JPWO2009087729A1 - LIGHTING CIRCUIT, DISCHARGE LAMP AND LIGHTING DEVICE HAVING THE SAME - Google Patents

LIGHTING CIRCUIT, DISCHARGE LAMP AND LIGHTING DEVICE HAVING THE SAME Download PDF

Info

Publication number
JPWO2009087729A1
JPWO2009087729A1 JP2009548811A JP2009548811A JPWO2009087729A1 JP WO2009087729 A1 JPWO2009087729 A1 JP WO2009087729A1 JP 2009548811 A JP2009548811 A JP 2009548811A JP 2009548811 A JP2009548811 A JP 2009548811A JP WO2009087729 A1 JPWO2009087729 A1 JP WO2009087729A1
Authority
JP
Japan
Prior art keywords
power
arc tube
bulb
lighting
light bulb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2009548811A
Other languages
Japanese (ja)
Inventor
高橋 暁良
暁良 高橋
業天 正芳
正芳 業天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JPWO2009087729A1 publication Critical patent/JPWO2009087729A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B35/00Electric light sources using a combination of different types of light generation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/355Power factor correction [PFC]; Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本発明に係る点灯回路は、放電により発光する発光管と、発光管に対し近接配置され、発光管よりも高い光束立ち上り特性を有する発光体とに対して電力供給を行う。そして、本発明に係る点灯回路は、入力された交流電力を整流する整流部と、整流部において整流された脈流電力を平滑して直流電力とする平滑部と、平滑部において平滑化された直流電力を交流電力に変換して発光管に対し供給するインバータ部と、整流部と平滑部との間の電力流通路中に介挿され、平滑された直流電力が整流部の側へと逆流するのを抑制する逆流抑制素子と、整流部と逆流抑制素子との間の電力流通路に接続され、発光体に対して脈流電力を供給するための第1電力流通路と、第1電力流通路の開閉を制御する点灯制御部とを有する。The lighting circuit according to the present invention supplies power to an arc tube that emits light by discharge and an illuminant that is disposed close to the arc tube and has higher luminous flux rise characteristics than the arc tube. And the lighting circuit which concerns on this invention was smooth | blunted in the rectifier which rectifies | straightens the input alternating current power, the smoothing part which smoothes the pulsating flow power rectified in the rectifier part, and makes it DC power, and the smoothing part An inverter unit that converts DC power into AC power and supplies it to the arc tube, and is inserted into a power flow path between the rectifier unit and the smoothing unit, and the smoothed DC power flows backward to the rectifier unit side. A first current flow path for supplying pulsating power to the light emitter, and a first power flow path connected to the power flow path between the rectifying unit and the backflow suppression element. A lighting control unit that controls opening and closing of the flow path.

Description

本発明は、放電ランプ用の点灯回路とこれを備える放電ランプおよび照明装置に関する。   The present invention relates to a lighting circuit for a discharge lamp, a discharge lamp including the same, and an illumination device.

省エネルギ化促進という社会的要請に応えるべく、照明分野においても、従来一般的に用いられてきた白熱電球に替えて蛍光ランプが用いられるようになっている。蛍光ランプは、白熱電球に比べて高い効率を有し、中でも白熱電球用のソケットにそのまま装着できる電球形蛍光ランプが普及してきている。   In order to meet social demands for energy saving promotion, fluorescent lamps are used in the lighting field instead of incandescent bulbs that have been generally used. Fluorescent lamps have higher efficiency than incandescent bulbs, and in particular, bulb-type fluorescent lamps that can be directly mounted on incandescent bulb sockets have become popular.

電球形蛍光ランプは、ホルダーに取り付けられた発光管と、当該発光管を点灯駆動するための点灯回路(電子安定器)とを有し、点灯回路がケース内に収納された構造を有する。なお、ケースの一端部には、例えばE型の口金が取り付けられている。   The bulb-type fluorescent lamp has an arc tube attached to a holder and a lighting circuit (electronic ballast) for lighting the arc tube, and the lighting circuit is housed in a case. For example, an E-type base is attached to one end of the case.

発光管は、屈曲ガラス管の管両端部にフィラメントコイル電極が気密封止され、屈曲ガラス管の内壁には蛍光体層が形成されている。そして、発光管の内部には、253.7[nm]紫外放射物質としての水銀(Hg)と、緩衝ガスとしてのネオン(Ne)、アルゴン(Ar)、クリプトン(Kr)ガスなどとが主に封入されている。   In the arc tube, filament coil electrodes are hermetically sealed at both ends of the bent glass tube, and a phosphor layer is formed on the inner wall of the bent glass tube. In the arc tube, mercury (Hg) as a 253.7 [nm] ultraviolet radiation material, neon (Ne), argon (Ar), krypton (Kr) gas, etc. as buffer gases are mainly used. It is enclosed.

点灯回路は、シリーズインバータ方式などに基づくインバータ回路を有し構成されている。   The lighting circuit has an inverter circuit based on a series inverter system or the like.

ところで、電球形蛍光ランプなどの放電ランプにおいては、発光管における水銀からの放射紫外線が、発光管内部での水銀蒸気圧に大きく左右され、このために水銀蒸気圧が下がった状態での始動直後においては、光束が不足する。特に、効率の向上を図るべく、放電路長が長い二重螺旋形状の発光管を採用する場合にあっては、周囲の温度が低い状態では十分な立ち上り光束を確保することができない場合がある。   By the way, in a discharge lamp such as a bulb-type fluorescent lamp, the radiation ultraviolet rays from mercury in the arc tube are greatly influenced by the mercury vapor pressure in the arc tube, and thus immediately after starting in a state where the mercury vapor pressure is lowered. In this case, the luminous flux is insufficient. In particular, when adopting a double spiral arc tube having a long discharge path length in order to improve the efficiency, there may be a case where a sufficient rising luminous flux cannot be secured at a low ambient temperature. .

このような問題の解消を図るために、発光管に隣接させてフィラメント電球を補助的に配し、始動時の一定期間だけフィラメント電球を点灯させるという技術が提案されている(例えば、特許文献1、2)。このうち、特許文献2で提案されている回路構成について、図10を用い説明する。   In order to solve such a problem, a technique has been proposed in which a filament bulb is auxiliary arranged adjacent to the arc tube, and the filament bulb is lit only for a certain period at the time of starting (for example, Patent Document 1). 2). Among these, the circuit configuration proposed in Patent Document 2 will be described with reference to FIG.

図10に示すように、特許文献2で提案されている電球形蛍光ランプでは、商用電源から入力される交流電力は整流器941で整流され、平滑器942で平滑され、スイッチング・安定器943で高周波交流に変換されて発光管910に供給される。発光管910には、予熱回路944も接続されている。   As shown in FIG. 10, in the bulb-type fluorescent lamp proposed in Patent Document 2, AC power input from a commercial power source is rectified by a rectifier 941, smoothed by a smoother 942, and high-frequency by a switching / stabilizer 943. It is converted into alternating current and supplied to the arc tube 910. A preheating circuit 944 is also connected to the arc tube 910.

また、商用電源からの交流電力の入力経路となる配線L91、L92には、電球点灯制御器946を介して補助電球930に接続されている。このような構造を有する電球形蛍光ランプでは、始動時から一定の時間、補助電球930を点灯させることにより、発光管910の立ち上り光束を高いものとすることができる。
特開2000−164174号公報 米国特許5491385号公報
In addition, wirings L91 and L92 serving as input paths for AC power from a commercial power source are connected to an auxiliary light bulb 930 via a light bulb lighting controller 946. In the light bulb shaped fluorescent lamp having such a structure, the rising light flux of the arc tube 910 can be made high by turning on the auxiliary light bulb 930 for a certain time from the start.
JP 2000-164174 A US Pat. No. 5,491,385

しかしながら、上記特許文献2をはじめとする従来技術に係る電球形蛍光ランプでは、発光管に隣接させて補助電球を備える場合に、回路構成の観点からサイズの小型化、低コスト化が困難である。即ち、図10に示すように、電球点灯制御器946は、配線L91、L92から交流電力の供給を受けているので、電球点灯制御器946が交流電力の電圧変換による影響を受けないようにするために、直流へと変換する回路(整流および平滑などの回路)を備える必要があり、回路構成が複雑となる。   However, in the light bulb-type fluorescent lamp according to the related art including the above-mentioned Patent Document 2, it is difficult to reduce the size and the cost from the viewpoint of the circuit configuration when the auxiliary light bulb is provided adjacent to the arc tube. . That is, as shown in FIG. 10, since the light bulb lighting controller 946 is supplied with AC power from the wirings L91 and L92, the light bulb lighting controller 946 is not affected by the voltage conversion of the AC power. Therefore, it is necessary to provide a circuit (circuit such as rectification and smoothing) that converts it into direct current, which complicates the circuit configuration.

また、図10の拡大部分に示すように、上記従来の電球形蛍光ランプでは、電球点灯制御器946におけるサイリスタ素子SCRおよびダイオードDにより交流電力が半波整流され、この半波整流された電力が補助電球930に供給される構成とされている。半波整流された電圧は、商用電圧の(1/√2)となり、半波整流電圧専用のフィラメント仕様とした電球を補助電球930として用いなければならず、一般に市販されているフィラメント仕様の電球を用いることができない。全波整流された電力を補助電球930に供給しようとする場合には、補助電球930用として別途整流回路が必要となり、回路部品点数が増加する。即ち、電球点灯制御器946にも全波整流回路を内蔵することが必要となる。   Further, as shown in the enlarged portion of FIG. 10, in the above conventional bulb-type fluorescent lamp, the AC power is half-wave rectified by the thyristor element SCR and the diode D in the bulb lighting controller 946, and the half-wave rectified power is The auxiliary light bulb 930 is supplied. The half-wave rectified voltage is (1 / √2) of the commercial voltage, and a light bulb with a filament specification dedicated to the half-wave rectified voltage must be used as the auxiliary light bulb 930. Cannot be used. When trying to supply full-wave rectified power to the auxiliary light bulb 930, a separate rectifier circuit is required for the auxiliary light bulb 930, and the number of circuit components increases. That is, it is necessary to incorporate a full-wave rectifier circuit in the light bulb lighting controller 946 as well.

なお、電球点灯制御器946に対して、平滑器942とスイッチング・安定器943との間の配線L96、L97から電球点灯制御器946に電力を供給しようとする場合には、通常の電球形蛍光ランプで用いられるスイッチング・安定器943では出力が不足することになり、平滑電圧のリップルが増加して発光管910の点灯維持が困難となってしまう。   When electric power is to be supplied to the light bulb lighting controller 946 from the wirings L96 and L97 between the smoother 942 and the switching / stabilizer 943 to the light bulb lighting controller 946, normal light bulb-type fluorescent light is used. The switching / stabilizer 943 used in the lamp lacks output, and the ripple of the smooth voltage increases, making it difficult to keep the arc tube 910 lit.

本発明は、上記問題を解決しようとなされたものであって、発光管に近接する発光体を備えることで高い立ち上り光束が得られる放電ランプに対応できるとともに、回路構成を複雑にすることなく補助電球の正確な点灯制御を実現できる放電ランプ用の点灯回路とこれを備える放電ランプおよび照明装置を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and can be applied to a discharge lamp that can obtain a high rising luminous flux by providing a light emitter close to the arc tube, and also assists without complicating the circuit configuration. It is an object of the present invention to provide a lighting circuit for a discharge lamp that can realize accurate lighting control of a light bulb, a discharge lamp including the same, and an illumination device.

本発明は、上記目的を達成するために、次の構成を採用する。   In order to achieve the above object, the present invention employs the following configuration.

本発明に係る点灯回路は、放電により発光する発光管と、発光管に対し近接配置され、発光管よりも高い光束立ち上り特性を有する発光体とに対して電力供給を行う。そして、本発明に係る点灯回路は、a)整流部と、b)平滑部と、c)インバータ部と、d)逆流抑制素子と、e)第1電力流通路と、f)点灯制御部とを主な構成要素として備える。   The lighting circuit according to the present invention supplies power to an arc tube that emits light by discharge and an illuminant that is disposed close to the arc tube and has higher luminous flux rise characteristics than the arc tube. The lighting circuit according to the present invention includes a) a rectifying unit, b) a smoothing unit, c) an inverter unit, d) a backflow suppression element, e) a first power flow path, and f) a lighting control unit. As a main component.

a)整流部は、入力された交流電力を整流する構成要素である。   a) The rectification unit is a component that rectifies the input AC power.

b)平滑部は、整流部において整流された脈流電力を平滑して直流電力とする構成要素である。   b) The smoothing unit is a component that smoothes the pulsating power rectified in the rectifying unit to obtain DC power.

c)インバータ部は、平滑部において平滑化された直流電力を交流電力に変換して発光管に対し供給する構成要素である。   c) The inverter unit is a component that converts the DC power smoothed in the smoothing unit into AC power and supplies it to the arc tube.

d)逆流抑制素子は、整流部と平滑部との間の電力流通路中に介挿され、平滑された直流電力が整流部の側へと逆流するのを抑制する素子である。   d) The backflow suppressing element is an element that is inserted in the power flow path between the rectifying unit and the smoothing unit and suppresses the smoothed DC power from flowing back to the rectifying unit side.

e)第1電力流通路は、整流部と逆流抑制素子との間の電力流通路に接続され、発光体に対して脈流電力を供給するための電力流通路である。   e) The first power flow path is connected to a power flow path between the rectifying unit and the backflow suppressing element, and is a power flow path for supplying pulsating power to the light emitter.

f)点灯制御部は、第1電力流通路の開閉を制御する構成要素である。   f) The lighting control unit is a component that controls opening and closing of the first power flow path.

なお、上記の発光管と発光体との配置関係において、「近接」とは、発光管と発光体との間隙が、0[mm]よりも大きく、3.0[mm]以下であることをいう。   In the arrangement relationship between the arc tube and the luminous body, “proximity” means that the gap between the arc tube and the luminous body is larger than 0 [mm] and not larger than 3.0 [mm]. Say.

また、本発明に係る放電ランプは、上記本発明に係る点灯回路を備えることを特徴とする。   A discharge lamp according to the present invention includes the lighting circuit according to the present invention.

さらに、本発明に係る照明装置は、上記本発明に係る放電ランプを備えることを特徴とする。なお、照明装置とは、放電ランプと各種器具とが組み合わされ構成されたものを指す。そして、各種器具とは、例えば、反射鏡、かさ、カバーや密閉器具などを指す。   Furthermore, the illumination device according to the present invention includes the discharge lamp according to the present invention. The lighting device refers to a combination of a discharge lamp and various appliances. The various instruments refer to, for example, reflecting mirrors, umbrellas, covers, sealing instruments, and the like.

本発明に係る点灯回路は、発光体に対しては第1電力流通路を通して電力を供給する。そして、第1電力流通路は、整流部と逆流抑制素子との間の電力流通路に接続されている。これより、本発明に係る点灯回路では、平滑部とインバータ部との間の電力流通路から発光体のための電力を供給するような場合に比べて、発光管の始動時において、平滑部におけるコンデンサ容量の不足といった問題を生じることがない。即ち、発光体への供給電力を平滑部とインバータ部との間の電力流通路に接続する場合には、発光体への供給電力の分だけ平滑電圧のリップルが増加し、このために発光管の点灯が困難となることが考えられる。   The lighting circuit according to the present invention supplies power to the light emitter through the first power flow path. The first power flow path is connected to the power flow path between the rectification unit and the backflow suppressing element. As a result, in the lighting circuit according to the present invention, compared with the case where the power for the light emitter is supplied from the power flow path between the smoothing unit and the inverter unit, at the time of starting the arc tube, in the smoothing unit. There is no problem of insufficient capacitor capacity. That is, when the power supplied to the light emitter is connected to the power flow path between the smoothing unit and the inverter unit, the ripple of the smoothing voltage increases by the amount of power supplied to the light emitter. It may be difficult to turn on.

これに対して、本発明に係る点灯回路では、整流部と逆流抑制素子との間の電力流通路から発光体へ供給の脈流電力を取り出すので、平滑部のコンデンサ容量を大きくしなくても上記平滑電圧のリップルの増加といった問題を生じることがない。さらに、本発明に係る点灯回路では、発光体に対し非平滑の全波整流された電力が供給されるので、商用電源を供給するのと同じ条件となり、例えば、発光体としてフィラメント電球を採用する場合には、一般に市販されているフィラメント仕様をそのまま採用することが可能であり、設計面およびコスト面で優位である。   On the other hand, in the lighting circuit according to the present invention, since the pulsating power supplied to the light emitter is taken out from the power flow path between the rectifying unit and the backflow suppressing element, the capacitor capacity of the smoothing unit is not increased. The problem of an increase in the smoothing voltage ripple does not occur. Furthermore, in the lighting circuit according to the present invention, non-smooth full-wave rectified power is supplied to the light emitter, so that the same condition as that for supplying commercial power is used. For example, a filament bulb is adopted as the light emitter. In this case, it is possible to adopt a commercially available filament specification as it is, which is advantageous in terms of design and cost.

また、本発明に係る点灯回路では、点灯制御部に別途整流回路を設けなくても発光体に対し全波整流電力が供給可能であるので、回路部品点数の増加が抑えられる。   Further, in the lighting circuit according to the present invention, full-wave rectified power can be supplied to the light emitter without providing a separate rectifier circuit in the lighting control unit, so that an increase in the number of circuit components can be suppressed.

従って、本発明に係る点灯回路では、発光管に近接する発光体を備えることで高い立ち上り光束が得られる放電ランプに対応できるとともに、回路構成を複雑にすることなく発光体の正確な点灯/消灯制御を実現できる。   Therefore, in the lighting circuit according to the present invention, it is possible to cope with a discharge lamp that can obtain a high rising luminous flux by providing a light emitter close to the arc tube, and to accurately turn on / off the light emitter without complicating the circuit configuration. Control can be realized.

上記本発明に係る点灯回路では、一例として次のバリエーションを採用することができる。   In the lighting circuit according to the present invention, the following variations can be adopted as an example.

上記本発明に係る点灯回路では、逆流抑制素子とインバータ部との間の電力流通路に接続され、点灯制御部に対し制御用電力を供給するための第2電力流通路を備える、という構成を採用することができる。   The lighting circuit according to the present invention includes a second power flow path that is connected to the power flow path between the backflow suppressing element and the inverter unit and supplies control power to the lighting control unit. Can be adopted.

このような構成を採用する場合には、点灯制御部が整流回路および平滑回路を備えなくても、正確な制御機能を果たすことができる。即ち、図10に示す特許文献2に係る電球形蛍光ランプでは、電球点灯制御器946への制御電力が、整流器941よりも上流から供給されているので、電球点灯制御器946が整流回路および平滑回路を備えておく必要がある。このため、特許文献2に係る電球形蛍光ランプでは、電球点灯制御器946の回路構成が複雑なものとなり、点灯回路の大型化および高コスト化を招くことにもなる。   When such a configuration is employed, an accurate control function can be achieved even if the lighting control unit does not include a rectifier circuit and a smoothing circuit. That is, in the light bulb-type fluorescent lamp according to Patent Document 2 shown in FIG. 10, the control power to the light bulb lighting controller 946 is supplied from the upstream side of the rectifier 941, so the light bulb lighting controller 946 has a rectifier circuit and a smoothing circuit. It is necessary to have a circuit. For this reason, in the light bulb-type fluorescent lamp according to Patent Document 2, the circuit configuration of the light bulb lighting controller 946 becomes complicated, leading to an increase in the size and cost of the lighting circuit.

これに対して、本発明に係る点灯回路では、上記のような形態で第2電力流通路を構成しているので、整流回路および平滑回路を点灯制御部に設ける必要がない。このため、本発明に係る点灯回路は、大型化およびコストの上昇を抑制しながら、正確な発光体の点灯制御が実行できる。   On the other hand, in the lighting circuit according to the present invention, since the second power flow path is configured in the above-described form, it is not necessary to provide a rectifier circuit and a smoothing circuit in the lighting control unit. For this reason, the lighting circuit according to the present invention can perform accurate lighting control of the light emitter while suppressing increase in size and cost.

また、上記本発明に係る点灯回路では、整流部と平滑部との間の接続が、2線式の電力流通路である場合、逆流抑制素子が整流部と平滑部との間の2線式の電力流通路の各線に介挿されている、という構成を採用することもできる。   In the lighting circuit according to the present invention, when the connection between the rectifying unit and the smoothing unit is a two-wire power flow path, the backflow suppression element is a two-wire type between the rectifying unit and the smoothing unit. It is also possible to adopt a configuration in which each line of the power flow path is inserted.

また、上記本発明に係る点灯回路では、点灯制御部にタイマーが含まれた構成を採用し、点灯制御部において、発光管に交流電力が供給され始めた時点でタイマーによる計時を開始し、且つ、第1電力流通路を閉状態とし、計時開始から所要時間経過時点でタイマーによる計時を終了し、且つ、前記第1電力流通路を開状態とする、という構成を採用することもできる。   Further, the lighting circuit according to the present invention employs a configuration in which a timer is included in the lighting control unit, and in the lighting control unit, when the AC power starts to be supplied to the arc tube, timing by the timer is started, and Alternatively, the first power flow path may be closed, the time measurement by the timer may be terminated when the required time has elapsed from the start of timing, and the first power flow path may be opened.

また、上記本発明に係る点灯回路では、タイマーがコンデンサ素子と抵抗素子とを含む時定数回路で構成されており、コンデンサ素子への充電時間および放電時間の何れかをもって計時を実行するものであって、点灯制御部が第1電力流通路を開閉するFET素子またはバイポーラトランジスタ素子(半導体素子)を含み構成されており、半導体素子における不飽和領域を用い前記第1電力流通路を開状態または閉状態とする、という構成を採用することもできる。これにより、完全な閉状態に至るまでは、第1電力流通路に流れる突入電流を抑制することができ、一方、完全な開状態に至るまでは、第1電力流通路に流れる電流を徐々に減ずることで、発光体の明るさも徐々に減ずることができる。   Further, in the lighting circuit according to the present invention, the timer is composed of a time constant circuit including a capacitor element and a resistor element, and the time is measured by either charging time or discharging time of the capacitor element. The lighting control unit includes an FET element or a bipolar transistor element (semiconductor element) that opens and closes the first power flow path, and the first power flow path is opened or closed using an unsaturated region in the semiconductor element. It is also possible to adopt a configuration in which the state is set. As a result, the inrush current flowing through the first power flow path can be suppressed until the fully closed state is reached, while the current flowing through the first power flow path is gradually reduced until the fully open state is reached. By reducing, the brightness of the light emitter can also be gradually reduced.

また、上記本発明に係る点灯回路では、整流部へ入力される交流電力の経路において、整流部よりも上流側に発光体の温度に応じて当該経路を開状態とする温度ヒューズが介挿されている、という構成を採用することもできる。   In the lighting circuit according to the present invention, in the path of the AC power input to the rectifying unit, a temperature fuse that opens the path according to the temperature of the light emitter is inserted upstream of the rectifying unit. It is also possible to adopt a configuration of

本発明に係る放電ランプは、発光管とこれに近接した状態で配置された発光体とを備える。これより、本発明に係る放電ランプでは、環境温度が低いことなどによって発光管内の水銀蒸気圧が低くなっている場合にあっても、始動時における発光体の発光により、この点灯による光束と、発光体より発せられる熱による発光管の立ち上り光束の向上という効果が得られる。このため、本発明に係る放電ランプでは、発光体の周囲に別途の発光体を備えない従来の放電ランプに比べて、高い立ち上り光束を得ることができる。特に、周囲の温度が低い場合などには有効である。   The discharge lamp according to the present invention includes an arc tube and a light emitter disposed in the vicinity thereof. From this, in the discharge lamp according to the present invention, even when the mercury vapor pressure in the arc tube is low due to low environmental temperature or the like, due to the light emission of the luminous body at the start, The effect of improving the rising luminous flux of the arc tube due to the heat generated from the luminous body can be obtained. For this reason, in the discharge lamp according to the present invention, a higher rising luminous flux can be obtained as compared with a conventional discharge lamp that does not include a separate light emitter around the light emitter. This is particularly effective when the ambient temperature is low.

なお、上記における「近接」についても、上述の定義の通りである。   The “proximity” in the above is also as defined above.

また、本発明に係る放電ランプでは、発光管および発光体の点灯のために上記本発明に係る点灯回路を備えているので、上述の本発明に係る点灯回路が奏する効果をそのまま得ることができる。   In addition, since the discharge lamp according to the present invention includes the lighting circuit according to the present invention for lighting the arc tube and the luminous body, the effect of the lighting circuit according to the present invention can be obtained as it is. .

さらに、本発明に係る照明装置では、本発明に係る放電ランプを備えるので、上述の効果をそのまま得ることができる。   Furthermore, since the illumination device according to the present invention includes the discharge lamp according to the present invention, the above-described effects can be obtained as they are.

上記本発明に係る放電ランプでは、一例として次のバリエーションを採用することができる。   In the discharge lamp according to the present invention, the following variations can be adopted as an example.

また、上記本発明に係る放電ランプでは、発光体として、フィラメントが発熱および発光するフィラメント電球を適用することもできる。   In the discharge lamp according to the present invention, a filament bulb in which a filament generates heat and emits light can also be applied as a light emitter.

また、上記本発明に係る放電ランプでは、発光管として、内方に空間を有する状態で、仮想軸廻りを螺旋状に旋回する2つの旋回部を有する二重螺旋形状を有する形態のものを採用し、発光体の前記内方空間に対し発光管の外壁と近接する状態で内挿されている、という構成を採用することができる。   Further, in the discharge lamp according to the present invention, a light emitting tube having a double spiral shape having two swirl portions that spirally swivel around a virtual axis in a state having a space inside is adopted. And the structure that it is inserted in the state which adjoins the outer wall of the arc_tube | light_emitting_tube with respect to the said inner space of a light-emitting body is employable.

また、上記本発明に係る放電ランプでは、点灯駆動の対象とする発光管が、放電路の両端部分の各々に電極を有し、且つ、放電路中における電極の近傍領域に補助アマルガムを有する、という構成を採用することもできる。   Further, in the discharge lamp according to the present invention, the arc tube to be driven for lighting has an electrode at each of both end portions of the discharge path, and has an auxiliary amalgam in a region near the electrode in the discharge path. It is also possible to adopt the configuration.

また、上記本発明に係る放電ランプでは、点灯回路がケースで覆われており、ケースの一端部に口金が取り付けられている、という構成を採用することができる。   Further, the discharge lamp according to the present invention may employ a configuration in which the lighting circuit is covered with a case, and a base is attached to one end of the case.

また、上記本発明に係る放電ランプでは、発光管が透光性のグローブで覆われている、という構成を採用することもできる。   Further, the discharge lamp according to the present invention may employ a configuration in which the arc tube is covered with a translucent glove.

実施の形態1に係る電球形蛍光ランプ1の構成を模式的に示す断面図である。1 is a cross-sectional view schematically showing a configuration of a bulb-type fluorescent lamp 1 according to Embodiment 1. FIG. 実施の形態1に係る電球形蛍光ランプ1の回路構成を示すブロック図である。1 is a block diagram showing a circuit configuration of a bulb-type fluorescent lamp 1 according to Embodiment 1. FIG. 実施の形態1に係る電球形蛍光ランプ1の回路構成の内、電球点灯制御器46の回路構成を示す回路図である。FIG. 3 is a circuit diagram showing a circuit configuration of a light bulb lighting controller 46 in the circuit configuration of the light bulb shaped fluorescent lamp 1 according to the first embodiment. 電球形蛍光ランプにおける立ち上り光束特性を示す特性図である。It is a characteristic view which shows the rising light beam characteristic in a lightbulb-type fluorescent lamp. 実施の形態2に係る電球形蛍光ランプ2の回路構成の内、電球点灯制御器146の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of the light bulb lighting controller 146 among the circuit structures of the lightbulb-type fluorescent lamp 2 which concerns on Embodiment 2. FIG. 実施の形態3に係る電球形蛍光ランプ3の回路構成の内、電球点灯制御器246の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of the light bulb lighting controller 246 among the circuit structures of the light bulb-type fluorescent lamp 3 according to Embodiment 3. 実施の形態4に係る電球形蛍光ランプ4の回路構成を示すブロック図である。6 is a block diagram showing a circuit configuration of a light bulb-type fluorescent lamp 4 according to Embodiment 4. FIG. その他の例に係る電球形蛍光ランプ5の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the lightbulb-type fluorescent lamp 5 which concerns on another example. 電球点灯制御器において、不飽和領域で使用するFET素子のゲート電圧の変動を模式的に示す特性図である。FIG. 6 is a characteristic diagram schematically showing fluctuations in the gate voltage of the FET element used in the unsaturated region in the light bulb lighting controller. 従来技術に係る電球形蛍光ランプの回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the lightbulb-type fluorescent lamp which concerns on a prior art.

符号の説明Explanation of symbols

1、2、3、4、5.電球形蛍光ランプ
10、15.発光管
20、25.ホルダー
30.補助電球
40.点灯回路
41.整流器
42.平滑器
43.スイッチング・安定器
44.予熱回路
45a、45b.ダイオード素子
46、146、246.電球点灯制御器
47.温度ヒューズ素子
50.ケース
60.口金
70.グローブ
1, 2, 3, 4, 5. Light bulb type fluorescent lamp 10,15. Arc tube 20, 25. Holder 30. Auxiliary light bulb 40. Lighting circuit 41. Rectifier 42. Smoother 43. Switching and ballast 44. Preheating circuit 45a, 45b. Diode element 46, 146, 246. Light bulb lighting controller 47. Thermal fuse element 50. Case 60. Base 70. Globe

以下では、本発明を実施するための最良の形態について、一例を示して説明する。なお、以下の説明で用いる形態は、本発明の構成および作用・効果を分かりやすく説明するために用いる一例であって、本発明は、その本質的な特徴部分以外に何ら以下の形態に限定を受けるものではない。
(実施の形態1)
1.電球形蛍光ランプ1の構成
本実施の形態に係る電球形蛍光ランプ1は、照明装置の一部として用いられるランプである。本実施の形態に係る電球形蛍光ランプ1の構成について、図1を用い説明する。図1は、電球形蛍光ランプ1の構成を模式的に示す断面図である。
Hereinafter, the best mode for carrying out the present invention will be described with reference to an example. Note that the form used in the following description is an example used for easy understanding of the configuration, operation, and effect of the present invention, and the present invention is not limited to the following form other than its essential features. It is not something to receive.
(Embodiment 1)
1. Configuration of Light Bulb Fluorescent Lamp 1 A light bulb shaped fluorescent lamp 1 according to the present embodiment is a lamp used as a part of a lighting device. The configuration of the bulb-type fluorescent lamp 1 according to the present embodiment will be described with reference to FIG. FIG. 1 is a cross-sectional view schematically showing the configuration of a bulb-type fluorescent lamp 1.

図1に示すように、本実施の形態に係る電球形蛍光ランプ1は、放電ランプの一種であって、二重螺旋形状の発光管10と、この発光管10をその端部で保持するホルダー20と、発光管10における旋回内の円筒形状の内部空間に配置された発光体である補助電球30と、発光管10および補助電球30を点灯駆動するための点灯回路40とを有する。   As shown in FIG. 1, a bulb-type fluorescent lamp 1 according to the present embodiment is a kind of discharge lamp, and is a double spiral arc tube 10 and a holder for holding the arc tube 10 at its end. 20, an auxiliary light bulb 30 that is a light emitter disposed in a cylindrical internal space in a turn in the arc tube 10, and a lighting circuit 40 for lighting the arc tube 10 and the auxiliary light bulb 30.

発光管10は、一般の白熱電球60[W]代替用で定格電力9[W]のものであり、仮想軸CL廻りを旋回する2つの旋回部を有する二重螺旋形状を有している。発光管10は、その管内の両端部の各々にフィラメントコイル電極が形成され、管内には緩衝ガスとともに、波長253.7[nm]の紫外線放射物質としての水銀(Hg)が封入されている。緩衝ガスとしては、例えば、アルゴン(Ar)、ネオン(Ne)、クリプトン(Kr)などが採用されている。また、図1では図示を省略しているが、発光管10の放電空間における電極の近傍には、補助アマルガムが配設されている。   The arc tube 10 is a substitute for a general incandescent bulb 60 [W] and has a rated power of 9 [W], and has a double spiral shape having two swiveling portions that swirl around a virtual axis CL. The arc tube 10 is formed with filament coil electrodes at both ends in the tube, and mercury (Hg) as an ultraviolet radiation material having a wavelength of 253.7 [nm] is enclosed in the tube together with a buffer gas. As the buffer gas, for example, argon (Ar), neon (Ne), krypton (Kr), or the like is employed. Although not shown in FIG. 1, an auxiliary amalgam is disposed in the vicinity of the electrode in the discharge space of the arc tube 10.

補助電球30は、例えば、定格電力20[W]のフィラメント電球であって、円筒状の外観形状を有している。また、補助電球30は、発光管10に比べて高い光束立ち上がり特性を有するものである。補助電球30の外面は、発光管10の外壁に対して近接状態となっている。発光管10と補助電球30の外面同士の距離は、短すぎると振動衝撃等により、互いが接触し破損が生じるおそれがあり、逆に長すぎると、熱の有効な利用ができなくなる。これより、互いの外面同士の距離は、1〜3[mm]であることが好ましく、2[mm]程度であることがより好ましい。発光管10および補助電球30は、ホルダー20に設けられた挿入孔にそれぞれ挿入され、ホルダー20の裏面側でシリコーン樹脂などを用い固定されている。   The auxiliary light bulb 30 is, for example, a filament light bulb with a rated power of 20 [W], and has a cylindrical appearance. Further, the auxiliary light bulb 30 has a higher luminous flux rise characteristic than the arc tube 10. The outer surface of the auxiliary bulb 30 is in a proximity state with respect to the outer wall of the arc tube 10. If the distance between the outer surfaces of the arc tube 10 and the auxiliary light bulb 30 is too short, there is a risk that they will come into contact with each other due to vibration impact or the like and breakage. On the other hand, if the distance is too long, effective use of heat becomes impossible. Accordingly, the distance between the outer surfaces is preferably 1 to 3 [mm], more preferably about 2 [mm]. The arc tube 10 and the auxiliary light bulb 30 are respectively inserted into insertion holes provided in the holder 20 and fixed on the back side of the holder 20 using silicone resin or the like.

点灯回路40は、シリーズインバータ方式などに基づくインバータ回路から構成されている。点灯回路40は、略円形状のプリント基板をベースに構成されている。点灯回路40は、ホルダー20の下側に取り付けられている。   The lighting circuit 40 is composed of an inverter circuit based on a series inverter system or the like. The lighting circuit 40 is configured based on a substantially circular printed circuit board. The lighting circuit 40 is attached to the lower side of the holder 20.

さらに、本実施の形態に係る電球形蛍光ランプ1では、点灯回路40が配置された部分がケース50で覆われており、ケース50の下側端部には、口金60が取り付けられている。また、発光管10の周囲は、透光性を有するグローブ70で覆われている。   Furthermore, in the light bulb shaped fluorescent lamp 1 according to the present embodiment, a portion where the lighting circuit 40 is arranged is covered with a case 50, and a base 60 is attached to a lower end portion of the case 50. Further, the periphery of the arc tube 10 is covered with a translucent globe 70.

2.回路構成
本実施の形態に係る電球形蛍光ランプ1の回路構成について、図2を用い説明する。
2. Circuit Configuration A circuit configuration of the bulb-type fluorescent lamp 1 according to the present embodiment will be described with reference to FIG.

図2に示すように、本実施の形態に係る電球形蛍光ランプ1の点灯回路40は、商用電源側から発光管10に向けた電力経路上において、整流器41、平滑器42およびスイッチング・安定器43の順に接続された構成を有している。また、発光管10には、予熱回路44も接続されている。整流器41と平滑器42との間の電力流通路である配線L1、L2には、逆流抑制素子としてのダイオード素子45a、45bが挿入されている。ここで、スイッチング・安定器43は、インバータ部としての機能を有する。   As shown in FIG. 2, the lighting circuit 40 of the bulb-type fluorescent lamp 1 according to the present embodiment includes a rectifier 41, a smoother 42, and a switching / stabilizer on the power path from the commercial power supply side to the arc tube 10. It has the structure connected in order of 43. A preheating circuit 44 is also connected to the arc tube 10. Diode elements 45a and 45b as backflow suppressing elements are inserted in the wirings L1 and L2 which are power flow paths between the rectifier 41 and the smoother 42. Here, the switching and ballast 43 has a function as an inverter unit.

なお、本実施の形態に係る点灯回路40では、倍電圧方式が採用されているため、平滑器42からの出力電圧は、整流器41への入力電圧(実効値)の約2.8倍となる。例えば、商用電源の電圧(実効値)が100[V]である場合には、平滑器42からの出力電圧は約280[V]となる。   In the lighting circuit 40 according to the present embodiment, since the voltage doubler method is adopted, the output voltage from the smoother 42 is about 2.8 times the input voltage (effective value) to the rectifier 41. . For example, when the voltage (effective value) of the commercial power supply is 100 [V], the output voltage from the smoother 42 is about 280 [V].

また、電球形蛍光ランプ1の点灯回路40には、補助電球30への電力供給のための配線L5、L6が、それぞれ配線L1、L2におけるダイオード素子45a、45bよりも上流側で接続されている。配線L6には、電球点灯制御器46が介挿されている。   Further, wirings L5 and L6 for supplying power to the auxiliary light bulb 30 are connected to the lighting circuit 40 of the bulb-type fluorescent lamp 1 on the upstream side of the diode elements 45a and 45b in the wirings L1 and L2, respectively. . A light bulb lighting controller 46 is inserted in the wiring L6.

電球点灯制御器46は、発光管10の始動に連動して配線L6を閉状態とし、一定時間経過の時点で開状態とするタイマー機能を有する。電球点灯制御器46の制御用電力は、平滑器42とスイッチング・安定器43との間の配線L3、L4に接続された配線L7、L8を通して供給されるようになっている。   The bulb lighting controller 46 has a timer function that closes the wiring L6 in conjunction with the start-up of the arc tube 10 and opens it when a certain time has elapsed. Electric power for controlling the light bulb lighting controller 46 is supplied through wirings L7 and L8 connected to the wirings L3 and L4 between the smoothing device 42 and the switching / stabilizing device 43.

点灯回路40の構成中、配線L1、L2中に介挿されているダイオード素子45a、45bは、平滑器42のコンデンサ素子(図示を省略。)にチャージされた電流が補助電球30の側へと逆流するのを防ぐために設けられている。   In the configuration of the lighting circuit 40, the diode elements 45a and 45b inserted in the wirings L1 and L2 are such that the current charged in the capacitor element (not shown) of the smoother 42 is directed to the auxiliary light bulb 30 side. It is provided to prevent backflow.

ここで、補助電球30には、図2の左側に示すように、全波整流波形を有する脈流電力が供給されるのに対し、電球点灯制御器46には、図2の右側に示すように、全波平滑波形を有する電力が供給される。このため、本実施の形態に係る電球形蛍光ランプ1の点灯回路40では、電球点灯制御器46の回路構成中に平滑器を設けていない。   Here, pulsating power having a full-wave rectified waveform is supplied to the auxiliary light bulb 30 as shown on the left side of FIG. 2, whereas the light bulb lighting controller 46 is shown on the right side of FIG. In addition, power having a full-wave smooth waveform is supplied. For this reason, in the lighting circuit 40 of the bulb-type fluorescent lamp 1 according to the present embodiment, a smoother is not provided in the circuit configuration of the bulb lighting controller 46.

なお、図2では図示を省略しているが、スイッチング・安定器43の内部にEMC(Electromagnetic Compatibility)フィルタを有している。EMCフィルタは、スイッチング・安定器43からの電磁妨害波を除去するためのフィルタであり、商用電源と整流器41との間に介挿される一般的な回路構成を採用することもできる。   Although not shown in FIG. 2, an EMC (Electromagnetic Compatibility) filter is provided inside the switching and ballast 43. The EMC filter is a filter for removing an electromagnetic interference wave from the switching / stabilizer 43, and a general circuit configuration interposed between the commercial power supply and the rectifier 41 can also be adopted.

3.電球点灯制御器46の具体例
電球形蛍光ランプ1の点灯回路40の内、電球点灯制御器46の構成の具体例について、図3を用い説明する。
3. Specific Example of Light Bulb Lighting Controller 46 A specific example of the configuration of the light bulb lighting controller 46 in the lighting circuit 40 of the light bulb-type fluorescent lamp 1 will be described with reference to FIG.

図3に示すように、本実施の形態に係る電球形蛍光ランプ1では、電球点灯制御部46が、2つのトランジスタ素子Q1、Q2と、2つのコンデンサ素子C1、C2と、1つのツェナーダイオード素子Z1と、4つの抵抗素子R1〜R4とから構成されている。配線L5は、補助電球30の一方の端子に接続され、補助電球30の他方の端子は、トランジスタ素子Q1におけるドレインに接続されている。   As shown in FIG. 3, in the bulb-type fluorescent lamp 1 according to the present embodiment, the bulb lighting control unit 46 includes two transistor elements Q1, Q2, two capacitor elements C1, C2, and one Zener diode element. It is composed of Z1 and four resistance elements R1 to R4. The wiring L5 is connected to one terminal of the auxiliary light bulb 30, and the other terminal of the auxiliary light bulb 30 is connected to the drain of the transistor element Q1.

トランジスタ素子Q1のソースは、配線L6に接続されており、配線L6には、コンデンサ素子C1、C2、およびトランジスタ素子Q2のエミッタ、および抵抗素子R3に接続されている。コンデンサ素子C1は、ツェナーダイオード素子Z1および抵抗素子R4を介して、トランジスタ素子Q2のベースに接続されている。   The source of the transistor element Q1 is connected to the wiring L6. The wiring L6 is connected to the capacitor elements C1 and C2, the emitter of the transistor element Q2, and the resistance element R3. The capacitor element C1 is connected to the base of the transistor element Q2 via the Zener diode element Z1 and the resistance element R4.

トランジスタ素子Q2のコレクタは、トランジスタ素子Q1のゲートに接続されるとともに、コンデンサ素子C2および抵抗素子R2、R3と接続されている。さらに、コンデンサ素子C1は、抵抗R1を介して、配線L7に接続されている。   The collector of the transistor element Q2 is connected to the gate of the transistor element Q1 and to the capacitor element C2 and the resistance elements R2 and R3. Furthermore, the capacitor element C1 is connected to the wiring L7 via the resistor R1.

なお、図3に示す具体例においては、図2の配線L8を配線L6が兼ねている。   In the specific example shown in FIG. 3, the wiring L6 also serves as the wiring L8 in FIG.

4.点灯駆動における電球点灯制御器46の動作
本実施の形態に係る電球形蛍光ランプ1では、駆動に際して、電球点灯制御器46が計時動作を実行し、始動から一定時間経過までの間、補助電球30を点灯させる。具体的には、次のような動作を行う。
4). Operation of the Light Bulb Lighting Controller 46 in the Lighting Drive In the light bulb shaped fluorescent lamp 1 according to the present embodiment, the light bulb lighting controller 46 performs a timekeeping operation during driving, and the auxiliary light bulb 30 is activated from the start until a certain time elapses. Lights up. Specifically, the following operation is performed.

a) 電球形蛍光ランプ1への電源がオンされると、発光管10の点灯が開始するとともに、抵抗素子R1、R2を介してトランジスタ素子Q1が導通状態となり、補助電球30も点灯を開始する。また、このとき電球点灯制御器46には、抵抗素子R1を通り、コンデンサ素子C1への充電が開始される。ここで、コンデンサ素子C1の容量などは、タイマー時間に応じて設定されている。本実施の形態では、例えば、タイマー時間が60[sec.]となるように設定されている。   a) When the power supply to the bulb-type fluorescent lamp 1 is turned on, the lighting tube 10 starts to be turned on, the transistor element Q1 is turned on via the resistance elements R1 and R2, and the auxiliary light bulb 30 is also turned on. . At this time, the bulb lighting controller 46 starts charging the capacitor element C1 through the resistance element R1. Here, the capacity of the capacitor element C1 and the like are set according to the timer time. In the present embodiment, for example, the timer time is 60 [sec. ] Is set.

上記において、電球点灯制御器46では、コンデンサ素子C1と抵抗素子R1とが時定数回路によるタイマーを構成している。   In the above, in the light bulb lighting controller 46, the capacitor element C1 and the resistance element R1 constitute a timer by a time constant circuit.

また、コンデンサ素子C2、抵抗素子R1,R2,R3の定数により、導通常体となる前に不飽和領域を用い、一定期間、トランジスタ素子Q1のドレイン−ソース間のインピーダンスを高く維持し、電球点灯時に流れる電球への突入電流を抑制するよう設定されている。   In addition, the constants of the capacitor element C2 and the resistance elements R1, R2, and R3 use an unsaturated region before becoming a conductor, and maintain a high impedance between the drain and source of the transistor element Q1 for a certain period of time. It is set to suppress the inrush current to the bulb that sometimes flows.

b) コンデンサ素子C1の充電が進むことにより、ツェナーダイオード素子Z1の閾値電圧に達した時点でトランジスタ素子Q2のベース−エミッタ間が通電状態となる。   b) As the charging of the capacitor element C1 proceeds, the base-emitter of the transistor element Q2 is energized when the threshold voltage of the Zener diode element Z1 is reached.

c) トランジスタ素子Q2のベース−エミッタ間が通電状態になると、トランジスタ素子Q2のコレクタ−エミッタ間に電流が流れることになる。   c) When the base-emitter of the transistor element Q2 is energized, a current flows between the collector and emitter of the transistor element Q2.

d) トランジスタ素子Q2のコレクタ−エミッタ間に電流が流れることによりトランジスタ素子Q1のゲート−ソース間が短絡状態となる。そして、トランジスタ素子Q1のゲート−ソース間が短絡状態となることにより、補助電球30は消灯する。   d) When a current flows between the collector and emitter of the transistor element Q2, the gate and source of the transistor element Q1 are short-circuited. Then, the auxiliary bulb 30 is turned off when the gate-source of the transistor element Q1 is short-circuited.

5.立ち上り光束
本実施の形態に係る電球形蛍光ランプ1では、発光管10の近接させて補助電球30を配している。そして、上述のように始動時から一定時間経過時点まで補助電球30を点灯させている。このような点灯駆動を実行する電球形蛍光ランプ1の立ち上り光束について、図4を用い説明する。図4では、補助電球30を備えない従来の電球形蛍光ランプの光束をA線で示し、本実施の形態に係る電球形蛍光ランプ1の光束をB線で示している。なお、図4に示す電球形蛍光ランプの立ち上り光束は、ランプ周囲温度を5[℃]で一定に保った状態で測定したデータである。
5. Rising light beam In the light bulb-type fluorescent lamp 1 according to the present embodiment, the auxiliary light bulb 30 is disposed in the vicinity of the arc tube 10. Then, as described above, the auxiliary light bulb 30 is lit from the time of start-up until a certain time has elapsed. The rising luminous flux of the bulb-type fluorescent lamp 1 that performs such lighting driving will be described with reference to FIG. In FIG. 4, the light flux of a conventional light bulb-type fluorescent lamp that does not include the auxiliary light bulb 30 is indicated by A line, and the light flux of the light bulb-type fluorescent lamp 1 according to the present embodiment is indicated by B line. The rising luminous flux of the bulb-type fluorescent lamp shown in FIG. 4 is data measured in a state where the lamp ambient temperature is kept constant at 5 [° C.].

図4のA線で示すように、補助電球30を備えない従来の電球形蛍光ランプでは、始動時には定格の約10[%]程度の光束しか得られないのに対し、B線で示す電球形蛍光ランプ1では、約35[%]程度の高い光束を得ることができる。これは、補助電球30の点灯による光と、これに起因して発光管10の立ち上り光束も向上したことによるものであると考えられる。   As shown by the A line in FIG. 4, the conventional bulb-type fluorescent lamp that does not include the auxiliary bulb 30 can obtain only about 10% of the rated light flux at the start, whereas the bulb type shown by the B line. In the fluorescent lamp 1, a high luminous flux of about 35 [%] can be obtained. This is considered to be due to the fact that the light from the lighting of the auxiliary bulb 30 and the rising luminous flux of the arc tube 10 are improved due to this.

本実施の形態では、始動後60[sec.]経過の時点で補助電球30は消灯されるように設定している。このため、60[sec.]の時点で、光束が約65[%]から約50[%]へと一旦低下する。しかし、補助電球30が消灯した場合においても、A線で示す従来の電球形蛍光ランプに比べて25[ポイント]高い光束を得られる。   In the present embodiment, 60 [sec. The auxiliary light bulb 30 is set to be extinguished at the time of elapse. For this reason, 60 [sec. ], The luminous flux once decreases from about 65 [%] to about 50 [%]. However, even when the auxiliary light bulb 30 is turned off, a luminous flux 25 [points] higher than that of the conventional light bulb-type fluorescent lamp indicated by the A line can be obtained.

なお、ランプ始動時において、定格の25[%]程度の光束が得られれば、実質的に問題を生じることはないと考えられる。即ち、ランプ始動時において、定格の25[%]程度の光束が得られれば、ユーザが不具合を感じることがないと考えられる。   It should be noted that if a luminous flux of about 25% of the rated value is obtained at the time of starting the lamp, it is considered that substantially no problem will occur. That is, it is considered that the user does not feel any trouble if the rated light flux of about 25% is obtained at the time of starting the lamp.

6.優位性
a)発光管10
本実施の形態に係る電球形蛍光ランプ1では、二重螺旋形状の発光管10を採用している。このため、U字状の発光管を採用する場合に比べて、同じ占有容積で長い放電路を確保することができ、小型化と高効率化とをなし得る。よって、本実施の形態に係る電球形蛍光ランプ1は、白熱電球と同等のサイズへの小型化の要求と、さらなるランプ効率の向上との要望に対応できる。
6). Advantages a) Arc tube 10
In the bulb-type fluorescent lamp 1 according to the present embodiment, a double spiral arc tube 10 is employed. For this reason, compared with the case where a U-shaped arc tube is employed, a long discharge path can be secured with the same occupied volume, and downsizing and high efficiency can be achieved. Therefore, the bulb-type fluorescent lamp 1 according to the present embodiment can meet the demand for downsizing to the same size as the incandescent bulb and the further improvement in lamp efficiency.

b)補助電球30
本実施の形態に係る電球形蛍光ランプ1では、図1に示すように、発光管10に近接した状態で補助電球30が配置されている。このため、電球形蛍光ランプ1では、環境温度が低いことなどによって発光管10内の水銀蒸気圧が低くなっている場合にも、始動時における補助電球30の発光により、この点灯による光束と、発生の熱とによって発光管10の立ち上り光束の向上という効果が得られる。よって、本実施の形態に係る電球形蛍光ランプ1では、従来の電球形蛍光ランプに比べて、高い立ち上り光束を得ることができる。
b) Auxiliary bulb 30
In the light bulb shaped fluorescent lamp 1 according to the present embodiment, as shown in FIG. 1, an auxiliary light bulb 30 is disposed in the state of being close to the arc tube 10. For this reason, in the light bulb-type fluorescent lamp 1, even when the mercury vapor pressure in the arc tube 10 is low due to the low environmental temperature or the like, The effect of improving the rising luminous flux of the arc tube 10 is obtained by the generated heat. Therefore, in the bulb-type fluorescent lamp 1 according to the present embodiment, a higher rising luminous flux can be obtained as compared with the conventional bulb-type fluorescent lamp.

また、本実施の形態に係る電球形蛍光ランプ1では、補助電球30に対し非平滑の全波整流された脈流電力が供給されるので、商用電源を供給するのと同じ条件となり、一般に市販されているフィラメント仕様をそのまま採用することが可能であり、設計面およびコスト面で優位である。   Further, in the light bulb-type fluorescent lamp 1 according to the present embodiment, non-smooth full-wave rectified pulsating power is supplied to the auxiliary light bulb 30, so that the conditions are the same as those for supplying a commercial power supply, which is generally commercially available. It is possible to adopt the filament specification as it is, which is advantageous in terms of design and cost.

また、本実施の形態に係る電球形蛍光ランプ1では、電力流通路L5、L6などに別途整流回路を設けなくても補助電球30に対し全波整流電力が供給可能であるので、回路部品点数の増加が抑えられる。   Further, in the bulb-type fluorescent lamp 1 according to the present embodiment, full-wave rectified power can be supplied to the auxiliary bulb 30 without providing a separate rectifier circuit in the power flow paths L5, L6, etc. Increase is suppressed.

c)電球点灯制御器46への制御電力
本実施の形態に係る電球形蛍光ランプ1では、図2に示すように、補助電球30への電力供給を、整流器41の下流であって、ダイオード素子45a、45bの上流側に接続された配線L5、L6によって行う構成となっている。このような構成を採用する電球形蛍光ランプ1の点灯回路40では、図10に示すような構成を採用する従来技術に比べて、発光管10の始動時において、平滑器42におけるコンデンサ素子の容量不足といった問題を生じることがない。即ち、補助電球30への供給電力を平滑器42とスイッチング・安定器43との間から取り出す場合には、補助電球30への供給電力の分だけ平滑電圧のリップルが増加し、このために発光管10の点灯が困難となることが考えられる。
c) Control power to the light bulb lighting controller 46 In the light bulb shaped fluorescent lamp 1 according to the present embodiment, as shown in FIG. 2, the power supply to the auxiliary light bulb 30 is downstream of the rectifier 41 and is a diode element. In this configuration, wirings L5 and L6 are connected to the upstream side of 45a and 45b. In the lighting circuit 40 of the light bulb-type fluorescent lamp 1 adopting such a configuration, the capacitance of the capacitor element in the smoothing device 42 at the time of starting the arc tube 10 as compared with the prior art employing the configuration shown in FIG. There is no problem of shortage. That is, when the power supplied to the auxiliary light bulb 30 is taken out between the smoother 42 and the switching / stabilizer 43, the ripple of the smoothing voltage is increased by the amount of the power supplied to the auxiliary light bulb 30. It may be difficult to light the tube 10.

これに対して、本実施の形態に係る点灯回路40では、整流器41とダイオード素子45a、45bとの間に接続された配線L5、L6を通して補助電球30へ電力供給するので、平滑器42のコンデンサ容量を大きくしなくても上記平滑電圧のリップルの増加といった問題を生じることがない。   On the other hand, in the lighting circuit 40 according to the present embodiment, power is supplied to the auxiliary light bulb 30 through the wirings L5 and L6 connected between the rectifier 41 and the diode elements 45a and 45b. Even if the capacitance is not increased, the problem of an increase in the ripple of the smoothing voltage does not occur.

また、図2に示すように、本実施の形態に係る点灯回路40では、電球点灯制御器46に対しては配線L7、L8を通して電力が供給される。そして、配線L7、L8は、ダイオード素子45a、45bとスイッチング・安定器43との間の配線L3、L4に接続されている。このような構成を採用することにより、本実施の形態に係る点灯回路40では、電球点灯制御器46が平滑回路を備えなくても、制御動作に問題を生じることはない。よって、本実施の形態に係る点灯回路40は、サイズおよびコストの上昇を抑制しながら、正確な発光体の点灯制御が実行できる。   As shown in FIG. 2, in the lighting circuit 40 according to the present embodiment, electric power is supplied to the light bulb lighting controller 46 through the wirings L7 and L8. The wires L7 and L8 are connected to the wires L3 and L4 between the diode elements 45a and 45b and the switching / stabilizer 43. By adopting such a configuration, the lighting circuit 40 according to the present embodiment does not cause a problem in the control operation even if the light bulb lighting controller 46 does not include a smoothing circuit. Therefore, the lighting circuit 40 according to the present embodiment can execute accurate lighting control of the light emitter while suppressing an increase in size and cost.

従って、本実施の形態に係る電球形蛍光ランプ1では、発光管10に近接する補助電球30を備えることで高い立ち上り光束が得られる蛍光ランプに対応できるとともに、回路構成を複雑にすることなく補助電球30の正確な点灯制御を実現できる。
(実施の形態2)
次に、実施の形態2に係る電球形蛍光ランプ2の構成について、図5を用い説明する。なお、図5に示すように、本実施の形態に係る電球形蛍光ランプ2は、電球点灯制御器146の構成を除き、上記実施の形態1に係る電球形蛍光ランプ1と変わるところはないので、その説明を省略する。
Therefore, the light bulb-type fluorescent lamp 1 according to the present embodiment can correspond to a fluorescent lamp that can obtain a high rising luminous flux by providing the auxiliary light bulb 30 close to the arc tube 10, and assists without complicating the circuit configuration. Accurate lighting control of the light bulb 30 can be realized.
(Embodiment 2)
Next, the configuration of the bulb-type fluorescent lamp 2 according to Embodiment 2 will be described with reference to FIG. As shown in FIG. 5, the bulb-type fluorescent lamp 2 according to the present embodiment is the same as the bulb-type fluorescent lamp 1 according to the first embodiment except for the configuration of the bulb lighting controller 146. The description is omitted.

図5に示すように、本実施の形態に係る電球形蛍光ランプ2の電球点灯制御器146は、1つのFET素子F11と、2つのツェナーダイオード素子Z11、Z12と、1つのコンデンサ素子C11と、2つの抵抗素子R11、R12と、PTC(Positive Temperature Coefficient)素子P11とから構成されている。   As shown in FIG. 5, the light bulb lighting controller 146 of the light bulb shaped fluorescent lamp 2 according to the present embodiment includes one FET element F11, two Zener diode elements Z11 and Z12, one capacitor element C11, It is composed of two resistance elements R11 and R12 and a PTC (Positive Temperature Coefficient) element P11.

配線L5、L6は、補助電球30およびFET素子F11を介して接続されている。配線L7は、PTC素子P11に接続され、PTC素子P11の他方は抵抗R11に接続されている。PTC素子P11と抵抗素子R11との中間点は、2つのツェナーダイオード素子Z11、Z12を介して、FET素子F11のゲートに接続されている。   The wirings L5 and L6 are connected via the auxiliary light bulb 30 and the FET element F11. The wiring L7 is connected to the PTC element P11, and the other end of the PTC element P11 is connected to the resistor R11. An intermediate point between the PTC element P11 and the resistance element R11 is connected to the gate of the FET element F11 via two Zener diode elements Z11 and Z12.

ツェナーダイオード素子Z12とFET素子F11のゲートとの間と、配線L6との間には、コンデンサ素子C11および抵抗素子R12が接続されている。   A capacitor element C11 and a resistance element R12 are connected between the Zener diode element Z12 and the gate of the FET element F11 and between the wiring L6.

電球形蛍光ランプ2では、点灯始動時において、配線L7を通り電流が流れる。このとき、PTC素子P11の分圧がツェナーダイオード素子Z11の閾値を超えている間は、コンデンサ素子C11が充電され(充電容量>放電容量)、FET素子F11のゲート−ソース間に閾値を超える電圧が印加される。これにより、FET素子F11のソース−ドレイン間が通電状態となり、点灯始動時に補助電球30が点灯する。   In the bulb-type fluorescent lamp 2, a current flows through the wiring L7 at the start of lighting. At this time, while the divided voltage of the PTC element P11 exceeds the threshold value of the Zener diode element Z11, the capacitor element C11 is charged (charge capacity> discharge capacity), and the voltage exceeding the threshold value between the gate and the source of the FET element F11. Is applied. Thereby, between the source and drain of FET element F11 will be in an energized state, and auxiliary bulb 30 will light up at the time of lighting start.

点灯始動時からの時間経過とともに、PTC素子P11の内部温度が上昇し、この温度上昇に伴ってPTC素子P11の抵抗値が上昇する。PTC素子P11の抵抗値がある一定のレベルに達した時点で、ツェナーダイオード素子Z11の閾値との関係で、コンデンサ素子C11が充電されなくなるため(充電容量<放電容量)、コンデンサ素子C11の電圧が徐々に低下する。コンデンサ素子C11の電圧がFET素子F11の閾値よりも低下した時点で、FET素子F11のソース−ドレイン間が開状態となり、補助電球30が消灯する。   The internal temperature of the PTC element P11 increases with the passage of time from the start of lighting, and the resistance value of the PTC element P11 increases with this temperature increase. When the resistance value of the PTC element P11 reaches a certain level, the capacitor element C11 is not charged because of the relationship with the threshold value of the Zener diode element Z11 (charge capacity <discharge capacity). Decrease gradually. When the voltage of the capacitor element C11 falls below the threshold value of the FET element F11, the source-drain of the FET element F11 is opened, and the auxiliary light bulb 30 is turned off.

本実施の形態に係る電球点灯制御器146では、FET素子F11のゲート−ソースに並列接続されているコンデンサ素子C11の放電時間により、FET素子F11の不飽和領域におけるインピーダンスの増加率を調整できるため、補助電球30が徐々に暗くなる時間を調整することができる。   In the light bulb lighting controller 146 according to the present embodiment, the rate of increase in impedance in the unsaturated region of the FET element F11 can be adjusted by the discharge time of the capacitor element C11 connected in parallel to the gate-source of the FET element F11. The time when the auxiliary light bulb 30 gradually becomes dark can be adjusted.

なお、FET素子F11の代わりにバイポーラトランジスタ素子を用いることでも不飽和領域を使用して上記同様の効果を奏することができる。   Note that the use of a bipolar transistor element instead of the FET element F11 can achieve the same effect as described above using the unsaturated region.

また、電球点灯制御器146におけるタイマー設定時間は、PTC素子P11、抵抗素子R11およびツェナーダイオード素子Z11、Z12およびコンデンサ素子C11の各値の設定により決められている。本実施の形態においても、上記実施の形態1と同様に、点灯開始から60[sec.]経過時点で補助電球30が消灯するように設定されている。
(実施の形態3)
次に、実施の形態3に係る電球形蛍光ランプ3の構成について、図6を用い説明する。なお、図6に示すように、本実施の形態に係る電球形蛍光ランプ3は、電球点灯制御器246の構成を除き、上記実施の形態1、2に係る電球形蛍光ランプ1、2と変わるところはないので、その説明を省略する。
In addition, the timer setting time in the light bulb lighting controller 146 is determined by setting values of the PTC element P11, the resistance element R11, the Zener diode elements Z11 and Z12, and the capacitor element C11. Also in the present embodiment, as in the first embodiment, 60 [sec. ] The auxiliary light bulb 30 is set to be extinguished at the elapsed time.
(Embodiment 3)
Next, the configuration of the bulb-type fluorescent lamp 3 according to Embodiment 3 will be described with reference to FIG. As shown in FIG. 6, the bulb-type fluorescent lamp 3 according to the present embodiment is different from the bulb-type fluorescent lamps 1 and 2 according to the first and second embodiments except for the configuration of the bulb lighting controller 246. Since there is no place, the explanation is omitted.

図6に示すように、本実施の形態に係る電球形蛍光ランプ3の電球点灯制御器246は、1つのサイリスタ(Thyristor)素子S21と、2つのツェナーダイオード素子Z21、Z22と、1つのコンデンサ素子C21と、2つの抵抗素子R21、R22と、PTC素子P21とから構成されている。即ち、本実施の形態に係る電球点灯制御器246は、上記実施の形態2に係る電球点灯制御器146に対してFET素子F11の代わりに、サイリスタ素子S21を用いている点が相違している。   As shown in FIG. 6, the bulb lighting controller 246 of the bulb-type fluorescent lamp 3 according to the present embodiment includes one thyristor element S21, two Zener diode elements Z21 and Z22, and one capacitor element. C21, two resistance elements R21 and R22, and a PTC element P21. That is, the light bulb lighting controller 246 according to the present embodiment is different from the light bulb lighting controller 146 according to the second embodiment in that a thyristor element S21 is used instead of the FET element F11. .

補助電球30の点灯から消灯に至るまでの動作については、基本的に上記実施の形態2に係る点灯回路と同一である。よって、その説明を省略する。
(実施の形態4)
次に、実施の形態4に係る電球形蛍光ランプ4の構成について、図7を用い説明する。
The operation from turning on the auxiliary bulb 30 to turning it off is basically the same as that of the lighting circuit according to the second embodiment. Therefore, the description is omitted.
(Embodiment 4)
Next, the configuration of the bulb-type fluorescent lamp 4 according to Embodiment 4 will be described with reference to FIG.

図7に示すように、本実施の形態に係る電球形蛍光ランプ4は、整流器41よりも電流経路の上流側に温度ヒューズ素子47が介挿されているところに構成上の特徴を有する。具体的には、電流経路上において、整流器41と口金60(図1を参照。)との間の配線L9中に温度ヒューズ素子47が介挿されている。   As shown in FIG. 7, the bulb-type fluorescent lamp 4 according to the present embodiment has a structural feature in that a thermal fuse element 47 is inserted upstream of the rectifier 41 in the current path. Specifically, a thermal fuse element 47 is inserted in a wiring L9 between the rectifier 41 and the base 60 (see FIG. 1) on the current path.

なお、温度ヒューズ素子47の具体的配置場所は、ケース50内であれば特に限定はないが、点灯回路における基板上の中でも、できるだけ中心軸CL(図1を参照。)に近く、補助電球30の温度を的確に検知できる箇所とすることが望ましい。   The specific location of the thermal fuse element 47 is not particularly limited as long as it is within the case 50, but it is as close as possible to the central axis CL (see FIG. 1) on the substrate in the lighting circuit, and the auxiliary light bulb 30. It is desirable to make it a location where the temperature of this can be accurately detected.

本実施の形態に係る電球形蛍光ランプ4における温度ヒューズ素子47は、何らかの原因で電球点灯制御器46が制御不能に陥った場合などにおいても、補助電球30が点灯し続けるような事態を防止するためである。このため、温度ヒューズ素子47は、例えば、140[℃]で切れる仕様のものが選定される。   The thermal fuse element 47 in the bulb-type fluorescent lamp 4 according to the present embodiment prevents a situation in which the auxiliary bulb 30 continues to be lit even when the bulb lighting controller 46 becomes uncontrollable for some reason. Because. For this reason, for the thermal fuse element 47, for example, a specification that can be cut at 140 [° C.] is selected.

ここで、図10に示す従来の電球形蛍光ランプでは、電球点灯制御器946が制御不能になった場合には補助電球930が点灯し続けるような事態も生じ得る。この場合には、場合によってはケース内が非常に高温となることも想定される。   Here, in the conventional light bulb-type fluorescent lamp shown in FIG. 10, when the light bulb lighting controller 946 becomes uncontrollable, a situation may occur in which the auxiliary light bulb 930 continues to be lit. In this case, it may be assumed that the inside of the case becomes extremely hot in some cases.

これに対して、本実施の形態に係る電球形蛍光ランプ4では、仮に電球点灯制御器46が制御不能に陥った場合にも、温度ヒューズ素子47が規定温度に達した時点で回路を遮断する。このため、電球点灯制御器46が制御不能となった場合にあっても、補助電球30が点灯し続けるという事態を回避することができる。従って、本実施の形態に係る電球形蛍光ランプ4は、上記実施の形態1に係る電球形蛍光ランプ1が有する優位性を有しているのに加えて、より高い安全性を有する。
(その他の事項)
上記実施の形態1〜4に係る電球形蛍光ランプ1〜4では、電球点灯制御器46、146、246への供給のための配線(電力流通路)L7、L8が平滑器42とスイッチング・安定器43との間の配線(電力流通路)L3、L4に接続されており、これより上記実施の形態1〜4に係る電球形蛍光ランプ1〜4では、電球点灯制御器46、146、246に別途整流器や平滑器を設けなくてもよい、という優位性を有する。しかし、本発明では、必ずしも電球点灯制御器46、146、246へ電力供給のための配線を上記配線L3、L4に接続する必要はない。このような構成とする場合にあっても、上述のように、本発明では、補助電球30として一般に市販されているフィラメント仕様の電球を用いることができるという優位性を有する。
On the other hand, in the bulb-type fluorescent lamp 4 according to the present embodiment, even if the bulb lighting controller 46 falls out of control, the circuit is cut off when the temperature fuse element 47 reaches the specified temperature. . For this reason, even when the light bulb lighting controller 46 becomes uncontrollable, it is possible to avoid a situation in which the auxiliary light bulb 30 continues to be lit. Therefore, the bulb-type fluorescent lamp 4 according to the present embodiment has higher safety in addition to the superiority of the bulb-type fluorescent lamp 1 according to the first embodiment.
(Other matters)
In the light bulb-type fluorescent lamps 1 to 4 according to the first to fourth embodiments, wirings (power flow paths) L7 and L8 for supply to the light bulb lighting controllers 46, 146, and 246 are connected to the smoother 42 and switched and stabilized. Are connected to wires (power flow paths) L3 and L4 between the lamps 43, and in the light bulb shaped fluorescent lamps 1 to 4 according to the first to fourth embodiments, the light bulb lighting controllers 46, 146 and 246 are connected. The advantage is that it is not necessary to provide a separate rectifier or smoother. However, in the present invention, it is not always necessary to connect wiring for supplying power to the light bulb lighting controllers 46, 146, and 246 to the wirings L3 and L4. Even in such a configuration, as described above, the present invention has an advantage that a filament-type light bulb that is generally commercially available can be used as the auxiliary light bulb 30.

上記実施の形態1〜4では、図1に示すように、発光管10の周囲がグローブ70で覆われた構造のタイプの電球形蛍光ランプ1〜4を適用したが、グローブ70は必須の構成要件ではない。例えば、図8に示すように、グローブを有しない電球形蛍光ランプ5などに本発明の構成を採用することもできる。即ち、発光管15の旋回における内方に補助電球30を配置し、点灯回路40として上記同様の構成を採用することにより、上記実施の形態1〜4と同様の効果を得ることができる。   In the first to fourth embodiments, as shown in FIG. 1, the bulb-type fluorescent lamps 1 to 4 having a structure in which the periphery of the arc tube 10 is covered with the globe 70 are applied. However, the globe 70 is an essential configuration. It is not a requirement. For example, as shown in FIG. 8, the configuration of the present invention can be adopted for a light bulb-type fluorescent lamp 5 having no globe. That is, by arranging the auxiliary light bulb 30 inwardly in the turning of the arc tube 15 and adopting the same configuration as the lighting circuit 40, the same effects as in the first to fourth embodiments can be obtained.

また、上記実施の形態1〜4に係る電球形蛍光ランプ1〜4では、回路構成において、配線L1、L2にダイオード素子45a、45bを介挿させ、平滑器42におけるコンデンサ素子にチャージされた電流が補助電球30へと逆流するのを抑制することとした。しかし、本発明では、このような逆流抑制素子として、必ずしもダイオード素子45a、45bを適用する必要はなく、例えば、トランジスタ素子などを採用することもできる。   In the light bulb-type fluorescent lamps 1 to 4 according to the first to fourth embodiments, in the circuit configuration, the diode elements 45a and 45b are inserted in the wirings L1 and L2, and the current charged in the capacitor element in the smoother 42 Is prevented from flowing back to the auxiliary light bulb 30. However, in the present invention, it is not always necessary to apply the diode elements 45a and 45b as such a backflow suppressing element, and for example, a transistor element or the like can be adopted.

また、図1に示すように、上記実施の形態1〜4では、補助電球30として円筒状のシリカ電球を採用しているが、電球の種類および外観形状についてはこれに限定されるものではない。例えば、補助電球としてクリプトン電球やKTクリプトン電球などを採用することもできる。さらに、高輝度LEDなどを用いることもできる。補助電球の形状については、円筒型だけではなく、例えば、ナツメ型などを採用することもできる。   Moreover, as shown in FIG. 1, in the said Embodiment 1-4, the cylindrical silica light bulb is employ | adopted as the auxiliary | assistant light bulb 30, However, It is not limited to this about the kind and external appearance shape of a light bulb. . For example, a krypton bulb, a KT krypton bulb, or the like may be employed as the auxiliary bulb. Further, a high brightness LED or the like can also be used. Regarding the shape of the auxiliary light bulb, not only a cylindrical shape but also a jujube shape, for example, can be adopted.

また、上記実施の形態1〜4では、発光管10、15における電極の近傍領域に補助アマルガムが配設されてなる構成を採用したが、必ずしも補助アマルガムを備えなくても、十分な立ち上り光束を確保することができる。例えば、図4に示すように、実施の形態1に係る電球形蛍光ランプ1に対して、補助アマルガムを配設しないことだけを構成上の差異とする電球形蛍光ランプ(C線で示す。)でも、始動直後(初期立ち上り時)における光束比率が約30[%]確保されており、実質的に問題を生じることはない。なお、図4に示す電球形蛍光ランプの立ち上り光束は、ランプ周囲温度を5[℃]で一定に保った状態で測定したデータである。   Moreover, in the said Embodiment 1-4, although the structure by which auxiliary | assistant amalgam was arrange | positioned in the area | region of the vicinity of the electrode in the arc_tube | light_emitting tubes 10 and 15 was employ | adopted, sufficient rising light flux is not necessarily provided. Can be secured. For example, as shown in FIG. 4, the light bulb shaped fluorescent lamp 1 according to the first embodiment is different from that of the light bulb shaped fluorescent lamp 1 only in that the auxiliary amalgam is not provided. However, a light flux ratio of about 30 [%] is ensured immediately after start-up (at the time of initial start-up), and no substantial problem is caused. The rising luminous flux of the bulb-type fluorescent lamp shown in FIG. 4 is data measured in a state where the lamp ambient temperature is kept constant at 5 [° C.].

また、上記実施の形態1〜4では、電球形蛍光ランプ1〜4の一構成要素として点灯回路40を備える構成を採用しているが、点灯回路が必ずしも電球形蛍光ランプの一構成要素として内蔵されている構成である必要はない。例えば、蛍光ランプとは別体の点灯回路について、本発明に係る点灯回路を採用することも可能であり、その場合にも上記同様の効果を得ることができる。   Moreover, in the said Embodiment 1-4, although the structure provided with the lighting circuit 40 is employ | adopted as one component of the lightbulb-type fluorescent lamps 1-4, a lighting circuit is necessarily incorporated as one component of the lightbulb-shaped fluorescent lamp. It is not necessary to have the configuration. For example, the lighting circuit according to the present invention can be adopted for a lighting circuit separate from the fluorescent lamp, and in this case, the same effect as described above can be obtained.

また、図3、5、6などで示した電球点灯制御器46、146、246などの回路構成は、あくまでも一例であって、同様の動作を保証できるものであれば、これに限定されることはない。   Further, the circuit configurations of the light bulb lighting controllers 46, 146, 246 and the like shown in FIGS. 3, 5, 6, etc. are only examples, and are limited to this as long as the same operation can be guaranteed. There is no.

ここで、電球点灯制御器におけるFET素子のゲート電圧を、補助電球30の点灯状態から消灯状態に至るまでの経過を追って、図9(a)〜(c)を用い説明する。図9(a)に示すように、FET素子のゲート電圧が閾値電圧を超えている場合には、補助電球30は点灯する。次に、ゲート電圧に整流器41から脈動(リプル)を重畳した電圧を用い、徐々に印加電圧を降下させてゆくと、FET素子のゲート電圧が閾値電圧を繰り返し上下することになる(図9(b)を参照)。そして、上記印加電圧を徐々に降下させることにより、オフ期間が長くなる。図9(c)に示すように、FET素子のゲート電圧が閾値電圧を下回ると、補助電球30が消灯される。このように、FET素子の不飽和領域を用いるのと同様に、補助電球30を徐々に暗くできる効果を得ることができ、且つ、FET素子の不飽和領域を用いる場合に比べて、その発熱を抑制することができる。   Here, the gate voltage of the FET element in the light bulb lighting controller will be described with reference to FIGS. 9A to 9C, following the progress from the lighting state of the auxiliary light bulb 30 to the extinguishing state. As shown in FIG. 9A, when the gate voltage of the FET element exceeds the threshold voltage, the auxiliary light bulb 30 is lit. Next, when a voltage obtained by superimposing a pulsation (ripple) from the rectifier 41 on the gate voltage is used and the applied voltage is gradually lowered, the gate voltage of the FET element repeatedly increases and decreases the threshold voltage (FIG. 9 ( see b)). Then, the off period becomes longer by gradually lowering the applied voltage. As shown in FIG. 9C, when the gate voltage of the FET element falls below the threshold voltage, the auxiliary light bulb 30 is turned off. As described above, similarly to the case where the unsaturated region of the FET element is used, an effect of gradually darkening the auxiliary light bulb 30 can be obtained, and the heat generation can be reduced as compared with the case where the unsaturated region of the FET element is used. Can be suppressed.

また、上記実施の形態1〜4では、発光管10として定格電力9[W]の二重螺旋形状のものを採用しているが、発光管の定格電力およびタイプなどはこれに限定されるものではない。例えば、U字状管を複数組み合わせたタイプの発光管などを備えるものにも適用することもできる。なお、補助電球30の定格電力およびサイズなどについては、発光管10の形状や電力(白熱電球相当;40[W]〜100[W])などに関連して適宜変更できる。例えば、15[W]〜30[W]程度の補助電球を用いることが現実的である。   In Embodiments 1 to 4, the arc tube 10 has a double spiral shape with a rated power of 9 [W], but the rated power and type of the arc tube are limited to this. is not. For example, the present invention can also be applied to a type including a luminous tube of a type in which a plurality of U-shaped tubes are combined. The rated power and size of the auxiliary light bulb 30 can be changed as appropriate in relation to the shape and power of the arc tube 10 (equivalent to an incandescent light bulb: 40 [W] to 100 [W]). For example, it is realistic to use an auxiliary light bulb of about 15 [W] to 30 [W].

また、上記実施の形態1〜4では、倍電圧の平滑方式を採用する点灯回路を一例として説明したが、本発明は、これに限らず整流電圧を平滑する方式のインバータにおいて全ての場合で適用することができる。   In the first to fourth embodiments, the lighting circuit that employs the voltage doubler smoothing method has been described as an example. However, the present invention is not limited to this, and the present invention is applicable to all cases of inverters that smooth the rectified voltage. can do.

本発明は、光束の高い立ち上り特性を有し、サイズおよびコストの上昇を抑制できる点灯回路とこれを備える放電ランプおよび照明装置を実現するのに有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for realizing a lighting circuit that has a high rise characteristic of luminous flux and can suppress an increase in size and cost, and a discharge lamp and an illumination device including the lighting circuit.

【書類名】 明細書
【発明の名称】点灯回路とこれを備える放電ランプおよび照明装置
【技術分野】
【0001】
本発明は、放電ランプ用の点灯回路とこれを備える放電ランプおよび照明装置に関する。
【背景技術】
【0002】
省エネルギ化促進という社会的要請に応えるべく、照明分野においても、従来一般的に用いられてきた白熱電球に替えて蛍光ランプが用いられるようになっている。蛍光ランプは、白熱電球に比べて高い効率を有し、中でも白熱電球用のソケットにそのまま装着できる電球形蛍光ランプが普及してきている。
【0003】
電球形蛍光ランプは、ホルダーに取り付けられた発光管と、当該発光管を点灯駆動するための点灯回路(電子安定器)とを有し、点灯回路がケース内に収納された構造を有する。なお、ケースの一端部には、例えばE型の口金が取り付けられている。
【0004】
発光管は、屈曲ガラス管の管両端部にフィラメントコイル電極が気密封止され、屈曲ガラス管の内壁には蛍光体層が形成されている。そして、発光管の内部には、253.7[nm]紫外放射物質としての水銀(Hg)と、緩衝ガスとしてのネオン(Ne)、アルゴン(Ar)、クリプトン(Kr)ガスなどとが主に封入されている。
【0005】
点灯回路は、シリーズインバータ方式などに基づくインバータ回路を有し構成されている。
ところで、電球形蛍光ランプなどの放電ランプにおいては、発光管における水銀からの放射紫外線が、発光管内部での水銀蒸気圧に大きく左右され、このために水銀蒸気圧が下がった状態での始動直後においては、光束が不足する。特に、効率の向上を図るべく、放電路長が長い二重螺旋形状の発光管を採用する場合にあっては、周囲の温度が低い状態では十分な立ち上り光束を確保することができない場合がある。
【0006】
このような問題の解消を図るために、発光管に隣接させてフィラメント電球を補助的に配し、始動時の一定期間だけフィラメント電球を点灯させるという技術が提案されている(例えば、特許文献1、2)。このうち、特許文献2で提案されている回路構成について、図10を用い説明する。
【0007】
図10に示すように、特許文献2で提案されている電球形蛍光ランプでは、商用電源から入力される交流電力は整流器941で整流され、平滑器942で平滑され、スイッチング・安定器943で高周波交流に変換されて発光管910に供給される。発光管910には、予熱回路944も接続されている。
【0008】
また、商用電源からの交流電力の入力経路となる配線L91、L92には、電球点灯制御器946を介して補助電球930に接続されている。このような構造を有する電球形蛍光ランプでは、始動時から一定の時間、補助電球930を点灯させることにより、発光管910の立ち上り光束を高いものとすることができる。
【先行技術文献】
【特許文献1】特開2000−164174号公報
【特許文献2】米国特許5491385号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかしながら、上記特許文献2をはじめとする従来技術に係る電球形蛍光ランプでは、発光管に隣接させて補助電球を備える場合に、回路構成の観点からサイズの小型化、低コスト化が困難である。即ち、図10に示すように、電球点灯制御器946は、配線L91、L92から交流電力の供給を受けているので、電球点灯制御器946が交流電力の電圧変換による影響を受けないようにするために、直流へと変換する回路(整流および平滑などの回路)を備える必要があり、回路構成が複雑となる。
【0010】
また、図10の拡大部分に示すように、上記従来の電球形蛍光ランプでは、電球点灯制御器946におけるサイリスタ素子SCRおよびダイオードDにより交流電力が半波整流され、この半波整流された電力が補助電球930に供給される構成とされている。半波整流された電圧は、商用電圧の(1/√2)となり、半波整流電圧専用のフィラメント仕様とした電球を補助電球930として用いなければならず、一般に市販されているフィラメント仕様の電球を用いることができない。全波整流された電力を補助電球930に供給しようとする場合には、補助電球930用として別途整流回路が必要となり、回路部品点数が増加する。即ち、電球点灯制御器946にも全波整流回路を内蔵することが必要となる。
【0011】
なお、電球点灯制御器946に対して、平滑器942とスイッチング・安定器943との間の配線L96、L97から電球点灯制御器946に電力を供給しようとする場合には、通常の電球形蛍光ランプで用いられるスイッチング・安定器943では出力が不足することになり、平滑電圧のリップルが増加して発光管910の点灯維持が困難となってしまう。
【0012】
本発明は、上記問題を解決しようとなされたものであって、発光管に近接する発光体を備えることで高い立ち上り光束が得られる放電ランプに対応できるとともに、回路構成を複雑にすることなく補助電球の正確な点灯制御を実現できる放電ランプ用の点灯回路とこれを備える放電ランプおよび照明装置を提供することを目的とする。
【課題を解決するための手段】
【0013】
本発明は、上記目的を達成するために、次の構成を採用する。
本発明に係る点灯回路は、放電により発光する発光管と、発光管に対し近接配置され、発光管よりも高い光束立ち上り特性を有する発光体とに対して電力供給を行う。そして、本発明に係る点灯回路は、a)整流部と、b)平滑部と、c)インバータ部と、d)逆流抑制素子と、e)第1電力流通路と、f)点灯制御部とを主な構成要素として備える。
【0014】
a)整流部は、入力された交流電力を整流する構成要素である。
b)平滑部は、整流部において整流された脈流電力を平滑して直流電力とする構成要素である。
【0015】
c)インバータ部は、平滑部において平滑化された直流電力を交流電力に変換して発光管に対し供給する構成要素である。
d)逆流抑制素子は、整流部と平滑部との間の電力流通路中に介挿され、平滑された直流電力が整流部の側へと逆流するのを抑制する素子である。
【0016】
e)第1電力流通路は、整流部と逆流抑制素子との間の電力流通路に接続され、発光体に対して脈流電力を供給するための電力流通路である。
f)点灯制御部は、第1電力流通路の開閉を制御する構成要素である。
【0017】
なお、上記の発光管と発光体との配置関係において、「近接」とは、発光管と発光体との間隙が、0[mm]よりも大きく、3.0[mm]以下であることをいう。
また、本発明に係る放電ランプは、上記本発明に係る点灯回路を備えることを特徴とする。
【0018】
さらに、本発明に係る照明装置は、上記本発明に係る放電ランプを備えることを特徴とする。なお、照明装置とは、放電ランプと各種器具とが組み合わされ構成されたものを指す。そして、各種器具とは、例えば、反射鏡、かさ、カバーや密閉器具などを指す。
【発明の効果】
【0019】
本発明に係る点灯回路は、発光体に対しては第1電力流通路を通して電力を供給する。そして、第1電力流通路は、整流部と逆流抑制素子との間の電力流通路に接続されている。これより、本発明に係る点灯回路では、平滑部とインバータ部との間の電力流通路から発光体のための電力を供給するような場合に比べて、発光管の始動時において、平滑部におけるコンデンサ容量の不足といった問題を生じることがない。即ち、発光体への供給電力を平滑部とインバータ部との間の電力流通路に接続する場合には、発光体への供給電力の分だけ平滑電圧のリップルが増加し、このために発光管の点灯が困難となることが考えられる。
【0020】
これに対して、本発明に係る点灯回路では、整流部と逆流抑制素子との間の電力流通路から発光体へ供給の脈流電力を取り出すので、平滑部のコンデンサ容量を大きくしなくても上記平滑電圧のリップルの増加といった問題を生じることがない。さらに、本発明に係る点灯回路では、発光体に対し非平滑の全波整流された電力が供給されるので、商用電源を供給するのと同じ条件となり、例えば、発光体としてフィラメント電球を採用する場合には、一般に市販されているフィラメント仕様をそのまま採用することが可能であり、設計面およびコスト面で優位である。
【0021】
また、本発明に係る点灯回路では、点灯制御部に別途整流回路を設けなくても発光体に対し全波整流電力が供給可能であるので、回路部品点数の増加が抑えられる。
従って、本発明に係る点灯回路では、発光管に近接する発光体を備えることで高い立ち上り光束が得られる放電ランプに対応できるとともに、回路構成を複雑にすることなく発光体の正確な点灯/消灯制御を実現できる。
【0022】
上記本発明に係る点灯回路では、一例として次のバリエーションを採用することができる。
上記本発明に係る点灯回路では、逆流抑制素子とインバータ部との間の電力流通路に接続され、点灯制御部に対し制御用電力を供給するための第2電力流通路を備える、という構成を採用することができる。
【0023】
このような構成を採用する場合には、点灯制御部が整流回路および平滑回路を備えなくても、正確な制御機能を果たすことができる。即ち、図10に示す特許文献2に係る電球形蛍光ランプでは、電球点灯制御器946への制御電力が、整流器941よりも上流から供給されているので、電球点灯制御器946が整流回路および平滑回路を備えておく必要がある。このため、特許文献2に係る電球形蛍光ランプでは、電球点灯制御器946の回路構成が複雑なものとなり、点灯回路の大型化および高コスト化を招くことにもなる。
【0024】
これに対して、本発明に係る点灯回路では、上記のような形態で第2電力流通路を構成しているので、整流回路および平滑回路を点灯制御部に設ける必要がない。このため、本発明に係る点灯回路は、大型化およびコストの上昇を抑制しながら、正確な発光体の点灯制御が実行できる。
【0025】
また、上記本発明に係る点灯回路では、整流部と平滑部との間の接続が、2線式の電力流通路である場合、逆流抑制素子が整流部と平滑部との間の2線式の電力流通路の各線に介挿されている、という構成を採用することもできる。
【0026】
また、上記本発明に係る点灯回路では、点灯制御部にタイマーが含まれた構成を採用し、点灯制御部において、発光管に交流電力が供給され始めた時点でタイマーによる計時を開始し、且つ、第1電力流通路を閉状態とし、計時開始から所要時間経過時点でタイマーによる計時を終了し、且つ、前記第1電力流通路を開状態とする、という構成を採用することもできる。
【0027】
また、上記本発明に係る点灯回路では、タイマーがコンデンサ素子と抵抗素子とを含む時定数回路で構成されており、コンデンサ素子への充電時間および放電時間の何れかをもって計時を実行するものであって、点灯制御部が第1電力流通路を開閉するFET素子またはバイポーラトランジスタ素子(半導体素子)を含み構成されており、半導体素子における不飽和領域を用い前記第1電力流通路を開状態または閉状態とする、という構成を採用することもできる。これにより、完全な閉状態に至るまでは、第1電力流通路に流れる突入電流を抑制することができ、一方、完全な開状態に至るまでは、第1電力流通路に流れる電流を徐々に減ずることで、発光体の明るさも徐々に減ずることができる。
【0028】
また、上記本発明に係る点灯回路では、整流部へ入力される交流電力の経路において、整流部よりも上流側に発光体の温度に応じて当該経路を開状態とする温度ヒューズが介挿されている、という構成を採用することもできる。
【0029】
本発明に係る放電ランプは、発光管とこれに近接した状態で配置された発光体とを備える。これより、本発明に係る放電ランプでは、環境温度が低いことなどによって発光管内の水銀蒸気圧が低くなっている場合にあっても、始動時における発光体の発光により、この点灯による光束と、発光体より発せられる熱による発光管の立ち上り光束の向上という効果が得られる。このため、本発明に係る放電ランプでは、発光体の周囲に別途の発光体を備えない従来の放電ランプに比べて、高い立ち上り光束を得ることができる。特に、周囲の温度が低い場合などには有効である。
【0030】
なお、上記における「近接」についても、上述の定義の通りである。
また、本発明に係る放電ランプでは、発光管および発光体の点灯のために上記本発明に係る点灯回路を備えているので、上述の本発明に係る点灯回路が奏する効果をそのまま得ることができる。
【0031】
さらに、本発明に係る照明装置では、本発明に係る放電ランプを備えるので、上述の効果をそのまま得ることができる。
上記本発明に係る放電ランプでは、一例として次のバリエーションを採用することができる。
【0032】
また、上記本発明に係る放電ランプでは、発光体として、フィラメントが発熱および発光するフィラメント電球を適用することもできる。
また、上記本発明に係る放電ランプでは、発光管として、内方に空間を有する状態で、仮想軸廻りを螺旋状に旋回する2つの旋回部を有する二重螺旋形状を有する形態のものを採用し、発光体の前記内方空間に対し発光管の外壁と近接する状態で内挿されている、という構成を採用することができる。
【0033】
また、上記本発明に係る放電ランプでは、点灯駆動の対象とする発光管が、放電路の両端部分の各々に電極を有し、且つ、放電路中における電極の近傍領域に補助アマルガムを有する、という構成を採用することもできる。
【0034】
また、上記本発明に係る放電ランプでは、点灯回路がケースで覆われており、ケースの一端部に口金が取り付けられている、という構成を採用することができる。
また、上記本発明に係る放電ランプでは、発光管が透光性のグローブで覆われている、という構成を採用することもできる。
【図面の簡単な説明】
【0035】
【図1】実施の形態1に係る電球形蛍光ランプ1の構成を模式的に示す断面図である。
【図2】実施の形態1に係る電球形蛍光ランプ1の回路構成を示すブロック図である。
【図3】実施の形態1に係る電球形蛍光ランプ1の回路構成の内、電球点灯制御器46の回路構成を示す回路図である。
【図4】電球形蛍光ランプにおける立ち上り光束特性を示す特性図である。
【図5】実施の形態2に係る電球形蛍光ランプ2の回路構成の内、電球点灯制御器146の回路構成を示す回路図である。
【図6】実施の形態3に係る電球形蛍光ランプ3の回路構成の内、電球点灯制御器246の回路構成を示す回路図である。
【図7】実施の形態4に係る電球形蛍光ランプ4の回路構成を示すブロック図である。
【図8】その他の例に係る電球形蛍光ランプ5の構成を模式的に示す断面図である。
【図9】電球点灯制御器において、不飽和領域で使用するFET素子のゲート電圧の変動を模式的に示す特性図である。
【図10】従来技術に係る電球形蛍光ランプの回路構成を示すブロック図である。
【発明を実施するための形態】
【0036】
以下では、本発明を実施するための最良の形態について、一例を示して説明する。なお、以下の説明で用いる形態は、本発明の構成および作用・効果を分かりやすく説明するために用いる一例であって、本発明は、その本質的な特徴部分以外に何ら以下の形態に限定を受けるものではない。
(実施の形態1)
1.電球形蛍光ランプ1の構成
本実施の形態に係る電球形蛍光ランプ1は、照明装置の一部として用いられるランプである。本実施の形態に係る電球形蛍光ランプ1の構成について、図1を用い説明する。図1は、電球形蛍光ランプ1の構成を模式的に示す断面図である。
【0037】
図1に示すように、本実施の形態に係る電球形蛍光ランプ1は、放電ランプの一種であって、二重螺旋形状の発光管10と、この発光管10をその端部で保持するホルダー20と、発光管10における旋回内の円筒形状の内部空間に配置された発光体である補助電球30と、発光管10および補助電球30を点灯駆動するための点灯回路40とを有する。
【0038】
発光管10は、一般の白熱電球60[W]代替用で定格電力9[W]のものであり、仮想軸CL廻りを旋回する2つの旋回部を有する二重螺旋形状を有している。発光管10は、その管内の両端部の各々にフィラメントコイル電極が形成され、管内には緩衝ガスとともに、波長253.7[nm]の紫外線放射物質としての水銀(Hg)が封入されている。緩衝ガスとしては、例えば、アルゴン(Ar)、ネオン(Ne)、クリプトン(Kr)などが採用されている。また、図1では図示を省略しているが、発光管10の放電空間における電極の近傍には、補助アマルガムが配設されている。
【0039】
補助電球30は、例えば、定格電力20[W]のフィラメント電球であって、円筒状の外観形状を有している。また、補助電球30は、発光管10に比べて高い光束立ち上がり特性を有するものである。補助電球30の外面は、発光管10の外壁に対して近接状態となっている。発光管10と補助電球30の外面同士の距離は、短すぎると振動衝撃等により、互いが接触し破損が生じるおそれがあり、逆に長すぎると、熱の有効な利用ができなくなる。これより、互いの外面同士の距離は、1〜3[mm]であることが好ましく、2[mm]程度であることがより好ましい。発光管10および補助電球30は、ホルダー20に設けられた挿入孔にそれぞれ挿入され、ホルダー20の裏面側でシリコーン樹脂などを用い固定されている。
【0040】
点灯回路40は、シリーズインバータ方式などに基づくインバータ回路から構成されている。点灯回路40は、略円形状のプリント基板をベースに構成されている。点灯回路40は、ホルダー20の下側に取り付けられている。
【0041】
さらに、本実施の形態に係る電球形蛍光ランプ1では、点灯回路40が配置された部分がケース50で覆われており、ケース50の下側端部には、口金60が取り付けられている。また、発光管10の周囲は、透光性を有するグローブ70で覆われている。
【0042】
2.回路構成
本実施の形態に係る電球形蛍光ランプ1の回路構成について、図2を用い説明する。
図2に示すように、本実施の形態に係る電球形蛍光ランプ1の点灯回路40は、商用電源側から発光管10に向けた電力経路上において、整流器41、平滑器42およびスイッチング・安定器43の順に接続された構成を有している。また、発光管10には、予熱回路44も接続されている。整流器41と平滑器42との間の電力流通路である配線L1、L2には、逆流抑制素子としてのダイオード素子45a、45bが挿入されている。ここで、スイッチング・安定器43は、インバータ部としての機能を有する。
【0043】
なお、本実施の形態に係る点灯回路40では、倍電圧方式が採用されているため、平滑器42からの出力電圧は、整流器41への入力電圧(実効値)の約2.8倍となる。例えば、商用電源の電圧(実効値)が100[V]である場合には、平滑器42からの出力電圧は約280[V]となる。
【0044】
また、電球形蛍光ランプ1の点灯回路40には、補助電球30への電力供給のための配線L5、L6が、それぞれ配線L1、L2におけるダイオード素子45a、45bよりも上流側で接続されている。配線L6には、電球点灯制御器46が介挿されている。
【0045】
電球点灯制御器46は、発光管10の始動に連動して配線L6を閉状態とし、一定時間経過の時点で開状態とするタイマー機能を有する。電球点灯制御器46の制御用電力は、平滑器42とスイッチング・安定器43との間の配線L3、L4に接続された配線L7、L8を通して供給されるようになっている。
【0046】
点灯回路40の構成中、配線L1、L2中に介挿されているダイオード素子45a、45bは、平滑器42のコンデンサ素子(図示を省略。)にチャージされた電流が補助電球30の側へと逆流するのを防ぐために設けられている。
【0047】
ここで、補助電球30には、図2の左側に示すように、全波整流波形を有する脈流電力が供給されるのに対し、電球点灯制御器46には、図2の右側に示すように、全波平滑波形を有する電力が供給される。このため、本実施の形態に係る電球形蛍光ランプ1の点灯回路40では、電球点灯制御器46の回路構成中に平滑器を設けていない。
【0048】
なお、図2では図示を省略しているが、スイッチング・安定器43の内部にEMC(Electromagnetic Compatibility)フィルタを有している。EMCフィルタは、スイッチング・安定器43からの電磁妨害波を除去するためのフィルタであり、商用電源と整流器41との間に介挿される一般的な回路構成を採用することもできる。
【0049】
3.電球点灯制御器46の具体例
電球形蛍光ランプ1の点灯回路40の内、電球点灯制御器46の構成の具体例について、図3を用い説明する。
【0050】
図3に示すように、本実施の形態に係る電球形蛍光ランプ1では、電球点灯制御部46が、2つのトランジスタ素子Q1、Q2と、2つのコンデンサ素子C1、C2と、1つのツェナーダイオード素子Z1と、4つの抵抗素子R1〜R4とから構成されている。配線L5は、補助電球30の一方の端子に接続され、補助電球30の他方の端子は、トランジスタ素子Q1におけるドレインに接続されている。
【0051】
トランジスタ素子Q1のソースは、配線L6に接続されており、配線L6には、コンデンサ素子C1、C2、およびトランジスタ素子Q2のエミッタ、および抵抗素子R3に接続されている。コンデンサ素子C1は、ツェナーダイオード素子Z1および抵抗素子R4を介して、トランジスタ素子Q2のベースに接続されている。
【0052】
トランジスタ素子Q2のコレクタは、トランジスタ素子Q1のゲートに接続されるとともに、コンデンサ素子C2および抵抗素子R2、R3と接続されている。さらに、コンデンサ素子C1は、抵抗R1を介して、配線L7に接続されている。
【0053】
なお、図3に示す具体例においては、図2の配線L8を配線L6が兼ねている。
4.点灯駆動における電球点灯制御器46の動作
本実施の形態に係る電球形蛍光ランプ1では、駆動に際して、電球点灯制御器46が計時動作を実行し、始動から一定時間経過までの間、補助電球30を点灯させる。具体的には、次のような動作を行う。
【0054】
a) 電球形蛍光ランプ1への電源がオンされると、発光管10の点灯が開始するとともに、抵抗素子R1、R2を介してトランジスタ素子Q1が導通状態となり、補助電球30も点灯を開始する。また、このとき電球点灯制御器46には、抵抗素子R1を通り、コンデンサ素子C1への充電が開始される。ここで、コンデンサ素子C1の容量などは、タイマー時間に応じて設定されている。本実施の形態では、例えば、タイマー時間が60[sec.]となるように設定されている。
【0055】
上記において、電球点灯制御器46では、コンデンサ素子C1と抵抗素子R1とが時定数回路によるタイマーを構成している。
また、コンデンサ素子C2、抵抗素子R1,R2,R3の定数により、導通常体となる前に不飽和領域を用い、一定期間、トランジスタ素子Q1のドレイン−ソース間のインピーダンスを高く維持し、電球点灯時に流れる電球への突入電流を抑制するよう設定されている。
【0056】
b) コンデンサ素子C1の充電が進むことにより、ツェナーダイオード素子Z1の閾値電圧に達した時点でトランジスタ素子Q2のベース−エミッタ間が通電状態となる。
c) トランジスタ素子Q2のベース−エミッタ間が通電状態になると、トランジスタ素子Q2のコレクタ−エミッタ間に電流が流れることになる。
【0057】
d) トランジスタ素子Q2のコレクタ−エミッタ間に電流が流れることによりトランジスタ素子Q1のゲート−ソース間が短絡状態となる。そして、トランジスタ素子Q1のゲート−ソース間が短絡状態となることにより、補助電球30は消灯する。
【0058】
5.立ち上り光束
本実施の形態に係る電球形蛍光ランプ1では、発光管10の近接させて補助電球30を配している。そして、上述のように始動時から一定時間経過時点まで補助電球30を点灯させている。このような点灯駆動を実行する電球形蛍光ランプ1の立ち上り光束について、図4を用い説明する。図4では、補助電球30を備えない従来の電球形蛍光ランプの光束をA線で示し、本実施の形態に係る電球形蛍光ランプ1の光束をB線で示している。なお、図4に示す電球形蛍光ランプの立ち上り光束は、ランプ周囲温度を5[℃]で一定に保った状態で測定したデータである。
【0059】
図4のA線で示すように、補助電球30を備えない従来の電球形蛍光ランプでは、始動時には定格の約10[%]程度の光束しか得られないのに対し、B線で示す電球形蛍光ランプ1では、約35[%]程度の高い光束を得ることができる。これは、補助電球30の点灯による光と、これに起因して発光管10の立ち上り光束も向上したことによるものであると考えられる。
【0060】
本実施の形態では、始動後60[sec.]経過の時点で補助電球30は消灯されるように設定している。このため、60[sec.]の時点で、光束が約65[%]から約50[%]へと一旦低下する。しかし、補助電球30が消灯した場合においても、A線で示す従来の電球形蛍光ランプに比べて25[ポイント]高い光束を得られる。
【0061】
なお、ランプ始動時において、定格の25[%]程度の光束が得られれば、実質的に問題を生じることはないと考えられる。即ち、ランプ始動時において、定格の25[%]程度の光束が得られれば、ユーザが不具合を感じることがないと考えられる。
【0062】
6.優位性
a)発光管10
本実施の形態に係る電球形蛍光ランプ1では、二重螺旋形状の発光管10を採用している。このため、U字状の発光管を採用する場合に比べて、同じ占有容積で長い放電路を確保することができ、小型化と高効率化とをなし得る。よって、本実施の形態に係る電球形蛍光ランプ1は、白熱電球と同等のサイズへの小型化の要求と、さらなるランプ効率の向上との要望に対応できる。
【0063】
b)補助電球30
本実施の形態に係る電球形蛍光ランプ1では、図1に示すように、発光管10に近接した状態で補助電球30が配置されている。このため、電球形蛍光ランプ1では、環境温度が低いことなどによって発光管10内の水銀蒸気圧が低くなっている場合にも、始動時における補助電球30の発光により、この点灯による光束と、発生の熱とによって発光管10の立ち上り光束の向上という効果が得られる。よって、本実施の形態に係る電球形蛍光ランプ1では、従来の電球形蛍光ランプに比べて、高い立ち上り光束を得ることができる。
【0064】
また、本実施の形態に係る電球形蛍光ランプ1では、補助電球30に対し非平滑の全波整流された脈流電力が供給されるので、商用電源を供給するのと同じ条件となり、一般に市販されているフィラメント仕様をそのまま採用することが可能であり、設計面およびコスト面で優位である。
【0065】
また、本実施の形態に係る電球形蛍光ランプ1では、電力流通路L5、L6などに別途整流回路を設けなくても補助電球30に対し全波整流電力が供給可能であるので、回路部品点数の増加が抑えられる。
【0066】
c)電球点灯制御器46への制御電力
本実施の形態に係る電球形蛍光ランプ1では、図2に示すように、補助電球30への電力供給を、整流器41の下流であって、ダイオード素子45a、45bの上流側に接続された配線L5、L6によって行う構成となっている。このような構成を採用する電球形蛍光ランプ1の点灯回路40では、図10に示すような構成を採用する従来技術に比べて、発光管10の始動時において、平滑器42におけるコンデンサ素子の容量不足といった問題を生じることがない。即ち、補助電球30への供給電力を平滑器42とスイッチング・安定器43との間から取り出す場合には、補助電球30への供給電力の分だけ平滑電圧のリップルが増加し、このために発光管10の点灯が困難となることが考えられる。
【0067】
これに対して、本実施の形態に係る点灯回路40では、整流器41とダイオード素子45a、45bとの間に接続された配線L5、L6を通して補助電球30へ電力供給するので、平滑器42のコンデンサ容量を大きくしなくても上記平滑電圧のリップルの増加といった問題を生じることがない。
【0068】
また、図2に示すように、本実施の形態に係る点灯回路40では、電球点灯制御器46に対しては配線L7、L8を通して電力が供給される。そして、配線L7、L8は、ダイオード素子45a、45bとスイッチング・安定器43との間の配線L3、L4に接続されている。このような構成を採用することにより、本実施の形態に係る点灯回路40では、電球点灯制御器46が平滑回路を備えなくても、制御動作に問題を生じることはない。よって、本実施の形態に係る点灯回路40は、サイズおよびコストの上昇を抑制しながら、正確な発光体の点灯制御が実行できる。
【0069】
従って、本実施の形態に係る電球形蛍光ランプ1では、発光管10に近接する補助電球30を備えることで高い立ち上り光束が得られる蛍光ランプに対応できるとともに、回路構成を複雑にすることなく補助電球30の正確な点灯制御を実現できる。
(実施の形態2)
次に、実施の形態2に係る電球形蛍光ランプ2の構成について、図5を用い説明する。なお、図5に示すように、本実施の形態に係る電球形蛍光ランプ2は、電球点灯制御器146の構成を除き、上記実施の形態1に係る電球形蛍光ランプ1と変わるところはないので、その説明を省略する。
【0070】
図5に示すように、本実施の形態に係る電球形蛍光ランプ2の電球点灯制御器146は、1つのFET素子F11と、2つのツェナーダイオード素子Z11、Z12と、1つのコンデンサ素子C11と、2つの抵抗素子R11、R12と、PTC(Positive Temperature Coefficient)素子P11とから構成されている。
【0071】
配線L5、L6は、補助電球30およびFET素子F11を介して接続されている。配線L7は、PTC素子P11に接続され、PTC素子P11の他方は抵抗R11に接続されている。PTC素子P11と抵抗素子R11との中間点は、2つのツェナーダイオード素子Z11、Z12を介して、FET素子F11のゲートに接続されている。
【0072】
ツェナーダイオード素子Z12とFET素子F11のゲートとの間と、配線L6との間には、コンデンサ素子C11および抵抗素子R12が接続されている。
電球形蛍光ランプ2では、点灯始動時において、配線L7を通り電流が流れる。このとき、PTC素子P11の分圧がツェナーダイオード素子Z11の閾値を超えている間は、コンデンサ素子C11が充電され(充電容量>放電容量)、FET素子F11のゲート−ソース間に閾値を超える電圧が印加される。これにより、FET素子F11のソース−ドレイン間が通電状態となり、点灯始動時に補助電球30が点灯する。
【0073】
点灯始動時からの時間経過とともに、PTC素子P11の内部温度が上昇し、この温度上昇に伴ってPTC素子P11の抵抗値が上昇する。PTC素子P11の抵抗値がある一定のレベルに達した時点で、ツェナーダイオード素子Z11の閾値との関係で、コンデンサ素子C11が充電されなくなるため(充電容量<放電容量)、コンデンサ素子C11の電圧が徐々に低下する。コンデンサ素子C11の電圧がFET素子F11の閾値よりも低下した時点で、FET素子F11のソース−ドレイン間が開状態となり、補助電球30が消灯する。
【0074】
本実施の形態に係る電球点灯制御器146では、FET素子F11のゲート−ソースに並列接続されているコンデンサ素子C11の放電時間により、FET素子F11の不飽和領域におけるインピーダンスの増加率を調整できるため、補助電球30が徐々に暗くなる時間を調整することができる。
【0075】
なお、FET素子F11の代わりにバイポーラトランジスタ素子を用いることでも不飽和領域を使用して上記同様の効果を奏することができる。
また、電球点灯制御器146におけるタイマー設定時間は、PTC素子P11、抵抗素子R11およびツェナーダイオード素子Z11、Z12およびコンデンサ素子C11の各値の設定により決められている。本実施の形態においても、上記実施の形態1と同様に、点灯開始から60[sec.]経過時点で補助電球30が消灯するように設定されている。
(実施の形態3)
次に、実施の形態3に係る電球形蛍光ランプ3の構成について、図6を用い説明する。なお、図6に示すように、本実施の形態に係る電球形蛍光ランプ3は、電球点灯制御器246の構成を除き、上記実施の形態1、2に係る電球形蛍光ランプ1、2と変わるところはないので、その説明を省略する。
【0076】
図6に示すように、本実施の形態に係る電球形蛍光ランプ3の電球点灯制御器246は、1つのサイリスタ(Thyristor)素子S21と、2つのツェナーダイオード素子Z21、Z22と、1つのコンデンサ素子C21と、2つの抵抗素子R21、R22と、PTC素子P21とから構成されている。即ち、本実施の形態に係る電球点灯制御器246は、上記実施の形態2に係る電球点灯制御器146に対してFET素子F11の代わりに、サイリスタ素子S21を用いている点が相違している。
【0077】
補助電球30の点灯から消灯に至るまでの動作については、基本的に上記実施の形態2に係る点灯回路と同一である。よって、その説明を省略する。
(実施の形態4)
次に、実施の形態4に係る電球形蛍光ランプ4の構成について、図7を用い説明する。
【0078】
図7に示すように、本実施の形態に係る電球形蛍光ランプ4は、整流器41よりも電流経路の上流側に温度ヒューズ素子47が介挿されているところに構成上の特徴を有する。具体的には、電流経路上において、整流器41と口金60(図1を参照。)との間の配線L9中に温度ヒューズ素子47が介挿されている。
【0079】
なお、温度ヒューズ素子47の具体的配置場所は、ケース50内であれば特に限定はないが、点灯回路における基板上の中でも、できるだけ中心軸CL(図1を参照。)に近く、補助電球30の温度を的確に検知できる箇所とすることが望ましい。
【0080】
本実施の形態に係る電球形蛍光ランプ4における温度ヒューズ素子47は、何らかの原因で電球点灯制御器46が制御不能に陥った場合などにおいても、補助電球30が点灯し続けるような事態を防止するためである。このため、温度ヒューズ素子47は、例えば、140[℃]で切れる仕様のものが選定される。
【0081】
ここで、図10に示す従来の電球形蛍光ランプでは、電球点灯制御器946が制御不能になった場合には補助電球930が点灯し続けるような事態も生じ得る。この場合には、場合によってはケース内が非常に高温となることも想定される。
【0082】
これに対して、本実施の形態に係る電球形蛍光ランプ4では、仮に電球点灯制御器46が制御不能に陥った場合にも、温度ヒューズ素子47が規定温度に達した時点で回路を遮断する。このため、電球点灯制御器46が制御不能となった場合にあっても、補助電球30が点灯し続けるという事態を回避することができる。従って、本実施の形態に係る電球形蛍光ランプ4は、上記実施の形態1に係る電球形蛍光ランプ1が有する優位性を有しているのに加えて、より高い安全性を有する。
(その他の事項)
上記実施の形態1〜4に係る電球形蛍光ランプ1〜4では、電球点灯制御器46、146、246への供給のための配線(電力流通路)L7、L8が平滑器42とスイッチング・安定器43との間の配線(電力流通路)L3、L4に接続されており、これより上記実施の形態1〜4に係る電球形蛍光ランプ1〜4では、電球点灯制御器46、146、246に別途整流器や平滑器を設けなくてもよい、という優位性を有する。しかし、本発明では、必ずしも電球点灯制御器46、146、246へ電力供給のための配線を上記配線L3、L4に接続する必要はない。このような構成とする場合にあっても、上述のように、本発明では、補助電球30として一般に市販されているフィラメント仕様の電球を用いることができるという優位性を有する。
【0083】
上記実施の形態1〜4では、図1に示すように、発光管10の周囲がグローブ70で覆われた構造のタイプの電球形蛍光ランプ1〜4を適用したが、グローブ70は必須の構成要件ではない。例えば、図8に示すように、グローブを有しない電球形蛍光ランプ5などに本発明の構成を採用することもできる。即ち、発光管15の旋回における内方に補助電球30を配置し、点灯回路40として上記同様の構成を採用することにより、上記実施の形態1〜4と同様の効果を得ることができる。
【0084】
また、上記実施の形態1〜4に係る電球形蛍光ランプ1〜4では、回路構成において、配線L1、L2にダイオード素子45a、45bを介挿させ、平滑器42におけるコンデンサ素子にチャージされた電流が補助電球30へと逆流するのを抑制することとした。しかし、本発明では、このような逆流抑制素子として、必ずしもダイオード素子45a、45bを適用する必要はなく、例えば、トランジスタ素子などを採用することもできる。
【0085】
また、図1に示すように、上記実施の形態1〜4では、補助電球30として円筒状のシリカ電球を採用しているが、電球の種類および外観形状についてはこれに限定されるものではない。例えば、補助電球としてクリプトン電球やKTクリプトン電球などを採用することもできる。さらに、高輝度LEDなどを用いることもできる。補助電球の形状については、円筒型だけではなく、例えば、ナツメ型などを採用することもできる。
【0086】
また、上記実施の形態1〜4では、発光管10、15における電極の近傍領域に補助アマルガムが配設されてなる構成を採用したが、必ずしも補助アマルガムを備えなくても、十分な立ち上り光束を確保することができる。例えば、図4に示すように、実施の形態1に係る電球形蛍光ランプ1に対して、補助アマルガムを配設しないことだけを構成上の差異とする電球形蛍光ランプ(C線で示す。)でも、始動直後(初期立ち上り時)における光束比率が約30[%]確保されており、実質的に問題を生じることはない。なお、図4に示す電球形蛍光ランプの立ち上り光束は、ランプ周囲温度を5[℃]で一定に保った状態で測定したデータである。
【0087】
また、上記実施の形態1〜4では、電球形蛍光ランプ1〜4の一構成要素として点灯回路40を備える構成を採用しているが、点灯回路が必ずしも電球形蛍光ランプの一構成要素として内蔵されている構成である必要はない。例えば、蛍光ランプとは別体の点灯回路について、本発明に係る点灯回路を採用することも可能であり、その場合にも上記同様の効果を得ることができる。
【0088】
また、図3、5、6などで示した電球点灯制御器46、146、246などの回路構成は、あくまでも一例であって、同様の動作を保証できるものであれば、これに限定されることはない。
【0089】
ここで、電球点灯制御器におけるFET素子のゲート電圧を、補助電球30の点灯状態から消灯状態に至るまでの経過を追って、図9(a)〜(c)を用い説明する。図9(a)に示すように、FET素子のゲート電圧が閾値電圧を超えている場合には、補助電球30は点灯する。次に、ゲート電圧に整流器41から脈動(リプル)を重畳した電圧を用い、徐々に印加電圧を降下させてゆくと、FET素子のゲート電圧が閾値電圧を繰り返し上下することになる(図9(b)を参照)。そして、上記印加電圧を徐々に降下させることにより、オフ期間が長くなる。図9(c)に示すように、FET素子のゲート電圧が閾値電圧を下回ると、補助電球30が消灯される。このように、FET素子の不飽和領域を用いるのと同様に、補助電球30を徐々に暗くできる効果を得ることができ、且つ、FET素子の不飽和領域を用いる場合に比べて、その発熱を抑制することができる。
【0090】
また、上記実施の形態1〜4では、発光管10として定格電力9[W]の二重螺旋形状のものを採用しているが、発光管の定格電力およびタイプなどはこれに限定されるものではない。例えば、U字状管を複数組み合わせたタイプの発光管などを備えるものにも適用することもできる。なお、補助電球30の定格電力およびサイズなどについては、発光管10の形状や電力(白熱電球相当;40[W]〜100[W])などに関連して適宜変更できる。例えば、15[W]〜30[W]程度の補助電球を用いることが現実的である。
【0091】
また、上記実施の形態1〜4では、倍電圧の平滑方式を採用する点灯回路を一例として説明したが、本発明は、これに限らず整流電圧を平滑する方式のインバータにおいて全ての場合で適用することができる。
【産業上の利用可能性】
【0092】
本発明は、光束の高い立ち上り特性を有し、サイズおよびコストの上昇を抑制できる点灯回路とこれを備える放電ランプおよび照明装置を実現するのに有用である。
【符号の説明】
【0093】
1、2、3、4、5.電球形蛍光ランプ
10、15.発光管
20、25.ホルダー
30.補助電球
40.点灯回路
41.整流器
42.平滑器
43.スイッチング・安定器
44.予熱回路
45a、45b.ダイオード素子
46、146、246.電球点灯制御器
47.温度ヒューズ素子
50.ケース
60.口金
70.グローブ
[Document Name] Statement
Patent application title: LIGHTING CIRCUIT, DISCHARGE LAMP AND LIGHTING DEVICE EQUIPPED WITH THE SAME
【Technical field】
[0001]
The present invention relates to a lighting circuit for a discharge lamp, a discharge lamp including the same, and an illumination device.
[Background]
[0002]
In order to meet social demands for energy saving promotion, fluorescent lamps are used in the lighting field instead of incandescent bulbs that have been generally used. Fluorescent lamps have higher efficiency than incandescent bulbs, and in particular, bulb-type fluorescent lamps that can be directly mounted on incandescent bulb sockets have become popular.
[0003]
The bulb-type fluorescent lamp has an arc tube attached to a holder and a lighting circuit (electronic ballast) for lighting the arc tube, and the lighting circuit is housed in a case. For example, an E-type base is attached to one end of the case.
[0004]
In the arc tube, filament coil electrodes are hermetically sealed at both ends of the bent glass tube, and a phosphor layer is formed on the inner wall of the bent glass tube. In the arc tube, mercury (Hg) as a 253.7 [nm] ultraviolet radiation material, neon (Ne), argon (Ar), krypton (Kr) gas, etc. as buffer gases are mainly used. It is enclosed.
[0005]
The lighting circuit has an inverter circuit based on a series inverter system or the like.
By the way, in a discharge lamp such as a bulb-type fluorescent lamp, the radiation ultraviolet rays from mercury in the arc tube are greatly influenced by the mercury vapor pressure in the arc tube, and thus immediately after starting in a state where the mercury vapor pressure is lowered. In this case, the luminous flux is insufficient. In particular, when adopting a double spiral arc tube having a long discharge path length in order to improve the efficiency, there may be a case where a sufficient rising luminous flux cannot be secured at a low ambient temperature. .
[0006]
In order to solve such a problem, a technique has been proposed in which a filament bulb is auxiliary arranged adjacent to the arc tube, and the filament bulb is lit only for a certain period at the time of starting (for example, Patent Document 1). 2). Among these, the circuit configuration proposed in Patent Document 2 will be described with reference to FIG.
[0007]
As shown in FIG. 10, in the bulb-type fluorescent lamp proposed in Patent Document 2, AC power input from a commercial power source is rectified by a rectifier 941, smoothed by a smoother 942, and high-frequency by a switching / stabilizer 943. It is converted into alternating current and supplied to the arc tube 910. A preheating circuit 944 is also connected to the arc tube 910.
[0008]
In addition, wirings L91 and L92 serving as input paths for AC power from a commercial power source are connected to an auxiliary light bulb 930 via a light bulb lighting controller 946. In the light bulb shaped fluorescent lamp having such a structure, the rising light flux of the arc tube 910 can be made high by turning on the auxiliary light bulb 930 for a certain time from the start.
[Prior art documents]
[Patent Document 1] Japanese Unexamined Patent Publication No. 2000-164174
[Patent Document 2] US Pat. No. 5,491,385
Summary of the Invention
[Problems to be solved by the invention]
[0009]
However, in the light bulb-type fluorescent lamp according to the related art including the above-mentioned Patent Document 2, it is difficult to reduce the size and the cost from the viewpoint of the circuit configuration when the auxiliary light bulb is provided adjacent to the arc tube. . That is, as shown in FIG. 10, since the light bulb lighting controller 946 is supplied with AC power from the wirings L91 and L92, the light bulb lighting controller 946 is not affected by the voltage conversion of the AC power. Therefore, it is necessary to provide a circuit (circuit such as rectification and smoothing) that converts it into direct current, which complicates the circuit configuration.
[0010]
Further, as shown in the enlarged portion of FIG. 10, in the above conventional bulb-type fluorescent lamp, the AC power is half-wave rectified by the thyristor element SCR and the diode D in the bulb lighting controller 946, and the half-wave rectified power is The auxiliary light bulb 930 is supplied. The half-wave rectified voltage is (1 / √2) of the commercial voltage, and a light bulb with a filament specification dedicated to the half-wave rectified voltage must be used as the auxiliary light bulb 930. Cannot be used. When trying to supply full-wave rectified power to the auxiliary light bulb 930, a separate rectifier circuit is required for the auxiliary light bulb 930, and the number of circuit components increases. That is, it is necessary to incorporate a full-wave rectifier circuit in the light bulb lighting controller 946 as well.
[0011]
When electric power is to be supplied to the light bulb lighting controller 946 from the wirings L96 and L97 between the smoother 942 and the switching / stabilizer 943 to the light bulb lighting controller 946, normal light bulb-type fluorescent light is used. The switching / stabilizer 943 used in the lamp lacks output, and the ripple of the smooth voltage increases, making it difficult to keep the arc tube 910 lit.
[0012]
The present invention has been made to solve the above-mentioned problems, and can be applied to a discharge lamp that can obtain a high rising luminous flux by providing a light emitter close to the arc tube, and also assists without complicating the circuit configuration. It is an object of the present invention to provide a lighting circuit for a discharge lamp that can realize accurate lighting control of a light bulb, a discharge lamp including the same, and an illumination device.
[Means for Solving the Problems]
[0013]
In order to achieve the above object, the present invention employs the following configuration.
The lighting circuit according to the present invention supplies power to an arc tube that emits light by discharge and an illuminant that is disposed close to the arc tube and has higher luminous flux rise characteristics than the arc tube. The lighting circuit according to the present invention includes a) a rectifying unit, b) a smoothing unit, c) an inverter unit, d) a backflow suppression element, e) a first power flow path, and f) a lighting control unit. As a main component.
[0014]
a) The rectification unit is a component that rectifies the input AC power.
b) The smoothing unit is a component that smoothes the pulsating power rectified in the rectifying unit to obtain DC power.
[0015]
c) The inverter unit is a component that converts the DC power smoothed in the smoothing unit into AC power and supplies it to the arc tube.
d) The backflow suppressing element is an element that is inserted in the power flow path between the rectifying unit and the smoothing unit and suppresses the smoothed DC power from flowing back to the rectifying unit side.
[0016]
e) The first power flow path is connected to a power flow path between the rectifying unit and the backflow suppressing element, and is a power flow path for supplying pulsating power to the light emitter.
f) The lighting control unit is a component that controls opening and closing of the first power flow path.
[0017]
In the arrangement relationship between the arc tube and the luminous body, “proximity” means that the gap between the arc tube and the luminous body is larger than 0 [mm] and not larger than 3.0 [mm]. Say.
A discharge lamp according to the present invention includes the lighting circuit according to the present invention.
[0018]
Furthermore, the illumination device according to the present invention includes the discharge lamp according to the present invention. The lighting device refers to a combination of a discharge lamp and various appliances. The various instruments refer to, for example, reflecting mirrors, umbrellas, covers, sealing instruments, and the like.
【The invention's effect】
[0019]
The lighting circuit according to the present invention supplies power to the light emitter through the first power flow path. The first power flow path is connected to the power flow path between the rectification unit and the backflow suppressing element. As a result, in the lighting circuit according to the present invention, compared with the case where the power for the light emitter is supplied from the power flow path between the smoothing unit and the inverter unit, at the time of starting the arc tube, in the smoothing unit. There is no problem of insufficient capacitor capacity. That is, when the power supplied to the light emitter is connected to the power flow path between the smoothing unit and the inverter unit, the ripple of the smoothing voltage increases by the amount of power supplied to the light emitter. It may be difficult to turn on.
[0020]
On the other hand, in the lighting circuit according to the present invention, since the pulsating power supplied to the light emitter is taken out from the power flow path between the rectifying unit and the backflow suppressing element, the capacitor capacity of the smoothing unit is not increased. The problem of an increase in the smoothing voltage ripple does not occur. Furthermore, in the lighting circuit according to the present invention, non-smooth full-wave rectified power is supplied to the light emitter, so that the same condition as that for supplying commercial power is used. For example, a filament bulb is adopted as the light emitter. In this case, it is possible to adopt a commercially available filament specification as it is, which is advantageous in terms of design and cost.
[0021]
Further, in the lighting circuit according to the present invention, full-wave rectified power can be supplied to the light emitter without providing a separate rectifier circuit in the lighting control unit, so that an increase in the number of circuit components can be suppressed.
Therefore, in the lighting circuit according to the present invention, it is possible to cope with a discharge lamp that can obtain a high rising luminous flux by providing a light emitter close to the arc tube, and to accurately turn on / off the light emitter without complicating the circuit configuration. Control can be realized.
[0022]
In the lighting circuit according to the present invention, the following variations can be adopted as an example.
The lighting circuit according to the present invention includes a second power flow path that is connected to the power flow path between the backflow suppressing element and the inverter unit and supplies control power to the lighting control unit. Can be adopted.
[0023]
When such a configuration is employed, an accurate control function can be achieved even if the lighting control unit does not include a rectifier circuit and a smoothing circuit. That is, in the light bulb-type fluorescent lamp according to Patent Document 2 shown in FIG. 10, the control power to the light bulb lighting controller 946 is supplied from the upstream side of the rectifier 941, so the light bulb lighting controller 946 has a rectifier circuit and a smoothing circuit. It is necessary to have a circuit. For this reason, in the light bulb-type fluorescent lamp according to Patent Document 2, the circuit configuration of the light bulb lighting controller 946 becomes complicated, leading to an increase in the size and cost of the lighting circuit.
[0024]
On the other hand, in the lighting circuit according to the present invention, since the second power flow path is configured in the above-described form, it is not necessary to provide a rectifier circuit and a smoothing circuit in the lighting control unit. For this reason, the lighting circuit according to the present invention can perform accurate lighting control of the light emitter while suppressing increase in size and cost.
[0025]
In the lighting circuit according to the present invention, when the connection between the rectifying unit and the smoothing unit is a two-wire power flow path, the backflow suppression element is a two-wire type between the rectifying unit and the smoothing unit. It is also possible to adopt a configuration in which each line of the power flow path is inserted.
[0026]
Further, the lighting circuit according to the present invention employs a configuration in which a timer is included in the lighting control unit, and in the lighting control unit, when the AC power starts to be supplied to the arc tube, timing by the timer is started, and Alternatively, the first power flow path may be closed, the time measurement by the timer may be terminated when the required time has elapsed from the start of timing, and the first power flow path may be opened.
[0027]
Further, in the lighting circuit according to the present invention, the timer is composed of a time constant circuit including a capacitor element and a resistor element, and the time is measured by either charging time or discharging time of the capacitor element. The lighting control unit includes an FET element or a bipolar transistor element (semiconductor element) that opens and closes the first power flow path, and the first power flow path is opened or closed using an unsaturated region in the semiconductor element. It is also possible to adopt a configuration in which the state is set. As a result, the inrush current flowing through the first power flow path can be suppressed until the fully closed state is reached, while the current flowing through the first power flow path is gradually reduced until the fully open state is reached. By reducing, the brightness of the light emitter can also be gradually reduced.
[0028]
In the lighting circuit according to the present invention, in the path of the AC power input to the rectifying unit, a temperature fuse that opens the path according to the temperature of the light emitter is inserted upstream of the rectifying unit. It is also possible to adopt a configuration of
[0029]
The discharge lamp according to the present invention includes an arc tube and a light emitter disposed in the vicinity thereof. From this, in the discharge lamp according to the present invention, even when the mercury vapor pressure in the arc tube is low due to low environmental temperature or the like, due to the light emission of the luminous body at the start, The effect of improving the rising luminous flux of the arc tube due to the heat generated from the luminous body can be obtained. For this reason, in the discharge lamp according to the present invention, a higher rising luminous flux can be obtained as compared with a conventional discharge lamp that does not include a separate light emitter around the light emitter. This is particularly effective when the ambient temperature is low.
[0030]
The “proximity” in the above is also as defined above.
In addition, since the discharge lamp according to the present invention includes the lighting circuit according to the present invention for lighting the arc tube and the luminous body, the effect of the lighting circuit according to the present invention can be obtained as it is. .
[0031]
Furthermore, since the illumination device according to the present invention includes the discharge lamp according to the present invention, the above-described effects can be obtained as they are.
In the discharge lamp according to the present invention, the following variations can be adopted as an example.
[0032]
In the discharge lamp according to the present invention, a filament bulb in which a filament generates heat and emits light can also be applied as a light emitter.
Further, in the discharge lamp according to the present invention, a light emitting tube having a double spiral shape having two swirl portions that spirally swivel around a virtual axis in a state having a space inside is adopted. And the structure that it is inserted in the state which adjoins the outer wall of the arc_tube | light_emitting_tube with respect to the said inner space of a light-emitting body is employable.
[0033]
Further, in the discharge lamp according to the present invention, the arc tube to be driven for lighting has an electrode at each of both end portions of the discharge path, and has an auxiliary amalgam in a region near the electrode in the discharge path. It is also possible to adopt the configuration.
[0034]
Further, the discharge lamp according to the present invention may employ a configuration in which the lighting circuit is covered with a case, and a base is attached to one end of the case.
Further, the discharge lamp according to the present invention may employ a configuration in which the arc tube is covered with a translucent glove.
[Brief description of the drawings]
[0035]
FIG. 1 is a cross-sectional view schematically showing a configuration of a bulb-type fluorescent lamp 1 according to a first embodiment.
FIG. 2 is a block diagram showing a circuit configuration of the bulb-type fluorescent lamp 1 according to the first embodiment.
3 is a circuit diagram showing a circuit configuration of a light bulb lighting controller 46 in the circuit configuration of the bulb-type fluorescent lamp 1 according to Embodiment 1. FIG.
FIG. 4 is a characteristic diagram showing rising light flux characteristics in a bulb-type fluorescent lamp.
5 is a circuit diagram showing a circuit configuration of a light bulb lighting controller 146 in a circuit configuration of a light bulb shaped fluorescent lamp 2 according to Embodiment 2. FIG.
6 is a circuit diagram showing a circuit configuration of a light bulb lighting controller 246 in the circuit configuration of a light bulb shaped fluorescent lamp 3 according to Embodiment 3. FIG.
7 is a block diagram showing a circuit configuration of a bulb-type fluorescent lamp 4 according to Embodiment 4. FIG.
FIG. 8 is a cross-sectional view schematically showing a configuration of a bulb-type fluorescent lamp 5 according to another example.
FIG. 9 is a characteristic diagram schematically showing the fluctuation of the gate voltage of the FET element used in the unsaturated region in the bulb lighting controller.
FIG. 10 is a block diagram showing a circuit configuration of a light bulb-type fluorescent lamp according to the prior art.
BEST MODE FOR CARRYING OUT THE INVENTION
[0036]
Hereinafter, the best mode for carrying out the present invention will be described with reference to an example. Note that the form used in the following description is an example used for easy understanding of the configuration, operation, and effect of the present invention, and the present invention is not limited to the following form other than its essential features. It is not something to receive.
(Embodiment 1)
1. Structure of bulb-type fluorescent lamp 1
The bulb-type fluorescent lamp 1 according to the present embodiment is a lamp used as a part of a lighting device. The configuration of the bulb-type fluorescent lamp 1 according to the present embodiment will be described with reference to FIG. FIG. 1 is a cross-sectional view schematically showing the configuration of a bulb-type fluorescent lamp 1.
[0037]
As shown in FIG. 1, a bulb-type fluorescent lamp 1 according to the present embodiment is a kind of discharge lamp, and is a double spiral arc tube 10 and a holder for holding the arc tube 10 at its end. 20, an auxiliary light bulb 30 that is a light emitter disposed in a cylindrical internal space in a turn in the arc tube 10, and a lighting circuit 40 for lighting the arc tube 10 and the auxiliary light bulb 30.
[0038]
The arc tube 10 is a substitute for a general incandescent bulb 60 [W] and has a rated power of 9 [W], and has a double spiral shape having two swiveling portions that swirl around a virtual axis CL. The arc tube 10 is formed with filament coil electrodes at both ends in the tube, and mercury (Hg) as an ultraviolet radiation material having a wavelength of 253.7 [nm] is enclosed in the tube together with a buffer gas. As the buffer gas, for example, argon (Ar), neon (Ne), krypton (Kr), or the like is employed. Although not shown in FIG. 1, an auxiliary amalgam is disposed in the vicinity of the electrode in the discharge space of the arc tube 10.
[0039]
The auxiliary light bulb 30 is, for example, a filament light bulb with a rated power of 20 [W], and has a cylindrical appearance. Further, the auxiliary light bulb 30 has a higher luminous flux rise characteristic than the arc tube 10. The outer surface of the auxiliary bulb 30 is in a proximity state with respect to the outer wall of the arc tube 10. If the distance between the outer surfaces of the arc tube 10 and the auxiliary light bulb 30 is too short, there is a risk that they will come into contact with each other due to vibration impact or the like and breakage. Accordingly, the distance between the outer surfaces is preferably 1 to 3 [mm], more preferably about 2 [mm]. The arc tube 10 and the auxiliary light bulb 30 are respectively inserted into insertion holes provided in the holder 20 and fixed on the back side of the holder 20 using silicone resin or the like.
[0040]
The lighting circuit 40 is composed of an inverter circuit based on a series inverter system or the like. The lighting circuit 40 is configured based on a substantially circular printed circuit board. The lighting circuit 40 is attached to the lower side of the holder 20.
[0041]
Furthermore, in the light bulb shaped fluorescent lamp 1 according to the present embodiment, a portion where the lighting circuit 40 is arranged is covered with a case 50, and a base 60 is attached to a lower end portion of the case 50. Further, the periphery of the arc tube 10 is covered with a translucent globe 70.
[0042]
2. Circuit configuration
The circuit configuration of the bulb-type fluorescent lamp 1 according to the present embodiment will be described with reference to FIG.
As shown in FIG. 2, the lighting circuit 40 of the bulb-type fluorescent lamp 1 according to the present embodiment includes a rectifier 41, a smoother 42, and a switching / stabilizer on the power path from the commercial power supply side to the arc tube 10. It has the structure connected in order of 43. A preheating circuit 44 is also connected to the arc tube 10. Diode elements 45a and 45b as backflow suppressing elements are inserted in the wirings L1 and L2 which are power flow paths between the rectifier 41 and the smoother 42. Here, the switching and ballast 43 has a function as an inverter unit.
[0043]
In the lighting circuit 40 according to the present embodiment, since the voltage doubler method is adopted, the output voltage from the smoother 42 is about 2.8 times the input voltage (effective value) to the rectifier 41. . For example, when the voltage (effective value) of the commercial power supply is 100 [V], the output voltage from the smoother 42 is about 280 [V].
[0044]
Further, wirings L5 and L6 for supplying power to the auxiliary light bulb 30 are connected to the lighting circuit 40 of the bulb-type fluorescent lamp 1 on the upstream side of the diode elements 45a and 45b in the wirings L1 and L2, respectively. . A light bulb lighting controller 46 is inserted in the wiring L6.
[0045]
The bulb lighting controller 46 has a timer function that closes the wiring L6 in conjunction with the start-up of the arc tube 10 and opens it when a certain time has elapsed. Electric power for controlling the light bulb lighting controller 46 is supplied through wirings L7 and L8 connected to the wirings L3 and L4 between the smoothing device 42 and the switching / stabilizing device 43.
[0046]
In the configuration of the lighting circuit 40, the diode elements 45a and 45b inserted in the wirings L1 and L2 are such that the current charged in the capacitor element (not shown) of the smoother 42 is directed to the auxiliary light bulb 30 side. It is provided to prevent backflow.
[0047]
Here, pulsating power having a full-wave rectified waveform is supplied to the auxiliary light bulb 30 as shown on the left side of FIG. 2, whereas the light bulb lighting controller 46 is shown on the right side of FIG. In addition, power having a full-wave smooth waveform is supplied. For this reason, in the lighting circuit 40 of the bulb-type fluorescent lamp 1 according to the present embodiment, a smoother is not provided in the circuit configuration of the bulb lighting controller 46.
[0048]
Although not shown in FIG. 2, an EMC (Electromagnetic Compatibility) filter is provided inside the switching and ballast 43. The EMC filter is a filter for removing an electromagnetic interference wave from the switching / stabilizer 43, and a general circuit configuration interposed between the commercial power supply and the rectifier 41 can also be adopted.
[0049]
3. Specific example of the light bulb lighting controller 46
A specific example of the configuration of the bulb lighting controller 46 in the lighting circuit 40 of the bulb-type fluorescent lamp 1 will be described with reference to FIG.
[0050]
As shown in FIG. 3, in the bulb-type fluorescent lamp 1 according to the present embodiment, the bulb lighting control unit 46 includes two transistor elements Q1, Q2, two capacitor elements C1, C2, and one Zener diode element. It is composed of Z1 and four resistance elements R1 to R4. The wiring L5 is connected to one terminal of the auxiliary light bulb 30, and the other terminal of the auxiliary light bulb 30 is connected to the drain of the transistor element Q1.
[0051]
The source of the transistor element Q1 is connected to the wiring L6. The wiring L6 is connected to the capacitor elements C1 and C2, the emitter of the transistor element Q2, and the resistance element R3. The capacitor element C1 is connected to the base of the transistor element Q2 via the Zener diode element Z1 and the resistance element R4.
[0052]
The collector of the transistor element Q2 is connected to the gate of the transistor element Q1 and to the capacitor element C2 and the resistance elements R2 and R3. Furthermore, the capacitor element C1 is connected to the wiring L7 via the resistor R1.
[0053]
In the specific example shown in FIG. 3, the wiring L6 also serves as the wiring L8 in FIG.
4). Operation of the bulb lighting controller 46 in lighting driving
In the light bulb-type fluorescent lamp 1 according to the present embodiment, the light bulb lighting controller 46 performs a timekeeping operation during driving, and turns on the auxiliary light bulb 30 during a certain period of time after starting. Specifically, the following operation is performed.
[0054]
a) When the power supply to the bulb-type fluorescent lamp 1 is turned on, the lighting tube 10 starts to be turned on, the transistor element Q1 is turned on via the resistance elements R1 and R2, and the auxiliary light bulb 30 is also turned on. . At this time, the bulb lighting controller 46 starts charging the capacitor element C1 through the resistance element R1. Here, the capacity of the capacitor element C1 and the like are set according to the timer time. In the present embodiment, for example, the timer time is 60 [sec. ] Is set.
[0055]
In the above, in the light bulb lighting controller 46, the capacitor element C1 and the resistance element R1 constitute a timer by a time constant circuit.
In addition, the constants of the capacitor element C2 and the resistance elements R1, R2, and R3 use an unsaturated region before becoming a conductor, and maintain a high impedance between the drain and source of the transistor element Q1 for a certain period of time. It is set to suppress the inrush current to the bulb that sometimes flows.
[0056]
b) As the charging of the capacitor element C1 proceeds, the base-emitter of the transistor element Q2 is energized when the threshold voltage of the Zener diode element Z1 is reached.
c) When the base-emitter of the transistor element Q2 is energized, a current flows between the collector and emitter of the transistor element Q2.
[0057]
d) When a current flows between the collector and emitter of the transistor element Q2, the gate and source of the transistor element Q1 are short-circuited. Then, the auxiliary bulb 30 is turned off when the gate-source of the transistor element Q1 is short-circuited.
[0058]
5. Rising luminous flux
In the light bulb shaped fluorescent lamp 1 according to the present embodiment, the auxiliary light bulb 30 is disposed in the vicinity of the arc tube 10. Then, as described above, the auxiliary light bulb 30 is lit from the time of start-up until a certain time has elapsed. The rising luminous flux of the bulb-type fluorescent lamp 1 that performs such lighting driving will be described with reference to FIG. In FIG. 4, the light flux of a conventional light bulb-type fluorescent lamp that does not include the auxiliary light bulb 30 is indicated by A line, and the light flux of the light bulb-type fluorescent lamp 1 according to the present embodiment is indicated by B line. The rising luminous flux of the bulb-type fluorescent lamp shown in FIG. 4 is data measured in a state where the lamp ambient temperature is kept constant at 5 [° C.].
[0059]
As shown by the A line in FIG. 4, the conventional bulb-type fluorescent lamp that does not include the auxiliary bulb 30 can obtain only about 10% of the rated light flux at the start, whereas the bulb type shown by the B line. In the fluorescent lamp 1, a high luminous flux of about 35 [%] can be obtained. This is considered to be due to the fact that the light from the lighting of the auxiliary bulb 30 and the rising luminous flux of the arc tube 10 are improved due to this.
[0060]
In the present embodiment, 60 [sec. The auxiliary light bulb 30 is set to be extinguished at the time of elapse. For this reason, 60 [sec. ], The luminous flux once decreases from about 65 [%] to about 50 [%]. However, even when the auxiliary light bulb 30 is turned off, a luminous flux 25 [points] higher than that of the conventional light bulb-type fluorescent lamp indicated by the A line can be obtained.
[0061]
It should be noted that if a luminous flux of about 25% of the rated value is obtained at the time of starting the lamp, it is considered that substantially no problem will occur. That is, it is considered that the user does not feel any trouble if the rated light flux of about 25% is obtained at the time of starting the lamp.
[0062]
6). Superiority
a) Arc tube 10
In the bulb-type fluorescent lamp 1 according to the present embodiment, a double spiral arc tube 10 is employed. For this reason, compared with the case where a U-shaped arc tube is employed, a long discharge path can be secured with the same occupied volume, and downsizing and high efficiency can be achieved. Therefore, the bulb-type fluorescent lamp 1 according to the present embodiment can meet the demand for downsizing to the same size as the incandescent bulb and the further improvement in lamp efficiency.
[0063]
b) Auxiliary bulb 30
In the light bulb shaped fluorescent lamp 1 according to the present embodiment, as shown in FIG. 1, an auxiliary light bulb 30 is disposed in the state of being close to the arc tube 10. For this reason, in the light bulb-type fluorescent lamp 1, even when the mercury vapor pressure in the arc tube 10 is low due to the low environmental temperature or the like, The effect of improving the rising luminous flux of the arc tube 10 is obtained by the generated heat. Therefore, in the bulb-type fluorescent lamp 1 according to the present embodiment, a higher rising luminous flux can be obtained as compared with the conventional bulb-type fluorescent lamp.
[0064]
Further, in the light bulb-type fluorescent lamp 1 according to the present embodiment, non-smooth full-wave rectified pulsating power is supplied to the auxiliary light bulb 30, so that the conditions are the same as those for supplying a commercial power supply, which is generally commercially available. It is possible to adopt the filament specification as it is, which is advantageous in terms of design and cost.
[0065]
Further, in the bulb-type fluorescent lamp 1 according to the present embodiment, full-wave rectified power can be supplied to the auxiliary bulb 30 without providing a separate rectifier circuit in the power flow paths L5, L6, etc. Increase is suppressed.
[0066]
c) Control power to the bulb lighting controller 46
In the light bulb shaped fluorescent lamp 1 according to the present embodiment, as shown in FIG. 2, the power supply to the auxiliary light bulb 30 is connected downstream of the rectifier 41 and upstream of the diode elements 45a and 45b. The configuration is performed by L5 and L6. In the lighting circuit 40 of the light bulb-type fluorescent lamp 1 adopting such a configuration, the capacitance of the capacitor element in the smoothing device 42 at the time of starting the arc tube 10 as compared with the prior art employing the configuration shown in FIG. There is no problem of shortage. That is, when the power supplied to the auxiliary light bulb 30 is taken out between the smoother 42 and the switching / stabilizer 43, the ripple of the smoothing voltage is increased by the amount of the power supplied to the auxiliary light bulb 30. It may be difficult to light the tube 10.
[0067]
On the other hand, in the lighting circuit 40 according to the present embodiment, power is supplied to the auxiliary light bulb 30 through the wirings L5 and L6 connected between the rectifier 41 and the diode elements 45a and 45b. Even if the capacitance is not increased, the problem of an increase in the ripple of the smoothing voltage does not occur.
[0068]
As shown in FIG. 2, in the lighting circuit 40 according to the present embodiment, electric power is supplied to the light bulb lighting controller 46 through the wirings L7 and L8. The wires L7 and L8 are connected to the wires L3 and L4 between the diode elements 45a and 45b and the switching / stabilizer 43. By adopting such a configuration, the lighting circuit 40 according to the present embodiment does not cause a problem in the control operation even if the light bulb lighting controller 46 does not include a smoothing circuit. Therefore, the lighting circuit 40 according to the present embodiment can execute accurate lighting control of the light emitter while suppressing an increase in size and cost.
[0069]
Therefore, the light bulb-type fluorescent lamp 1 according to the present embodiment can correspond to a fluorescent lamp that can obtain a high rising luminous flux by providing the auxiliary light bulb 30 close to the arc tube 10, and assists without complicating the circuit configuration. Accurate lighting control of the light bulb 30 can be realized.
(Embodiment 2)
Next, the configuration of the bulb-type fluorescent lamp 2 according to Embodiment 2 will be described with reference to FIG. As shown in FIG. 5, the bulb-type fluorescent lamp 2 according to the present embodiment is the same as the bulb-type fluorescent lamp 1 according to the first embodiment except for the configuration of the bulb lighting controller 146. The description is omitted.
[0070]
As shown in FIG. 5, the light bulb lighting controller 146 of the light bulb shaped fluorescent lamp 2 according to the present embodiment includes one FET element F11, two Zener diode elements Z11 and Z12, one capacitor element C11, It is composed of two resistance elements R11 and R12 and a PTC (Positive Temperature Coefficient) element P11.
[0071]
The wirings L5 and L6 are connected via the auxiliary light bulb 30 and the FET element F11. The wiring L7 is connected to the PTC element P11, and the other end of the PTC element P11 is connected to the resistor R11. An intermediate point between the PTC element P11 and the resistance element R11 is connected to the gate of the FET element F11 via two Zener diode elements Z11 and Z12.
[0072]
A capacitor element C11 and a resistance element R12 are connected between the Zener diode element Z12 and the gate of the FET element F11 and between the wiring L6.
In the bulb-type fluorescent lamp 2, a current flows through the wiring L7 at the start of lighting. At this time, while the divided voltage of the PTC element P11 exceeds the threshold value of the Zener diode element Z11, the capacitor element C11 is charged (charge capacity> discharge capacity), and the voltage exceeding the threshold value between the gate and the source of the FET element F11. Is applied. Thereby, between the source and drain of FET element F11 will be in an energized state, and auxiliary bulb 30 will light up at the time of lighting start.
[0073]
The internal temperature of the PTC element P11 increases with the passage of time from the start of lighting, and the resistance value of the PTC element P11 increases with this temperature increase. When the resistance value of the PTC element P11 reaches a certain level, the capacitor element C11 is not charged because of the relationship with the threshold value of the Zener diode element Z11 (charge capacity <discharge capacity). Decrease gradually. When the voltage of the capacitor element C11 falls below the threshold value of the FET element F11, the source-drain of the FET element F11 is opened, and the auxiliary light bulb 30 is turned off.
[0074]
In the light bulb lighting controller 146 according to the present embodiment, the rate of increase in impedance in the unsaturated region of the FET element F11 can be adjusted by the discharge time of the capacitor element C11 connected in parallel to the gate-source of the FET element F11. The time when the auxiliary light bulb 30 gradually becomes dark can be adjusted.
[0075]
Note that the use of a bipolar transistor element instead of the FET element F11 can achieve the same effect as described above using the unsaturated region.
In addition, the timer setting time in the light bulb lighting controller 146 is determined by setting values of the PTC element P11, the resistance element R11, the Zener diode elements Z11 and Z12, and the capacitor element C11. Also in the present embodiment, as in the first embodiment, 60 [sec. ] The auxiliary light bulb 30 is set to be extinguished at the elapsed time.
(Embodiment 3)
Next, the configuration of the bulb-type fluorescent lamp 3 according to Embodiment 3 will be described with reference to FIG. As shown in FIG. 6, the bulb-type fluorescent lamp 3 according to the present embodiment is different from the bulb-type fluorescent lamps 1 and 2 according to the first and second embodiments except for the configuration of the bulb lighting controller 246. Since there is no place, the explanation is omitted.
[0076]
As shown in FIG. 6, the light bulb lighting controller 246 of the light bulb shaped fluorescent lamp 3 according to the present embodiment includes one thyristor element S21, two zener diode elements Z21 and Z22, and one capacitor element. C21, two resistance elements R21 and R22, and a PTC element P21. That is, the light bulb lighting controller 246 according to the present embodiment is different from the light bulb lighting controller 146 according to the second embodiment in that a thyristor element S21 is used instead of the FET element F11. .
[0077]
The operation from turning on the auxiliary bulb 30 to turning it off is basically the same as that of the lighting circuit according to the second embodiment. Therefore, the description is omitted.
(Embodiment 4)
Next, the configuration of the bulb-type fluorescent lamp 4 according to Embodiment 4 will be described with reference to FIG.
[0078]
As shown in FIG. 7, the bulb-type fluorescent lamp 4 according to the present embodiment has a structural feature in that a thermal fuse element 47 is inserted upstream of the rectifier 41 in the current path. Specifically, a thermal fuse element 47 is inserted in a wiring L9 between the rectifier 41 and the base 60 (see FIG. 1) on the current path.
[0079]
The specific location of the thermal fuse element 47 is not particularly limited as long as it is within the case 50, but it is as close as possible to the central axis CL (see FIG. 1) on the substrate in the lighting circuit, and the auxiliary light bulb 30. It is desirable to make it a location where the temperature of this can be accurately detected.
[0080]
The thermal fuse element 47 in the bulb-type fluorescent lamp 4 according to the present embodiment prevents a situation in which the auxiliary bulb 30 continues to be lit even when the bulb lighting controller 46 becomes uncontrollable for some reason. Because. For this reason, for the thermal fuse element 47, for example, a specification that can be cut at 140 [° C.] is selected.
[0081]
Here, in the conventional light bulb-type fluorescent lamp shown in FIG. 10, when the light bulb lighting controller 946 becomes uncontrollable, a situation may occur in which the auxiliary light bulb 930 continues to be lit. In this case, it may be assumed that the inside of the case becomes extremely hot in some cases.
[0082]
On the other hand, in the bulb-type fluorescent lamp 4 according to the present embodiment, even if the bulb lighting controller 46 falls out of control, the circuit is cut off when the temperature fuse element 47 reaches the specified temperature. . For this reason, even when the light bulb lighting controller 46 becomes uncontrollable, it is possible to avoid a situation in which the auxiliary light bulb 30 continues to be lit. Therefore, the bulb-type fluorescent lamp 4 according to the present embodiment has higher safety in addition to the superiority of the bulb-type fluorescent lamp 1 according to the first embodiment.
(Other matters)
In the light bulb-type fluorescent lamps 1 to 4 according to the first to fourth embodiments, wirings (power flow paths) L7 and L8 for supply to the light bulb lighting controllers 46, 146, and 246 are connected to the smoother 42 and switched and stabilized. Are connected to wires (power flow paths) L3 and L4 between the lamps 43, and in the light bulb shaped fluorescent lamps 1 to 4 according to the first to fourth embodiments, the light bulb lighting controllers 46, 146 and 246 are connected. The advantage is that it is not necessary to provide a separate rectifier or smoother. However, in the present invention, it is not always necessary to connect wiring for supplying power to the light bulb lighting controllers 46, 146, and 246 to the wirings L3 and L4. Even in such a configuration, as described above, the present invention has an advantage that a filament-type light bulb that is generally commercially available can be used as the auxiliary light bulb 30.
[0083]
In the first to fourth embodiments, as shown in FIG. 1, the bulb-type fluorescent lamps 1 to 4 having a structure in which the periphery of the arc tube 10 is covered with the globe 70 are applied. However, the globe 70 is an essential configuration. It is not a requirement. For example, as shown in FIG. 8, the configuration of the present invention can be adopted for a light bulb-type fluorescent lamp 5 having no globe. That is, by arranging the auxiliary light bulb 30 inwardly in the turning of the arc tube 15 and adopting the same configuration as the lighting circuit 40, the same effects as in the first to fourth embodiments can be obtained.
[0084]
In the light bulb-type fluorescent lamps 1 to 4 according to the first to fourth embodiments, in the circuit configuration, the diode elements 45a and 45b are inserted in the wirings L1 and L2, and the current charged in the capacitor element in the smoother 42 Is prevented from flowing back to the auxiliary light bulb 30. However, in the present invention, it is not always necessary to apply the diode elements 45a and 45b as such a backflow suppressing element, and for example, a transistor element or the like can be adopted.
[0085]
Moreover, as shown in FIG. 1, in the said Embodiment 1-4, the cylindrical silica light bulb is employ | adopted as the auxiliary | assistant light bulb 30, However, It is not limited to this about the kind and external appearance shape of a light bulb. . For example, a krypton bulb, a KT krypton bulb, or the like may be employed as the auxiliary bulb. Further, a high brightness LED or the like can also be used. Regarding the shape of the auxiliary light bulb, not only a cylindrical shape but also a jujube shape, for example, can be adopted.
[0086]
Moreover, in the said Embodiment 1-4, although the structure by which auxiliary | assistant amalgam is arrange | positioned in the area | region of the vicinity of the electrode in the arc_tube | light_emitting tubes 10 and 15 was employ | adopted, sufficient rising light flux is not necessarily provided. Can be secured. For example, as shown in FIG. 4, the light bulb shaped fluorescent lamp 1 according to the first embodiment is different from that of the light bulb shaped fluorescent lamp 1 only in that the auxiliary amalgam is not provided. However, a light flux ratio of about 30 [%] is ensured immediately after start-up (at the time of initial start-up), and no substantial problem is caused. The rising luminous flux of the bulb-type fluorescent lamp shown in FIG. 4 is data measured in a state where the lamp ambient temperature is kept constant at 5 [° C.].
[0087]
Moreover, in the said Embodiment 1-4, although the structure provided with the lighting circuit 40 is employ | adopted as one component of the lightbulb-type fluorescent lamps 1-4, a lighting circuit is necessarily incorporated as one component of the lightbulb-shaped fluorescent lamp. It is not necessary to have the configuration. For example, the lighting circuit according to the present invention can be adopted for a lighting circuit separate from the fluorescent lamp, and in this case, the same effect as described above can be obtained.
[0088]
Further, the circuit configurations of the light bulb lighting controllers 46, 146, 246 and the like shown in FIGS. 3, 5, 6, etc. are only examples, and are limited to this as long as the same operation can be guaranteed. There is no.
[0089]
Here, the gate voltage of the FET element in the light bulb lighting controller will be described with reference to FIGS. 9A to 9C, following the progress from the lighting state of the auxiliary light bulb 30 to the extinguishing state. As shown in FIG. 9A, when the gate voltage of the FET element exceeds the threshold voltage, the auxiliary light bulb 30 is lit. Next, when a voltage obtained by superimposing a pulsation (ripple) from the rectifier 41 on the gate voltage is used and the applied voltage is gradually decreased, the gate voltage of the FET element repeatedly increases and decreases the threshold voltage (FIG. 9 ( see b)). Then, the off period becomes longer by gradually lowering the applied voltage. As shown in FIG. 9C, when the gate voltage of the FET element falls below the threshold voltage, the auxiliary light bulb 30 is turned off. As described above, similarly to the case where the unsaturated region of the FET element is used, an effect of gradually darkening the auxiliary light bulb 30 can be obtained, and the heat generation can be reduced as compared with the case where the unsaturated region of the FET element is used. Can be suppressed.
[0090]
In Embodiments 1 to 4, the arc tube 10 has a double spiral shape with a rated power of 9 [W], but the rated power and type of the arc tube are limited to this. is not. For example, the present invention can also be applied to a type including a luminous tube of a type in which a plurality of U-shaped tubes are combined. The rated power and size of the auxiliary light bulb 30 can be changed as appropriate in relation to the shape and power of the arc tube 10 (equivalent to an incandescent light bulb: 40 [W] to 100 [W]). For example, it is realistic to use an auxiliary light bulb of about 15 [W] to 30 [W].
[0091]
In the first to fourth embodiments, the lighting circuit that employs the voltage doubler smoothing method has been described as an example. However, the present invention is not limited to this, and the present invention is applicable to all cases of inverters that smooth the rectified voltage. can do.
[Industrial applicability]
[0092]
INDUSTRIAL APPLICABILITY The present invention is useful for realizing a lighting circuit that has a high rise characteristic of luminous flux and can suppress an increase in size and cost, and a discharge lamp and an illumination device including the lighting circuit.
[Explanation of symbols]
[0093]
1, 2, 3, 4, 5. Light bulb shaped fluorescent lamp
10,15. Arc tube
20, 25. holder
30. Auxiliary bulb
40. Lighting circuit
41. rectifier
42. Smoother
43. Switching ballast
44. Preheating circuit
45a, 45b. Diode element
46, 146, 246. Light bulb lighting controller
47. Thermal fuse element
50. Case
60. Base
70. Globe

Claims (13)

放電により発光する発光管と、前記発光管に対し近接配置され、前記発光管よりも高い光束立ち上り特性を有する発光体とに対して電力供給を行う点灯回路であって、
入力された交流電力を整流する整流部と、
前記整流部において整流された脈流電力を平滑して直流電力とする平滑部と、
前記平滑部において平滑化された直流電力を交流電力に変換して前記発光管に対し供給するインバータ部と、
前記整流部と前記平滑部との間の電力流通路中に介挿され、前記平滑された直流電力が前記整流部の側へと逆流するのを抑制する逆流抑制素子と、
前記整流部と前記逆流抑制素子との間の電力流通路に接続され、前記発光体に対して前記脈流電力を供給するための第1電力流通路と、
前記第1電力流通路の開閉を制御する点灯制御部とを備える
ことを特徴とする点灯回路。
A lighting circuit that supplies power to an arc tube that emits light by discharge and an emitter that is disposed in proximity to the arc tube and has a higher luminous flux rise characteristic than the arc tube;
A rectifier that rectifies the input AC power;
A smoothing unit that smoothes the pulsating power rectified in the rectifying unit to obtain DC power;
An inverter unit that converts the DC power smoothed in the smoothing unit into AC power and supplies the converted power to the arc tube;
A backflow suppressing element that is inserted into a power flow path between the rectifying unit and the smoothing unit and suppresses the smoothed DC power from flowing back toward the rectifying unit;
A first power flow path connected to a power flow path between the rectifying unit and the backflow suppression element, for supplying the pulsating power to the light emitter;
A lighting circuit comprising: a lighting control unit that controls opening and closing of the first power flow path.
前記逆流抑制素子と前記インバータ部との間の電力流通路に接続され、前記点灯制御部に対し制御用電力を供給するための第2電力流通路を備える
ことを特徴とする請求項1に記載の点灯回路。
2. A second power flow path connected to a power flow path between the backflow suppressing element and the inverter unit and configured to supply control power to the lighting control unit. Lighting circuit.
前記整流部と前記平滑部との間は、2線式の電力流通路で接続されており、
前記逆流抑制素子は、前記整流部と前記平滑部との間の前記2線式の電力流通路の各線に介挿されている
ことを特徴とする請求項1に記載の点灯回路。
The rectifying unit and the smoothing unit are connected by a two-wire power flow path,
The lighting circuit according to claim 1, wherein the backflow suppression element is inserted in each line of the two-wire power flow path between the rectifying unit and the smoothing unit.
前記点灯制御部には、タイマーが含まれており、
前記点灯制御部では、
前記発光管に前記交流電力が供給され始めた時点で前記タイマーによる計時を開始し、且つ、前記第1電力流通路を閉状態とし、
前記計時開始から所要時間経過時点で前記タイマーによる計時を終了し、且つ、前記第1電力流通路を開状態とする
ことを特徴とする請求項1に記載の点灯回路。
The lighting control unit includes a timer,
In the lighting control unit,
Starting the time counting by the timer at the time when the AC power starts to be supplied to the arc tube, and closing the first power flow path,
2. The lighting circuit according to claim 1, wherein the time measurement by the timer is ended when the required time has elapsed from the start of the time measurement, and the first power flow path is opened.
前記タイマーは、コンデンサ素子と抵抗素子とを含む時定数回路で構成されており、前記コンデンサ素子への充電時間および放電時間の何れかをもって前記計時を実行するものであって、
前記点灯制御部は、第1電力流通路を開閉するFET素子またはバイポーラトランジスタ素子を含み構成されており、前記FET素子またはバイポーラトランジスタ素子における不飽和領域を用い前記第1電力流通路を開状態または閉状態とする
ことを特徴とする請求項4に記載の点灯回路。
The timer is composed of a time constant circuit including a capacitor element and a resistance element, and performs the time measurement with either the charging time or the discharging time for the capacitor element,
The lighting control unit includes a FET element or a bipolar transistor element that opens and closes the first power flow path, and uses the unsaturated region in the FET element or the bipolar transistor element to open the first power flow path or The lighting circuit according to claim 4, wherein the lighting circuit is in a closed state.
前記整流部へ入力される交流電力の経路において、前記整流部よりも上流側には、前記発光体の温度に応じて当該経路を開状態とする温度ヒューズが介挿されている
ことを特徴とする請求項1に記載の点灯回路。
In the path of AC power input to the rectifying unit, a temperature fuse that opens the path according to the temperature of the light emitter is inserted upstream of the rectifying unit. The lighting circuit according to claim 1.
放電により発光する発光管と、
前記発光管に対し近接配置された発光体と、
請求項1の点灯回路とを備える
ことを特徴とする放電ランプ。
An arc tube that emits light by discharge; and
A light emitter disposed in proximity to the arc tube;
A discharge lamp comprising: the lighting circuit according to claim 1.
電力供給対象の一方である前記発光体は、フィラメントが発熱および発光するフィラメント電球である
ことを特徴とする請求項7に記載の放電ランプ。
The discharge lamp according to claim 7, wherein the luminous body that is one of the power supply targets is a filament light bulb that generates and emits light from a filament.
前記発光管は、内方に空間を有する状態で、仮想軸廻りを螺旋状に旋回する2つの旋回部を有する二重螺旋形状を有し、
前記発光体は、前記発光管の前記内方の空間に対し、前記発光管の外壁と近接する状態で内挿されている
ことを特徴とする請求項7に記載の放電ランプ。
The arc tube has a double spiral shape having two swirl portions that swirl around a virtual axis in a state having a space inward,
The discharge lamp according to claim 7, wherein the luminous body is inserted into the inner space of the arc tube in a state of being close to an outer wall of the arc tube.
前記発光管は、放電路の両端部分の各々に電極を有し、且つ、前記放電路中における前記電極の近傍領域に補助アマルガムを有する
ことを特徴とする請求項7に記載の放電ランプ。
The discharge lamp according to claim 7, wherein the arc tube has an electrode at each of both end portions of the discharge path, and an auxiliary amalgam in a region near the electrode in the discharge path.
前記点灯回路は、ケースで覆われており、
前記ケースの一端部には、口金が取り付けられている
ことを特徴とする請求項7に記載の放電ランプ。
The lighting circuit is covered with a case,
The discharge lamp according to claim 7, wherein a base is attached to one end of the case.
前記発光管は、透光性のグローブで覆われている
ことを特徴とする請求項7に記載の放電ランプ。
The discharge lamp according to claim 7, wherein the arc tube is covered with a translucent globe.
請求項7の放電ランプを備える
ことを特徴とする照明装置。
An illumination device comprising the discharge lamp according to claim 7.
JP2009548811A 2008-01-10 2008-12-24 LIGHTING CIRCUIT, DISCHARGE LAMP AND LIGHTING DEVICE HAVING THE SAME Ceased JPWO2009087729A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008003041 2008-01-10
JP2008003041 2008-01-10
PCT/JP2008/003918 WO2009087729A1 (en) 2008-01-10 2008-12-24 Lighting circuit, and discharge lamp and illumination device having the circuit

Publications (1)

Publication Number Publication Date
JPWO2009087729A1 true JPWO2009087729A1 (en) 2011-05-19

Family

ID=40852853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009548811A Ceased JPWO2009087729A1 (en) 2008-01-10 2008-12-24 LIGHTING CIRCUIT, DISCHARGE LAMP AND LIGHTING DEVICE HAVING THE SAME

Country Status (3)

Country Link
JP (1) JPWO2009087729A1 (en)
CN (1) CN101911834A (en)
WO (1) WO2009087729A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102458027B (en) 2010-10-22 2014-05-07 台达电子工业股份有限公司 Control method for lighting circuit and applicable lighting circuit
US8378562B2 (en) 2011-02-15 2013-02-19 General Electric Company Hybrid compact fluorescent lamp fixing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197187A (en) * 1997-09-18 1999-04-09 Meiji Natl Ind Co Ltd Lighting system
JP2007227342A (en) * 2005-08-31 2007-09-06 Toshiba Lighting & Technology Corp Compact self-balanced fluorescent lamp device
JP2007311317A (en) * 2006-05-22 2007-11-29 Toshiba Lighting & Technology Corp Compact fluorescent lamp device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1925715B (en) * 2005-08-31 2011-05-18 东芝照明技术株式会社 Bulb type fluorescent lamp apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197187A (en) * 1997-09-18 1999-04-09 Meiji Natl Ind Co Ltd Lighting system
JP2007227342A (en) * 2005-08-31 2007-09-06 Toshiba Lighting & Technology Corp Compact self-balanced fluorescent lamp device
JP2007311317A (en) * 2006-05-22 2007-11-29 Toshiba Lighting & Technology Corp Compact fluorescent lamp device

Also Published As

Publication number Publication date
WO2009087729A1 (en) 2009-07-16
CN101911834A (en) 2010-12-08

Similar Documents

Publication Publication Date Title
JP5285266B2 (en) LED lighting equipment
US7453214B2 (en) Lamp-operating unit and low-pressure mercury discharge lamp
JP2008084817A (en) Compact self-ballasted fluorescent lamp and luminaire
JP4737555B2 (en) Light bulb-type fluorescent lamp and lighting device
WO2009087729A1 (en) Lighting circuit, and discharge lamp and illumination device having the circuit
WO2007007653A1 (en) Bulb type fluorescent lamp and illuminator
JPH11345694A (en) Bulb type fluorescent lamp and lighting system
JP5567940B2 (en) POWER SUPPLY DEVICE AND LIGHTING / LIGHTING DEVICE USING THE SAME
JP2009164075A (en) Lighting circuit, discharge lamp equipped with it, and lighting system
JP4259008B2 (en) Light bulb shaped fluorescent lamp
JP2000077195A (en) Compact self-ballasted fluorescent lamp and luminaire
JP2001319797A (en) Light bulb type fluorescent lamp and lighting device
JP4075158B2 (en) High frequency inverter and discharge lamp lighting device
JP2002083505A (en) Compact self-ballasted fluorescent lamp and luminaire
JP2006269297A (en) Incandescent lamp-shaped fluorescent lamp and illumination device
JP2005302444A (en) Low-pressure mercury discharge lamp
JP2007194114A (en) Compact self-ballasted fluorescent lamp device
JP2007042294A (en) Compact self-baallasted fluorescent lamp and illumination device
JP4760406B2 (en) Light bulb shaped fluorescent lamp
JP2006012558A (en) Fluorescent lamp device and illumination device
JP2004119162A (en) Compact self-ballasted fluorescent lamp
JP2009059612A (en) Compact self-ballasted fluorescent lamp, and luminaire
WO2009087747A1 (en) Discharge lamp
JP2002110092A (en) Fluorescent lamp device
JP2002015894A (en) Compact self-ballasted fluorescent lamp and lighting system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20121127