサンプルを、200℃に加熱した金型(実施例1〜3と同じ金型)内に配置し、表面の1部(実施例1〜3と同様に、長さ12mm、幅20mmの部分)が樹脂(実施例1〜3と同様に長さ80mm、幅20mm、厚さ3mmの板)と接合するように、表2に示す樹脂を用いて以下に示す条件で射出成形を行い鉄合金物品のサンプルを得た。   Further, Examples 2-1 to 2-4, 2-9 to 2-28, 2-34 to 2-45, and Comparative Examples 2-1 to 2-4, 2-7 and 2- 8 samples were placed in a mold heated to 200 ° C. (the same mold as in Examples 1 to 3), and 1 part of the surface (similar to Examples 1 to 3, a part having a length of 12 mm and a width of 20 mm) ) Is bonded to a resin (a plate having a length of 80 mm, a width of 20 mm, and a thickness of 3 mm as in Examples 1 to 3), and an iron alloy is formed by injection molding using the resins shown in Table 2 under the conditions shown below. A sample of the article was obtained.

実施例2−1、2−9、2−13、2−17、2−21、2−25、2−34、2−37、2−41、比較例2−1、2−7のサンプルでは旭化成ケミカルズ株式会社製ABS樹脂(スタイラック(R)―ABS汎用026)を用いて、樹脂温度220℃で射出成形を行った。   In the samples of Examples 2-1, 2-9, 2-13, 2-17, 2-21, 2-25, 2-34, 2-37, 2-41 and Comparative Examples 2-1, 2-7 Injection molding was performed at a resin temperature of 220 ° C. using ABS resin (Stylac (R) —ABS General Purpose 026) manufactured by Asahi Kasei Chemicals Corporation.

実施例2−2、2−10、2−14、2−18、2−22、2−26および2−38のサンプルでは、三菱エンジニアリングプラスチックス株式会社製PC/ABS樹脂(ユーピロン MB2215R)を用いて、樹脂温度270℃で射出成形を行った。   In the samples of Examples 2-2, 2-10, 2-14, 2-18, 2-22, 2-26 and 2-38, PC / ABS resin (Iupilon MB2215R) manufactured by Mitsubishi Engineering Plastics Co., Ltd. was used. Then, injection molding was performed at a resin temperature of 270 ° C.

実施例2−3、2−11、2−15、2−19、2−23、2−27、2−35、2−39、2−42、2−44、比較例2−2〜2−4、2−8のサンプルでは、東レ株式会社製66ナイロン(アミラン CM3001−N)を用いて、樹脂温度295℃で射出成形を行った。   Examples 2-3, 2-11, 2-15, 2-19, 2-23, 2-27, 2-35, 2-39, 2-42, 2-44, Comparative Examples 2-2-2- In the samples 4 and 2-8, 66 nylon (Amilan CM3001-N) manufactured by Toray Industries, Inc. was used and injection molding was performed at a resin temperature of 295 ° C.

実施例2−4、2−12、2−16、2−20、2−24、2−28、2−36、2−40、2−43および2−45のサンプルでは、三菱化学株式会社製PTEEエラストマー樹脂(プリマロイ B1600N)を用いて、樹脂温度230℃で射出成形を行った。   The samples of Examples 2-4, 2-12, 2-16, 2-20, 2-24, 2-28, 2-36, 2-40, 2-43 and 2-45 are manufactured by Mitsubishi Chemical Corporation. Injection molding was performed at a resin temperature of 230 ° C. using PTEE elastomer resin (Primalloy B1600N).

上述の処理を施した実施例2−5〜2−8、2−29〜2−33、2−46のサンプルを表1に示す種類の樹脂板と接触するように耐熱テープで固定した。そして各々の樹脂の樹脂融点(または溶融可能な温度)に設定した加熱体の上に耐熱テープで固定したサンプルを配置し、このサンプルを上方から9kgfの荷重で加圧して、熱融着させることにより上述の射出成形で得た鉄合金物品サンプルと同じ形状の鉄合金物品サンプルを得た。用いた樹脂板の詳細を以下に示す。   The samples of Examples 2-5 to 2-8, 2-29 to 2-33, and 2-46 subjected to the above-described treatment were fixed with heat-resistant tape so as to come into contact with the types of resin plates shown in Table 1. Then, a sample fixed with heat-resistant tape is placed on a heating body set to the resin melting point (or meltable temperature) of each resin, and the sample is pressurized with a load of 9 kgf from above and thermally fused. Thus, an iron alloy article sample having the same shape as the iron alloy article sample obtained by the injection molding described above was obtained. The details of the resin plate used are shown below.

実施例2−5および2−29では、旭化成ケミカルズ株式会社製ABS樹脂(スタイラック(R)−ABS汎用026)の樹脂板を用いて上述の形状となるように固定し、得られたサンプルを230℃に設定した加熱体の上に配置し、熱融着することで鉄合金物品サンプルを得た。
実施例2−30では、三菱エンジニアリングプラスチックス株式会社製PC/ABS樹脂(ユーピロン MB2215R)の樹脂板を用いて上述の形状となるように固定し、得られたサンプルを260℃に設定した加熱体の上に配置し、熱融着することで鉄合金物品サンプルを得た。
実施例2−6、2−31および2−46では、東レ株式会社製66ナイロン(アミラン CM3001−N)の樹脂板を用いて上述の形状となるように固定し、得られたサンプルを290℃に設定した加熱体の上に配置し、熱融着することで鉄合金物品サンプルを得た。
実施例2−7および2−32では、ポリプラスチックス株式会社製PPS樹脂(フォートロンPPS 1140A64)の樹脂板を用いて上述の形状となるように固定し、得られたサンプルを320℃に設定した加熱体の上に配置し、熱融着することで鉄合金物品サンプルを得た。
実施例2−8および2−33では、三菱化学株式会社製PTEEエラストマー樹脂(プリマロイ B1600N)の樹脂板を用いて上述の形状となるように固定し、得られたサンプルを230℃に設定した加熱体の上に配置し、熱融着することで鉄合金物品サンプルを得た。
In Examples 2-5 and 2-29, the resin plate of ABS resin (Stylac (R) -ABS General Purpose 026) manufactured by Asahi Kasei Chemicals Co., Ltd. was used to fix the sample to the shape described above, and the obtained sample was An iron alloy article sample was obtained by placing on a heating body set at 230 ° C. and heat-sealing.
In Example 2-30, a heating element in which a resin plate of PC / ABS resin (Iupilon MB2215R) manufactured by Mitsubishi Engineering Plastics Co., Ltd. was fixed to have the above-described shape and the obtained sample was set at 260 ° C. An iron alloy article sample was obtained by placing it on and heat-sealing.
In Examples 2-6, 2-31 and 2-46, 66 nylon (Amilan CM3001-N) manufactured by Toray Industries, Inc. was used to fix the sample to the shape described above, and the obtained sample was 290 ° C. An iron alloy article sample was obtained by placing it on a heating body set to 1 and heat-sealing.
In Examples 2-7 and 2-32, using a resin plate of PPS resin (Fortron PPS 1140A64) manufactured by Polyplastics Co., Ltd., it was fixed so as to have the above-mentioned shape, and the obtained sample was set at 320 ° C. An iron alloy article sample was obtained by placing on the heated body and heat-sealing.
In Examples 2-8 and 2-33, a PTFE elastomer resin (Primalloy B1600N) resin plate manufactured by Mitsubishi Chemical Corporation was used to fix the sample to the shape described above, and the resulting sample was heated to 230 ° C. An iron alloy article sample was obtained by placing on the body and heat-sealing.

次に後述する90度剥離強度試験の比較例のサンプルとして耐剥離性に優れていることが従来から知られているエポキシ樹脂系接着剤を用い比較例2−5および2−6のサンプルを下記の手順で作製した。   Next, the samples of Comparative Examples 2-5 and 2-6 were prepared using an epoxy resin-based adhesive that has been conventionally known to be excellent in peel resistance as a comparative example of a 90-degree peel strength test described later. It was produced by the procedure.

上述のアルコキシシラン含有トリアジンチオール誘導体の被覆を設けた比較例2−5および2−6のサンプルについて、セメダイン株式会社製 二液常温硬化形エポキシ樹脂系接着剤(EP330)を塗布した。そして、比較例2−5、2−6のサンプルには、三菱化学株式会社製PTEEエラストマー樹脂(プリマロイ B1600N)の樹脂板を接着して24時間室温にて放置し、鉄合金物品サンプルを得た。   About the sample of Comparative Examples 2-5 and 2-6 which provided the coating | cover of the above-mentioned alkoxysilane containing triazine thiol derivative, Cemedine Co., Ltd. make two-component room temperature curing epoxy resin adhesive (EP330) was apply | coated. And to the samples of Comparative Examples 2-5 and 2-6, a resin plate of PTEE elastomer resin (Primalloy B1600N) manufactured by Mitsubishi Chemical Corporation was adhered and left at room temperature for 24 hours to obtain an iron alloy article sample. .

(5)強度評価
このようにして得られた、実施例1−1〜1−3,2−1〜2−46、比較例1−1、1−2、2−1〜2−8に係る鉄合金サンプルの強度を評価した。
実施例1−1〜1−3、2−1〜2−3、2−5〜2−7、2−9〜2−11、2−13〜2−15、2−17〜2−19、2−21〜2−23、2−25〜2−27、2−29〜2−32、2−34、2−35、2−37〜2−40、2−42、2−44、2−46および比較例1−1、1−2、2−1〜2−4、2−7、2−8の鉄合金物品サンプルを引張試験片として用い、引張試験により接合強度を評価した。
また、実施例2−4、2−8、2−12、2−16、2−20、2−24、2−28、2−33、2−36、2−41、2−43、2−45及び比較例2−5、2−6の鉄合金物品サンプルを90度剥離試験片として用い、90度剥離試験により剥離強度を評価した。
(5) Strength Evaluation According to Examples 1-1 to 1-3, 2-1 to 2-46, Comparative Examples 1-1, 1-2, and 2-1 to 2-8 obtained in this manner. The strength of the iron alloy sample was evaluated.
Examples 1-1 to 1-3, 2-1 to 2-3, 2-5 to 2-7, 2-9 to 2-11, 23-13 to 2-15, 2-17 to 2-19, 2-21 to 2-23, 2-25 to 2-27, 2-29 to 2-32, 2-34, 2-35, 2-37 to 2-40, 2-42, 2-44, 2- 46 and Comparative Examples 1-1, 1-2, 2-1 to 2-4, 2-7, and 2-8 were used as tensile test pieces, and the bonding strength was evaluated by a tensile test.
Examples 2-4, 2-8, 2-12, 2-16, 2-20, 2-24, 2-28, 2-33, 2-36, 2-41, 2-43, 2- 45 and Comparative Examples 2-5 and 2-6 were used as 90-degree peel test pieces, and the peel strength was evaluated by a 90-degree peel test.

引張り試験には島津製作所製オートグラフAG−10TD試験器を用い、鉄合金物品サンプルの鉄板部(鉄合金基材)と樹脂板部(樹脂)の端末部(接合部と反対側の端末部)をそれぞれフラットチャックで掴み、引張速度5mm/分の引張速度で破断するまで引張った。破断に至るまでの最高到達荷重を接合面積(長さ12mmX幅20mm)で除して求めた応力を接合強度(引張りせん断強度)とした。試験は各サンプルについて3回行った。   For the tensile test, an autograph AG-10TD tester manufactured by Shimadzu Corporation was used, and the iron plate part (iron alloy base material) of the iron alloy article sample and the terminal part of the resin plate part (resin) (terminal part on the opposite side of the joint part) Each was gripped with a flat chuck and pulled at a pulling speed of 5 mm / min until breaking. The stress obtained by dividing the maximum ultimate load up to the break by the joining area (length 12 mm × width 20 mm) was defined as joining strength (tensile shear strength). The test was performed three times for each sample.

また、90度剥離試験においては、鉄合金物品サンプルの鉄板部(鉄合金基材)および樹脂の接合面が水平になるように該金属基体を、固定治具を用いて引張り試験機の固定台に固定し、樹脂の接合部から離れた部分をフラットチャックで掴み、該フラットチャックを接合面と90度の角度を成す方向に動かすことにより、速度100mm/分で剥離し、剥離強度(最高到達荷重を接合長さ(長さ20mm)で除して求めた応力)を求めた。試験は各サンプルについて3回行った。   Further, in the 90-degree peel test, the metal substrate is fixed using a fixing jig so that the iron plate portion (iron alloy base material) of the iron alloy article sample and the joint surface of the resin are horizontal. Is held at a distance of 100 mm / min by moving the flat chuck in a direction that forms an angle of 90 degrees with the joint surface. The stress obtained by dividing the load by the joining length (length: 20 mm) was determined. The test was performed three times for each sample.

表2に実施例1−1〜1−3、比較例1−1、1−2のせん断強度測定結果を示す。表2の結果は各サンプルについて3回行った試験の最大値と最小値を示している。   Table 2 shows the shear strength measurement results of Examples 1-1 to 1-3 and Comparative Examples 1-1 and 1-2. The results in Table 2 show the maximum and minimum values of tests performed three times for each sample.

Figure 2009157445
Figure 2009157445

表3に実施例2−1〜2−3、2−5〜2−7、2−9〜2−11、2−13〜2−15、2−17〜2−19、2−21〜2−23、2−25〜2−27、2−29〜2−32、2−34、2−35、2−37〜2−40、2−42、2−44、2−46および比較例2−1〜2−4、2−7、2−8の鉄合金物品サンプルのせん断強強度を示す。また、実施例2−4、2−8、2−12、2−16、2−20、2−24、2−28、2−33、2−36、2−41、2−43、2−45及び比較例2−5、2−6の鉄合金物品サンプルの90度剥離強度も表3に示す。
表3の強度は、それぞれのサンプルについて3回試験を行った結果の平均値を示している。
In Table 3, Examples 2-1 to 2-3, 2-5 to 2-7, 2-9 to 2-11, 23-13 to 2-15, 2-17 to 2-19, 2-21 to 2 -23, 2-25 to 2-27, 2-29 to 2-32, 2-34, 2-35, 2-37 to 2-40, 2-42, 2-44, 2-46 and Comparative Example 2 The shear strength of the iron alloy article samples of -1 to 2-4, 2-7, and 2-8 is shown. Examples 2-4, 2-8, 2-12, 2-16, 2-20, 2-24, 2-28, 2-33, 2-36, 2-41, 2-43, 2- Table 3 also shows the 90 degree peel strength of the iron alloy article samples of No. 45 and Comparative Examples 2-5 and 2-6.
The strengths in Table 3 show the average value of the results of three tests for each sample.

Figure 2009157445
Figure 2009157445

引張り試験において、実施例サンプルは全て2.8MPa(27.5kgf/cm)以上と優れた引張りせん断強度を示した。一方、引張り試験を行った比較例サンプルは全て、全く強度が得られなかった。実施例サンプルでは、破断は接合面または、樹脂部での破断が確認された。さらに、接合面での破断面(鉄合金板側)に関しては、樹脂の付着が認められ、破断の一部は樹脂内で起こっていることが確認されたIn the tensile test, all of the example samples showed excellent tensile shear strength of 2.8 MPa (27.5 kgf / cm 2 ) or more. On the other hand, all of the comparative example samples subjected to the tensile test did not have any strength. In the example sample, the fracture was confirmed at the joint surface or the resin part. Furthermore, regarding the fracture surface (iron alloy plate side) at the joint surface, resin adhesion was observed, and it was confirmed that a part of the fracture occurred in the resin.

また、90度剥離試験を行った実施例サンプルは何れも90度剥離強度が2.5N/mm以上であり、一方比較例サンプルは何れも90度剥離強度が1.5N/mm以下であった。すなわち、実施例サンプルは比較例サンプルより明らかに高い90度剥離強度を示した。   In addition, all of the example samples subjected to the 90 degree peel test had a 90 degree peel strength of 2.5 N / mm or more, while all of the comparative samples had a 90 degree peel strength of 1.5 N / mm or less. . That is, the example sample showed 90 degree peel strength clearly higher than the comparative example sample.

本出願は出願番号が特願2008−164221号である日本国の特許出願に対して優先権を主張する。特願2008−164221号出願は参照することにより本明細書に組み込まれる。   This application claims priority to a Japanese patent application whose application number is Japanese Patent Application No. 2008-164221. Japanese Patent Application No. 2008-164221 is incorporated herein by reference.

Claims (14)

鉄または鉄合金より成る基体と、該基体の表面の少なくとも一部分に、脱水シラノール含有トリアジンチオール誘導体被覆を介して接合する樹脂とを含む鉄合金物品であって、
前記基体と前記脱水シラノール含有トリアジンチオール誘導体被覆との間に、水酸化物、カルボン酸塩、リン酸塩、硫酸塩、チオ硫酸塩、塩化物および過塩化物よりなる群から選ばれる少なくとも1つを含む金属化合物皮膜を含むことを特徴とする鉄合金物品。
An iron alloy article comprising a substrate made of iron or an iron alloy, and a resin bonded to at least a part of the surface of the substrate via a dehydrated silanol-containing triazine thiol derivative coating,
Between the substrate and the dehydrated silanol-containing triazine thiol derivative coating, at least one selected from the group consisting of hydroxide, carboxylate, phosphate, sulfate, thiosulfate, chloride and perchloride An iron alloy article comprising a metal compound film containing
前記リン酸塩が、リン酸水素金属塩、リン酸二水素金属塩およびリン酸金属塩よりなる群から選択される少なくとも1つであることを特徴とする請求項1に記載の鉄合金物品。   The iron alloy article according to claim 1, wherein the phosphate is at least one selected from the group consisting of a metal hydrogen phosphate, a metal dihydrogen phosphate, and a metal phosphate. 前記リン酸塩が、リン酸亜鉛、リン酸水素亜鉛、リン酸マンガン、リン酸水素マンガン、リン酸水素カルシウム、リン酸二水素カルシウム、リン酸カルシウム、リン酸カルシウムナトリウム、リン酸鉄およびリン酸ジルコニウムよりなる群から選択される少なくとも1つであることを特徴とする請求項1に記載の鉄合金物品。   The phosphate group is composed of zinc phosphate, zinc hydrogen phosphate, manganese phosphate, manganese hydrogen phosphate, calcium hydrogen phosphate, calcium dihydrogen phosphate, calcium phosphate, sodium calcium phosphate, iron phosphate and zirconium phosphate. The iron alloy article according to claim 1, wherein at least one selected from the group consisting of: 前記硫酸塩が、硫酸鉄もしくは硫酸クロムまたはその両方であることを特徴とする請求項1に記載の鉄合金物品。   The iron alloy article according to claim 1, wherein the sulfate is iron sulfate or chromium sulfate or both. 鉄または鉄合金より成る鉄合金基体の少なくとも一部分に、アルコキシシラン含有トリアジンチオール誘導体を用いて樹脂を接合する、鉄合金物品の製造方法であって、
前記鉄合金基体の表面の少なくとも一部に、カルボン酸、カルボン酸塩、リン酸、リン酸塩、硫酸、硫酸塩、チオ硫酸塩、塩酸、塩化物、過塩素酸および過塩素酸塩よりなる群から選ばれる少なくとも1つを含む溶液を用い、金属化合物皮膜を形成する工程と、
前記金属化合物皮膜に、アルコキシシラン含有トリアジンチオール誘導体を接触させる工程と、
前記アルコキシシラン含有トリアジンチオール誘導体を接触させた部分に樹脂を接合する工程を含むことを特徴とする製造方法。
A method for producing an iron alloy article, wherein a resin is bonded to at least a part of an iron alloy substrate made of iron or an iron alloy using an alkoxysilane-containing triazine thiol derivative,
At least part of the surface of the iron alloy substrate is composed of carboxylic acid, carboxylate, phosphoric acid, phosphate, sulfuric acid, sulfate, thiosulfate, hydrochloric acid, chloride, perchloric acid and perchlorate. Forming a metal compound film using a solution containing at least one selected from the group;
Contacting the metal compound film with an alkoxysilane-containing triazine thiol derivative;
The manufacturing method characterized by including the process of joining resin to the part which contacted the said alkoxysilane containing triazine thiol derivative.
前記溶液が、リン酸、リン酸水素金属塩、リン酸二水素金属塩およびリン酸金属塩より選択される少なくとも1つを含むことを特徴とする請求項5に記載の製造方法。   6. The production method according to claim 5, wherein the solution contains at least one selected from phosphoric acid, a metal hydrogen phosphate, a metal dihydrogen phosphate, and a metal phosphate. 前記溶液が、リン酸亜鉛、リン酸水素亜鉛、リン酸マンガン、リン酸水素カルシウム、リン酸二水素カルシウム、リン酸カルシウムナトリウム、リン酸カルシウムおよびリン酸ジルコニウムより選択される少なくとも1つを含むことを特徴とする請求項5に記載の製造方法。   The solution contains at least one selected from zinc phosphate, zinc hydrogen phosphate, manganese phosphate, calcium hydrogen phosphate, calcium dihydrogen phosphate, sodium calcium phosphate, calcium phosphate and zirconium phosphate. The manufacturing method according to claim 5. 鉄または鉄合金より成る基体と、該基体の表面の少なくとも一部分に、脱水シラノール含有トリアジンチオール誘導体またはシラノール含有トリアジンチオール誘導体を被覆した鉄合金部材であって、
前記基体と前記脱水シラノール含有トリアジンチオール誘導体被覆または前記シラノール含有トリアジンチオール誘導体被覆との間に、水酸化物、カルボン酸塩、リン酸塩、硫酸塩、チオ硫酸塩、塩化物および過塩素酸塩よりなる群から選ばれる少なくとも1つを含む金属化合物皮膜を含むことを特徴とする鉄合金部材。
A base made of iron or an iron alloy, and an iron alloy member in which at least a part of the surface of the base is coated with a dehydrated silanol-containing triazine thiol derivative or a silanol-containing triazine thiol derivative,
Between the substrate and the dehydrated silanol-containing triazine thiol derivative coating or the silanol-containing triazine thiol derivative coating, hydroxide, carboxylate, phosphate, sulfate, thiosulfate, chloride and perchlorate An iron alloy member comprising a metal compound film containing at least one selected from the group consisting of:
前記リン酸塩が、リン酸水素金属塩、リン酸二水素金属塩およびリン酸金属塩よりなる群から選択される少なくとも1つであることを特徴とする請求項8に記載の鉄合金部材。   The iron alloy member according to claim 8, wherein the phosphate is at least one selected from the group consisting of a metal hydrogen phosphate, a metal dihydrogen phosphate, and a metal phosphate. 前記リン酸塩が、リン酸亜鉛、リン酸水素亜鉛、リン酸マンガン、リン酸水素マンガン、リン酸水素カルシウム、リン酸二水素カルシウム、リン酸カルシウム、リン酸カルシウムナトリウム、リン酸鉄およびリン酸ジルコニウムよりなる群から選択される少なくとも1つであることを特徴とする請求項8に記載の鉄合金部材。   The phosphate group is composed of zinc phosphate, zinc hydrogen phosphate, manganese phosphate, manganese hydrogen phosphate, calcium hydrogen phosphate, calcium dihydrogen phosphate, calcium phosphate, sodium calcium phosphate, iron phosphate and zirconium phosphate. The iron alloy member according to claim 8, wherein at least one selected from the group consisting of: 前記硫酸塩が、硫酸鉄または硫酸金属塩であることを特徴とする請求項8に記載の鉄合金部材。   The iron alloy member according to claim 8, wherein the sulfate is iron sulfate or a metal sulfate. 鉄または鉄合金より成る鉄合金基体の少なくとも一部分に、アルコキシシラン含有トリアジンチオール誘導体を接触させる鉄合金部材の製造方法であって、
前記鉄合金基体の表面の少なくとも一部に、カルボン酸、カルボン酸塩、リン酸、リン酸塩、硫酸、硫酸塩、チオ硫酸塩、塩酸、塩化物、過塩素酸および過塩素酸塩よりなる群から選ばれる少なくとも1つを含む溶液を用い、金属化合物皮膜を形成する工程と、
前記金属化合物皮膜に、アルコキシシラン含有トリアジンチオール誘導体を接触させる工程とを含むことを特徴とする製造方法。
A method for producing an iron alloy member comprising contacting an alkoxysilane-containing triazine thiol derivative with at least a part of an iron alloy substrate made of iron or an iron alloy,
At least part of the surface of the iron alloy substrate is composed of carboxylic acid, carboxylate, phosphoric acid, phosphate, sulfuric acid, sulfate, thiosulfate, hydrochloric acid, chloride, perchloric acid and perchlorate. Forming a metal compound film using a solution containing at least one selected from the group;
And a step of bringing the metal compound film into contact with an alkoxysilane-containing triazine thiol derivative.
前記溶液が、リン酸、リン酸水素金属塩、リン酸二水素金属塩およびリン酸金属塩より選択される少なくとも1つを含むことを特徴とする請求項12に記載の製造方法。   The manufacturing method according to claim 12, wherein the solution contains at least one selected from phosphoric acid, metal hydrogen phosphate, metal dihydrogen phosphate, and metal phosphate. 前記溶液が、リン酸亜鉛、リン酸水素亜鉛、リン酸マンガン、リン酸水素マンガン、リン酸水素カルシウム、リン酸二水素カルシウム、リン酸カルシウムナトリウム、リン酸カルシウムおよびリン酸ジルコニウムより選択される少なくとも1つを含むことを特徴とする請求項12に記載の製造方法。   The solution includes at least one selected from zinc phosphate, zinc hydrogen phosphate, manganese phosphate, manganese hydrogen phosphate, calcium hydrogen phosphate, calcium dihydrogen phosphate, sodium calcium phosphate, calcium phosphate, and zirconium phosphate. The manufacturing method according to claim 12.
JP2010518022A 2008-06-24 2009-06-23 Iron alloy article, iron alloy member and manufacturing method thereof Expired - Fee Related JP5648212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010518022A JP5648212B2 (en) 2008-06-24 2009-06-23 Iron alloy article, iron alloy member and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008164221 2008-06-24
JP2008164221 2008-06-24
JP2010518022A JP5648212B2 (en) 2008-06-24 2009-06-23 Iron alloy article, iron alloy member and manufacturing method thereof
PCT/JP2009/061407 WO2009157445A1 (en) 2008-06-24 2009-06-23 Iron alloy article, iron alloy member, and method for producing the iron alloy article

Publications (2)

Publication Number Publication Date
JPWO2009157445A1 true JPWO2009157445A1 (en) 2011-12-15
JP5648212B2 JP5648212B2 (en) 2015-01-07

Family

ID=41444511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010518022A Expired - Fee Related JP5648212B2 (en) 2008-06-24 2009-06-23 Iron alloy article, iron alloy member and manufacturing method thereof

Country Status (7)

Country Link
US (1) US9297079B2 (en)
EP (1) EP2322691B1 (en)
JP (1) JP5648212B2 (en)
KR (1) KR101254543B1 (en)
CN (1) CN102076883B (en)
TW (1) TWI397610B (en)
WO (1) WO2009157445A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052292A (en) * 2009-09-03 2011-03-17 Shingijutsu Kenkyusho:Kk Aluminum alloy article, aluminum alloy member, and method for producing the same
JP5860582B2 (en) * 2010-01-29 2016-02-16 日本パーカライジング株式会社 Metal surface treatment agent and metal surface treatment method
MX2013005528A (en) * 2010-11-30 2013-07-05 Teijin Ltd Method for production of joint member for carbon fiber composite material.
JP5739181B2 (en) * 2011-02-02 2015-06-24 帝人株式会社 Manufacturing method of carbon fiber reinforced composite material joined member using thermoplastic resin as matrix
KR101134923B1 (en) * 2011-08-10 2012-04-17 한국기초과학지원연구원 Polymer resin-alumium bonded component and method for preparing the same
KR20140141583A (en) 2012-03-29 2014-12-10 데이진 가부시키가이샤 Method for manufacturing joint member, and joint member
CN104203543A (en) * 2012-04-09 2014-12-10 帝人株式会社 Method for producing bonded member, and bonded member
KR20150035768A (en) 2012-07-06 2015-04-07 데이진 가부시키가이샤 Method for producing fiber-reinforced composite material-metal member bonded body, and fiber-reinforced composite material used in same
DE102012213245A1 (en) * 2012-07-27 2014-01-30 Robert Bosch Gmbh Donor element and method for its production
JP6472596B2 (en) * 2014-02-13 2019-02-20 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP6961492B2 (en) 2015-04-15 2021-11-05 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA Thin corrosion protection coating with polyamide amine polymer
JP6519365B2 (en) * 2015-07-07 2019-05-29 富士通株式会社 Bonding body, method of manufacturing bonding body, cooling system, and information processing apparatus
BR112018014052B1 (en) * 2016-01-11 2023-03-14 Ascent Aerospace, Llc HYBRID CONTACT MOLD AND METHOD FOR MANUFACTURING A HYBRID CONTACT MOLD
CN105970138A (en) * 2016-05-20 2016-09-28 国网山东省电力公司高唐县供电公司 Long-lasting corrosion prevention method of transmission line tower
KR102627720B1 (en) * 2016-09-23 2024-01-23 삼성전자주식회사 Aluminium alloy-resin composite and method for producing the same
CN107723693A (en) * 2017-11-03 2018-02-23 安徽新合富力科技有限公司 A kind of Nd Fe B alloys method for bonderizing
CN111318435A (en) * 2018-12-14 2020-06-23 北京小米移动软件有限公司 Shell surface treatment method and electronic equipment
CN110656329A (en) * 2019-09-28 2020-01-07 南昌大学 Packaging method of iron-based amorphous alloy strip
CN112779540A (en) * 2020-12-15 2021-05-11 河北中瓷电子科技股份有限公司 Metal surface treatment method and preparation method of plastic packaging shell

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1562651A (en) * 1976-07-20 1980-03-12 Kansai Paint Co Ltd Surface treatment of metals
JPS6176684A (en) 1984-09-21 1986-04-19 Sumitomo Metal Ind Ltd Corrosion-proof coated steel material having superior secondary adhesion at edge
US4961967A (en) * 1988-08-08 1990-10-09 Dow Corning Corporation Primer compositions
US5840375A (en) * 1995-06-22 1998-11-24 Shin-Etsu Chemical Co., Ltd. Method for the preparation of a highly corrosion resistant rare earth based permanent magnet
JPH10195345A (en) * 1997-01-10 1998-07-28 Nippon Paint Co Ltd Rust-proofing coating agent containing triazinethiol, method for rust-proofing and rust-proofed metallic metal
JPH10270629A (en) 1997-03-27 1998-10-09 Nikko Kinzoku Kk Iron alloy superior in resin adhesion
JP3973323B2 (en) * 1998-08-13 2007-09-12 日本ペイント株式会社 Non-chromium treatment with sulfur-containing and phosphorus-containing compounds
JP3669844B2 (en) * 1998-08-13 2005-07-13 日本ペイント株式会社 Non-chromium rust prevention method including phosphate pretreatment
JP4165943B2 (en) * 1998-11-18 2008-10-15 日本ペイント株式会社 Rust-proof coating agent for zinc-coated steel and uncoated steel
JP3990516B2 (en) 1999-08-04 2007-10-17 住友電気工業株式会社 Metal-resin composite for terminals
JP3823189B2 (en) * 2000-01-18 2006-09-20 株式会社東亜電化 Reactivity retention method of metal surface film
US6743302B2 (en) * 2000-01-28 2004-06-01 Henkel Corporation Dry-in-place zinc phosphating compositions including adhesion-promoting polymers
JP2001260235A (en) 2000-03-22 2001-09-25 Yokohama Rubber Co Ltd:The Rubber and metal bonding method and structure using the same
DE602004029673D1 (en) * 2003-11-21 2010-12-02 Jfe Steel Corp SURFACE TREATED STEEL PLATE WITH EXCELLENCE AND COATING PATTERN
JP2005344147A (en) 2004-06-01 2005-12-15 Jfe Steel Kk Steel material coated with organic resin, and manufacturing method therefor
JP4512825B2 (en) 2005-02-07 2010-07-28 国立大学法人岩手大学 Water-soluble alkoxysilane-containing triazine dithiol metal salt, method for producing the same, method for imparting reactivity to a solid surface using the same, and surface-reactive solid
JP4124471B2 (en) 2005-03-28 2008-07-23 地方独立行政法人 岩手県工業技術センター Metal surface treatment method
JP4660761B2 (en) * 2005-07-06 2011-03-30 国立大学法人岩手大学 Printed wiring board and manufacturing method thereof
JP5034036B2 (en) * 2005-11-10 2012-09-26 国立大学法人岩手大学 Surface reactive solid, manufacturing method of surface reactive solid, shape transfer mold, manufacturing method of shape transfer mold
JP2008164221A (en) 2006-12-28 2008-07-17 Matsushita Electric Ind Co Ltd Refrigerator
JP4750096B2 (en) * 2007-11-07 2011-08-17 株式会社新技術研究所 Magnesium alloy article, magnesium alloy member and manufacturing method thereof

Also Published As

Publication number Publication date
EP2322691A1 (en) 2011-05-18
JP5648212B2 (en) 2015-01-07
EP2322691A4 (en) 2016-04-20
CN102076883B (en) 2013-02-06
US9297079B2 (en) 2016-03-29
KR20110028306A (en) 2011-03-17
TWI397610B (en) 2013-06-01
EP2322691B1 (en) 2018-07-25
KR101254543B1 (en) 2013-04-19
CN102076883A (en) 2011-05-25
WO2009157445A1 (en) 2009-12-30
US20110159302A1 (en) 2011-06-30
TW201016889A (en) 2010-05-01

Similar Documents

Publication Publication Date Title
JP5648212B2 (en) Iron alloy article, iron alloy member and manufacturing method thereof
JP4750096B2 (en) Magnesium alloy article, magnesium alloy member and manufacturing method thereof
WO2011027854A1 (en) Aluminum alloy article, aluminum alloy member, and production method therefor
JP4685139B2 (en) Aluminum alloy / resin composite and method for producing the same
JP4903897B2 (en) Zinc-based plated steel sheet and adherend bonded body and method for producing the same
JP5058593B2 (en) Method for producing composite of metal and resin
JP5569932B2 (en) Member in which metal body and resin body are joined and method for producing the same
JP5205109B2 (en) Magnesium alloy article and magnesium alloy member
US10300687B2 (en) Aluminum resin bonded body and method for producing same
WO2013047365A1 (en) Aluminum resin bonded body and method for producing same
CN107709002B (en) Metal resin composite molded body and method for producing same
JP5253416B2 (en) Metal-resin composite and method for producing the same
JP2012157991A (en) Metal-resin composite and production process thereof
JP5834345B2 (en) Aluminum alloy article, aluminum alloy member and manufacturing method thereof
JP2010254793A (en) Resin composite and method for producing the same
JP2004216609A (en) Composite comprising metal and thermoplastic resin composition and its manufacturing method
TW202104665A (en) Surface treated metal member, composite laminate, metal-nonmetal joined body, and manufacturing method of these

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120130

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120130

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130717

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130723

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20131004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141021

R150 Certificate of patent or registration of utility model

Ref document number: 5648212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees