JPWO2009116245A1 - Heat spreader and manufacturing method thereof - Google Patents

Heat spreader and manufacturing method thereof Download PDF

Info

Publication number
JPWO2009116245A1
JPWO2009116245A1 JP2010503760A JP2010503760A JPWO2009116245A1 JP WO2009116245 A1 JPWO2009116245 A1 JP WO2009116245A1 JP 2010503760 A JP2010503760 A JP 2010503760A JP 2010503760 A JP2010503760 A JP 2010503760A JP WO2009116245 A1 JPWO2009116245 A1 JP WO2009116245A1
Authority
JP
Japan
Prior art keywords
base material
heat spreader
aluminum
alloy
connecting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010503760A
Other languages
Japanese (ja)
Other versions
JP4999983B2 (en
Inventor
正弘 大町
正弘 大町
杉山 知之
知之 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALMT Corp
Original Assignee
ALMT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALMT Corp filed Critical ALMT Corp
Priority to JP2010503760A priority Critical patent/JP4999983B2/en
Publication of JPWO2009116245A1 publication Critical patent/JPWO2009116245A1/en
Application granted granted Critical
Publication of JP4999983B2 publication Critical patent/JP4999983B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2204/00End product comprising different layers, coatings or parts of cermet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L2023/4075Mechanical elements
    • H01L2023/4087Mounting accessories, interposers, clamping or screwing parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

この発明は、複合材料からなり、しかもピンやネジ孔、通孔等を形成するために加工したり、前記ピンやネジ孔、通孔等を利用して他部材と接続したりするのが容易で、様々な問題を生じないヒートスプレッダと、前記ヒートスプレッダを、できるだけ少ない工程で効率よく製造するための製造方法とを提供する。ヒートスプレッダ1は、アルミニウム−セラミック複合材料等からなる基材2と、前記基材2の少なくとも一面から基材2内に貫入された状態で、前記基材2と接合された、基材2を他部材に接続するための接続部材3と含む。製造方法は、プレス型20の底面16にアルミニウムまたはその合金からなる接続部材3をセットした状態で、基材2のもとになる混合物23を充填し、圧縮成形した後、前記アルミニウムまたはその合金の融点以下で焼成する。This invention is made of a composite material, and can be easily processed to form pins, screw holes, through holes, etc., or can be easily connected to other members using the pins, screw holes, through holes, etc. Thus, there are provided a heat spreader that does not cause various problems and a manufacturing method for efficiently manufacturing the heat spreader with as few steps as possible. The heat spreader 1 includes a base material 2 made of an aluminum-ceramic composite material or the like, and the base material 2 joined to the base material 2 in a state of being penetrated into the base material 2 from at least one surface of the base material 2. It includes a connection member 3 for connecting to the member. The manufacturing method is such that after the connecting member 3 made of aluminum or an alloy thereof is set on the bottom surface 16 of the press die 20, the mixture 23 that becomes the base material 2 is filled and compression-molded, and then the aluminum or an alloy thereof is used. Calcination at a melting point of

Description

本発明は、半導体素子からの熱除去用として使用されるヒートスプレッダと、その製造方法に関するものである。   The present invention relates to a heat spreader used for removing heat from a semiconductor element, and a manufacturing method thereof.

例えば半導体素子の樹脂封止パッケージは、リードフレームに固定した、半導体素子搭載基板を兼ねる平板状のヒートスプレッダの表面に半導体素子を搭載し、前記半導体素子とリードフレームとの間をワイヤボンディング等によって接続すると共に半導体素子を樹脂で封止した後、リードフレームを切り出して製造される。
前記ヒートスプレッダの裏面の少なくとも一部は、例えば冷却器やヒートシンク等と熱的に接続させて、半導体素子からの熱を前記冷却器やヒートシンク等を介して速やかに除去させるべく、封止樹脂によって封止せずに露出させるのが一般的である。
For example, a resin-encapsulated package of a semiconductor element has a semiconductor element mounted on the surface of a flat heat spreader that also serves as a semiconductor element mounting substrate fixed to the lead frame, and the semiconductor element and the lead frame are connected by wire bonding or the like. In addition, after the semiconductor element is sealed with resin, the lead frame is cut out and manufactured.
At least a part of the back surface of the heat spreader is sealed with a sealing resin so as to be thermally connected to, for example, a cooler or a heat sink, and to quickly remove heat from the semiconductor element via the cooler or the heat sink. It is common to expose without stopping.

ヒートスプレッダは、アルミニウムや銅等の金属、またはその合金等で形成するのが一般的である。前記ヒートスプレッダは、例えばその裏面等から突出させて一体に形成したピンを、リードフレームに設けた通孔に挿通したのちかしめ加工すること等により、前記リードフレームに固定される(例えば特許文献1、2参照)。
前記かしめ加工による固定は、固定のための構造や作業工程等が簡単でしかも小型化が可能である上、固定の精度にも優れるため、特に小型の樹脂封止パッケージ等においてリードフレームとヒートスプレッダとの固定に広く採用されている。
The heat spreader is generally formed of a metal such as aluminum or copper, or an alloy thereof. The heat spreader is fixed to the lead frame by, for example, inserting a pin integrally formed by protruding from the back surface of the heat spreader through a through hole provided in the lead frame (for example, Patent Document 1, 2).
The fixing by the caulking process is simple in structure and work process for fixing and can be downsized, and is excellent in fixing accuracy. Therefore, particularly in a small resin-sealed package, a lead frame and a heat spreader Widely adopted for fixing.

また、より大型のヒートスプレッダ等においては、前記ヒートスプレッダに設けたネジ孔にネジを螺合したり、通孔にネジを挿通したりすることでヒートシンク等の他部材が接続される。
近年、ヒートスプレッダとして、前記金属や合金製のものに代えてアルミニウム−セラミック複合材料等からなり、金属や合金と同等程度の熱伝導率を有する上、搭載する半導体素子を形成する半導体材料等と熱膨張係数が近いものを用いることが検討されている。
In a larger heat spreader or the like, another member such as a heat sink is connected by screwing a screw into a screw hole provided in the heat spreader or by inserting a screw through the through hole.
In recent years, the heat spreader is made of an aluminum-ceramic composite material in place of the metal or alloy, has a thermal conductivity equivalent to that of the metal or alloy, and has a heat conductivity with a semiconductor material that forms a semiconductor element to be mounted. The use of a material having a close expansion coefficient has been studied.

前記ヒートスプレッダを半導体素子と組み合わせて用いることにより、半導体素子の動作による発熱と停止後の冷却とを繰り返した際に、前記両者間の熱膨張係数の違いに基づいて半導体素子に加わる応力を低減できる。
そのため前記発熱と冷却とを繰り返した際に、半導体素子に過剰な応力が加わって、前記半導体素子が誤動作したり、動作の効率が低下したり、破損したり、あるいは半導体素子とヒートスプレッダとの間のはんだ接合等が破壊されたりするのを防止できる(例えば特許文献3参照)。
特開平6−177268号公報 特開平8−130273号公報 特開平8−222660号公報
By using the heat spreader in combination with a semiconductor element, the stress applied to the semiconductor element can be reduced based on the difference in thermal expansion coefficient between the two when the heat generation due to the operation of the semiconductor element and the cooling after the stop are repeated. .
For this reason, when the heat generation and cooling are repeated, excessive stress is applied to the semiconductor element, causing the semiconductor element to malfunction, reducing the efficiency of operation, or being damaged, or between the semiconductor element and the heat spreader. It is possible to prevent the solder joint or the like from being broken (see, for example, Patent Document 3).
JP-A-6-177268 JP-A-8-130273 JP-A-8-222660

ところが、前記ピンを有するヒートスプレッダを先に説明した複合材料にて形成した場合、従来同様のかしめ加工では、前記ヒートスプレッダをリードフレームに良好に固定できないという問題がある。
すなわち、前記ピンを含む全体を複合材料によって一体に形成したヒートスプレッダは、前記複合材料の多くが非常に硬質でしかも金属や合金に比べて脆いため、かしめ加工をすること自体が困難である。それでも無理にピンをかしめ加工した場合には、後述する比較例の結果からも明らかなようにピンそれ自体や、あるいはヒートスプレッダのピンの周囲の部分等に亀裂や割れ等を生じやすい。
However, when the heat spreader having the pins is formed of the composite material described above, there is a problem that the heat spreader cannot be fixed to the lead frame satisfactorily by caulking as in the prior art.
That is, a heat spreader in which the whole including the pins is integrally formed of a composite material is difficult to caulk itself because most of the composite material is very hard and more brittle than metals and alloys. Nevertheless, when the pins are forcibly processed, cracks or cracks are likely to occur in the pins themselves or in the portions around the pins of the heat spreader, as is apparent from the results of comparative examples described later.

そこで、複合材料によって形成したヒートスプレッダの裏面等に、かしめ加工することが容易な金属または合金からなるピンをはんだ接合等によって固定することが考えられる。
しかしはんだ接合等によって固定したピンは、後述する比較例の結果からも明らかなように、かしめ加工時の衝撃等によって脱落しやすい。そのためヒートスプレッダを、前記脱落等を生じることなく、歩留まりよくリードフレームに固定できないという問題がある。
Accordingly, it is conceivable to fix a pin made of a metal or an alloy that can be easily caulked to the back surface of a heat spreader formed of a composite material by soldering or the like.
However, the pins fixed by soldering or the like are likely to fall off due to impact or the like during caulking, as is apparent from the results of comparative examples described later. Therefore, there is a problem that the heat spreader cannot be fixed to the lead frame with a high yield without causing the above-mentioned dropout or the like.

またピンは位置ずれ等も生じやすい。そのためヒートスプレッダを、前記位置ずれ等を生じることなく、精度よくリードフレームに固定できないという問題もある。
なお特許文献3の段落[0042]には、複合材料からなるヒートスプレッダを、かしめ加工等の機械的結合手段を用いてリードフレームに固定してもよい旨の記載がある。しかしその詳細は不明である。特許文献3には、複合材料からなるヒートスプレッダを、どのようにしてリードフレームにかしめ加工して固定するかについては一切記載されていない。また、前記問題点を解決するための手段についても何ら記載されていない。
Also, the pin is likely to be displaced. Therefore, there is also a problem that the heat spreader cannot be fixed to the lead frame with high accuracy without causing the above-mentioned positional deviation or the like.
In paragraph [0042] of Patent Document 3, there is a description that a heat spreader made of a composite material may be fixed to a lead frame using a mechanical coupling means such as caulking. However, the details are unknown. Patent Document 3 does not describe at all how a heat spreader made of a composite material is caulked and fixed to a lead frame. In addition, there is no description of any means for solving the above problems.

特許文献3においてヒートスプレッダとリードフレームとを固定するための主な方法は、あくまでも接着剤による接着であり、かしめ加工による固定は付記的に記載されているにすぎない。このことから前記段落[0042]の記載は、単なる願望を述べているにすぎないと考えられる。
また特許文献3に記載された接着剤による接着では、接着剤が硬化するまでに一定の時間を要する上、ずれ等も生じやすい。そのためヒートスプレッダを効率よく、また精度よくリードフレームに固定できないという問題がある。
In Patent Document 3, the main method for fixing the heat spreader and the lead frame is bonding by an adhesive to the last, and fixing by caulking is only described additionally. From this, it is considered that the description in the paragraph [0042] merely describes a desire.
Moreover, in the adhesion | attachment by the adhesive agent described in patent document 3, a fixed time is required until an adhesive agent hardens | cures, and a shift | offset | difference etc. are easy to produce. Therefore, there is a problem that the heat spreader cannot be fixed to the lead frame efficiently and accurately.

また、ネジ孔や通孔を有するヒートスプレッダを前記複合材料にて一体に形成する場合には、下記の問題がある。
すなわち、先に説明したように複合材料の多くは非常に硬質で加工しにくいものである。そのため、前記複合材料からなるヒートスプレッダにネジ孔や通孔を形成するためには、高価なダイヤモンド工具等の超硬工具を用いなければならない。しかもたとえ超硬工具等を用いたとしても、ネジ孔や通孔を形成するためには金属や合金の加工に比べて手間と時間とがかかってしまう。
Further, when the heat spreader having screw holes and through holes is integrally formed of the composite material, there are the following problems.
That is, as described above, many of the composite materials are very hard and difficult to process. Therefore, in order to form a screw hole or a through hole in the heat spreader made of the composite material, it is necessary to use a cemented carbide tool such as an expensive diamond tool. Moreover, even if a cemented carbide tool or the like is used, it takes much time and time to form screw holes and through holes as compared to metal or alloy processing.

さらに複合材料の多くは金属や合金に比べて脆いため、前記加工時や、あるいはネジを締め付けて他部材と接続する際等に、前記ネジ孔や通孔の周囲等に亀裂や割れ等が生じたりもしやすい。
本発明の目的は、複合材料からなり、しかもピンやネジ孔、通孔等を形成するために加工したり、前記ピンやネジ孔、通孔等を利用して他部材と接続したりするのが容易で、様々な問題を生じないヒートスプレッダと、前記ヒートスプレッダを、できるだけ少ない工程で効率よく製造するための製造方法とを提供することにある。
Furthermore, since many composite materials are more fragile than metals and alloys, cracks, cracks, etc. occur around the screw holes and through-holes during the processing or when connecting screws to other members. It is easy to do.
It is an object of the present invention to be made of a composite material and processed to form pins, screw holes, through holes, etc., or to be connected to other members using the pins, screw holes, through holes, etc. It is an object of the present invention to provide a heat spreader that is easy and does not cause various problems, and a manufacturing method for efficiently manufacturing the heat spreader with as few steps as possible.

本発明は、基材と、金属または合金からなり、前記基材を他部材に接続するための接続部材とを含み、前記接続部材は、前記基材の少なくとも一面から基材内に貫入された状態で、前記基材と接合されていることを特徴とするヒートスプレッダである。
前記本発明によれば、例えば接続部材の一面側に、前記一面から基材外へ突出させて他部材への接続のためのピンを一体に形成することによって、前記ピンを、はんだ接合等によって単なる面同士で接合して固定する場合と比べて、基材に対してより強固に固定できる。
The present invention includes a base material and a connection member made of a metal or an alloy and connecting the base material to another member, and the connection member penetrates into the base material from at least one surface of the base material. It is a heat spreader characterized by being joined to the substrate in a state.
According to the present invention, for example, a pin for connecting to another member is integrally formed on one surface side of the connecting member by projecting from the one surface to the outside of the base material. Compared to the case where the surfaces are simply joined and fixed, the substrate can be fixed more firmly.

すなわち基材内に貫入させた接続部材の基部を、その周囲を囲む基材と立体的に接合させることにより、前記接続部材を基材に対してより強固に固定できる。そのため、前記接続部材と一体に形成されたピンをかしめ加工してリードフレーム等と接続する際の衝撃等によって、前記ピンやあるいは接続部材の全体が基材から脱落したりするのをより確実に防止できる。   That is, the connection member can be more firmly fixed to the base material by three-dimensionally joining the base portion of the connection member penetrating into the base material with the base material surrounding the base member. Therefore, the pin or the entire connecting member is more reliably prevented from dropping from the base material due to impact or the like when the pin formed integrally with the connecting member is caulked and connected to a lead frame or the like. Can be prevented.

したがって、ピンを含む接続部材の全体を、かしめ加工することが容易な金属または合金によって形成することにより、ヒートスプレッダを、前記ピンのかしめ加工によって精度よくかつ歩留まりよく、リードフレーム等に対して良好に固定できる。
また、接続部材の前記一面側から基材の内部へ向けて孔あけ、タッピング等の加工をしてネジ孔または通孔を形成してもよい。その場合には、接続部材を孔あけやタッピング等の加工をすることが容易な金属または合金によって形成することにより、超硬工具等を用いることなく簡単に、しかも短時間で前記ネジ孔や通孔を形成できる。
Therefore, by forming the whole connecting member including the pin with a metal or an alloy that can be easily caulked, the heat spreader can be accurately and yielded by the caulking of the pin, and can be favorably applied to the lead frame and the like. Can be fixed.
Further, a screw hole or a through hole may be formed by drilling, tapping or the like from the one surface side of the connection member toward the inside of the base material. In that case, by forming the connecting member with a metal or an alloy that can be easily drilled or tapped, the screw hole or thread can be easily and quickly used without using a carbide tool or the like. A hole can be formed.

また前記金属や合金からなる接続部材は、複合材料からなる基材のように脆くないため、前記加工時や、あるいはネジを締め付ける際等に前記ネジ孔や通孔の周囲等に亀裂や割れ等が生じたりするのも防止できる。
前記本発明のヒートスプレッダにおいては、基材が平板状に形成され、接続部材は、前記基材の裏面から表面に達するように基材の厚み方向に貫通された状態で、周囲を囲む前記基材と接合されていると共に、前記接続部材の裏面側には、前記裏面から基材外へ突出させて他部材への接続のためのピンが一体に形成されているのが好ましい。
In addition, since the connection member made of the metal or alloy is not brittle like a base material made of a composite material, cracks, cracks, etc. around the screw hole or the through hole, etc. during the processing or when tightening the screw, etc. Can also be prevented.
In the heat spreader of the present invention, the base material is formed in a flat plate shape, and the connection member surrounds the periphery in a state of being penetrated in the thickness direction of the base material so as to reach the surface from the back surface of the base material It is preferable that a pin for connecting to another member is integrally formed on the back surface side of the connection member so as to protrude from the back surface to the outside of the base material.

前記構造を有するヒートスプレッダによれば、ピンのかしめ加工時に基材の厚み方向に加わる荷重の大部分を、接続部材それ自体を介して基材の裏面側から表面側に逃がすことで、前記基材に直接に加わる荷重を大幅に低減できる。そのため基材に亀裂や割れ等が生じるのを確実に防止して、かしめ加工時の歩留まりをさらに向上できる。
また本発明のヒートスプレッダにおいては、基材が平板状に形成され、接続部材は、前記基材の裏面から表面に達するように基材の厚み方向に貫通された状態で、周囲を囲む前記基材と接合されていると共に、前記接続部材には、前記裏面側から表面側へ向けて、他部材との接続のためのネジが螺合されるネジ孔、またはネジが挿通される通孔が形成されているのが好ましい。
According to the heat spreader having the above-described structure, most of the load applied in the thickness direction of the base material at the time of caulking of the pin is released from the back surface side of the base material to the front surface side through the connection member itself, thereby the base material. The load directly applied to can be greatly reduced. Therefore, it is possible to reliably prevent the base material from being cracked or cracked, and to further improve the yield during caulking.
In the heat spreader of the present invention, the base material is formed in a flat plate shape, and the connecting member surrounds the base material in a state of being penetrated in the thickness direction of the base material so as to reach the surface from the back surface of the base material. The connecting member is formed with a screw hole into which a screw for connecting to another member is screwed or a through hole through which the screw is inserted, from the back surface side to the front surface side. It is preferable.

前記構造を有するヒートスプレッダによれば、孔あけやタッピング等の加工時に基材の厚み方向に加わる荷重の大部分を、接続部材それ自体を介して基材の裏面側から表面側に逃がすことで、前記基材に直接に加わる荷重を大幅に低減できる。そのため前記加工時に、基材に亀裂や割れ等が生じるのを確実に防止して、孔あけやタッピングの加工時の歩留まりをさらに向上できる。   According to the heat spreader having the above-described structure, most of the load applied in the thickness direction of the base material at the time of processing such as drilling and tapping is released from the back surface side of the base material to the front surface side through the connection member itself. The load applied directly to the substrate can be greatly reduced. Therefore, it is possible to reliably prevent the base material from being cracked or cracked during the processing, and to further improve the yield during the drilling or tapping processing.

また、他部材との接続のため前記ネジ孔に螺合したり通孔に挿通したりしたネジを締め付けた際に基材の厚み方向に加わる応力を、前記接続部材によって受けることができる。そのため他部材との接続時に、基材に亀裂や割れ等が生じたりするのをさらに確実に防止できる。
基材としては、熱膨張係数が15×10-6/K以下で、かつ熱伝導率が150W/m・K以上である種々の複合材料からなるものが使用可能である。かかる条件を満足する複合材料にて基材を形成することにより、半導体素子等との熱膨張係数の違いに基づく種々の問題が生じるのを防止しつつ、前記半導体素子等からの熱をできるだけ速やかに除去できる。
In addition, the connection member can receive stress applied in the thickness direction of the base material when a screw that is screwed into the screw hole or inserted through the through hole for connection with another member is tightened. Therefore, it is possible to more reliably prevent the base material from being cracked or cracked when connected to another member.
As the base material, those made of various composite materials having a thermal expansion coefficient of 15 × 10 −6 / K or less and a thermal conductivity of 150 W / m · K or more can be used. By forming the base material with a composite material satisfying such conditions, heat from the semiconductor element etc. can be transferred as quickly as possible while preventing various problems based on the difference in thermal expansion coefficient from the semiconductor element etc. Can be removed.

前記基材としては、例えば、
(1) アルミニウム−セラミック複合材料、
(2) 銅−セラミック複合材料、
(3) 銅−タングステン複合材料、
(4) 銅−モリブデン複合材料、
(5) アルミニウム−ケイ素複合材料、および
(6) 銅−ダイヤモンド複合材料
からなる群より選ばれた少なくとも1種からなるものが挙げられる。
As the substrate, for example,
(1) Aluminum-ceramic composite material,
(2) Copper-ceramic composite material,
(3) Copper-tungsten composite material,
(4) Copper-molybdenum composite material,
(5) an aluminum-silicon composite material, and
(6) There may be mentioned at least one selected from the group consisting of copper-diamond composite materials.

接続部材を形成する金属または合金としては、ピンやネジ孔、通孔等を形成するために加工する際の加工性や、前記ピンをかしめ加工して他部材と接続する際の加工性等に優れる上、複合材料からなる基材のように脆くないため亀裂や割れ等が生じにくい種々の金属または合金がいずれも使用可能である。
中でも試験力49.03N(試験荷重5kgf)でのビッカース硬さHv=200以下の金属、特にアルミニウム、アルミニウム合金、銅、または銅合金が好ましい。
As the metal or alloy forming the connecting member, the workability when processing to form pins, screw holes, through holes, etc., the workability when caulking the pins and connecting to other members, etc. In addition to being excellent, it is possible to use any of various metals or alloys that are not brittle like a base material made of a composite material and thus are less prone to cracks and cracks.
Among them, a metal having a Vickers hardness Hv = 200 or less at a test force of 49.03 N (test load of 5 kgf), particularly aluminum, an aluminum alloy, copper, or a copper alloy is preferable.

また前記基材は、接続部材を形成する金属または合金と焼結可能な金属または合金を含む複合材料からなり、前記基材中の金属または合金と、接続部材を形成する金属または合金とが、前記複合材料を焼成して基材を形成する際に互いに焼結されることで、前記基材と接続部材とが接合されているのが好ましい。かかる構成により、接続部材を基材に対してより一層精度よく、かつできるだけ強固に接合させることができる。   The base material is composed of a composite material including a metal or alloy forming a connection member and a sinterable metal or alloy, and the metal or alloy in the base material and the metal or alloy forming the connection member are: It is preferable that the base material and the connecting member are bonded together by sintering the composite material to form a base material. With this configuration, the connecting member can be bonded to the base material with higher accuracy and as firmly as possible.

本発明は、基材がアルミニウム−セラミック複合材料、またはアルミニウム−ケイ素複合材料からなる平板状で、かつ接続部材がアルミニウムまたはアルミニウム合金からなる、前記本発明のヒートスプレッダを製造するための製造方法であって、前記基材の裏面の平面形状と一致する平面形状とされた底面を有する下パンチと、前記底面を囲む、基材の側面の形状と一致する形状とされた内周面を有するダイとを含むプレス型の、前記底面の所定の位置に接続部材をセットする工程と、前記プレス型の底面と内周面とで囲まれた領域に、アルミニウムまたはアルミニウム合金の粉末とセラミック粉末との混合物、またはアルミニウムまたはアルミニウム合金の粉末とケイ素粉末との混合物を充填する工程と、前記充填された混合物を底面の方向に圧縮成形して圧縮成形体を得る工程と、前記圧縮成形体を、アルミニウムまたはアルミニウム合金の融点以下の温度で焼成する工程とを含むことを特徴とする。   The present invention is a manufacturing method for manufacturing the heat spreader of the present invention, wherein the base material is a flat plate made of an aluminum-ceramic composite material or an aluminum-silicon composite material, and the connecting member is made of aluminum or an aluminum alloy. A lower punch having a bottom surface that has a planar shape that matches the planar shape of the back surface of the substrate, and a die that has an inner peripheral surface that surrounds the bottom surface and matches the shape of the side surface of the substrate. A step of setting a connecting member at a predetermined position on the bottom surface of the press die, and a mixture of aluminum or aluminum alloy powder and ceramic powder in a region surrounded by the bottom surface and inner peripheral surface of the press die Or filling a mixture of aluminum or aluminum alloy powder and silicon powder; and Obtaining a compression molded to compression moldings countercurrent, the compression-molded body, characterized in that it comprises a step of calcining an aluminum or aluminum alloy having a melting point below the temperature.

前記本発明の製造方法によれば、焼成工程において前記混合物の粉末同士を焼結させることにより、接続部材が基材内に貫入された形状を有する基材を形成し、かつ前記基材中のアルミニウムまたはアルミニウム合金を、前記接続部材を形成するアルミニウムまたはアルミニウム合金と焼結させることにより、前記基材と接続部材とを強固に接合できる。
また前記製造方法では、接続部材を下パンチの所定の位置にセットして位置ずれを防止していること、焼成の温度をアルミニウムまたはアルミニウム合金が溶融して大きく流動しない融点以下の温度に設定していること、および前記焼成によって基材と接続部材とが強固に焼結されることが相まって、前記接続部材を、基材の所定の位置に精度よく接合させることができる。そのため本発明の製造方法によれば、本発明のヒートスプレッダをできるだけ少ない工程で効率よく製造できる。
According to the manufacturing method of the present invention, the powder of the mixture is sintered in the baking step to form a base material having a shape in which the connection member penetrates into the base material, and in the base material By sintering aluminum or an aluminum alloy with aluminum or an aluminum alloy forming the connection member, the base material and the connection member can be firmly bonded.
In the manufacturing method, the connecting member is set at a predetermined position of the lower punch to prevent displacement, and the firing temperature is set to a temperature equal to or lower than the melting point at which the aluminum or aluminum alloy melts and does not flow significantly. In combination with the fact that the base material and the connection member are strongly sintered by the firing, the connection member can be accurately joined to a predetermined position of the base material. Therefore, according to the manufacturing method of the present invention, the heat spreader of the present invention can be efficiently manufactured with as few steps as possible.

前記製造方法においては、圧縮成形体をプレス型から取り出した後に焼成するのが好ましい。
すなわちプレス型から取り出した圧縮成形体をそのままで、あるいは型崩れを防止するための簡単な(熱容量の小さい)型枠にはめ込む等した状態で焼成できるため、前記焼成に要するエネルギーと時間とを削減できる。
In the said manufacturing method, it is preferable to bake, after taking out a compression molding body from a press die.
In other words, the compression molded body taken out from the press mold can be baked as it is or in a simple (small heat capacity) mold form to prevent the deformation of the mold, thereby reducing the energy and time required for the calcination. it can.

前記本発明の製造方法によって、平板状の基材の裏面から基材外へピンが突出されたヒートスプレッダを製造するためには、前記下パンチの底面に、接続部材と一体に形成されたピンが挿入される凹部を設け、前記凹部に前記ピンを挿入して接続部材を前記底面にセットした状態で、プレス型の前記底面と内周面とで囲まれた領域に基材のもとになる混合物を充填し、圧縮成形したのち焼成すればよい。   In order to manufacture the heat spreader in which the pins protrude from the back surface of the flat substrate to the outside of the substrate by the manufacturing method of the present invention, the pins formed integrally with the connection member are formed on the bottom surface of the lower punch. A recessed portion to be inserted is provided, and the pin is inserted into the recessed portion and the connecting member is set on the bottom surface, and the base material is formed in a region surrounded by the bottom surface and the inner peripheral surface of the press die. The mixture may be filled, compression molded, and fired.

また本発明の製造方法によって、接続部材がネジ孔または通孔を有するヒートスプレッダを製造する場合は、圧縮成形体を焼成した後の接続部材にネジ孔または通孔を形成するのが好ましい。
すなわち圧縮成形、および焼成の工程を経て基材と接合された接続部材に、あとからネジ孔または通孔を形成することにより、前記ネジ孔や通孔の精度を高めることができる。またネジ孔や通孔を形成する前の中実状の接続部材を複合材料と圧縮成形して基材を形成すると共に前記基材と接続部材とを接合することにより、前記接合の強度を高めることもできる。
Moreover, when manufacturing the heat spreader which a connection member has a screw hole or a through-hole by the manufacturing method of this invention, it is preferable to form a screw hole or a through-hole in the connection member after baking a compression molding body.
That is, the accuracy of the screw holes and through-holes can be increased by forming screw holes or through-holes later in the connection member joined to the base material through compression molding and firing processes. Further, the solid connection member before forming the screw hole or the through hole is compression-molded with the composite material to form the base material, and the base material and the connection member are joined to increase the strength of the joint. You can also.

本発明によれば、複合材料からなり、しかもピンやネジ孔、通孔等を形成するために加工したり、前記ピンやネジ孔、通孔等を利用して他部材と接続したりするのが容易で、様々な問題を生じないヒートスプレッダと、前記ヒートスプレッダを、できるだけ少ない工程で効率よく製造するための製造方法とを提供することができる。   According to the present invention, it is made of a composite material and processed to form a pin, a screw hole, a through hole, or the like, or connected to another member using the pin, the screw hole, the through hole, or the like. It is easy to provide a heat spreader that does not cause various problems, and a manufacturing method for efficiently manufacturing the heat spreader with as few steps as possible.

本発明のヒートスプレッダの、実施の形態の一例の外観を示す斜視図である。It is a perspective view which shows the external appearance of an example of embodiment of the heat spreader of this invention. 図1の例のヒートスプレッダの要部である、ピンを有する接続部材と基材との接合部分を拡大して示す拡大断面図である。It is an expanded sectional view which expands and shows the junction part of the connection member which has a pin, and a base material which are the principal parts of the heat spreader of the example of FIG. 前記接合部分の変形例を示す拡大断面図である。It is an expanded sectional view which shows the modification of the said junction part. 本発明のヒートスプレッダの、実施の形態の他の例の外観を示す斜視図である。It is a perspective view which shows the external appearance of the other example of embodiment of the heat spreader of this invention. 図4の例のヒートスプレッダの要部である、ネジ孔を有する接続部材と基材との接合部分を拡大して示す拡大断面図である。It is an expanded sectional view which expands and shows the junction part of the connection member which has a screw hole, and a base material which are the principal parts of the heat spreader of the example of FIG. 前記接続部材の変形例を示す拡大断面図である。It is an expanded sectional view showing a modification of the connection member. 前記接続部材の他の変形例を示す拡大断面図である。It is an expanded sectional view showing other modifications of the connection member. 前記接続部材のさらに他の変形例を示す拡大断面図である。It is an expanded sectional view showing other modifications of the connection member. 図1ないし図3のヒートスプレッダを製造するための、本発明のヒートスプレッダの製造方法の一例の、一工程を示す断面図である。It is sectional drawing which shows 1 process of an example of the manufacturing method of the heat spreader of this invention for manufacturing the heat spreader of FIG. 前記製造方法の次工程を示す断面図である。It is sectional drawing which shows the next process of the said manufacturing method. 前記製造方法の次工程を示す断面図である。It is sectional drawing which shows the next process of the said manufacturing method. 前記製造方法の次工程を示す断面図である。It is sectional drawing which shows the next process of the said manufacturing method. 前記製造方法の次工程を示す断面図である。It is sectional drawing which shows the next process of the said manufacturing method. 前記各工程を経て形成される圧縮成形体をさらに焼成して得られる、ヒートスプレッダの前駆体を示す断面図である。It is sectional drawing which shows the precursor of a heat spreader obtained by further baking the compression molding body formed through the said each process. 図4ないし図7のヒートスプレッダを製造するための、本発明のヒートスプレッダの製造方法の他の例の、一工程を示す断面図である。It is sectional drawing which shows 1 process of the other example of the manufacturing method of the heat spreader of this invention for manufacturing the heat spreader of FIG. 4 thru | or FIG. 前記製造方法の次工程を示す断面図である。It is sectional drawing which shows the next process of the said manufacturing method. 前記製造方法の次工程を示す断面図である。It is sectional drawing which shows the next process of the said manufacturing method. 前記製造方法の次工程を示す断面図である。It is sectional drawing which shows the next process of the said manufacturing method. 前記各工程を経て形成される圧縮成形体をさらに焼成して得られる、ヒートスプレッダの前駆体を示す断面図である。It is sectional drawing which shows the precursor of a heat spreader obtained by further baking the compression molding body formed through the said each process. 実施例1で製造したヒートスプレッダの、ピンを有する接続部材と基材との接合部分の切断面を示す光学顕微鏡写真である。It is an optical microscope photograph which shows the cut surface of the junction part of the connection member which has a pin of the heat spreader manufactured in Example 1, and a base material.

符号の説明Explanation of symbols

1 ヒートスプレッダ
2 基材
3 接続部材
4 裏面
5 表面
6 基部
7 ピン
8 肉厚部
9 上面
10 ネジ孔
11、12 被覆層
13 通孔
14 圧縮成形体
15 前駆体
16 底面
17 下パンチ
18 内周面
19 ダイ
20 プレス型
21 凹部
22 凹部
23 混合物
24 当接面
25 上パンチ
26、28 薄板
27、29 通孔
30 通孔
DESCRIPTION OF SYMBOLS 1 Heat spreader 2 Base material 3 Connection member 4 Back surface 5 Surface 6 Base 7 Pin 8 Thick part 9 Upper surface 10 Screw hole 11, 12 Cover layer 13 Through-hole 14 Compression molding 15 Precursor 16 Bottom surface 17 Lower punch 18 Inner peripheral surface 19 Die 20 Press die 21 Recess 22 Recess 23 Mixture 24 Contact surface 25 Upper punch 26, 28 Thin plate 27, 29 Through hole 30 Through hole

〈ヒートスプレッダ〉
図1は、本発明のヒートスプレッダの、実施の形態の一例の外観を示す斜視図である。図2は、図1の例のヒートスプレッダの要部である、ピンを有する接続部材と基材との接合部分を拡大して示す拡大断面図である。
図1および図2を参照して、この例のヒートスプレッダ1は、例えばアルミニウム−セラミック複合材料等によって全体を矩形平板状に形成した基材2と、前記基材2の矩形の四隅に対応する位置に設けた4つの接続部材3とを備えている。
<Heat spreader>
FIG. 1 is a perspective view showing an appearance of an example of an embodiment of a heat spreader of the present invention. FIG. 2 is an enlarged cross-sectional view showing a joint portion between a connecting member having a pin and a base material, which is a main part of the heat spreader in the example of FIG.
1 and 2, a heat spreader 1 of this example includes a base material 2 formed entirely in a rectangular flat plate shape by, for example, an aluminum-ceramic composite material, and positions corresponding to the four rectangular corners of the base material 2. The four connection members 3 provided in the above are provided.

各接続部材3は、それぞれ基材2の裏面4(図示しないリードフレーム等の他部材が接続される面、両図において上面)から表面5(図示しない半導体素子等が搭載される面、両図において下面)へ達するように厚み方向に貫通させた状態で、その周囲の全周を囲む前記基材2と立体的に接合させた基部6と、前記裏面4から上方へ突出させた、他部材への接続のためのピン7とを有している。前記基部6とピン7とを、この例では金属または合金によって外径の等しい円柱状に一体に形成している。   Each connection member 3 has a back surface 4 (a surface to which other members such as a lead frame (not shown) are connected, an upper surface in both figures) to a front surface 5 (a surface on which a semiconductor element (not shown) is mounted, both figures, respectively. In the thickness direction so as to reach the lower surface), a base portion 6 that is three-dimensionally joined to the base material 2 surrounding the entire circumference of the periphery, and other members that protrude upward from the back surface 4 And a pin 7 for connection. In this example, the base 6 and the pin 7 are integrally formed in a cylindrical shape having the same outer diameter by a metal or an alloy.

前記接続部材3を有するこの例のヒートスプレッダ1によれば、従来の、基材の裏面等にピンをはんだ接合等によって単なる面同士で接合して固定する場合等に比べて、ピン7を基材2に対してより強固に接合できる。すなわち前記ピン7と一体に形成した円柱状の基部6を、その外周の全周を囲む基材2と立体的に接合させることによって、前記接続部材3を、すなわちピン7を基材2に対してより強固に接合できる。   According to the heat spreader 1 of this example having the connecting member 3, the pin 7 is formed on the base material as compared with the conventional case where the pins are simply joined to each other on the back surface of the base material by soldering or the like. 2 can be bonded more firmly. That is, the cylindrical base portion 6 formed integrally with the pin 7 is three-dimensionally joined to the base material 2 surrounding the entire outer periphery thereof, thereby connecting the connecting member 3, that is, the pin 7 to the base material 2. Can be joined more firmly.

そのためピン7をかしめ加工してリードフレーム等と接続する際の衝撃等によって、前記ピン7を有する接続部材3が基材2から脱落したりするのをより確実に防止できる。
しかもこの例のヒートスプレッダ1では、前記のように基部6を基材2の表面5に達するように厚み方向に貫通させているため、ピン7のかしめ加工時に基材2の厚み方向に加わる荷重の大部分を、接続部材3それ自体を介して基材2の裏面4側から表面5側に逃がすことができる。そのため、基材2に直接に加わる荷重を大幅に低減でき、前記基材2に亀裂や割れ等が生じるのを確実に防止して、かしめ加工時の歩留まりをさらに向上できる。
Therefore, it is possible to more reliably prevent the connecting member 3 having the pins 7 from dropping from the base material 2 due to an impact or the like when the pins 7 are caulked and connected to a lead frame or the like.
Moreover, in the heat spreader 1 of this example, since the base portion 6 is penetrated in the thickness direction so as to reach the surface 5 of the base material 2 as described above, the load applied in the thickness direction of the base material 2 during the caulking processing of the pin 7 is reduced. Most part can escape from the back surface 4 side of the base material 2 to the front surface 5 side through the connection member 3 itself. Therefore, the load directly applied to the base material 2 can be significantly reduced, and the base material 2 can be reliably prevented from being cracked or cracked, and the yield during caulking can be further improved.

したがってこの例のヒートスプレッダ1によれば、ピン7を含む接続部材3の全体をかしめ加工することが容易な金属または合金によって形成することにより、前記ヒートスプレッダ1を、前記ピン7のかしめ加工によって精度よくかつ歩留まりよく、リードフレーム等に対して良好に固定できる。
基材2は、裏面4の中央部に、前記裏面4から上方へ突出させた矩形状の肉厚部8を有している。肉厚部8は、前記複合材料等によって基材2と一体に形成されている。前記肉厚部8の、図において上面9は、先に説明したように封止樹脂によって封止させずに露出させて、冷却のための露出面として機能させることができる。
Therefore, according to the heat spreader 1 of this example, the entire connection member 3 including the pins 7 is formed of a metal or an alloy that can be easily caulked, so that the heat spreader 1 can be accurately obtained by caulking of the pins 7. Moreover, it can be fixed to a lead frame or the like with good yield.
The base material 2 has a rectangular thick portion 8 that protrudes upward from the back surface 4 at the center of the back surface 4. The thick part 8 is formed integrally with the base material 2 by the composite material or the like. The upper surface 9 in the figure of the thick portion 8 can be exposed without being sealed with the sealing resin as described above, and can function as an exposed surface for cooling.

図3は、前記接合部分の変形例を示す拡大断面図である。
図3を参照して、この例では接続部材3を、基部6を基材2の表面5まで達するように厚み方向に貫通させずに、前記基材2の裏面4から厚み方向の途中の位置まで貫入させた状態で前記基材2と接合している。この場合も、従来の基材の裏面等にピンをはんだ接合等によって単なる面同士で接合して固定する場合等に比べて、ピン7を基材2に対してより強固に接合できる。
FIG. 3 is an enlarged cross-sectional view showing a modified example of the joining portion.
With reference to FIG. 3, in this example, the connecting member 3 is positioned in the middle of the thickness direction from the back surface 4 of the base material 2 without penetrating the base portion 6 in the thickness direction so as to reach the surface 5 of the base material 2. It is joined to the base material 2 in a state of being penetrated to the end. Also in this case, the pin 7 can be bonded to the base material 2 more firmly than in the case where the pins are simply bonded to each other on the back surface of the base material by soldering or the like.

すなわち前記円柱状の基部6を、その外周の全周を囲み、かつ図3において下側の端面と接する基材2と立体的に接合させることによって、前記接続部材3を、すなわちピン7を基材2に対してより強固に接合できる。
接続部材3としては、ヒートスプレッダ1やリードフレームのサイズやかしめ位置、搭載する半導体素子の形状やサイズ、あるいは樹脂封止パッケージ等の形状やサイズ等に応じて種々の寸法を有するものが使用できる。
That is, the cylindrical base portion 6 is three-dimensionally joined to the base member 2 that surrounds the entire outer periphery of the cylindrical base portion 6 and is in contact with the lower end face in FIG. The material 2 can be bonded more firmly.
As the connection member 3, those having various dimensions according to the size and position of the heat spreader 1 and the lead frame, the shape and size of the semiconductor element to be mounted, the shape and size of the resin-sealed package, etc. can be used.

例えば、前記のように基部6とピン7とを外径の等しい円柱状に一体に形成した接続部材3においては、前記ピン7の、裏面4からの突出高さが0.5mm以上、2.0mm以下、特に1.0mm前後となるように接続部材3の全体の長さを設定し、かつ前記接続部材3の直径を0.5mm以上、5.0mm以下、特に1.0mm程度とするのが好ましい。   For example, in the connection member 3 in which the base 6 and the pin 7 are integrally formed in a cylindrical shape having the same outer diameter as described above, the protruding height of the pin 7 from the back surface 4 is 0.5 mm or more. The entire length of the connecting member 3 is set to be 0 mm or less, particularly around 1.0 mm, and the diameter of the connecting member 3 is set to 0.5 mm or more and 5.0 mm or less, particularly about 1.0 mm. Is preferred.

ピン7の突出高さが0.5mm未満では、かしめによる充分なつぶし代を確保できないおそれがある。また2.0mmを超える場合には、前記ピン7が裏面4から鉛直方向にまっすぐに突出されない場合を生じ、その場合にはリードフレームを嵌め込むのが難しくなるという問題を生じる。
また接続部材3の直径が0.5mm未満では、特に後述する本発明の製造方法によってヒートスプレッダ1を製造するに際し、下パンチ17の凹部22にピン7を挿入して接続部材3をセットするのが難しくなるおそれがあり、5.0mmを超える場合には、大きさが限られた樹脂封止パッケージ用のヒートスプレッダ1の基材2に前記接続部材3を配置するスペース、およびリードフレームに通孔を形成するスペースを確保するのが難しくなるおそれがある。
If the protruding height of the pin 7 is less than 0.5 mm, there is a possibility that a sufficient crushing allowance by caulking cannot be secured. If it exceeds 2.0 mm, the pin 7 may not protrude straight from the back surface 4 in the vertical direction. In this case, it is difficult to fit the lead frame.
When the diameter of the connecting member 3 is less than 0.5 mm, the pin 7 is inserted into the recess 22 of the lower punch 17 to set the connecting member 3 particularly when the heat spreader 1 is manufactured by the manufacturing method of the present invention described later. If it exceeds 5.0 mm, a space for arranging the connecting member 3 on the base material 2 of the heat spreader 1 for a resin-sealed package having a limited size, and a through hole in the lead frame It may be difficult to secure a space to be formed.

基部6を基材2に貫入させる深さは、先に説明したように基材2の厚みまで、つまり図2に示すように基部6を基材2の表面5まで貫通させた状態までであり、この状態が最も好ましい。
また、図3に示すように基部6を基材2の厚み方向の途中まで貫入させる場合には、その貫入させる深さを0.2mm以上とするのが好ましい。貫入させる深さが0.2mm未満では、先に説明した基部6をその外周の全周を囲み、かつ下側の端面と接する基材2と立体的に接合させることで、前記接続部材3を基材2に対してより強固に接合する効果が充分に得られないおそれがある。
The depth of penetration of the base 6 into the base 2 is up to the thickness of the base 2 as described above, that is, up to the state where the base 6 is penetrated to the surface 5 of the base 2 as shown in FIG. This state is most preferable.
Moreover, as shown in FIG. 3, when making the base part 6 penetrate in the middle of the thickness direction of the base material 2, it is preferable to make the penetration depth into 0.2 mm or more. When the depth of penetration is less than 0.2 mm, the connecting member 3 is joined in a three-dimensional manner with the base 2 that surrounds the entire circumference of the base 6 described above and is in contact with the lower end surface. There is a possibility that the effect of bonding more strongly to the base material 2 cannot be obtained.

基部6を貫入させる位置は、基材2の面方向の周縁から0.2mm以上、内側に入った位置であるのが好ましい。前記範囲より周縁に近い位置に基部6を貫入させた場合には、かしめ加工時の衝撃によって、基材2の前記基部6より周縁側に亀裂を生じて、ヒートスプレッダ1がリードフレームから脱落するおそれがある。
下パンチ17の凹部22とピン7との間のクリアランスは0.02mm以上、0.1mm以下に設定するのが好ましい。クリアランスが0.02mm未満では、特に後述する本発明の製造方法によってヒートスプレッダ1を製造するに際し、凹部22にピン7を挿入して接続部材3をセットするのが難しくなるおそれがあり、0.1mmを超える場合には、圧縮成形時に、基材2を構成する複合材料中の金属または合金が前記クリアランス内に浸入する等して、成形後の圧縮成形体をプレス型20から取り出すのが難しくなるおそれがある。
The position where the base portion 6 is penetrated is preferably a position that is 0.2 mm or more inside from the periphery in the surface direction of the substrate 2. When the base 6 is inserted at a position closer to the periphery than the range, there is a risk that the heat spreader 1 may fall off the lead frame due to a crack on the periphery of the base 6 of the base 2 due to impact during caulking. There is.
The clearance between the recess 22 of the lower punch 17 and the pin 7 is preferably set to 0.02 mm or more and 0.1 mm or less. If the clearance is less than 0.02 mm, particularly when the heat spreader 1 is manufactured by the manufacturing method of the present invention, which will be described later, it is difficult to insert the pin 7 into the recess 22 and set the connecting member 3. In the case of exceeding the above, at the time of compression molding, it becomes difficult for the metal or alloy in the composite material constituting the base material 2 to enter the clearance, so that it becomes difficult to take out the compression molded body after molding from the press die 20. There is a fear.

図4は、本発明のヒートスプレッダの、実施の形態の他の例の外観を示す斜視図である。図5は、図4の例のヒートスプレッダの要部である、ネジ孔を有する接続部材と基材との接合部分を拡大して示す拡大断面図である。
図4および図5を参照して、この例のヒートスプレッダ1は、全体を矩形平板状に形成した基材2と、前記基材2の矩形の四隅に対応する位置に設けた4つの接続部材3とを備えている。
FIG. 4 is a perspective view showing the appearance of another example of the embodiment of the heat spreader of the present invention. FIG. 5 is an enlarged cross-sectional view showing a joint portion between a connection member having a screw hole and a base material, which is a main part of the heat spreader in the example of FIG.
4 and 5, the heat spreader 1 of this example includes a base material 2 formed entirely in a rectangular flat plate shape, and four connection members 3 provided at positions corresponding to the four corners of the rectangle of the base material 2. And.

各接続部材3は、それぞれ基材2の裏面4(図示しない冷却器やヒートシンク等の他部材が接続される面、両図において上面)から表面5(半導体素子等が搭載される面、両図において下面)へ達するように厚み方向に貫通させた状態で、周囲の全周を囲む前記基材2と接合させている。
また接続部材3には、前記裏面4から表面5へ向けて、他部材との接続のためのネジが螺合されるネジ孔10を、前記両面4、5間を貫通させて形成している。またこの例では前記接続部材3を、金属または合金によって外径の等しい円柱状に一体に形成し、その中心軸と略同軸となるようにネジ孔10を設けている。
Each connecting member 3 has a back surface 4 of the base material 2 (a surface to which other members such as a cooler and a heat sink (not shown) are connected, an upper surface in both figures) to a front surface 5 (a surface on which a semiconductor element is mounted, both figures. In the state penetrated in the thickness direction so as to reach the lower surface), the base material 2 surrounding the entire circumference is joined.
Further, the connection member 3 is formed with a screw hole 10 through which the screws for connecting to other members are screwed from the back surface 4 to the front surface 5 so as to penetrate between the both surfaces 4 and 5. . In this example, the connecting member 3 is integrally formed of a metal or alloy in a cylindrical shape having the same outer diameter, and the screw hole 10 is provided so as to be substantially coaxial with the central axis.

前記接続部材3を有するこの例のヒートスプレッダ1においては、前記接続部材3を、ネジ孔10を形成するための孔あけやタッピング等の加工をすることが容易な金属または合金によって形成することにより、超硬工具等を用いることなく簡単に、しかも短時間で前記ネジ孔10を形成できる。また前記金属や合金からなる接続部材3は複合材料のように脆くないため、前記加工時や、あるいはネジを締め付ける際等に前記ネジ孔10の周囲等に亀裂や割れ等が生じたりするのも防止できる。   In the heat spreader 1 of this example having the connecting member 3, the connecting member 3 is formed of a metal or an alloy that can be easily drilled or tapped to form the screw hole 10. The screw hole 10 can be formed easily and in a short time without using a carbide tool or the like. Further, since the connecting member 3 made of metal or alloy is not brittle like a composite material, cracks or cracks may occur around the screw hole 10 during the processing or when tightening the screw. Can be prevented.

しかもこの例のヒートスプレッダ1は、前記のように接続部材3を基材2の表面5に達するように厚み方向に貫通させているため、ネジ孔10を形成するための孔あけやタッピング等の加工時に基材2の厚み方向に加わる荷重の大部分を、接続部材3それ自体を介して基材2の裏面4側から表面5側に逃がすことができる。そのため基材2に直接に加わる荷重を大幅に低減でき、前記加工時に基材2に亀裂や割れ等が生じるのを確実に防止して、孔あけやタッピングの加工時の歩留まりをさらに向上できる。   Moreover, since the heat spreader 1 of this example has the connecting member 3 penetrated in the thickness direction so as to reach the surface 5 of the base material 2 as described above, processing such as drilling and tapping for forming the screw holes 10 is performed. Sometimes, most of the load applied in the thickness direction of the base material 2 can escape from the back surface 4 side to the front surface 5 side of the base material 2 through the connection member 3 itself. Therefore, the load directly applied to the base material 2 can be significantly reduced, and it is possible to reliably prevent the base material 2 from being cracked or cracked during the processing, thereby further improving the yield during drilling or tapping processing.

また、他部材との接続のために前記ネジ孔10に螺合したネジを締め付けた際に基材2の厚み方向に加わる応力を、前記接続部材3によって受けることができる。そのため他部材との接続時に基材2に亀裂や割れ等が生じたりするのをさらに確実に防止できる。
またこの例のヒートスプレッダ1では、基材2の裏面および表面を薄板状の被覆層11、12で被覆しており、前記被覆層11の両図において上側の露出面を基材2の裏面4、被覆層12の下側の露出面を基材2の表面5としている。
In addition, the connecting member 3 can receive stress applied in the thickness direction of the base material 2 when a screw screwed into the screw hole 10 is tightened for connection with another member. Therefore, it is possible to more reliably prevent the base material 2 from being cracked or cracked when connected to another member.
Moreover, in the heat spreader 1 of this example, the back surface and the surface of the base material 2 are covered with thin plate-like coating layers 11 and 12, and the upper exposed surface in both drawings of the coating layer 11 is the back surface 4 of the base material 2. The exposed surface on the lower side of the coating layer 12 is the surface 5 of the substrate 2.

前記被覆層11、12は、接続部材3を形成するのと同じまたは異なる金属または合金によって形成する。特に基材2と同等またはそれ以上の良好な熱伝導率を有する種々の金属または合金によって形成するのが好ましい。
前記被覆層12によって構成した基材2の表面5には、半導体素子や、あるいは半導体素子を搭載したセラミック基板等を、熱伝導の妨げになるボイド等を生じることなく良好にはんだ接合できる。
The covering layers 11 and 12 are formed of the same or different metal or alloy as that for forming the connection member 3. In particular, it is preferably formed of various metals or alloys having a good thermal conductivity equal to or higher than that of the substrate 2.
A semiconductor element or a ceramic substrate on which a semiconductor element is mounted can be satisfactorily soldered to the surface 5 of the base material 2 constituted by the coating layer 12 without generating voids that hinder heat conduction.

すなわち、前記半導体素子やセラミック基板等を基材2の表面5に良好にはんだ接合するためには、前記表面5をはんだに対する濡れ性、親和性に優れたニッケルめっき膜等で被覆するのが好ましい。
しかし基材2の、複合材料からなる表面においては、前記複合材料を構成する各種の材料間、例えば金属や合金とセラミックとでめっきの条件が大きく異なるため、その表面に直接に、安定で均一なニッケルめっき膜等を形成するのは難しい。
That is, in order to satisfactorily solder the semiconductor element, the ceramic substrate or the like to the surface 5 of the base material 2, it is preferable to coat the surface 5 with a nickel plating film having excellent wettability and affinity for solder. .
However, on the surface of the base material 2 made of the composite material, the plating conditions vary greatly between various materials constituting the composite material, for example, metal, alloy and ceramic, so that the surface is stable and uniform directly on the surface. It is difficult to form a nickel plating film or the like.

これに対し、基材2の表面5を単一の金属または合金からなる平滑な被覆層12で構成した場合には、前記被覆層12上に安定で均一なニッケルめっき膜等を形成できる。そのため前記ニッケルめっき膜等を形成した表面に、前記素子やセラミック基板等を熱伝導の妨げになるボイド等を生じることなく良好にはんだ接合できる。
また、被覆層12を構成する金属または合金としてはんだに対する濡れ性、親和性に優れたものを用いてニッケルめっき膜等を省略することもできる。
On the other hand, when the surface 5 of the base material 2 is composed of a smooth coating layer 12 made of a single metal or alloy, a stable and uniform nickel plating film or the like can be formed on the coating layer 12. Therefore, the element, the ceramic substrate, etc. can be satisfactorily soldered to the surface on which the nickel plating film or the like is formed without generating voids that hinder heat conduction.
Moreover, a nickel plating film etc. can also be abbreviate | omitted using what was excellent in the wettability with respect to a solder as a metal or alloy which comprises the coating layer 12, and affinity.

また、基材2の裏面4を被覆層11によって構成することにより前記裏面4の平滑性を高めて、前記裏面4にネジによって固定される冷却器やヒートシンク等との密着性を高めることができる。
図6ないし図8は、それぞれ接続部材3の変形例を示す拡大断面図である。図6を参照して、ネジ孔10は基材2の表面5側では開口させずに裏面4側のみで開口させてもよい。また図7を参照して、接続部材3は、基材2の表面5まで達するように厚み方向に貫通させずに、前記基材2の裏面4から厚み方向の途中の位置まで貫入させた状態で前記基材2と接合してもよい。
Moreover, the smoothness of the said back surface 4 can be improved by comprising the back surface 4 of the base material 2 with the coating layer 11, and adhesiveness with the cooler, heat sink, etc. which are fixed to the said back surface 4 with a screw | thread can be improved. .
6 to 8 are enlarged sectional views showing modifications of the connecting member 3. With reference to FIG. 6, the screw hole 10 may be opened only on the back surface 4 side without opening on the front surface 5 side of the substrate 2. Further, referring to FIG. 7, the connecting member 3 is not penetrated in the thickness direction so as to reach the front surface 5 of the base material 2, but penetrates from the back surface 4 of the base material 2 to a position in the middle of the thickness direction. And may be joined to the substrate 2.

さらに図8を参照して、接続部材3にはネジ孔10に代えて通孔13を形成してもよい。この場合、例えば冷却器やヒートシンクにネジ孔を形成しておき、前記通孔13に挿通したネジを前記ネジ孔に螺合させることで、基材2の裏面4側に冷却器やヒートシンクが連結される。
接続部材3としては、ヒートスプレッダ1や冷却器、ヒートシンク等のサイズ、搭載する半導体素子の形状やサイズ、あるいはネジ孔に螺合するネジや通孔に挿通するネジの寸法等に応じて種々の寸法を有するものが使用できる。
Further, referring to FIG. 8, the connection member 3 may be formed with a through hole 13 instead of the screw hole 10. In this case, for example, a screw hole is formed in the cooler or the heat sink, and the screw inserted through the through hole 13 is screwed into the screw hole, so that the cooler or the heat sink is connected to the back surface 4 side of the substrate 2. Is done.
The connecting member 3 has various dimensions according to the size of the heat spreader 1, the cooler, the heat sink, the shape and size of the semiconductor element to be mounted, the size of the screw that is screwed into the screw hole, the size of the screw that is inserted into the through hole, and the like. Can be used.

例えば前記のように円柱状に一体に形成し、その中心軸と略同軸となるようにネジ孔10や通孔13を設けた接続部材3においては、その直径を前記ネジ孔10や通孔13の内径の1.2倍以上、3.0倍以下、特に1.5倍以上、2.0倍以下となるように設定するのが好ましい。
接続部材3の直径がネジ孔10や通孔13の内径の1.2倍未満では、前記接続部材3が細すぎて、その中心軸と略同軸に前記ネジ孔10や通孔13を形成する加工が容易でなくなるおそれがある。また加工時の応力が基材2に加えられて、前記基材2に亀裂や割れ等が生じたりしやすくなるおそれもある。またネジ孔10や通孔13を形成した後の接続部材3の肉厚が薄くなりすぎて、ネジを締め付けた際に基材2の厚み方向に加わる応力を、前記接続部材3によって十分に受けることができないため、前記基材2に亀裂や割れ等が生じたりしやすくなるおそれもある。
For example, in the connection member 3 that is integrally formed in a cylindrical shape as described above and has the screw hole 10 and the through hole 13 so as to be substantially coaxial with the central axis thereof, the diameter thereof is set to the screw hole 10 or the through hole 13. It is preferable that the inner diameter is set to 1.2 times or more and 3.0 times or less, particularly 1.5 times or more and 2.0 times or less.
When the diameter of the connecting member 3 is less than 1.2 times the inner diameter of the screw hole 10 or the through hole 13, the connecting member 3 is too thin to form the screw hole 10 or the through hole 13 substantially coaxially with the central axis. Processing may not be easy. Moreover, stress at the time of processing may be applied to the base material 2 and the base material 2 may be easily cracked or cracked. Further, the thickness of the connecting member 3 after the screw hole 10 and the through hole 13 are formed becomes too thin, and the connecting member 3 sufficiently receives the stress applied in the thickness direction of the base material 2 when the screw is tightened. Therefore, the base material 2 may be easily cracked or cracked.

また接続部材3の直径がネジ孔10や通孔13の内径の3.0倍を超える場合には、基材2と接続部材3との熱膨張係数の違いによる基材2へのダメージが大きくなりすぎるおそれがある。また、ネジ孔10や通孔13をヒートスプレッダ1の外周縁の近傍等に配置できなくなり、前記ヒートスプレッダ1の設計の自由度が低下するおそれもある。
接続部材3を基材2に貫入させる深さは、先に説明したように基材2の厚みまで、つまり図4ないし図6、図8に示すように接続部材3を基材2の表面5まで貫通させた状態までであり、この状態が最も好ましい。
Further, when the diameter of the connecting member 3 exceeds 3.0 times the inner diameter of the screw hole 10 or the through-hole 13, damage to the base material 2 due to the difference in thermal expansion coefficient between the base material 2 and the connecting member 3 is large. There is a risk of becoming too much. Further, the screw holes 10 and the through holes 13 cannot be disposed in the vicinity of the outer peripheral edge of the heat spreader 1 and the design freedom of the heat spreader 1 may be reduced.
The depth of penetration of the connecting member 3 into the base material 2 is the thickness of the base material 2 as described above, that is, as shown in FIGS. 4 to 6 and FIG. This state is most preferable.

また、図7に示すように接続部材3を基材2の厚み方向の途中まで貫入させる場合には、その貫入させる深さを、ネジ孔10の内径の1.0倍以上とするのが好ましい。貫入させる深さをネジ孔10の内径の1.0倍以上とすることで、前記接続部材3に形成するネジ孔10に十分なネジの締めしろを確保できる。そのためヒートスプレッダ1を、ネジによって、冷却器やヒートシンク等に対して確実に固定できる。   Further, as shown in FIG. 7, when the connection member 3 is penetrated partway along the thickness direction of the substrate 2, the penetration depth is preferably 1.0 times or more the inner diameter of the screw hole 10. . By setting the penetration depth to be 1.0 times or more of the inner diameter of the screw hole 10, a sufficient screw tightening margin can be secured in the screw hole 10 formed in the connection member 3. Therefore, the heat spreader 1 can be securely fixed to a cooler, a heat sink, or the like with screws.

接続部材3を貫入させる位置は、基材2の面方向の周縁から0.2mm以上、内側に入った位置であるのが好ましい。前記範囲より周縁に近い位置に接続部材3を貫入させた場合には、ネジ孔10や通孔13を形成する加工時の応力、あるいはネジを締め付ける際の応力等によって基材2の前記接続部材3より周縁側に亀裂を生じるおそれがある。
図1ないし図7のいずれの例のヒートスプレッダ1においても基材2の熱膨張係数は15×10-6/K以下であるのが好ましい。
The position where the connecting member 3 is penetrated is preferably a position that enters 0.2 mm or more from the peripheral edge in the surface direction of the substrate 2. When the connection member 3 is inserted at a position closer to the periphery than the above range, the connection member of the base material 2 is caused by a stress at the time of forming the screw hole 10 or the through hole 13 or a stress at the time of tightening the screw. There is a possibility that a crack is generated on the peripheral side from 3.
In any of the heat spreaders 1 shown in FIGS. 1 to 7, the thermal expansion coefficient of the substrate 2 is preferably 15 × 10 −6 / K or less.

これにより、各種の半導体材料からなる半導体素子等との熱膨張係数の差を小さくできる。そのため半導体素子の動作による発熱と停止後の冷却とを繰り返した際に、熱膨張係数の違いに基づいて半導体素子に過剰な応力が加わって前記半導体素子自体が破損したり誤動作したり、半導体素子の動作の効率が低下したり、あるいは半導体素子とヒートスプレッダ1との間のはんだ接合等が破壊されたりするのを抑制できる。   Thereby, the difference of a thermal expansion coefficient with the semiconductor element etc. which consist of various semiconductor materials can be made small. Therefore, when the heat generation due to the operation of the semiconductor element and the cooling after the stop are repeated, the semiconductor element itself is damaged or malfunctions due to excessive stress applied to the semiconductor element based on the difference in coefficient of thermal expansion. It is possible to suppress the reduction in the efficiency of the operation or the destruction of the solder joint or the like between the semiconductor element and the heat spreader 1.

また基材2の熱膨張係数は、例えばアルミニウム−セラミック複合材料、ケイ素−セラミック複合材料等からなる基材2の場合、前記範囲内でも2×10-6/K以上であるのが好ましい。
複合材料からなる基材2の熱膨張係数は、セラミックの含有割合を増減させることで調整できる。しかし熱膨張係数を2×10-6/K未満とするためにはセラミックの含有割合を過剰に多くしなければならず、相対的に結合材としてのアルミニウム等の含有割合が少なくなりすぎて、実質的に前記複合構造を有する基材2を形成するのが容易でなくなるためである。また基材2を形成できたとしても強度が不足して、十分に実用に供しえなくなるおそれがあるためである。
In the case of the base material 2 made of, for example, an aluminum-ceramic composite material, a silicon-ceramic composite material or the like, the base material 2 preferably has a thermal expansion coefficient of 2 × 10 −6 / K or more even within the above range.
The thermal expansion coefficient of the base material 2 made of a composite material can be adjusted by increasing or decreasing the ceramic content ratio. However, in order to make the thermal expansion coefficient less than 2 × 10 −6 / K, the content of ceramic must be excessively increased, and the content of aluminum or the like as a binder is relatively decreased, This is because it becomes difficult to form the base material 2 having the composite structure substantially. Moreover, even if the base material 2 can be formed, the strength is insufficient, and there is a possibility that the base material 2 may not be practically used.

他の材料からなる基材2についても、それぞれの材料に固有の事情に応じて熱膨張係数の下限を設定すればよい。
基材2の熱伝導率は150W/m・K以上であるのが好ましい。これにより、素子において発生した熱をできるだけ速やかに冷却部材に伝導して除去できるため、素子自体が過熱して誤動作したり破損したりするのを確実に防止できる。
For the base material 2 made of other materials, the lower limit of the thermal expansion coefficient may be set according to the circumstances specific to each material.
The thermal conductivity of the substrate 2 is preferably 150 W / m · K or more. As a result, the heat generated in the element can be conducted and removed to the cooling member as quickly as possible, so that it is possible to reliably prevent the element itself from overheating and malfunctioning or being damaged.

前記熱膨張係数および熱伝導率の範囲を満足する基材2としては、例えば、
(1) アルミニウム−セラミック複合材料、
(2) 銅−セラミック複合材料、
(3) 銅−タングステン複合材料、
(4) 銅−モリブデン複合材料、
(5) アルミニウム−ケイ素複合材料、および
(6) 銅−ダイヤモンド複合材料
からなる群より選ばれた少なくとも一種からなるものが挙げられる。
As the base material 2 that satisfies the ranges of the thermal expansion coefficient and the thermal conductivity, for example,
(1) Aluminum-ceramic composite material,
(2) Copper-ceramic composite material,
(3) Copper-tungsten composite material,
(4) Copper-molybdenum composite material,
(5) an aluminum-silicon composite material, and
(6) There may be mentioned at least one selected from the group consisting of copper-diamond composite materials.

このうち(1)のアルミニウム−セラミック複合材料からなる基材2としては、例えば下記のいずれかの形成方法によって形成したもの等が挙げられる。
(1-1) アルミニウムまたはアルミニウム合金の粉末とセラミック粉末との混合物を基材2の形状に圧縮成形したのち、アルミニウムまたはアルミニウム合金の融点以下の温度で焼成する。
Of these, the base material 2 made of the aluminum-ceramic composite material (1) includes, for example, those formed by any of the following forming methods.
(1-1) A mixture of aluminum or aluminum alloy powder and ceramic powder is compression-molded into the shape of the substrate 2 and then fired at a temperature not higher than the melting point of aluminum or aluminum alloy.

(1-2) 前記(1-1)で得た基材2を、再度アルミニウムまたはアルミニウム合金の融点以下の温度に加熱しながら圧縮成形して複合構造の緻密化を図る。
(1-3) 基材2の形状に形成したセラミックからなる多孔質体(プリフォーム)中に、例えば真空炉中で、溶融させたアルミニウムまたはアルミニウム合金を含浸させる。
なお、後述する本発明の製造方法によってヒートスプレッダ1を製造する際に、接続部材3と接合された状態で形成される基材2は(1-1)(1-2)の方法によって形成したものに相当する。
(1-2) The base material 2 obtained in the above (1-1) is compression-molded again while being heated to a temperature equal to or lower than the melting point of aluminum or aluminum alloy, thereby densifying the composite structure.
(1-3) A porous body (preform) made of ceramic formed in the shape of the substrate 2 is impregnated with molten aluminum or an aluminum alloy in, for example, a vacuum furnace.
In addition, when manufacturing the heat spreader 1 by the manufacturing method of the present invention to be described later, the base material 2 formed in a state of being joined to the connecting member 3 is formed by the methods (1-1) and (1-2). It corresponds to.

前記(1-1)(1-2)の方法において使用するアルミニウムまたはアルミニウム合金の粉末としては、例えばアトマイズ法等によって作製された純アルミニウム粉末や、ケイ素(Si)を12質量%以下の割合で含有するアルミニウム−ケイ素合金粉末等が挙げられる。
また、日本工業規格JIS H4000:2006「アルミニウム及びアルミニウム合金の板及び条」において規定された合金番号A1050、A1070、A1100等の純アルミニウム系の展延材、A2014、A3004、A5005等のアルミニウム−マグネシウム合金系材料、あるいはAC3A、AC4Aといった鋳造用アルミニウム系合金等の粉末等も使用可能である。
As the powder of aluminum or aluminum alloy used in the method (1-1) or (1-2), for example, pure aluminum powder produced by an atomizing method or the like, or silicon (Si) at a ratio of 12% by mass or less. Examples thereof include aluminum-silicon alloy powder.
Also, pure aluminum-based spreading materials such as alloy numbers A1050, A1070, and A1100 defined in Japanese Industrial Standard JIS H4000: 2006 “Aluminum and Aluminum Alloy Plates and Strips”, and aluminum-magnesium such as A2014, A3004, and A5005 An alloy-based material or powder such as a casting aluminum-based alloy such as AC3A or AC4A can also be used.

前記アルミニウムまたはアルミニウム合金の粉末は、平均粒径が30μm以上、60μm以下であるのが好ましい。これにより、基材2中でアルミニウムまたはアルミニウム合金とセラミックとをできるだけ細かくかつ均等に分布させて、両者の分布に偏りがない基材2を形成できる。
セラミック粉末としては、例えば炭化ケイ素(SiC)、窒化ケイ素(Si34)、酸化アルミニウム(Al23)等のセラミックからなる粉末が挙げられる。
The aluminum or aluminum alloy powder preferably has an average particle size of 30 μm or more and 60 μm or less. Thereby, aluminum or aluminum alloy and ceramic can be distributed as finely and evenly as possible in the base material 2, and the base material 2 can be formed without any bias in the distribution of both.
Examples of the ceramic powder include powder made of ceramic such as silicon carbide (SiC), silicon nitride (Si 3 N 4 ), and aluminum oxide (Al 2 O 3 ).

前記粒径範囲を有するアルミニウムまたはアルミニウム合金の粉末と組み合わせるセラミック粉末は、平均粒径が30μm以上、60μm以下であるのが好ましい。特に組み合わせるアルミニウムまたはアルミニウム合金の粉末と平均粒径が等しいのがさらに好ましい。これにより、基材2中でアルミニウムまたはアルミニウム合金とセラミックとをできるだけ細かくかつ均等に分布させて、両者の分布に偏りがない基材2を形成できる。   The ceramic powder combined with the aluminum or aluminum alloy powder having the particle size range preferably has an average particle size of 30 μm or more and 60 μm or less. In particular, it is more preferable that the average particle diameter is equal to the aluminum or aluminum alloy powder to be combined. Thereby, aluminum or aluminum alloy and ceramic can be distributed as finely and evenly as possible in the base material 2, and the base material 2 can be formed without any bias in the distribution of both.

前記アルミニウムまたはアルミニウム合金の粉末とセラミック粉末との配合割合は任意に設定できる。しかし、先に説明したようにアルミニウム−セラミック複合材料からなる基材2の熱膨張係数は、セラミックの含有割合を増減させることで調整可能である。そのため前記基材2の熱膨張係数が15×10-6/K以下の任意の値となるように両粉末の配合割合を調整すればよい。The mixing ratio of the aluminum or aluminum alloy powder and the ceramic powder can be arbitrarily set. However, as described above, the thermal expansion coefficient of the base material 2 made of an aluminum-ceramic composite material can be adjusted by increasing or decreasing the ceramic content ratio. Therefore, what is necessary is just to adjust the mixture ratio of both powders so that the thermal expansion coefficient of the said base material 2 may become the arbitrary values of 15 * 10 < -6 > / K or less.

また前記(1-3)の形成方法において使用するセラミックの多孔質体は、例えば前記セラミック粉末を樹脂等のバインダと混合した混合物を基材2の形状に成形したのち焼成して、バインダを除去すると共にセラミック粉末を焼結させる等して形成できる。
(2)の銅−セラミック複合材料からなる基材2としては、アルミニウムまたはアルミニウム合金に代えて銅または銅合金を用いること以外は(1)のアルミニウム−セラミック複合材料と同様にして、例えば下記の形成方法によって形成したもの等が挙げられる。
Further, the ceramic porous body used in the forming method of (1-3) is formed by, for example, forming a mixture obtained by mixing the ceramic powder with a binder such as a resin into the shape of the base material 2 and then firing to remove the binder. In addition, the ceramic powder can be formed by sintering.
The base material 2 made of the copper-ceramic composite material (2) is the same as the aluminum-ceramic composite material (1) except that copper or a copper alloy is used instead of aluminum or an aluminum alloy. What was formed by the formation method etc. are mentioned.

(2-1) 銅または銅合金の粉末とセラミック粉末との混合物を基材2の形状に圧縮成形したのち、銅または銅合金の融点以下の温度で焼成する。
(2-2) 前記(2-1)で得た基材2を、再度銅または銅合金の融点以下の温度に加熱しながら圧縮成形して複合構造の緻密化を図る。
(2-3) 基材2の形状に形成したセラミックからなる多孔質体中に、例えば真空炉中で、溶融させた銅または銅合金を含浸させる。
(2-1) A mixture of copper or copper alloy powder and ceramic powder is compression-molded into the shape of the substrate 2 and then fired at a temperature below the melting point of copper or copper alloy.
(2-2) The base material 2 obtained in (2-1) is compression-molded again while being heated to a temperature equal to or lower than the melting point of copper or a copper alloy, thereby densifying the composite structure.
(2-3) The porous body made of ceramic formed in the shape of the substrate 2 is impregnated with molten copper or a copper alloy, for example, in a vacuum furnace.

このうち(2-1)(2-2)の形成方法において使用する銅または銅合金の粉末としては、例えばアトマイズ法等によって作製された純銅粉末や、日本工業規格JIS H3100:2006「銅及び銅合金の板並びに条」において規定された合金番号C1020「無酸素銅」、C1100「タフピッチ銅」等の粉末が挙げられる。
また(2-3)の形成方法において使用するセラミックの多孔質体は、先に説明したようにセラミック粉末を樹脂等のバインダと混合した混合物を基材2の形状に成形したのち焼成してバインダを除去すると共にセラミック粉末を焼結させる等して形成できる。
Among these, as the powder of copper or copper alloy used in the forming method of (2-1) and (2-2), for example, pure copper powder produced by an atomizing method or the like, Japanese Industrial Standard JIS H3100: 2006 “copper and copper Examples thereof include powders such as alloy numbers C1020 “oxygen-free copper” and C1100 “tough pitch copper” defined in “Alloy plates and strips”.
Also, the ceramic porous body used in the forming method of (2-3) is formed by mixing a ceramic powder with a binder such as a resin into a shape of the base material 2 and then firing the binder as described above. The ceramic powder can be formed by, for example, sintering the ceramic powder.

また(3)の銅−タングステン複合材料からなる基材2としては、例えば下記の形成方法によって形成したもの等が挙げられる。
(3-1) 銅または銅合金の粉末とタングステン粉末との混合物を基材2の形状に圧縮成形したのち、銅または銅合金の融点以上の温度で焼成する。
(3-2) 基材2の形状に形成したタングステンからなる多孔質体中に、例えば真空炉中で、溶融させた銅または銅合金を含浸させる。
Examples of the base material 2 made of the copper-tungsten composite material (3) include those formed by the following forming method.
(3-1) A mixture of copper or copper alloy powder and tungsten powder is compression-molded into the shape of the substrate 2 and then fired at a temperature equal to or higher than the melting point of copper or copper alloy.
(3-2) The porous body made of tungsten formed in the shape of the base material 2 is impregnated with molten copper or a copper alloy in a vacuum furnace, for example.

前記(3-2)の形成方法において使用するタングステンの多孔質体は、例えばタングステン粉末を樹脂等のバインダと混合した混合物を基材2の形状に成形したのち焼成してバインダを除去すると共にセラミック粉末を焼結させる等して形成できる。(3-2)の形成方法については、例えば特開昭59−21032号公報に詳しい。
また(4)の銅−モリブデン複合材料からなる基材2としては、タングステンに代えてモリブデンを用いること以外は(3)の銅−タングステン複合材料と同様にして形成したもの等が挙げられる。このうち(3-2)の形成方法と同様にして銅−モリブデン複合材料を形成する形成方法については、前記特開昭59−21032号公報に詳しい。
The tungsten porous body used in the forming method of (3-2) is a ceramic in which, for example, a mixture in which tungsten powder is mixed with a binder such as a resin is formed into the shape of the base material 2 and then fired to remove the binder. It can be formed by sintering powder. The method of forming (3-2) is detailed in, for example, Japanese Patent Application Laid-Open No. 59-21032.
Examples of the substrate 2 made of the copper-molybdenum composite material (4) include those formed in the same manner as the copper-tungsten composite material (3) except that molybdenum is used instead of tungsten. Among these, the formation method for forming the copper-molybdenum composite material in the same manner as the formation method of (3-2) is described in detail in JP-A-59-21032.

(5)のアルミニウム−ケイ素複合材料からなる基材2としては、例えばセラミック粉末に代えてケイ素粉末を用いること以外は(1)のアルミニウム−セラミック複合材料と同様にして形成したもの等が挙げられる。後述する本発明の製造方法によってヒートスプレッダ1を製造する際に、接続部材3と接合された状態で形成される基材2は、前記ケイ素粉末を用いて(1-1)(1-2)の方法と同様にして形成したものに相当する。   Examples of the base material 2 made of the aluminum-silicon composite material of (5) include those formed in the same manner as the aluminum-ceramic composite material of (1) except that silicon powder is used instead of ceramic powder. . When the heat spreader 1 is manufactured by the manufacturing method of the present invention to be described later, the base material 2 formed in a state of being joined to the connection member 3 is made of (1-1) (1-2) It corresponds to the one formed in the same way as the method.

さらに(6)の銅−ダイヤモンド複合材料からなる基材2としては、例えば特開2004−175626号公報に記載された形成方法によって形成したもの等が挙げられる。
接続部材3を形成する金属または合金としては、あらかじめ所定の接続部材3の形状に加工するための加工性や、ピン7をかしめ加工する際の加工性、ネジ孔10、通孔13を形成する際の加工性等に優れる種々の金属または合金がいずれも使用可能である。中でも試験力49.03N(試験荷重5kgf)でのビッカース硬さHvが200以下の金属、特にアルミニウム、アルミニウム合金、銅、または銅合金等が挙げられる。
Further, examples of the base material 2 made of the copper-diamond composite material (6) include those formed by the forming method described in JP-A No. 2004-175626.
As the metal or alloy forming the connection member 3, workability for processing into a predetermined shape of the connection member 3 in advance, workability when caulking the pins 7, screw holes 10, and through holes 13 are formed. Any of various metals or alloys excellent in workability at the time can be used. Among them, a metal having a Vickers hardness Hv of 200 or less at a test force of 49.03 N (test load of 5 kgf), particularly aluminum, an aluminum alloy, copper, a copper alloy, or the like can be given.

また接続部材3は、基材2を構成する複合材料と焼結可能な金属または合金によって形成することも肝要である。
例えば基材2が(1)のアルミニウム−セラミック複合材料、または(5)のアルミニウム−ケイ素複合材料からなるとき、前記各条件を満足する、接続部材3のもとになる金属または合金としては、前出のJIS H4000:2006において規定された合金番号A1050、A2014、A3004、A5005等のアルミニウムまたはアルミニウム合金等が挙げられる。
It is also important that the connecting member 3 is formed of a composite material composing the base material 2 and a sinterable metal or alloy.
For example, when the base material 2 is made of the aluminum-ceramic composite material (1) or the aluminum-silicon composite material (5), the metal or alloy serving as the base of the connecting member 3 that satisfies the above-mentioned conditions is as follows: Examples thereof include aluminum or aluminum alloys such as alloy numbers A1050, A2014, A3004, and A5005 defined in the above-mentioned JIS H4000: 2006.

また基材2が(2)の銅−セラミック複合材料、(3)の銅−タングステン複合材料、(4)の銅−モリブデン複合材料、または(6)の銅−ダイヤモンド複合材料からなるとき、前記各条件を満足する、接続部材3のもとになる金属または合金としては、前出のJIS H3100:2006において規定された合金番号C1020「無酸素銅」、C1100「タフピッチ銅」等の銅または銅合金等が挙げられる。   When the substrate 2 is composed of (2) copper-ceramic composite material, (3) copper-tungsten composite material, (4) copper-molybdenum composite material, or (6) copper-diamond composite material, Examples of the metal or alloy serving as the base of the connecting member 3 that satisfies each condition include copper or copper such as alloy numbers C1020 “oxygen-free copper” and C1100 “tough pitch copper” defined in the above JIS H3100: 2006. An alloy etc. are mentioned.

被覆層11、12を形成する金属または合金としては、先に説明した被覆層11、12を設けることの効果に優れると共に、前記被覆層11、12のもとになる薄板の厚みをできるだけ均一に仕上げたりするための加工性等にも優れた種々の金属または合金がいずれも使用可能である。中でも試験力49.03N(試験荷重5kgf)でのビッカース硬さHvが200以下の金属、特にアルミニウム、アルミニウム合金、銅、または銅合金等が挙げられる。   The metal or alloy for forming the coating layers 11 and 12 is excellent in the effect of providing the coating layers 11 and 12 described above, and the thickness of the thin plate that forms the coating layers 11 and 12 is made as uniform as possible. Any of various metals or alloys excellent in workability for finishing or the like can be used. Among them, a metal having a Vickers hardness Hv of 200 or less at a test force of 49.03 N (test load of 5 kgf), particularly aluminum, an aluminum alloy, copper, a copper alloy, or the like can be given.

また被覆層11、12は、基材2を構成する複合材料や接続部材3と焼結可能な金属または合金によって形成することも肝要である。
例えば基材2が(1)のアルミニウム−セラミック複合材料、または(5)のアルミニウム−ケイ素複合材料からなり、接続部材3がアルミニウムまたはアルミニウム合金からなるとき、前記各条件を満足する金属または合金としては、前出のJIS H4000:2006において規定された合金番号A1050、A1070、A1100等の純アルミニウム系の展延材や、AC3A、AC4A等の鋳造用合金が好ましい。
It is also important that the coating layers 11 and 12 are formed of a composite material or a connecting member 3 constituting the base material 2 and a metal or alloy that can be sintered.
For example, when the substrate 2 is made of the aluminum-ceramic composite material (1) or the aluminum-silicon composite material (5) and the connecting member 3 is made of aluminum or an aluminum alloy, the metal or alloy satisfying the above-mentioned conditions Is preferably a pure aluminum-based spreading material such as alloy numbers A1050, A1070, and A1100 defined in JIS H4000: 2006, and a casting alloy such as AC3A and AC4A.

また基材2が(2)の銅−セラミック複合材料、(3)の銅−タングステン複合材料、(4)の銅−モリブデン複合材料、または(6)の銅−ダイヤモンド複合材料からなり、接続部材3が銅または銅合金からなるとき、前記各条件を満足する金属または合金としては、前出のJIS H3100:2006において規定された合金番号C1020「無酸素銅」、C1100「タフピッチ銅」等が好ましい。   Further, the base member 2 is composed of the copper-ceramic composite material (2), the copper-tungsten composite material (3), the copper-molybdenum composite material (4), or the copper-diamond composite material (6). When 3 is made of copper or a copper alloy, the metal or alloy satisfying the above-mentioned conditions is preferably alloy numbers C1020 “oxygen-free copper”, C1100 “tough pitch copper” or the like defined in JIS H3100: 2006. .

〈ヒートスプレッダの製造方法(その1)〉
本発明のヒートスプレッダ1のうち図1ないし図3の構造を有し、基材2が(1)のアルミニウム−セラミック複合材料、または(5)のアルミニウム−ケイ素複合材料からなり、かつ接続部材3がアルミニウムまたはアルミニウム合金からなるものは、本発明の製造方法によって製造できる。
<Method for manufacturing heat spreader (part 1)>
The heat spreader 1 of the present invention has the structure shown in FIGS. 1 to 3, the substrate 2 is made of the aluminum-ceramic composite material (1) or the aluminum-silicon composite material (5), and the connecting member 3 is What consists of aluminum or an aluminum alloy can be manufactured with the manufacturing method of this invention.

図9ないし図13は、図1ないし図3の例のヒートスプレッダ1を製造するための、前記製造方法の一例の各工程を示す断面図である。また図14は、前記各工程を経て形成される圧縮成形体14をさらに焼成して得られる、ヒートスプレッダ1の前駆体15の断面図である。
図1ないし図3、図9を参照して、この例の製造方法においては、まず製造するヒートスプレッダ1の基材2の裏面4の平面形状と一致する平面形状とされた底面16を有する下パンチ17と、前記底面16を囲み基材2の側面の形状と一致する形状とされた内周面18を有するダイ19とを含むプレス型20を用意する。なお図の例では下パンチ17とダイ19とを別体に形成しているが、簡略化のために両者を一体に形成したり、下パンチ17に代えてダイ19の下側の開口をアンビルで塞いだりしても構わない。
9 to 13 are cross-sectional views showing respective steps of an example of the manufacturing method for manufacturing the heat spreader 1 of the example of FIGS. 1 to 3. Moreover, FIG. 14 is sectional drawing of the precursor 15 of the heat spreader 1 obtained by further baking the compression-molded body 14 formed through each said process.
With reference to FIGS. 1 to 3 and 9, in the manufacturing method of this example, first, a lower punch having a bottom surface 16 having a planar shape that matches the planar shape of the back surface 4 of the base 2 of the heat spreader 1 to be manufactured. A press die 20 including a die 17 having an inner peripheral surface 18 that surrounds the bottom surface 16 and has a shape that matches the shape of the side surface of the substrate 2 is prepared. In the example shown in the figure, the lower punch 17 and the die 19 are formed separately. However, for simplification, both are formed integrally, or the lower opening of the die 19 is replaced with an anvil instead of the lower punch 17. You can close it with

底面16は、具体的には、裏面4の平面形状に対応した矩形状の平面形状を有すると共に、前記矩形の中央部に、肉厚部8に対応した矩形状の凹部21が形成され、前記凹部21の周囲で、かつ矩形の四隅に対応する4箇所の位置に、前記位置から突出される接続部材3のピン7が挿入される凹部22が形成された立体形状とされている。
次に図10を参照して、底面16の凹部22にピン7を挿入すると共に基部6を底面16から突出させた状態で接続部材3を下パンチ17にセットする。
Specifically, the bottom surface 16 has a rectangular planar shape corresponding to the planar shape of the back surface 4, and a rectangular concave portion 21 corresponding to the thick portion 8 is formed in the central portion of the rectangle. The three-dimensional shape is formed with the recesses 22 into which the pins 7 of the connecting member 3 protruding from the positions are inserted around the recesses 21 and at four positions corresponding to the four corners of the rectangle.
Next, referring to FIG. 10, the connecting member 3 is set on the lower punch 17 with the pin 7 inserted into the recess 22 of the bottom surface 16 and the base portion 6 protruding from the bottom surface 16.

次に図11を参照して、プレス型20の底面16と内周面18とで囲まれた領域内に、基材2のもとになるアルミニウムまたはアルミニウム合金の粉末と、セラミック粉末またはケイ素粉末との混合物23を充填する。混合物23の充てん量は、前記混合物23を構成するセラミック粉末、ケイ素粉末の密度や粒径、アルミニウムまたはアルミニウム合金の粉末の粒径、前記両粉末の配合割合、形成する基材2の密度等に応じて任意に設定できる。   Next, referring to FIG. 11, in the region surrounded by the bottom surface 16 and the inner peripheral surface 18 of the press die 20, the aluminum or aluminum alloy powder, the ceramic powder, or the silicon powder that is the base of the substrate 2. And the mixture 23 is filled. The filling amount of the mixture 23 depends on the ceramic powder constituting the mixture 23, the density and particle size of silicon powder, the particle size of aluminum or aluminum alloy powder, the blending ratio of both powders, the density of the base material 2 to be formed, and the like. It can be set as desired.

次に図12、図13を参照して、混合物23上に、当接面24の平面形状が基材2の表面5の平面形状に対応した矩形状とされた上パンチ25を当接させた状態で、底面16の方向に押し込んで圧縮成形体14を得た後、前記圧縮成形体14を、アルミニウムまたはアルミニウム合金の融点以下の温度で焼成する。
そうすると、圧縮成形体14を構成するセラミック粉末またはケイ素粉末と、アルミニウムまたはアルミニウム合金の粉末とが焼結されて基材2が形成される。それと共に、アルミニウムまたはアルミニウム合金からなる接続部材3の基部6が前記基材2と接合されて図14に示すヒートスプレッダ1の前駆体15が得られる。
Next, referring to FIGS. 12 and 13, an upper punch 25 in which the planar shape of the contact surface 24 is a rectangular shape corresponding to the planar shape of the surface 5 of the substrate 2 is brought into contact with the mixture 23. After pressing in the state toward the bottom surface 16 to obtain the compression molded body 14, the compression molded body 14 is fired at a temperature not higher than the melting point of aluminum or aluminum alloy.
Then, the ceramic powder or silicon powder constituting the compression molded body 14 and the aluminum or aluminum alloy powder are sintered to form the substrate 2. At the same time, the base 6 of the connecting member 3 made of aluminum or aluminum alloy is joined to the base material 2 to obtain the precursor 15 of the heat spreader 1 shown in FIG.

圧縮成形体14は、いわゆるホットプレス成形法により、図13の圧縮状態を維持しながらプレス型20ごと図示しない加熱手段によって加熱して焼成してもよい。しかしプレス型20は、圧縮成形時におよそ98MPa以上という過大な圧力が加えられるため全体が大きく、必然的に熱容量も大きい。そのため前記ホットプレス成形法を採用した場合には前記圧縮成形体14を、熱容量の大きいプレス型20ごと、焼成に要する時間(通常は0.5時間以上)の間、加熱し続けなければならないので、1つのヒートスプレッダ1を製造するのに要するエネルギーおよび時間が増大する。   The compression-molded body 14 may be fired by heating means (not shown) together with the press die 20 while maintaining the compression state of FIG. 13 by a so-called hot press molding method. However, the press die 20 is large as a whole because an excessive pressure of about 98 MPa or more is applied during compression molding, and the heat capacity is necessarily large. Therefore, when the hot press molding method is adopted, the compression molded body 14 must be continuously heated together with the press die 20 having a large heat capacity for the time required for firing (usually 0.5 hours or more). The energy and time required to manufacture one heat spreader 1 increases.

そのため本発明では、例えば常温下で圧縮成形した圧縮成形体14を、図示していないがプレス型20から取り出した後にそのままで、あるいは型崩れを防止するための簡単な(熱容量の小さい)型枠に嵌め込む等して焼成するのが好ましい。これにより焼成に要するエネルギーと時間とを削減でき、ヒートスプレッダ1の生産性を向上できる。
焼成の温度はアルミニウムまたはアルミニウム合金の融点以下であればよい。しかし基材2を形成するアルミニウムまたはアルミニウム合金の粉末と、セラミック粉末またはケイ素粉末とができるだけ良好に結合され、かつ接続部材3が前記基材2とできるだけ強固に接合されたヒートスプレッダ1を、できるだけ効率よく製造するためには、焼成の温度は550℃以上、650℃以下であるのが好ましい。また、同様の理由で焼成の時間は0.5時間以上、2時間以下であるのが好ましい。
Therefore, in the present invention, for example, the compression molded body 14 compression-molded at room temperature is not shown in the drawing but is taken out from the press mold 20 as it is, or a simple (small heat capacity) mold frame for preventing the collapse of the mold. It is preferable to fire it by fitting it into the plate. Thereby, the energy and time required for firing can be reduced, and the productivity of the heat spreader 1 can be improved.
The firing temperature may be equal to or lower than the melting point of aluminum or aluminum alloy. However, the heat spreader 1 in which the powder of aluminum or aluminum alloy forming the base material 2 and the ceramic powder or silicon powder are bonded as well as possible and the connecting member 3 is bonded as firmly as possible to the base material 2 is as efficient as possible. In order to manufacture well, it is preferable that the temperature of baking is 550 degreeC or more and 650 degreeC or less. For the same reason, the firing time is preferably 0.5 hours or more and 2 hours or less.

また圧縮成形時の圧力は98MPa以上、686MPa以下であるのが好ましい。圧力が98MPa未満では圧縮成形体14の強度が不足して、特に焼成のためにプレス型20から取り出す際や、取り出した後の焼成工程等において型崩れしやすくなるおそれがある。また圧力が686MPaを超えても、それ以上、圧縮成形体14の強度を高める効果は得られない上、前記高圧の圧縮成形を行うためのプレス型20が大掛かりになりすぎるという問題もある。   The pressure during compression molding is preferably 98 MPa or more and 686 MPa or less. When the pressure is less than 98 MPa, the strength of the compression-molded body 14 is insufficient, and there is a risk that the mold may be easily lost when it is taken out from the press die 20 for firing or in the firing step after removal. Further, even if the pressure exceeds 686 MPa, there is a problem that the effect of increasing the strength of the compression molded body 14 cannot be obtained any more, and the press die 20 for performing the high pressure compression molding becomes too large.

このあと、前記前駆体15のうち基材2の表面5を、前記基部6の端面が露出し、かつ表面5と裏面4との間の厚みが基材2の所定の厚みになるまで研磨すると図1、図2に示すヒートスプレッダ1が製造される。
また接続部材3の基部6の突出量を研磨後の基材2の厚み以下に設定して前駆体15を得、前記前駆体15のうち基材2の表面5を前記基部6の端面が露出する手前で、かつ基材2の所定の厚みになるまで研磨すると図1、図3に示すヒートスプレッダ1が製造される。
Thereafter, when the surface 5 of the base material 2 of the precursor 15 is polished until the end surface of the base 6 is exposed and the thickness between the front surface 5 and the back surface 4 becomes a predetermined thickness of the base material 2. The heat spreader 1 shown in FIGS. 1 and 2 is manufactured.
Further, the amount of protrusion of the base 6 of the connecting member 3 is set to be equal to or less than the thickness of the ground base material 2 to obtain a precursor 15, and the surface 5 of the base material 2 of the precursor 15 is exposed at the end face of the base 6. 1 and FIG. 3 is manufactured by polishing until a predetermined thickness of the base material 2 is reached.

〈ヒートスプレッダの製造方法(その2)〉
本発明のヒートスプレッダ1のうち図4ないし図8の構造を有し、基材2が(1)のアルミニウム−セラミック複合材料、または(5)のアルミニウム−ケイ素複合材料からなり、かつ接続部材3がアルミニウムまたはアルミニウム合金からなるものは、本発明の他の製造方法によって製造できる。
<Method for manufacturing heat spreader (part 2)>
The heat spreader 1 of the present invention has the structure shown in FIGS. 4 to 8, the base material 2 is made of the aluminum-ceramic composite material (1) or the aluminum-silicon composite material (5), and the connecting member 3 is made. Those made of aluminum or an aluminum alloy can be manufactured by another manufacturing method of the present invention.

図15ないし図18は、図4ないし図8の例のヒートスプレッダ1を製造するための、前記他の製造方法の一例の各工程を示す断面図である。また図19は、前記各工程を経て形成される圧縮成形体14をさらに焼成して得られる、ヒートスプレッダ1の前駆体15の断面図である。
図4ないし図8、図15を参照して、この例の製造方法においては、まず製造するヒートスプレッダ1の基材2の裏面4の平面形状と一致する平面形状とされた底面16を有する下パンチ17と、前記底面16を囲み基材2の側面の形状と一致する形状とされた内周面18を有するダイ19とを含むプレス型20を用意する。
15 to 18 are cross-sectional views showing respective steps of an example of the other manufacturing method for manufacturing the heat spreader 1 of the examples of FIGS. 4 to 8. FIG. 19 is a cross-sectional view of the precursor 15 of the heat spreader 1 obtained by further firing the compression-molded body 14 formed through the above steps.
Referring to FIGS. 4 to 8 and 15, in the manufacturing method of this example, first, a lower punch having a bottom surface 16 having a planar shape that matches the planar shape of the back surface 4 of the base 2 of the heat spreader 1 to be manufactured. A press die 20 including a die 17 having an inner peripheral surface 18 that surrounds the bottom surface 16 and has a shape that matches the shape of the side surface of the substrate 2 is prepared.

また底面16上に、被覆層11となる薄板26をセットする。薄板26は、基材2の裏面4の平面形状と一致する矩形状とされ、かつその四隅に対応する位置に接続部材3の下端部が嵌め合わされる通孔27が形成されたものである。接続部材3の下端部を前記通孔27に嵌め合わせることにより、前記接続部材3を下パンチ17に対して位置決めできる。   Further, a thin plate 26 to be the coating layer 11 is set on the bottom surface 16. The thin plate 26 has a rectangular shape that coincides with the planar shape of the back surface 4 of the substrate 2 and is formed with through holes 27 into which the lower ends of the connection members 3 are fitted at positions corresponding to the four corners. The connecting member 3 can be positioned with respect to the lower punch 17 by fitting the lower end portion of the connecting member 3 into the through hole 27.

なお図の例では下パンチ17とダイ19とを別体に形成しているが、簡略化のために両者を一体に形成したり、下パンチ17に代えてダイ19の下側の開口をアンビルで塞いだりしても構わない。
次に図16を参照して、薄板26の通孔27に接続部材3の下端部を嵌め合わせて、前記のように接続部材3を下パンチ17に対して位置決めしてセットした状態で、プレス型20の底面16と内周面18とで囲まれた領域内に、基材2のもとになるアルミニウムまたはアルミニウム合金の粉末と、セラミック粉末またはケイ素粉末との混合物23を充填する。
In the example shown in the figure, the lower punch 17 and the die 19 are formed separately. However, for simplification, both are formed integrally, or the lower opening of the die 19 is replaced with an anvil instead of the lower punch 17. You can close it with
Next, referring to FIG. 16, in the state where the lower end portion of the connection member 3 is fitted into the through hole 27 of the thin plate 26 and the connection member 3 is positioned and set with respect to the lower punch 17 as described above, A region 23 surrounded by the bottom surface 16 and the inner peripheral surface 18 of the mold 20 is filled with a mixture 23 of aluminum or aluminum alloy powder that is the base material 2 and ceramic powder or silicon powder.

混合物23の充てん量は、前記混合物23を構成するセラミック粉末、ケイ素粉末の密度や粒径、アルミニウムまたはアルミニウム合金の粉末の粒径、前記両粉末の配合割合、形成する基材2の密度等に応じて任意に設定できる。
さらに所定量の混合物23を充填した上に、被覆層12となる薄板28をセットする。薄板28は、基材2の表面5の平面形状と一致する矩形状とされ、かつその四隅に対応する位置に接続部材3の上端部が嵌め合わされる通孔29が形成されたものである。
The filling amount of the mixture 23 depends on the ceramic powder constituting the mixture 23, the density and particle size of silicon powder, the particle size of aluminum or aluminum alloy powder, the blending ratio of both powders, the density of the base material 2 to be formed, and the like. It can be set as desired.
Further, after a predetermined amount of the mixture 23 is filled, a thin plate 28 to be the coating layer 12 is set. The thin plate 28 has a rectangular shape that coincides with the planar shape of the surface 5 of the substrate 2, and is formed with through holes 29 into which the upper ends of the connection members 3 are fitted at positions corresponding to the four corners.

前記通孔29に接続部材3の上端部を嵌めあわせることで、前記接続部材3の倒れこみ等を防止できる。
接続部材3は、所定の厚みを有する基材2を形成するのに必要な量の混合物23を、薄板26、28間に充填した状態で、図に見るように両薄板26、28の通孔27、29に上下両端部を嵌め合わせることができるように、実際に必要な長さより長めに形成しておく。
By fitting the upper end of the connection member 3 into the through hole 29, the connection member 3 can be prevented from falling.
As shown in the figure, the connecting member 3 is filled with a mixture 23 in an amount necessary to form the base material 2 having a predetermined thickness. 27 and 29 are formed longer than actually required so that the upper and lower ends can be fitted together.

次に図17、図18を参照して、薄板28上に、当接面24の平面形状が基材2の表面5の平面形状に対応した矩形状とされた上パンチ25を当接させた状態で、底面16の方向に押し込んで圧縮成形体14を得る。
上パンチ25には、前記押し込みの際に接続部材3が挿通される通孔30が形成されており、前記通孔30に余剰分の接続部材3を挿通させながら薄板26、28とその間の混合物23とを所定の厚みになるまで圧縮成形することができる。
Next, referring to FIGS. 17 and 18, an upper punch 25 in which the planar shape of the abutting surface 24 is a rectangular shape corresponding to the planar shape of the surface 5 of the substrate 2 is brought into contact with the thin plate 28. In the state, it is pushed in the direction of the bottom surface 16 to obtain the compression molded body 14.
The upper punch 25 is formed with a through hole 30 through which the connection member 3 is inserted during the pushing operation, and the thin plates 26 and 28 and the mixture therebetween while inserting the excess connection member 3 through the through hole 30. 23 can be compression molded to a predetermined thickness.

次いで前記圧縮成形体14を、アルミニウムまたはアルミニウム合金の融点以下の温度で焼成する。これにより、圧縮成形体14を構成するセラミック粉末またはケイ素粉末と、アルミニウムまたはアルミニウム合金の粉末とが焼結されて基材2が形成される。それと共に、アルミニウムまたはアルミニウム合金からなる接続部材3が基材2と接合され、また薄板26、28が基材2と接合されて被覆層11、12とされて、図19に示すヒートスプレッダ1の前駆体15が得られる。   Next, the compression molded body 14 is fired at a temperature not higher than the melting point of aluminum or aluminum alloy. Thereby, the ceramic powder or silicon powder which comprises the compression molding body 14, and the powder of aluminum or aluminum alloy are sintered, and the base material 2 is formed. At the same time, the connecting member 3 made of aluminum or an aluminum alloy is joined to the base material 2, and the thin plates 26 and 28 are joined to the base material 2 to form the coating layers 11 and 12, so that the precursor of the heat spreader 1 shown in FIG. A body 15 is obtained.

焼成は、先に説明したように常温下で圧縮成形した圧縮成形体14を、図示していないがプレス型20から取り出した後にそのままで、あるいは型崩れを防止するための簡単な(熱容量の小さい)型枠に嵌め込む等して焼成するのが好ましい。これにより焼成に要するエネルギーと時間とを削減でき、ヒートスプレッダ1の生産性を向上できる。焼成の条件、および圧縮成形の条件は前記と同様であるのが好ましい。   As described above, the firing is performed by simply pressing the compression-molded body 14 compression-molded at normal temperature after taking it out of the press die 20 (not shown) or simply for preventing the collapse of the mold (small heat capacity). It is preferable to fire it by fitting it into a mold. Thereby, the energy and time required for firing can be reduced, and the productivity of the heat spreader 1 can be improved. The firing conditions and compression molding conditions are preferably the same as described above.

図19では、破線で示すように被覆層12から図において下方へ突出していた接続部材3の余剰分をカットしている。このあと接続部材3に穴あけ、およびタッピングの工程を経てネジ孔10を形成すると図4、図5、または図4、図6に示すヒートスプレッダ1が製造される。
また接続部材に通孔13を形成すると図4、図8に示すヒートスプレッダ1が製造される。さらに下パンチ17にセットする接続部材3として、圧縮成形後の基材2の厚みよりも短いものを用いると、図4、図7に示すヒートスプレッダ1が製造される。
In FIG. 19, as shown by the broken line, the excess portion of the connecting member 3 protruding downward from the coating layer 12 in the figure is cut. After that, when the screw hole 10 is formed through the drilling and tapping processes in the connecting member 3, the heat spreader 1 shown in FIG. 4, FIG. 5, or FIG. 4, FIG. 6 is manufactured.
When the through holes 13 are formed in the connection member, the heat spreader 1 shown in FIGS. 4 and 8 is manufactured. Furthermore, when the connection member 3 set to the lower punch 17 is shorter than the thickness of the base material 2 after compression molding, the heat spreader 1 shown in FIGS. 4 and 7 is manufactured.

本発明の構成は、以上で説明した図の例のものには限定されない。例えば図1〜図3の例のヒートスプレッダ1の基材2は平板状で、その裏面4の中央に肉厚部8を形成し、その周囲の4箇所に接続部材3を設けていたが、基材2の形状や接続部材3の配置、個数等は、組み合わせる半導体素子、およびリードフレームの形状等に合わせて任意に設定することができる。   The configuration of the present invention is not limited to the example of the figure described above. For example, the base material 2 of the heat spreader 1 in the example of FIGS. 1 to 3 has a flat plate shape, a thick portion 8 is formed at the center of the back surface 4, and the connection members 3 are provided at the four surrounding locations. The shape of the material 2 and the arrangement and number of connection members 3 can be arbitrarily set in accordance with the semiconductor element to be combined, the shape of the lead frame, and the like.

また図4〜図8の例のヒートスプレッダ1の基材2は平板状で、その裏面4および表面5を被覆層11、12で被覆すると共に矩形の四隅の4箇所に接続部材3を設けていたが、基材2の形状や構造、接続部材3の配置や形状、個数等は、組み合わせる半導体素子や冷却器、ヒートシンクの形状等に合わせて任意に設定することができる。
例えば図4〜図8の例のヒートスプレッダ1はいずれも接続部材3の両端部を基材2の裏面4、および表面5の両面と同一平面となるように揃えていたが、いずれか一方の端部を前記裏面4または表面5から突出させて位置決め等として機能させてもよい。
Moreover, the base material 2 of the heat spreader 1 of the example of FIGS. 4-8 was flat form, the back surface 4 and the surface 5 were coat | covered with the coating layers 11 and 12, and the connection member 3 was provided in four places of the rectangular four corners. However, the shape and structure of the base material 2 and the arrangement, shape, and number of the connection members 3 can be arbitrarily set in accordance with the shape of the semiconductor element, cooler, and heat sink to be combined.
For example, the heat spreader 1 in the examples of FIGS. 4 to 8 has both end portions of the connection member 3 aligned so as to be flush with both the back surface 4 and the front surface 5 of the base material 2. A portion may be projected from the back surface 4 or the front surface 5 to function as positioning or the like.

その他、本発明の要旨を逸脱しない範囲で、種々の設計変更を施すことができる。   In addition, various design changes can be made without departing from the scope of the present invention.

〈実施例1〉
図1に示す矩形平板状(横80mm×縦50mm×厚み2.0mm)で、その裏面4の中央に横40mm×縦25mm×高さ0.5mmの肉厚部8を有する基材2と、前記基材2の裏面4の、矩形の四隅に対応する位置から上方へピン7(直径1.0mm、突出高さ1.0mm)を突出させた状態で4つの接続部材3を接合したヒートスプレッダ1を、図9ないし図14の工程を経て製造することとして、下記の各種材料およびプレス型20を用意した。
<Example 1>
A base plate 2 having a rectangular flat shape shown in FIG. 1 (width 80 mm × length 50 mm × thickness 2.0 mm) and having a thick portion 8 of width 40 mm × length 25 mm × height 0.5 mm in the center of the back surface 4; A heat spreader 1 in which four connecting members 3 are joined in a state in which pins 7 (diameter 1.0 mm, projecting height 1.0 mm) are projected upward from positions corresponding to the four corners of the rectangle on the back surface 4 of the substrate 2. Were manufactured through the steps of FIGS. 9 to 14, and the following various materials and press mold 20 were prepared.

(基材2のもとになる混合物23)
セラミック粉末としての炭化ケイ素粉末(平均粒径50μm)50質量部と、アルミニウム粉末(平均粒径50μm)50質量部とを配合して調製した。
(接続部材3)
直径1.0mm、長さ3.0mmの、アルミニウムからなる円柱状の接続部材3を用意した。
(Mixture 23 which becomes the base material 2)
It was prepared by blending 50 parts by mass of silicon carbide powder (average particle size 50 μm) as ceramic powder and 50 parts by mass of aluminum powder (average particle size 50 μm).
(Connecting member 3)
A columnar connecting member 3 made of aluminum having a diameter of 1.0 mm and a length of 3.0 mm was prepared.

(プレス型20)
製造するヒートスプレッダ1の裏面4の形状と一致する形状とされた底面16を備えると共に、前記底面16の、矩形の四隅に相当する位置に接続部材3のピン7が挿入される、直径約1.0mm(ピン7とのクリアランス0.03mm)深さ1.0mmの凹部22を設けた下パンチ17と、前記底面16を囲む、ヒートスプレッダ1の基材2の側面の形状と一致する形状とされた内周面18を備えたダイ19とを、それぞれステンレス鋼によって別体に形成した。また当接面24の平面形状が、基材2の表面5の平面形状と一致する平面状とされた上パンチ25をステンレス鋼によって形成した。
(Press die 20)
A bottom surface 16 having a shape matching the shape of the back surface 4 of the heat spreader 1 to be manufactured is provided, and the pins 7 of the connecting member 3 are inserted into the bottom surface 16 at positions corresponding to the four corners of the rectangle. The lower punch 17 provided with a recess 22 having a depth of 0 mm (clearance 0.03 mm with respect to the pin 7) and a depth of 1.0 mm and the shape of the side surface of the base 2 of the heat spreader 1 surrounding the bottom surface 16 were set. The die 19 provided with the inner peripheral surface 18 was separately formed of stainless steel. Further, the upper punch 25 in which the planar shape of the contact surface 24 is a planar shape that matches the planar shape of the surface 5 of the substrate 2 was formed of stainless steel.

(ヒートスプレッダ1の製造)
下パンチ17の4つの凹部22に、それぞれ接続部材3をセットすると共に(セットした接続部材3の基部6の突出量は2.0mm)、底面16と内周面18とで囲まれた領域内に24.0gの混合物23を充填し、前記混合物23上に上パンチ25の当接面24を当接させた状態で、前記上パンチ25を底面16の方向に、厚み3.0mmになるまで490MPaの圧力で押し込んで圧縮成形体14を得た後、前記圧縮成形体14をプレス型20から取り出し650℃で2時間、焼成してヒートスプレッダ1の前駆体15を形成した。
(Manufacture of heat spreader 1)
The connection member 3 is set in each of the four recesses 22 of the lower punch 17 (the protruding amount of the base 6 of the set connection member 3 is 2.0 mm), and within the region surrounded by the bottom surface 16 and the inner peripheral surface 18 24.0 g of the mixture 23 is filled, and the upper punch 25 is moved in the direction of the bottom surface 16 until the thickness reaches 3.0 mm with the contact surface 24 of the upper punch 25 being in contact with the mixture 23. After pressing at a pressure of 490 MPa to obtain a compression molded body 14, the compression molded body 14 was taken out from the press die 20 and baked at 650 ° C. for 2 hours to form a precursor 15 of the heat spreader 1.

次に前記前駆体15を、あらかじめ400℃に加熱した図9に示すプレス型20の、底面16と内周面18で囲まれた領域内に再びセットし、その上に上パンチ25の当接面24を当接させた状態で、前記上パンチ25を底面16の方向に押し込んで294MPaの圧力で2秒間の加圧処理をして、基材2の変形や、裏面4および表面5の凹凸等を矯正すると共に基材2を高密度化して熱伝導率を向上させた。   Next, the precursor 15 is set again in a region surrounded by the bottom surface 16 and the inner peripheral surface 18 of the press die 20 shown in FIG. With the surface 24 in contact, the upper punch 25 is pushed in the direction of the bottom surface 16 and subjected to a pressure treatment for 2 seconds at a pressure of 294 MPa to deform the base material 2 and the unevenness of the back surface 4 and the front surface 5. Etc. was corrected and the substrate 2 was densified to improve the thermal conductivity.

そして前記基材2の表面5を、接続部材3の基部6の端面が露出すると共に、前記表面5と裏面4との間の厚み、すなわち基材2の厚みが1.5mm(肉厚部8の厚みは2.0mm)となるように研磨してヒートスプレッダ1を製造した。
(外観および切断面の観察)
前記ヒートスプレッダ1の外観を観察すると共に、接続部材3の円柱の軸線を通るようにヒートスプレッダ1を切断して、その切断面を光学顕微鏡写真を撮影して観察したところ、図20に示すように基材2と接続部材3の基部6とが隙間なく、直接に接合されていることが確認された。
The surface 5 of the base member 2 is exposed at the end face of the base 6 of the connecting member 3, and the thickness between the front surface 5 and the back surface 4, that is, the thickness of the base member 2 is 1.5 mm (thick portion 8 The heat spreader 1 was manufactured by polishing to a thickness of 2.0 mm.
(External appearance and observation of cut surface)
The appearance of the heat spreader 1 was observed, the heat spreader 1 was cut so as to pass through the axis of the cylinder of the connecting member 3, and the cut surface was photographed and observed. As shown in FIG. It was confirmed that the material 2 and the base 6 of the connecting member 3 were directly joined without a gap.

(かしめ加工試験)
前記ヒートスプレッダ1を100個作製し、そのピン7をリードフレーム〔JIS H3100:2006において規定された合金番号C1510「ジルコニウム入り銅」製、厚み0.5mm〕の通孔に挿入してかしめ加工をしたのち外観を観察する試験を繰り返した際に、ピン割れ、ピン脱落、および基材亀裂の各不良が発生した個数をカウントしたところ、実施例1はいずれの不良も0個であり、全数(100個)で良好なかしめ加工がされたことが確認された。
(Caulking processing test)
100 heat spreaders 1 were prepared, and the pins 7 were inserted into through holes of a lead frame (alloy number C1510 “made of zirconium-containing copper” defined in JIS H3100: 2006, thickness 0.5 mm) and caulked. Later, when the test for observing the appearance was repeated, the number of occurrences of pin cracks, pin dropouts, and base material cracks was counted. As a result, in Example 1, all of the defects (100 It was confirmed that a good caulking process was performed.

〈実施例2〉
接続部材3の長さを1.3mm、凹部22にセットした接続部材3の基部6の突出量を0.3mmとすることで、前記基部6を、図3に示すように平板の裏面4から厚み方向の途中の位置まで貫入させた状態で基材2と接合させたこと以外は実施例1と同様にしてヒートスプレッダ1を製造した。
<Example 2>
By setting the length of the connection member 3 to 1.3 mm and the protruding amount of the base portion 6 of the connection member 3 set in the recess 22 to 0.3 mm, the base portion 6 is removed from the flat plate back surface 4 as shown in FIG. A heat spreader 1 was manufactured in the same manner as in Example 1 except that the base material 2 was joined in a state of being penetrated to a middle position in the thickness direction.

前記ヒートスプレッダを100個作製し、実施例1と同様にしてかしめ加工試験を繰り返したところ、100個中の2個で基材2の表面5側の、接続部材3に対応する位置に亀裂が発生しているのが確認されたが、残りの98個は良好なかしめ加工がされたことが確認された。
〈比較例1〉
下パンチ17として、凹部22をその裏面まで貫通させてピン状の可動型を挿入したものを用意し、前記可動型の先端を下パンチ17の底面16から下方へ1.0mm凹入した位置に設定した状態で、前記凹部22に接続部材3をセットせずに実施例1と同様の圧縮成形を行った。
When 100 heat spreaders were produced and the caulking process test was repeated in the same manner as in Example 1, cracks occurred at positions corresponding to the connecting member 3 on the surface 5 side of the base material 2 in two of the 100 heat spreaders. However, it was confirmed that the remaining 98 pieces were satisfactorily crimped.
<Comparative example 1>
The lower punch 17 is prepared by inserting a pin-shaped movable die through the concave portion 22 to the back surface thereof, and the tip of the movable die is recessed 1.0 mm downward from the bottom surface 16 of the lower punch 17. In the set state, the same compression molding as in Example 1 was performed without setting the connection member 3 in the recess 22.

次いで実施例1と同様の焼成および研磨の工程を経てピンと基材とがアルミニウム−セラミック複合材料によって一体に形成されたヒートスプレッダを製造した。
前記ヒートスプレッダを100個作製し、実施例1と同様にしてかしめ加工試験を繰り返したところ100個中の100個でピン割れが発生し、良好なかしめ加工を行えないことが確認された。
Next, a heat spreader in which the pins and the substrate were integrally formed of an aluminum-ceramic composite material was manufactured through the same firing and polishing steps as in Example 1.
100 heat spreaders were produced and the caulking process test was repeated in the same manner as in Example 1. As a result, pin cracking occurred in 100 out of 100, and it was confirmed that good caulking could not be performed.

〈比較例2〉
下パンチ17として凹部を有さないものを用意して、実施例1と同様の圧縮成形を行った後、実施例1と同様の焼成および研磨の工程を経て、ピンを有さない基材を形成した。また直径1.0mm、長さ3.0mmの、アルミニウムからなる円柱状のピンを用意し、前記ピンの全表面、およびに基材の裏面の、ピンを接合する領域に電解ニッケルめっき(厚み5μm)を施した。
<Comparative example 2>
After preparing a lower punch 17 having no recesses and performing compression molding similar to Example 1, the substrate having no pins is subjected to the same firing and polishing steps as Example 1. Formed. In addition, a cylindrical pin made of aluminum having a diameter of 1.0 mm and a length of 3.0 mm is prepared, and electrolytic nickel plating (thickness: 5 μm) is provided on the entire surface of the pin and on the back surface of the base to the region where the pin is joined. ).

そして前記基材とピンとの間にスズ−鉛系はんだ(Sn63Pb37)を挟んでカーボン治具で固定した状態で250℃の炉中に入れて加熱することで、基材の裏面にピンをはんだ接合してヒートスプレッダを製造した。
前記ヒートスプレッダを100個作製し、実施例1と同様にしてかしめ加工試験を繰り返したところ100個中の46個でピン脱落、2個で基材2の表面5側の、ピンに対応する位置に亀裂が発生しているのが確認され、前記100個中の52個でしか良好なかしめ加工がされなかったことが確認された。以上の結果を表1に示す。
Then, a pin is soldered to the back surface of the base material by heating in a furnace at 250 ° C. with a tin-lead solder (Sn63Pb37) sandwiched between the base material and the pin and fixed with a carbon jig. A heat spreader was manufactured.
100 heat spreaders were produced, and the caulking test was repeated in the same manner as in Example 1. As a result, 46 out of 100 pins were dropped, and 2 were on the surface 5 side of the substrate 2 at positions corresponding to the pins. It was confirmed that a crack was generated, and it was confirmed that good caulking was performed only for 52 of the 100 pieces. The results are shown in Table 1.

〈実施例3〉
図4に示す矩形平板状(横180mm×縦90mm×厚み5mm)で、その裏面4および表面5が被覆層11、12によって被覆された基材2と、前記基材2の矩形の四隅に対応する位置にネジ孔10を有する4つの接続部材3を接合したヒートスプレッダ1を、図9ないし図14の工程を経て製造することとして、下記の各種材料およびプレス型20を用意した。
<Example 3>
Corresponding to the base plate 2 having a rectangular flat plate shape (width 180 mm × length 90 mm × thickness 5 mm) shown in FIG. In order to manufacture the heat spreader 1 in which the four connecting members 3 having the screw holes 10 at the positions to be bonded are manufactured through the steps of FIGS. 9 to 14, the following various materials and the press die 20 are prepared.

(基材2のもとになる混合物23)
セラミック粉末としての炭化ケイ素粉末(平均粒径50μm)70質量部と、アルミニウム粉末(平均粒径50μm)30質量部とを配合して調製した。
(接続部材3)
直径7.0mm、長さ9mmの、アルミニウムからなる円柱状の接続部材3を用意した。
(Mixture 23 which becomes the base material 2)
It was prepared by blending 70 parts by mass of silicon carbide powder (average particle size 50 μm) as ceramic powder and 30 parts by mass of aluminum powder (average particle size 50 μm).
(Connecting member 3)
A columnar connecting member 3 made of aluminum having a diameter of 7.0 mm and a length of 9 mm was prepared.

(被覆層11、12のもとになる薄板26、28)
横180mm×縦90mm×厚み0.3mmの、アルミニウムからなる薄板26、28を用意した。薄板26、28の四隅には、接続部材3の両端部が嵌め合わされる内径約7mmの通孔27、29を設けた。通孔27、29と接続部材3とのクリアランスは0.05mmとした。
(Thin plates 26 and 28 on which the coating layers 11 and 12 are based)
Thin plates 26 and 28 made of aluminum having a width of 180 mm, a length of 90 mm, and a thickness of 0.3 mm were prepared. At the four corners of the thin plates 26 and 28, through holes 27 and 29 having an inner diameter of about 7 mm were provided to which both ends of the connecting member 3 were fitted. The clearance between the through holes 27 and 29 and the connection member 3 was 0.05 mm.

(プレス型20)
製造するヒートスプレッダ1の裏面4の形状と一致する形状とされた底面16を備える下パンチ17と、前記底面16を囲む、ヒートスプレッダ1の基材2の側面の形状と一致する形状とされた内周面18を備えたダイ19とを、それぞれステンレス鋼によって別体に形成した。また当接面24の平面形状が、基材2の表面5の平面形状と一致する平面状とされると共に、前記当接面24の、矩形の四隅に相当する位置に接続部材3が挿通される、直径約7mmの通孔30を設けた上パンチ25をステンレス鋼によって形成した。
(Press die 20)
A lower punch 17 having a bottom surface 16 having a shape that matches the shape of the back surface 4 of the heat spreader 1 to be manufactured, and an inner periphery that surrounds the bottom surface 16 and has a shape that matches the shape of the side surface of the base 2 of the heat spreader 1. The die 19 provided with the surface 18 was formed separately from each other by stainless steel. Further, the planar shape of the contact surface 24 is a planar shape that coincides with the planar shape of the surface 5 of the substrate 2, and the connection member 3 is inserted into the contact surface 24 at positions corresponding to the four corners of the rectangle. The upper punch 25 provided with a through hole 30 having a diameter of about 7 mm was formed of stainless steel.

(ヒートスプレッダ1の製造)
下パンチ17の底面16に薄板26をセットすると共に、前記薄板26の4つの通孔27に、それぞれ接続部材3の下端部を嵌め合わせてセットした状態で、底面16と内周面18とで囲まれた領域内に250gの混合物23を充填し、前記混合物23上に薄板28を重ねて、前記薄板28の4つの通孔29に、それぞれ接続部材3の上端部を嵌めあわせた。
(Manufacture of heat spreader 1)
With the thin plate 26 set on the bottom surface 16 of the lower punch 17, the bottom surface 16 and the inner peripheral surface 18 are set with the lower end portions of the connection members 3 fitted in the four through holes 27 of the thin plate 26. The enclosed area was filled with 250 g of the mixture 23, the thin plate 28 was stacked on the mixture 23, and the upper end portions of the connection members 3 were fitted into the four through holes 29 of the thin plate 28, respectively.

次いで前記薄板28上に上パンチ25の当接面24を当接させた状態で、前記上パンチ25を底面16の方向に、厚み5mmになるまで490MPaの圧力で押し込んで圧縮成形体14を得た後、前記圧縮成形体14をプレス型20から取り出し650℃で2時間、焼成してヒートスプレッダ1の前駆体15を形成した。
次いで基材2の表面5側から突出した接続部材3の余剰分をカットした後、接続部材3の円柱の軸線を通るようにヒートスプレッダ1を切断して、その切断面を、光学顕微鏡写真を撮影して観察したところ、基材2と接続部材3と被覆層11、12とが隙間なく、直接に接合されていることが確認された。
Next, in a state where the contact surface 24 of the upper punch 25 is in contact with the thin plate 28, the upper punch 25 is pushed in the direction of the bottom surface 16 at a pressure of 490 MPa until the thickness becomes 5 mm, thereby obtaining the compression molded body 14. After that, the compression molded body 14 was taken out from the press die 20 and fired at 650 ° C. for 2 hours to form the precursor 15 of the heat spreader 1.
Next, after cutting the surplus portion of the connecting member 3 protruding from the surface 5 side of the base member 2, the heat spreader 1 is cut so as to pass through the axis of the column of the connecting member 3, and the cut surface is photographed with an optical micrograph. As a result, it was confirmed that the base material 2, the connecting member 3, and the coating layers 11 and 12 were directly joined without a gap.

また同様にして形成した前駆体15の、基材2の表面5側から突出した接続部材3の余剰分をカットした後、裏面4側から接続部材3の中心軸と略同軸となるように穴あけ、およびタッピングの加工をしてネジ孔10を形成したところ、超硬工具等を用いることなく簡単に、しかも短時間でネジ孔10を形成できることが確認された。   Further, after the surplus of the connecting member 3 protruding from the front surface 5 side of the base material 2 of the precursor 15 formed in the same manner is cut, a hole is formed from the back surface 4 side so as to be substantially coaxial with the central axis of the connecting member 3. When the screw hole 10 was formed by tapping processing, it was confirmed that the screw hole 10 can be formed easily and in a short time without using a carbide tool or the like.

Claims (12)

基材と、
金属または合金からなり、前記基材を他部材に接続するための接続部材と、
を含み、前記接続部材は、前記基材の少なくとも一面から基材内に貫入された状態で、前記基材と接合されていることを特徴とするヒートスプレッダ。
A substrate;
A connection member made of a metal or an alloy, for connecting the base material to another member;
The heat spreader is characterized in that the connection member is joined to the base material in a state of being penetrated into the base material from at least one surface of the base material.
基材が平板状に形成され、接続部材は、前記基材の裏面から表面に達するように基材の厚み方向に貫通された状態で、周囲を囲む前記基材と接合されていると共に、前記接続部材の裏面側には、前記裏面から基材外へ突出させて他部材への接続のためのピンが一体に形成されている請求項1に記載のヒートスプレッダ。   The base material is formed in a flat plate shape, and the connecting member is joined to the base material surrounding the periphery in a state of being penetrated in the thickness direction of the base material so as to reach the surface from the back surface of the base material, and The heat spreader according to claim 1, wherein a pin for connecting to another member is integrally formed on the back surface side of the connecting member so as to protrude from the back surface to the outside of the base material. 基材が平板状に形成され、接続部材は、前記基材の裏面から表面に達するように基材の厚み方向に貫通された状態で、周囲を囲む前記基材と接合されていると共に、前記接続部材には、前記裏面側から表面側へ向けて、他部材との接続のためのネジが螺合されるネジ孔、またはネジが挿通される通孔が形成されている請求項1に記載のヒートスプレッダ。   The base material is formed in a flat plate shape, and the connecting member is joined to the base material surrounding the periphery in a state of being penetrated in the thickness direction of the base material so as to reach the surface from the back surface of the base material, and 2. The connection member is formed with a screw hole into which a screw for connection with another member is screwed or a through hole into which the screw is inserted, from the back surface side to the front surface side. Heat spreader. 基材の熱膨張係数が15×10-6/K以下で、かつ熱伝導率が150W/m・K以上である請求項1ないし3のいずれか1つに記載のヒートスプレッダ。4. The heat spreader according to claim 1, wherein the base material has a thermal expansion coefficient of 15 × 10 −6 / K or less and a thermal conductivity of 150 W / m · K or more. 基材が、
(1) アルミニウム−セラミック複合材料、
(2) 銅−セラミック複合材料、
(3) 銅−タングステン複合材料、
(4) 銅−モリブデン複合材料、
(5) アルミニウム−ケイ素複合材料、および
(6) 銅−ダイヤモンド複合材料
からなる群より選ばれた少なくとも1種からなる請求項4に記載のヒートスプレッダ。
The substrate is
(1) Aluminum-ceramic composite material,
(2) Copper-ceramic composite material,
(3) Copper-tungsten composite material,
(4) Copper-molybdenum composite material,
(5) an aluminum-silicon composite material, and
(6) The heat spreader according to claim 4, comprising at least one selected from the group consisting of copper-diamond composite materials.
接続部材が、ビッカース硬さHv=200以下の金属または合金からなる請求項1ないし5のいずれか1つに記載のヒートスプレッダ。   The heat spreader according to any one of claims 1 to 5, wherein the connecting member is made of a metal or an alloy having a Vickers hardness Hv of 200 or less. 接続部材が、アルミニウム、アルミニウム合金、銅、または銅合金からなる請求項6に記載のヒートスプレッダ。   The heat spreader according to claim 6, wherein the connecting member is made of aluminum, an aluminum alloy, copper, or a copper alloy. 基材が、接続部材を形成する金属または合金と焼結可能な金属または合金を含む複合材料からなり、前記基材中の金属または合金と、接続部材を形成する金属または合金とが、前記複合材料を焼成して基材を形成する際に互いに焼結されることで、前記基材と接続部材とが接合されている請求項1ないし7のいずれか1つに記載のヒートスプレッダ。   The base material is composed of a composite material including a metal or alloy forming a connection member and a sinterable metal or alloy, and the metal or alloy in the base material and the metal or alloy forming the connection member are the composite The heat spreader according to any one of claims 1 to 7, wherein the base material and the connection member are joined to each other by sintering the materials to form a base material. 基材がアルミニウム−セラミック複合材料、またはアルミニウム−ケイ素複合材料からなる平板状で、かつ接続部材がアルミニウムまたはアルミニウム合金からなる請求項1ないし8のいずれか1つに記載のヒートスプレッダを製造するための製造方法であって、
前記基材の裏面の平面形状と一致する平面形状とされた底面を有する下パンチと、前記底面を囲む、基材の側面の形状と一致する形状とされた内周面を有するダイとを含むプレス型の、前記底面の所定の位置に接続部材をセットする工程と、
前記プレス型の底面と内周面とで囲まれた領域に、アルミニウムまたはアルミニウム合金の粉末とセラミック粉末との混合物、またはアルミニウムまたはアルミニウム合金の粉末とケイ素粉末との混合物を充填する工程と、
前記充填された混合物を底面の方向に圧縮成形して圧縮成形体を得る工程と、
前記圧縮成形体を、アルミニウムまたはアルミニウム合金の融点以下の温度で焼成する工程と、
を含むことを特徴とするヒートスプレッダの製造方法。
The substrate for manufacturing a heat spreader according to any one of claims 1 to 8, wherein the base member is a flat plate made of an aluminum-ceramic composite material or an aluminum-silicon composite material, and the connecting member is made of aluminum or an aluminum alloy. A manufacturing method comprising:
A lower punch having a bottom surface having a planar shape that matches the planar shape of the back surface of the base material, and a die having an inner peripheral surface surrounding the bottom surface and having a shape that matches the shape of the side surface of the base material. A step of setting a connecting member at a predetermined position on the bottom surface of the press die;
Filling a region surrounded by a bottom surface and an inner peripheral surface of the press die with a mixture of aluminum or aluminum alloy powder and ceramic powder, or a mixture of aluminum or aluminum alloy powder and silicon powder;
Compression-molding the filled mixture in the direction of the bottom surface to obtain a compression-molded body;
Firing the compression-molded body at a temperature below the melting point of aluminum or aluminum alloy;
The manufacturing method of the heat spreader characterized by including.
圧縮成形体を、プレス型から取り出した後に焼成する請求項9に記載のヒートスプレッダの製造方法。   The method for producing a heat spreader according to claim 9, wherein the compression molded body is fired after being taken out of the press die. 下パンチの底面に、接続部材と一体に形成されたピンが挿入される凹部を設け、前記凹部に前記ピンを挿入して接続部材を前記底面にセットした状態で、プレス型の前記底面と内周面とで囲まれた領域に基材のもとになる混合物を充填し、圧縮成形したのち焼成することにより、前記下パンチの底面に対応する基材の裏面から基材外にピンが突出されたヒートスプレッダを製造する請求項9または10に記載のヒートスプレッダの製造方法。   The bottom surface of the lower punch is provided with a recess into which a pin integrally formed with the connection member is inserted, and the pin is inserted into the recess and the connection member is set on the bottom surface. Filling the area surrounded by the peripheral surface with the base material mixture, compression molding, and firing, the pin protrudes from the back surface of the base material corresponding to the bottom surface of the lower punch to the outside of the base material The manufacturing method of the heat spreader of Claim 9 or 10 which manufactures the heat spreader made. 圧縮成形体を焼成した後の接続部材にネジ孔または通孔を形成する請求項9または10に記載のヒートスプレッダの製造方法。   The method for producing a heat spreader according to claim 9 or 10, wherein a screw hole or a through hole is formed in the connection member after the compression molded body is fired.
JP2010503760A 2008-03-19 2009-03-10 Heat spreader and manufacturing method thereof Expired - Fee Related JP4999983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010503760A JP4999983B2 (en) 2008-03-19 2009-03-10 Heat spreader and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008071661 2008-03-19
JP2008071661 2008-03-19
JP2010503760A JP4999983B2 (en) 2008-03-19 2009-03-10 Heat spreader and manufacturing method thereof
PCT/JP2009/001067 WO2009116245A1 (en) 2008-03-19 2009-03-10 Heat spreader and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPWO2009116245A1 true JPWO2009116245A1 (en) 2011-07-21
JP4999983B2 JP4999983B2 (en) 2012-08-15

Family

ID=41090660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010503760A Expired - Fee Related JP4999983B2 (en) 2008-03-19 2009-03-10 Heat spreader and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP4999983B2 (en)
WO (1) WO2009116245A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9556501B2 (en) * 2010-04-02 2017-01-31 Sumitomo Electric Industries, Ltd. Magnesium-based composite member, heat radiation member, and semiconductor device
JP2012254891A (en) * 2011-06-08 2012-12-27 Denki Kagaku Kogyo Kk Aluminum-silicon carbide-based composite, and method for manufacturing the same
WO2017209168A1 (en) * 2016-06-03 2017-12-07 有限会社笠井建築設計コンサルタント Wire connection structure for metal-core printed circuit board, metal-core printed circuit board, and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183260A (en) * 1998-12-11 2000-06-30 Mitsubishi Materials Corp Power-modulating substrate, manufacture thereof and semiconductor device using the substrate
JP2002280501A (en) * 2001-03-19 2002-09-27 Hitachi Metals Ltd METHOD FOR FIXING Al-SiC COMPOSITE MATERIAL AND HEAT SINK COMPONENT
JP2005056916A (en) * 2003-08-05 2005-03-03 Toyota Industries Corp Circuit board
JP2005136369A (en) * 2003-10-08 2005-05-26 Hitachi Metals Ltd Substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183260A (en) * 1998-12-11 2000-06-30 Mitsubishi Materials Corp Power-modulating substrate, manufacture thereof and semiconductor device using the substrate
JP2002280501A (en) * 2001-03-19 2002-09-27 Hitachi Metals Ltd METHOD FOR FIXING Al-SiC COMPOSITE MATERIAL AND HEAT SINK COMPONENT
JP2005056916A (en) * 2003-08-05 2005-03-03 Toyota Industries Corp Circuit board
JP2005136369A (en) * 2003-10-08 2005-05-26 Hitachi Metals Ltd Substrate

Also Published As

Publication number Publication date
WO2009116245A1 (en) 2009-09-24
JP4999983B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
US10553519B2 (en) Heat radiating member and method for producing the same
US7993728B2 (en) Aluminum/silicon carbide composite and radiating part comprising the same
TWI357788B (en)
CN110734298A (en) Brazing structure of ceramic and metal
JP6755879B2 (en) Aluminum-diamond composite and its manufacturing method
JP5759152B2 (en) Aluminum-diamond composite and method for producing the same
US9984951B2 (en) Sintered multilayer heat sinks for microelectronic packages and methods for the production thereof
JP4382154B2 (en) Heat spreader and manufacturing method thereof
EP2017886A1 (en) Aluminum-silicon carbide composite body and method for processing the same
WO2016002925A1 (en) Composite body and method for manufacturing same
JP4999983B2 (en) Heat spreader and manufacturing method thereof
US20220230905A1 (en) Wafer placement table and method of manufacturing the same
JPH08186204A (en) Heat sink and its manufacture
JPH11307701A (en) Heat sink and manufacture therefor
JP2020012194A (en) Metal-silicon carbide composite and production method of the same
JP4435868B1 (en) Heat spreader and manufacturing method thereof
JP2004055577A (en) Plate-shaped aluminum-silicon carbide composite
WO2023058597A1 (en) Heat dissipation member
JP2003188324A (en) Heat dissipating base material, method of manufacturing the same, and semiconductor device containing the same
JP2012254891A (en) Aluminum-silicon carbide-based composite, and method for manufacturing the same
WO2021200011A1 (en) Element-mounted board and method for manufacturingelement-mounted board
JP2023055311A (en) Method of manufacturing heat dissipation member
JP2023050786A (en) Joined body, production method of the same, and electrode-embedded member
JPH04348062A (en) Manufacture of heat-dissipating substrate for semiconductor mounting and package for semiconductor using the substrate
JPH05211248A (en) Semiconductor mount composite heat radiation board and its manufacture

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111004

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111004

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20111004

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20111109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees