JPWO2009084320A1 - α-Hydroxymethyl acrylate compounds and process for producing the same - Google Patents

α-Hydroxymethyl acrylate compounds and process for producing the same Download PDF

Info

Publication number
JPWO2009084320A1
JPWO2009084320A1 JP2009547951A JP2009547951A JPWO2009084320A1 JP WO2009084320 A1 JPWO2009084320 A1 JP WO2009084320A1 JP 2009547951 A JP2009547951 A JP 2009547951A JP 2009547951 A JP2009547951 A JP 2009547951A JP WO2009084320 A1 JPWO2009084320 A1 JP WO2009084320A1
Authority
JP
Japan
Prior art keywords
formaldehyde
rhmas
distillation
hydroxymethyl acrylate
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009547951A
Other languages
Japanese (ja)
Other versions
JP5596978B2 (en
Inventor
稲垣 貴大
貴大 稲垣
英明 長野
英明 長野
佐藤 裕一
裕一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2009547951A priority Critical patent/JP5596978B2/en
Publication of JPWO2009084320A1 publication Critical patent/JPWO2009084320A1/en
Application granted granted Critical
Publication of JP5596978B2 publication Critical patent/JP5596978B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms

Abstract

原料として用いられるホルムアルデヒドの製品中への残存量が少なく且つ実質的に着色がないRHMA類及びその実用的な製造方法を提供する。アクリル酸エステルとホルムアルデヒドとを触媒存在下で反応させる工程を含むことによりα−ヒドロキシメチルアクリレート化合物類を製造する方法であって、上記製造方法は、反応工程から得られる粗生成物を減圧下で蒸気とし、液化されたものを実質的に全て還流する精製工程を有し、ホルムアルデヒド含有量を200ppm未満とするα−ヒドロキシメチルアクリレート化合物類の製造方法である。The present invention provides an RHMA having a small amount of formaldehyde used as a raw material in a product and substantially not colored, and a practical production method thereof. A method of producing α-hydroxymethyl acrylate compounds by including a step of reacting an acrylate ester with formaldehyde in the presence of a catalyst, wherein the production method comprises subjecting a crude product obtained from the reaction step to reduced pressure. This is a method for producing α-hydroxymethyl acrylate compounds having a purification step of refluxing substantially all of the liquefied product as steam, and having a formaldehyde content of less than 200 ppm.

Description

本発明は、α−ヒドロキシメチルアクリレート化合物類及びその製造方法に関する。より詳しくは、化学製品、医薬品の原料等として有用である、ホルムアルデヒドの含有量の少ないα−ヒドロキシメチルアクリレート化合物類及びその製造方法に関する。 The present invention relates to α-hydroxymethyl acrylate compounds and a method for producing the same. More specifically, the present invention relates to α-hydroxymethyl acrylate compounds having a low formaldehyde content, which are useful as raw materials for chemical products and pharmaceuticals, and a method for producing the same.

水酸基含有ビニル化合物類は、その二重結合部位の付加反応や重合反応等の化学反応性に富み、水酸基における反応性も兼ね備える。水酸基含有ビニル化合物類を代表するα−ヒドロキシメチルアクリレート化合物類は、重合体を形成するための単量体;塗料、接着剤、洗剤ビルダー、透明樹脂等の各種化学製品の製造原料;抗癌剤、抗ウイルス剤等の医薬品の中間体等として広範囲に用いることが期待され、工業的な実用化が待たれている。 Hydroxyl group-containing vinyl compounds are rich in chemical reactivity such as addition reaction and polymerization reaction of the double bond site, and also have reactivity in hydroxyl group. Α-Hydroxymethyl acrylate compounds representing hydroxyl group-containing vinyl compounds are monomers for forming polymers; raw materials for producing various chemical products such as paints, adhesives, detergent builders and transparent resins; It is expected to be used in a wide range as an intermediate for pharmaceuticals such as virus agents, and industrial practical application is awaited.

α−ヒドロキシメチルアクリレート化合物類に代表される水酸基含有ビニル化合物類の製造方法は既にいくつか提案されている。例えばα、β−不飽和カルボン酸エステル類とアルデヒド類を三級アミン触媒存在下、α−ヒドロキシルアルキル化により容易に製造できる。この反応は森田−Baylis−Hillman反応として広く知られており(例えば、非特許文献1又は2参照)、1段反応で水酸基含有ビニル化合物を製造できることから、現在では唯一の工業的かつ実用的な水酸基含有ビニル化合物の製造方法である(例えば、特許文献1参照)。しかしながら、森田−Baylis−Hillman反応によりα−ヒドロキシメチルアクリレート化合物類を製造する場合、反応原料として特定化学物質に指定されているホルムアルデヒドを用いるため、製品のα−ヒドロキシメチルアクリレート化合物類からホルムアルデヒドを除去することが環境面及び製品品質の面から必須である。 Several methods for producing hydroxyl group-containing vinyl compounds typified by α-hydroxymethyl acrylate compounds have already been proposed. For example, α, β-unsaturated carboxylic acid esters and aldehydes can be easily produced by α-hydroxylalkylation in the presence of a tertiary amine catalyst. This reaction is widely known as the Morita-Baylis-Hillman reaction (see, for example, Non-Patent Document 1 or 2). Since a hydroxyl group-containing vinyl compound can be produced by a one-step reaction, it is currently the only industrial and practical one. It is a manufacturing method of a hydroxyl-containing vinyl compound (for example, refer patent document 1). However, when α-hydroxymethyl acrylate compounds are produced by Morita-Baylis-Hillman reaction, formaldehyde designated as a specific chemical substance is used as a reaction raw material, so formaldehyde is removed from α-hydroxymethyl acrylate compounds of products. This is essential from the environmental and product quality perspectives.

水酸基含有ビニル化合物からのホルムアルデヒドの除去方法として、水酸基含有ビニル化合物を水洗後蒸留精製によってホルムアルデヒドを除去することが開示されている(例えば、特許文献2参照)。しかしながら、水酸基含有ビニル化合物及びホルムアルデヒドが水と相溶性があるため、水洗処理によってもホルムアルデヒドを充分除去することができず、通常500〜1000ppm程度の割合で残留し、更に水洗処理後に蒸留精製を行っても充分に低減させることができない。実際に示されている精製後のホルムアルデヒド含有量は、200〜1000ppmであり、このような従来技術においてはこの程度までしかホルムアルデヒド含有量を低減できないといえる。 As a method for removing formaldehyde from a hydroxyl group-containing vinyl compound, it has been disclosed to remove formaldehyde by washing and purifying the hydroxyl group-containing vinyl compound with water (for example, see Patent Document 2). However, since the hydroxyl group-containing vinyl compound and formaldehyde are compatible with water, formaldehyde cannot be sufficiently removed even by washing with water, and usually remains at a ratio of about 500 to 1000 ppm, and further purified by distillation after washing with water. However, it cannot be reduced sufficiently. The formaldehyde content after purification shown in practice is 200 to 1000 ppm, and it can be said that the formaldehyde content can be reduced only to this extent in such a conventional technique.

また2−(1−ヒドロキシメチル)アクリル酸アルキルエステルからの不純物除去方法として、上記森田−Baylis−Hilman反応により得られる粗2−(1−ヒドロキシメチル)アクリル酸アルキルエステルを水に溶解し、次いで不純物を特定の溶剤を用いて抽出除去するという精製方法が開示されている(例えば、特許文献3参照)。しかしながら、この方法においてもホルムアルデヒドが2−(1−ヒドロキシメチル)アクリル酸アルキルエステルと同様に水に易溶性であるため、開示された技術によるホルムアルデヒドの除去は不充分である。 As a method for removing impurities from 2- (1-hydroxymethyl) acrylic acid alkyl ester, the crude 2- (1-hydroxymethyl) acrylic acid alkyl ester obtained by the Morita-Baylis-Hilman reaction is dissolved in water, A purification method is disclosed in which impurities are extracted and removed using a specific solvent (see, for example, Patent Document 3). However, even in this method, since formaldehyde is readily soluble in water like the 2- (1-hydroxymethyl) acrylic acid alkyl ester, the removal of formaldehyde by the disclosed technique is insufficient.

α−ヒドロキシアルキルアクリレート類から水を用いて不純物を抽出除去した後、α−ヒドロキシアルキルアクリレート類と沸点の近い不純物であるアセタール化合物類除去の目的で熱処理を行い、沸点の高い化合物へと変化させることで後の蒸留精製により除去可能にする不純物除去方法が開示されている(例えば、特許文献4、5参照)。しかしながら、この方法ではホルムアルデヒドは変化しないため、蒸留精製によって充分に取り切れるものとはならず、やはり開示された技術によるホルムアルデヒドの除去は不充分である。 After removing impurities from α-hydroxyalkyl acrylates using water, heat treatment is performed for the purpose of removing acetal compounds, which are impurities having a boiling point close to that of α-hydroxyalkyl acrylates, to change the compounds to high boiling point compounds. Thus, there is disclosed an impurity removal method that can be removed by subsequent distillation purification (see, for example, Patent Documents 4 and 5). However, since the formaldehyde does not change in this method, it cannot be sufficiently removed by distillation purification, and the removal of formaldehyde by the disclosed technique is still insufficient.

水酸基含有ビニル化合物を亜硫酸水素ナトリウムの水溶液、又は、ヒドラジンの水溶液で処理した後、分離した油層部を回収・精製することでホルムアルデヒドを除去する方法が開示されている(例えば、特許文献2参照)。この処理によりホルムアルデヒドは20〜150ppmまで低減できることが開示されている。この方法により得られた水酸基含有ビニル化合物は、不純物の影響をより充分に防止するための工夫の余地があった。 A method of removing formaldehyde by treating a hydroxyl group-containing vinyl compound with an aqueous solution of sodium hydrogen sulfite or an aqueous solution of hydrazine and then recovering and purifying the separated oil layer (for example, see Patent Document 2). . It is disclosed that formaldehyde can be reduced to 20 to 150 ppm by this treatment. The hydroxyl group-containing vinyl compound obtained by this method has room for contrivance to more sufficiently prevent the influence of impurities.

更に、特定のアクリレート化合物と特定のアルデヒド化合物とを第三級アミン触媒及び水の存在下に反応させて特定のα−ヒドロキシメチルアクリレート化合物を製造するに当り、該反応をアクリレート化合物、第三級アミン触媒及び水の3成分の水のモル分率が特定量の水の存在下に行うα−ヒドロキシメチルアクリレート化合物の製造方法が開示されている(例えば、特許文献6参照)。反応終了後は、反応溶液を有機相と水相とに分離し、有機相を蒸留することにより目的とするα−ヒドロキシメチルアクリレート化合物を回収することができること、有機相を蒸留するに先立って、有機相を有機又は無機酸の水溶液で洗浄することが示されている。しかしながら、本質的に上述した従来技術と同様に、このような水溶液洗浄及び蒸留操作によってはホルムアルデヒドを充分に取り切れるものではない。
シガネク(Ciganek,E.)「オーガニックリアクション(Org.React.)」、(米国)、1997年、51巻、p201. バサバイア(Basavaiah,D.)、他2名、「ケミカルレビュー(Chem.Rev.)」、(米国)、2003年、103巻、p811. 特許第2760954号明細書(第2頁) 特開平10−53547号公報(第2頁、第6−8頁) 特開平5−70408号公報(第2、3頁) 特開平9−67310号公報(第2、5頁) 特開2007−70607号公報(第2、20頁) 特開2000−319228号公報(第2、5頁)
Furthermore, in producing a specific α-hydroxymethyl acrylate compound by reacting a specific acrylate compound with a specific aldehyde compound in the presence of a tertiary amine catalyst and water, the reaction is carried out by reacting the acrylate compound with a tertiary amine catalyst. A method for producing an α-hydroxymethyl acrylate compound in which the mole fraction of water of three components of an amine catalyst and water is carried out in the presence of a specific amount of water is disclosed (for example, see Patent Document 6). After completion of the reaction, the reaction solution is separated into an organic phase and an aqueous phase, and the target α-hydroxymethyl acrylate compound can be recovered by distillation of the organic phase. Prior to distillation of the organic phase, It has been shown that the organic phase is washed with an aqueous solution of an organic or inorganic acid. However, essentially like the prior art described above, such aqueous solution washing and distillation operations do not adequately remove formaldehyde.
Ciganek, E. “Organic Reaction (Org. React.)” (USA), 1997, 51, p201. Basavaiah, D., two others, “Chem. Rev.” (USA), 2003, 103, p811. Japanese Patent No. 2760954 (2nd page) JP-A-10-53547 (page 2, pages 6-8) Japanese Patent Laid-Open No. 5-70408 (pages 2 and 3) JP-A-9-67310 (Pages 2, 5) JP 2007-70607 A (page 2, 20) JP 2000-319228 A (2nd and 5th pages)

上述した通り高効率でホルムアルデヒドを除去した高品質のα−ヒドロキシメチルアクリレート化合物類(以下、「RHMA類」ともいう)の製造は非常に困難なため、ホルムアルデヒド含有量が少なく且つ実質的に着色のないRHMA類及びその実用的な製造方法が望まれるところであった。
本発明は、上記現状に鑑みてなされたものであり、原料として用いられるホルムアルデヒドの製品中への残存量が少なく且つ実質的に着色がないRHMA類及びその実用的な製造方法を提供することを目的とするものである。
As described above, since it is very difficult to produce high-quality α-hydroxymethyl acrylate compounds (hereinafter also referred to as “RHMAs”) from which formaldehyde has been removed with high efficiency, the content of formaldehyde is small and the color is substantially colored. No RHMAs and their practical production methods have been desired.
The present invention has been made in view of the above-mentioned present situation, and provides RHMAs having a small amount of formaldehyde used as a raw material in a product and substantially free of coloring, and a practical production method thereof. It is the purpose.

本発明者らは、低ホルムアルデヒド含有RHMA類を得るために種々検討を重ねたところ、それまで非常に困難であったホルムアルデヒドの除去を効果的且つRHMA類の品質を損なうことなく行う高効率の製造方法を見出した。すなわち、工業的で実用的なホルムアルデヒド含有量が200ppm未満であり、更に、実質的に着色の問題がないRHMA類を得ることができることを見出し、当該RHMA類を安価に提供するに至り、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。 The inventors have made various studies in order to obtain low formaldehyde-containing RHMAs, and as a result, high-efficiency production that effectively removes formaldehyde, which has been very difficult until then, without impairing the quality of the RHMAs. I found a way. That is, it has been found that RHMAs having an industrial and practical formaldehyde content of less than 200 ppm and having substantially no coloring problem can be obtained, and the RHMAs are provided at low cost. The present inventors have arrived at the present invention by conceiving that the problem can be solved brilliantly.

このように、本発明は、RHMA類のホルムアルデヒド含有量が低く、200ppm未満であると工業的に有用なものとなることに着目し、そのような低ホルムアルデヒド含有RHMA類を製造することができる、工業的に実用的といえる新たな製法を提供するものである。
例えば、ホルムアルデヒドを除去してRHMA類を製造するに際し、ホルムアルデヒドの除去方法の1つとしては、還流により除去する方法が挙げられる。本発明の一つの形態においては、上述した従来技術において実施されたような通常の蒸留操作ではなく、いわゆる全還流という手法をとる。全還流とは、粗生成物(本明細書中、粗RHMA類ともいう。)を減圧下で蒸気とし、液化されたものを実質的に全て還流する精製操作である。これにより、本発明の製造方法により最終的に得られるRHMA類のホルムアルデヒド含有量を200ppm未満とすることが可能となる。
Thus, the present invention pays attention to the fact that the formaldehyde content of RHMAs is low and less than 200 ppm, making it useful industrially, and such low formaldehyde-containing RHMAs can be produced. It provides a new production method that can be said to be industrially practical.
For example, when producing RHMAs by removing formaldehyde, one method of removing formaldehyde includes a method of removing it by reflux. In one embodiment of the present invention, a so-called total reflux method is used instead of the usual distillation operation performed in the above-described prior art. Total reflux is a purification operation in which a crude product (also referred to herein as crude RHMAs) is vaporized under reduced pressure, and substantially all of the liquefied product is refluxed. Thereby, it becomes possible to make formaldehyde content of RHMA finally obtained by the manufacturing method of this invention into less than 200 ppm.

上記粗RHMA類に含有されるホルムアルデヒドを除去するために、従来技術において実施されたような通常の蒸留操作を行った場合(通常の蒸留操作のように還流比をつけて行った場合)は、沸点差を利用して成分を分別蒸留するために蒸留塔に段を設けることになるが、段を設けるためには棚段の設置・充填材の使用等が必要になり、蒸留塔が空塔ではなくなる。この状態でホルムアルデヒドを多く含む粗RHMA類を蒸留すると、気化したホルムアルデヒドがパラホルムアルデヒドとして析出し、蒸留塔内が汚染されることになる。このため、当該還流操作による精製を好適に行うことができなくなり、粗RHMA類からホルムアルデヒドを充分に取り切ることができない。なお、従来技術のような通常の蒸留操作前の水洗だけでは上述した蒸留塔内の析出・汚染を完全に抑制することはできない。
本発明においては、上述した全還流工程により、蒸留による精製工程前に予め粗RHMA類のホルムアルデヒド含有量を充分に低下することができる。この全還流工程後に蒸留による精製工程を行うことにより、当該蒸留による精製工程において蒸留塔内でホルムアルデヒドが析出することを充分に防ぐことができ、蒸留による精製工程を好適に行うことができることとなる。
したがって、本発明の製造方法における全還流工程により、RHMA類からホルムアルデヒドを充分に除去することができ、蒸留塔内の汚染を充分に防止することができる。これによって、続く蒸留による精製工程を好適に行うことが可能となり、更にホルムアルデヒドを除去することができる。工業的に実用的な製法によって、最終的に、得られるRHMA類のホルムアルデヒド含有量を200ppm未満とすることができ、工業的に有用なRHMA類を得ることとなる。ここに本発明の製造方法の顕著な技術的意義がある。
In order to remove formaldehyde contained in the above crude RHMAs, when a normal distillation operation as performed in the prior art is performed (when the reflux ratio is set as in a normal distillation operation), In order to perform fractional distillation of components using the difference in boiling point, a column is provided in the distillation column. However, in order to provide a column, it is necessary to install a shelf and use packing materials. Is not. When crude RHMAs containing a large amount of formaldehyde are distilled in this state, vaporized formaldehyde is precipitated as paraformaldehyde, and the inside of the distillation tower is contaminated. For this reason, the refinement | purification by the said reflux operation cannot be performed suitably, and formaldehyde cannot fully be removed from crude RHMAs. In addition, the above-described precipitation and contamination in the distillation tower cannot be completely suppressed only by washing with water prior to a normal distillation operation as in the prior art.
In the present invention, the formaldehyde content of the crude RHMAs can be sufficiently reduced in advance by the total reflux step described above before the purification step by distillation. By performing a purification step by distillation after this total reflux step, it is possible to sufficiently prevent formaldehyde from being deposited in the distillation column in the purification step by distillation, and the purification step by distillation can be suitably performed. .
Therefore, the total reflux step in the production method of the present invention can sufficiently remove formaldehyde from RHMAs, and can sufficiently prevent contamination in the distillation column. This makes it possible to suitably perform the subsequent purification step by distillation, and further to remove formaldehyde. By an industrially practical production method, the formaldehyde content of the obtained RHMAs can be finally reduced to less than 200 ppm, and industrially useful RHMAs can be obtained. This is the significant technical significance of the production method of the present invention.

また、本発明の製造方法は、上述した還流による除去(全還流を用いる手法)の代わりに、又は、そのような手法とともに、吸着剤を用いてホルムアルデヒドを吸着により除去すること等によっても達成することができる。このような全還流以外のホルムアルデヒド除去方法を用いることによっても、粗RHMA類のホルムアルデヒド含有量を充分に低下させ、続いて蒸留工程を行う場合には、気化されたホルムアルデヒドが析出して蒸留塔内を汚染することを充分に防いで、当該蒸留工程を好適に行うことができる。その結果、上述したのと同様に本発明の有利な効果を発揮することができる。吸着剤としては、多孔質固体、塩基性陰イオン交換樹脂が好適である。
上記をまとめると、粗RHMA類からホルムアルデヒドを好適に除去する方法としては、(1)還流による除去(全還流による手法)、(2)多孔質固体を用いたホルムアルデヒド吸着による除去、(3)塩基性陰イオン交換樹脂を用いたホルムアルデヒド吸着による除去が挙げられる。
そして、これらの方法の代わりに、又は、これらの方法とともに(4)オゾンを用いた酸化処理を用いることもできる。
本発明は、上述した手法のいずれか少なくとも一種を施すホルムアルデヒド除去方法であり、RHMA類の製造方法である。
The production method of the present invention can also be achieved by removing formaldehyde by adsorption using an adsorbent instead of or in addition to the above-described removal by reflux (a method using total reflux). be able to. Even when such a formaldehyde removal method other than total reflux is used, when the formaldehyde content of the crude RHMAs is sufficiently reduced and the distillation process is subsequently performed, vaporized formaldehyde is precipitated and the inside of the distillation column is removed. The distillation step can be suitably performed while sufficiently preventing contamination. As a result, the advantageous effects of the present invention can be exhibited as described above. As the adsorbent, porous solids and basic anion exchange resins are suitable.
In summary, the methods for suitably removing formaldehyde from crude RHMAs include (1) removal by reflux (total reflux method), (2) removal by formaldehyde adsorption using a porous solid, and (3) base. Removal by formaldehyde adsorption using a functional anion exchange resin.
And (4) Oxidation treatment using ozone can be used instead of these methods or together with these methods.
The present invention is a method for removing formaldehyde by applying at least one of the methods described above, and a method for producing RHMAs.

また、RHMA類がホルムアルデヒド除去成分を実質的に含有しないものとすると、実質的に着色しないものとすることができ、更に、ホルムアルデヒドを200ppm未満とするとともに、該成分を実質的に含有しないものとすれば、工業的に有用なRHMA類とすることができることを見いだしたものである。
上記粗RHMA類に含有されるホルムアルデヒドの除去方法として、従来技術においては、上述したように、ヒドラジン等の水溶液で処理した後、分離した油層部の回収・精製を行っている。そのような場合は、当該方法により得られたRHMA類は硫黄含有化合物や窒素含有化合物が不純物として残存することになる。その影響と考えられる着色が起こることになり、RHMA類を含む油層部を水洗することにより改善されるものの、RHMA類が水溶性であるため、水洗による回収率の低下を引き起こすことになり実用的でない。また、上記処理自体により回収率が低下することになり、回収率を向上するためには水層部から溶媒抽出する等の煩雑な操作が必要となる。
上記本発明のRHMA類においては、実質的にホルムアルデヒド除去成分を含有しないものであるため、得られるRHMA類を実質的に着色のないものとすることができる。また、このようなRHMA類は、着色をなくすために水洗処理等を行う必要がないため、高い回収率で効率よく目的物を得ることが可能となる。
本発明のRHMA類は、新規な組成物であり、上述した本発明の有利な効果を発揮するため、重合体を形成するために供される単量体、各種化学製品・医薬品の製造原料・中間体等として好適に用いることができるものである。
Further, if RHMAs do not substantially contain a formaldehyde-removing component, they can be substantially non-colored, and further, formaldehyde is less than 200 ppm, and the component is not substantially contained. Thus, it has been found that industrially useful RHMAs can be obtained.
As a method for removing formaldehyde contained in the crude RHMAs, in the prior art, as described above, after treatment with an aqueous solution of hydrazine or the like, the separated oil layer is recovered and purified. In such a case, in the RHMAs obtained by this method, sulfur-containing compounds and nitrogen-containing compounds remain as impurities. Coloring, which is considered to be the effect, will occur, and it will be improved by washing the oil layer part containing RHMAs, but since RHMAs are water-soluble, it will cause a reduction in the recovery rate by washing with water. Not. In addition, the recovery rate is lowered by the above processing itself, and in order to improve the recovery rate, complicated operations such as solvent extraction from the aqueous layer portion are required.
Since the RHMAs of the present invention contain substantially no formaldehyde-removing component, the resulting RHMAs can be substantially free of coloring. In addition, since such RHMAs do not need to be washed with water in order to eliminate coloration, it is possible to efficiently obtain a target product with a high recovery rate.
The RHMAs of the present invention are novel compositions, and exhibit the advantageous effects of the present invention described above. Therefore, the monomers provided to form the polymer, the raw materials for producing various chemical products and pharmaceuticals, It can be suitably used as an intermediate or the like.

すなわち本発明は、アクリル酸エステルとホルムアルデヒドとを触媒存在下で反応させる工程を含むことによりα−ヒドロキシメチルアクリレート化合物類を製造する方法であって、上記製造方法は、反応工程から得られる粗生成物を減圧下で蒸気とし、液化されたものを実質的に全て還流する精製工程を有し、ホルムアルデヒド含有量を200ppm未満とするα−ヒドロキシメチルアクリレート化合物類の製造方法である。 That is, the present invention is a method for producing α-hydroxymethyl acrylate compounds by including a step of reacting an acrylate ester with formaldehyde in the presence of a catalyst, wherein the production method comprises a crude product obtained from the reaction step. This is a method for producing α-hydroxymethyl acrylate compounds having a purification step in which a product is vaporized under reduced pressure, and substantially all of the liquefied product is refluxed, and the formaldehyde content is less than 200 ppm.

本発明はまた、アクリル酸エステルとホルムアルデヒドとを触媒存在下で反応させる工程を含むことによりα−ヒドロキシメチルアクリレート化合物類を製造する方法であって、上記製造方法は、反応工程から得られる粗生成物を吸着剤で処理する精製工程を有し、ホルムアルデヒド含有量を200ppm未満とするα−ヒドロキシメチルアクリレート化合物類の製造方法でもある。
本発明は更に、上述した製造方法により得られたα−ヒドロキシメチルアクリレート化合物類でもある。
本発明はそして、下記一般式(1);
The present invention is also a method of producing α-hydroxymethyl acrylate compounds by including a step of reacting an acrylate ester with formaldehyde in the presence of a catalyst, wherein the production method comprises a crude product obtained from the reaction step. It is also a method for producing α-hydroxymethyl acrylate compounds having a purification step of treating a product with an adsorbent and having a formaldehyde content of less than 200 ppm.
The present invention is also α-hydroxymethyl acrylate compounds obtained by the production method described above.
The present invention also provides the following general formula (1):

Figure 2009084320
Figure 2009084320

(式中、Rは、炭素数1〜18のアルキル基、炭素数4〜12のシクロアルキル基、又は、炭素数6〜12のアリール基を表し、鎖状であっても分岐状であってもよい。)で表される化合物を含んでなるα−ヒドロキシメチルアクリレート化合物類であって、上記α−ヒドロキシメチルアクリレート化合物類は、ホルムアルデヒド含有量が200ppm未満であり、且つ、ホルムアルデヒド除去成分を実質的に含有しないα−ヒドロキシメチルアクリレート化合物類でもある。
以下に本発明を詳述する。
(In the formula, R represents an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 4 to 12 carbon atoms, or an aryl group having 6 to 12 carbon atoms. Α-hydroxymethyl acrylate compounds comprising the compound represented by formula (1), wherein the α-hydroxymethyl acrylate compounds have a formaldehyde content of less than 200 ppm and are substantially free of formaldehyde removal components. It is also an α-hydroxymethyl acrylate compound which is not contained.
The present invention is described in detail below.

本発明においては、RHMA類のホルムアルデヒド含有量を200ppm未満に低下させるために、(1)還流を行う、(2)多孔質固体を用いて吸着する、及び、(3)塩基性陰イオン交換樹脂を用いて吸着する、の中から少なくとも1つの精製操作を行うことになる。また、これらの操作に代えて又はこれらの操作とともに(4)オゾンを用いた酸化処理を行ってもよい。これらの中でも、還流を行うことが好ましく、この場合、本発明においては、いわゆる全還流による操作によってホルムアルデヒド除去精製を行うことになる。以下に、それぞれの精製操作について詳述する。 In the present invention, in order to reduce the formaldehyde content of RHMAs to less than 200 ppm, (1) reflux is performed, (2) adsorption is performed using a porous solid, and (3) basic anion exchange resin. At least one purification operation is performed from among the adsorption using the sucrose. Further, instead of these operations or together with these operations, (4) oxidation treatment using ozone may be performed. Among these, it is preferable to carry out reflux. In this case, in the present invention, purification by removing formaldehyde is performed by an operation by so-called total reflux. Below, each refinement | purification operation is explained in full detail.

(1)還流による除去
上述したように、従来の技術におけるように、単に蒸留操作だけによってホルムアルデヒドを除去しようとする場合は、蒸留塔に段を設け、分別蒸留する必要があり、これに気化したホルムアルデヒドが析出して蒸留塔内を汚染し、その処置が煩雑となることから、効率的な製造方法とはいえるものではなかった。これによりホルムアルデヒド含有量を200ppm未満まで低下させることはできず、また、従来の技術のように水洗と蒸留とを行う場合や、ヒドラジン等のホルムアルデヒド除去成分の水溶液で処理した後、分離した油層部の回収・精製を行う場合も、水中へのRHMA類の損失分があったり、ホルムアルデヒド除去成分による着色の影響を受けたりすることから、有利な工程とはいえず、また品質が向上された優れたRHMA類を得ることはできないものであった。
これに対して、いわゆる全還流による操作によれば、全還流工程における蒸留塔内に分別蒸留するための段を設ける必要がなく、また、全還流工程の後に蒸留工程を行うと、ホルムアルデヒド含有量を200ppm未満まで充分に低下させることができる。蒸留工程の前に全還流工程を行っていれば、ホルムアルデヒド含有量を低下させた状態で蒸留操作を行うことができ、これによってパラホルムアルデヒドの析出を充分に抑制することができることを見出したものである。このような工程をRHMA類の製造に適用することによって、品質が向上された優れたRHMA類を得ることが可能となる。
(1) Removal by reflux As described above, when formaldehyde is to be removed only by distillation operation as in the prior art, it is necessary to provide a stage in the distillation column and perform fractional distillation. Formaldehyde is precipitated and contaminates the inside of the distillation tower, and the treatment becomes complicated, so it was not an efficient production method. As a result, the formaldehyde content cannot be reduced to less than 200 ppm, and when performing washing and distillation as in the prior art, or after treatment with an aqueous solution of a formaldehyde-removing component such as hydrazine, the separated oil layer part Even when recovering and purifying water, it is not an advantageous process because of the loss of RHMAs in water and the effect of coloring due to the formaldehyde removal component, and the quality is improved. RHMAs could not be obtained.
On the other hand, according to the so-called total reflux operation, there is no need to provide a stage for fractional distillation in the distillation column in the total reflux process, and when the distillation process is performed after the total reflux process, Can be sufficiently reduced to less than 200 ppm. It has been found that if the total reflux step is performed before the distillation step, the distillation operation can be performed in a state where the formaldehyde content is lowered, and thereby precipitation of paraformaldehyde can be sufficiently suppressed. is there. By applying such a process to the production of RHMAs, it is possible to obtain excellent RHMAs with improved quality.

本発明の製造方法におけるホルムアルデヒドの除去方法として上述したように全還流による除去が挙げられる。ホルムアルデヒドとRHMA類とが相互作用をするために、また上述したようにパラホルムアルデヒドが蒸留塔内に析出するために、通常の蒸留精製操作だけでは、溜出液中のホルムアルデヒドを200ppm未満にすることは困難である。しかし、RHMA類を減圧下で全還流状態を保持することで、非凝縮性ガスであるホルムアルデヒドを真空系(以下、減圧系又は減圧ラインともいう。)へと除外することで、RHMA類中のホルムアルデヒドの含有量を充分に低下することができ、本発明の製造方法により最終的に得られるRHMA類のホルムアルデヒド含有量を200ppm未満とすることが可能である。全還流の際に減圧するために蒸留装置の気相部を吸引することになるが、そのときにホルムアルデヒドも吸引されて蒸留装置から排出されるようにすればよい。通常では、減圧蒸留によって減圧装置からホルムアルデヒドが排出されることになる。 As described above, the method for removing formaldehyde in the production method of the present invention includes removal by total reflux. Because formaldehyde and RHMAs interact with each other, and paraformaldehyde is deposited in the distillation column as described above, the formaldehyde in the distillate should be reduced to less than 200 ppm by ordinary distillation purification operation alone. It is difficult. However, by maintaining the total reflux state of RHMAs under reduced pressure, formaldehyde, which is a non-condensable gas, is excluded to a vacuum system (hereinafter also referred to as a reduced pressure system or a reduced pressure line). The formaldehyde content can be sufficiently reduced, and the formaldehyde content of the RHMAs finally obtained by the production method of the present invention can be less than 200 ppm. In order to reduce the pressure during the total reflux, the gas phase portion of the distillation apparatus is sucked. At that time, the formaldehyde may be sucked and discharged from the distillation apparatus. Normally, formaldehyde is discharged from the decompression device by vacuum distillation.

本発明の好ましい実施形態において用いられる全還流装置の一例を図1に示す。
上記製造方法においては、反応工程から得られる粗生成物を減圧下で蒸気とし、液化されたものを実質的に全て還流する精製工程を含むことになる。例えば、減圧下で蒸気とされた粗生成物において、ホルムアルデヒドを含む気化された成分が減圧下で吸引されて蒸留装置から除去されるが、その他の成分は液化され、該液化成分が実質的に全て還流されることになる。例えば、反応工程から得られる粗生成物を減圧下で蒸気とし、冷却器(例えば、冷却管)を用いて液化し、液化された成分をそのまま実質的に全て(分別操作をせずに)還流し、液化されない残りの成分(ホルムアルデヒド成分を含む気化された成分)は減圧下で吸引、除去される精製工程が、好ましい実施形態である。
本発明における全還流工程は、ホルムアルデヒドを含む気化された成分を吸引して蒸留装置から排出することを目的として行うものであるため、充填材が実質的に入っていない蒸留塔(本明細書中、空塔蒸留管ともいう)を用いることができ、そのような形態が好ましい。これにより、全還流工程においてパラホルムアルデヒドが析出し、蒸留塔内を汚染することを充分に防ぐことができる。
この全還流処理は、後述するRHMA類の蒸留精製工程と別に行ってもよいが、蒸留精製工程と同じ装置を用いて同時に行っても良い。特に好ましいのは、後述するようにRHMA類の蒸留精製工程の前工程として行うことである。
An example of a total reflux apparatus used in a preferred embodiment of the present invention is shown in FIG.
In the said manufacturing method, the refinement | purification process which makes the crude product obtained from a reaction process a vapor | steam under reduced pressure, and recirculate | refluxs substantially all the liquefied things is included. For example, in a crude product vaporized under reduced pressure, vaporized components including formaldehyde are sucked under reduced pressure and removed from the distillation apparatus, while other components are liquefied, and the liquefied components are substantially reduced. All will be refluxed. For example, the crude product obtained from the reaction step is vaporized under reduced pressure, liquefied using a cooler (for example, a cooling pipe), and substantially all of the liquefied components are refluxed as they are (without fractionation operation). A preferred embodiment is a purification process in which the remaining components that are not liquefied (vaporized components including formaldehyde components) are sucked and removed under reduced pressure.
The total reflux step in the present invention is performed for the purpose of sucking vaporized components including formaldehyde and discharging them from the distillation apparatus, and therefore, a distillation column (in the present specification, containing substantially no filler). , Also referred to as an empty distillation tube), and such a form is preferable. Thereby, it can fully prevent that paraformaldehyde precipitates in the whole reflux process and contaminates the inside of the distillation column.
This total reflux treatment may be performed separately from the RHMAs distillation purification step described later, or may be performed simultaneously using the same apparatus as the distillation purification step. It is particularly preferable to carry out as a pre-process of the distillation purification process of RHMAs as will be described later.

上記全還流によるホルムアルデヒド除去方法によりホルムアルデヒド含有量200ppm未満のRHMA類を得るためには「全還流比」というファクターが非常に重要である。
上記全還流比とは全還流を行う上でホルムアルデヒド除去前の粗RHMA類の全仕込み量に対する還流時の積算蒸気量の比を表す。すなわち全還流量は下記に示す計算式;
全還流比=V/B
(ここで、Vは、全還流時の積算蒸気量〔g〕を表し、Bは、粗RHMA類の仕込み量〔g〕を表す)で表される。
図1に記載されたV、Bは、それぞれ上記全還流時の積算蒸気量、空塔蒸留管1内の粗RHMA類の仕込み量を表す。
なお、通常の蒸留操作における還流比は、蒸留塔に戻す液流量L(g/s)と抜き出す液流量D(g/s)との比L/Dを意味する。
In order to obtain RHMAs having a formaldehyde content of less than 200 ppm by the above method for removing formaldehyde by total reflux, a factor of “total reflux ratio” is very important.
The total reflux ratio represents the ratio of the total amount of steam at the time of reflux to the total charge of crude RHMAs before formaldehyde removal in carrying out total reflux. That is, the total reflux is calculated by the following formula:
Total reflux ratio = V / B
(Here, V represents the accumulated vapor amount [g] at the time of total reflux, and B represents the charged amount [g] of crude RHMAs).
V and B described in FIG. 1 represent the accumulated steam amount at the time of the total reflux and the charged amount of the crude RHMAs in the empty distillation tube 1, respectively.
In addition, the reflux ratio in normal distillation operation means ratio L / D of the liquid flow rate L (g / s) returned to the distillation column, and the liquid flow rate D (g / s) withdrawn.

上記全還流処理によりホルムアルデヒド含有量を200ppm未満に低下させるに際し、上記全還流比は0.5以上が通常必要である。
すなわち、本発明の製造方法は、上記精製工程における積算蒸気量をVとし、前記精製工程への粗生成物の仕込み量をBとすると、全還流比がV/Bによって求められ、該全還流比が0.5以上となるように前記精製工程を行うものであることが好ましい。
上記全還流比は、0.7以上であることがより好ましい。更に好ましくは、0.8以上であり、特に好ましくは、1.0以上である。また、100以下がより好ましい。更に好ましくは、50以下であり、特に好ましくは、10以下である。例えば、より好ましくは、0.7〜100であり、更に好ましくは0.8〜100であり、特に好ましくは0.8〜50であり、最も好ましくは1.0〜10である。
In reducing the formaldehyde content to less than 200 ppm by the total reflux treatment, the total reflux ratio usually needs to be 0.5 or more.
That is, in the production method of the present invention, the total reflux ratio is obtained by V / B, where V is the cumulative vapor amount in the purification step and B is the amount of the crude product charged into the purification step. The purification step is preferably performed so that the ratio is 0.5 or more.
The total reflux ratio is more preferably 0.7 or more. More preferably, it is 0.8 or more, and particularly preferably 1.0 or more. Moreover, 100 or less is more preferable. More preferably, it is 50 or less, and particularly preferably 10 or less. For example, more preferably, it is 0.7-100, More preferably, it is 0.8-100, Especially preferably, it is 0.8-50, Most preferably, it is 1.0-10.

上記全還流時の圧力条件としては、RHMA類の種類にもよるが、10hPa〜150hPaの減圧下で行うことが好ましく、より好ましいのは10hPa〜120hPaであり、特に好ましいのは10hPa〜100hPaである。
上記全還流時の処理温度は、RHMA類の種類にもよるが、重合防止の観点から160℃以下に制限されることが好ましい。より好ましくは80℃〜150℃、更に好ましくは100℃〜140℃で行う。
上記全還流処理の時間は、RHMA類の種類や重合禁止剤(以下、重合防止剤ともいう。)の種類にもよるが、重合防止の観点から24時間以内で行うのがよく、好ましい形態である。より好ましくは3時間〜12時間である。更に好ましくは、4時間〜10時間である。
The pressure condition during the total reflux depends on the type of RHMA, but is preferably performed under a reduced pressure of 10 hPa to 150 hPa, more preferably 10 hPa to 120 hPa, and particularly preferably 10 hPa to 100 hPa. .
The treatment temperature during the total reflux is preferably limited to 160 ° C. or less from the viewpoint of preventing polymerization, although it depends on the type of RHMA. More preferably, it is performed at 80 ° C to 150 ° C, more preferably 100 ° C to 140 ° C.
The total reflux treatment time depends on the type of RHMA and the type of polymerization inhibitor (hereinafter also referred to as polymerization inhibitor), but is preferably within 24 hours from the viewpoint of polymerization prevention. is there. More preferably, it is 3 hours to 12 hours. More preferably, it is 4 hours to 10 hours.

また、上記のRHMA類は高い重合性を有することから、粗RHMA類を還流処理する際には、RHMA類の重合を抑制するために、処理系に重合禁止剤や分子状酸素を添加することが好ましい。
上記重合禁止剤としては、具体的には、例えば、リン酸、リン酸トリメチル、リン酸トリエチル、リン酸トリブチル等のアルキルリン酸塩、リン酸ジフェニル等のアリールリン酸塩、亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリフェニル等の亜リン酸塩、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、トリス(ペンタフルオロフェニル)ホスフィン等のホスフィン類、トリメチルホスフィンオキサイド、トリエチルホスフィンオキサイド等のアルキルホスフィンオキサイド、商品名「アデカスタブ2112」(旭電化製)、商品名「HCA」(三光製)、商品名「アデカスタブPEP−8」(旭電化製)、商品名「アデカスタブ260」(旭電化製)、商品名「アデカスタブ3010」(旭電化製)、商品名「アデカスタブHP−10」(旭電化製)、商品名「アデカスタブ329K」(旭電化製)、商品名「アデカスタブPEP−24G」(旭電化製)、商品名「IRGAFOS168」(Ciba製)等のリン化合物;ノニルフェノール、モノ−t−ブチル−p−クレゾール、モノ−t−ブチル−m−クレゾール、2,4−ジメチル−6−t−ブチル−フェノール、2,6−ジ−t−ブチル−p−クレゾール(BHT)、2,6−ジ−t−ブチルフェノール、4−ヒドロキシメチル−2,6−ジ−t−ブチル−フェノール、メトキノン(MEQ)、グアヤコール、3−メトキシフェノール、4−メトキシフェノール、ヒドロキノン(HQ)、メチルヒドロキノン、t-ブチルヒドロキノン、カテコール、4−メチルカテコール、4−t−ブチルカテコール(TBC)、レゾルシノール、2−メチルレゾルシノール、5−メチルレゾルシノール、プロピルガレート、商品名「スミライザーGM」(住友化学製)、商品名「スミライザーGS」(住友化学製)、商品名「IRGANOX1222」(Ciba製)等のフェノール系化合物類; 商品名「スミライザーTPL−R」(住友化学製)、商品名「スミライザーTPS」(住友化学製)、商品名「スミライザーTPD」(住友化学製)等の有機硫黄系化合物;商品名「IRGANOXHP2225FF」(Ciba製)、商品名「IRGANOXHP2341」(Ciba製)、商品名「IRGANOXHP2921FF」(Ciba製)等のラクトン系化合物(混合品);ジブチルジチオカルバミン酸亜鉛、ジブチルジチオカルバミン酸銅等の金属錯体類;フェニル−α−ナフチルアミン、N,N´−ジフェニル−p−フェニレンジアミン、4,4−テトラメチルジアミノジフェニルアミン、ピペリジン、2,6−ジメチルピペリジン、2,2,6,6−テトラメチルピペリジン(TEMP)、ピペリジノオキシ フリーラジカル、2,6−ジメチルピペリジノ フリーラジカル、2,2,6,6−テトラメチルピペリジノ フリーラジカル(TEMPO)、商品名「CXA5415」(Ciba製)、商品名「ZJ705」(Ciba製)等のアミンもしくはN−オキシル化合物類;商品名「Q1300」(WAKO試薬)、商品名「Q1301」(WAKO試薬)等のニトロソ化合物、フェノチアジンが挙げられるが、特に限定されるものではない。この中で好ましくは、フェノール系化合物類、N−オキシル化合物類、金属錯体類、フェノチアジンである。これら重合禁止剤は、一種類のみを用いてもよいし、二種類以上を適宜混合して用いてもよい。
上記重合禁止剤の添加量は、特に限定されるものではないが、通常、粗RHMA類に対する割合が、0.01質量%〜1質量%の範囲内となるようにすればよい。
In addition, since the above RHMAs have high polymerizability, when refluxing the crude RHMAs, a polymerization inhibitor or molecular oxygen should be added to the treatment system in order to suppress the polymerization of the RHMAs. Is preferred.
Specific examples of the polymerization inhibitor include alkyl phosphates such as phosphoric acid, trimethyl phosphate, triethyl phosphate and tributyl phosphate, aryl phosphates such as diphenyl phosphate, trimethyl phosphite, Phosphites such as triethyl phosphate, triphenyl phosphite, phosphines such as trimethylphosphine, triethylphosphine, tributylphosphine, triphenylphosphine, tris (pentafluorophenyl) phosphine, trimethylphosphine oxide, triethylphosphine oxide, etc. Alkylphosphine oxide, trade name “ADK STAB 2112” (Asahi Denka), trade name “HCA” (Sanko), trade name “ADK STAB PEP-8” (Asahi Denka), trade name “ADK STAB 260” (Asahi Denka) ), Product name "Adekastab 010 ”(manufactured by Asahi Denka), trade name“ Adeka Stub HP-10 ”(manufactured by Asahi Denka), trade name“ Adeka Stub 329K ”(manufactured by Asahi Denka), trade name“ Adeka Stub PEP-24G ”(manufactured by Asahi Denka), trade name Phosphorus compounds such as “IRGAFOS168” (manufactured by Ciba); nonylphenol, mono-t-butyl-p-cresol, mono-t-butyl-m-cresol, 2,4-dimethyl-6-t-butyl-phenol, 2, 6-di-t-butyl-p-cresol (BHT), 2,6-di-t-butylphenol, 4-hydroxymethyl-2,6-di-t-butyl-phenol, methoquinone (MEQ), guaiacol, 3 -Methoxyphenol, 4-methoxyphenol, hydroquinone (HQ), methylhydroquinone, t-butylhydroquinone, catechol, 4-methyl Catechol, 4-t-butylcatechol (TBC), resorcinol, 2-methylresorcinol, 5-methylresorcinol, propyl gallate, trade name “Sumilyzer GM” (manufactured by Sumitomo Chemical), trade name “Sumilyzer GS” (manufactured by Sumitomo Chemical) , Phenolic compounds such as trade name “IRGANOX1222” (manufactured by Ciba); trade name “Sumilyzer TPL-R” (manufactured by Sumitomo Chemical), trade name “Sumilyzer TPS” (manufactured by Sumitomo Chemical), trade name “Sumilyzer TPD” ( Organic sulfur compounds such as Sumitomo Chemical Co., Ltd .; Lactone compounds (mixed products) such as trade name “IRGANOXHP2225FF” (Ciba), trade name “IRGANOXHP2341” (Ciba), trade name “IRGANOXHP2921FF” (Ciba); Dibutyldithiocarbamic acid Metal complexes such as zinc and copper dibutyldithiocarbamate; phenyl-α-naphthylamine, N, N′-diphenyl-p-phenylenediamine, 4,4-tetramethyldiaminodiphenylamine, piperidine, 2,6-dimethylpiperidine, 2, 2,6,6-tetramethylpiperidine (TEMP), piperidinooxy free radical, 2,6-dimethylpiperidino free radical, 2,2,6,6-tetramethylpiperidino free radical (TEMPO), trade name “ Amines or N-oxyl compounds such as CXA5415 (manufactured by Ciba), trade name “ZJ705” (manufactured by Ciba); nitroso compounds such as trade name “Q1300” (WAKO reagent), trade name “Q1301” (WAKO reagent), Examples include phenothiazine, but are not particularly limited Absent. Of these, phenol compounds, N-oxyl compounds, metal complexes, and phenothiazine are preferable. These polymerization inhibitors may be used alone or in a suitable mixture of two or more.
Although the addition amount of the said polymerization inhibitor is not specifically limited, Usually, what is necessary is just to make it the ratio with respect to crude RHMAs be in the range of 0.01 mass%-1 mass%.

上記の分子状酸素としては、例えば、酸素−窒素の混合ガスや空気を用いることができる。この場合、反応系に酸素含有ガスを吹き込む(いわゆる、バブリング)ようにすればよい。尚、上記重合禁止剤と分子状酸素とを併用してもよい。 As said molecular oxygen, oxygen-nitrogen mixed gas and air can be used, for example. In this case, an oxygen-containing gas may be blown into the reaction system (so-called bubbling). The polymerization inhibitor and molecular oxygen may be used in combination.

(2)多孔質固体を用いたホルムアルデヒド吸着による除去
アクリル酸エステルとホルムアルデヒドとを触媒存在下で反応させることによりα−ヒドロキシメチルアクリレート類を製造する方法であって、少なくともα−ヒドロキシメチルアクリレート化合物類とホルムアルデヒドとを含む組成物を多孔質固体で処理する工程を有するα−ヒドロキシメチルアクリレート化合物類の製造方法は、本発明の好ましい実施形態である。
上記多孔質固体としては、特に限定されるものではなく、例えば、チタニア、メタロシリケート、シリカゲル等に代表される各種金属酸化物や、粘土、珪藻土、軽石等の天然鉱物、活性炭等の炭素材料が挙げられ、これらの1種又は2種以上を使用することができる。好ましくは、金属酸化物、粘土、活性炭であり、更に好ましくは、金属酸化物である。
(2) A method for producing α-hydroxymethyl acrylates by reacting an acrylic ester removed by formaldehyde adsorption using a porous solid with formaldehyde in the presence of a catalyst, comprising at least α-hydroxymethyl acrylate compounds A method for producing α-hydroxymethyl acrylate compounds having a step of treating a composition containing aldehyde and formaldehyde with a porous solid is a preferred embodiment of the present invention.
The porous solid is not particularly limited, and examples thereof include various metal oxides represented by titania, metallosilicate, silica gel and the like, natural minerals such as clay, diatomaceous earth, and pumice, and carbon materials such as activated carbon. 1 type or 2 or more types can be used. Preferred are metal oxides, clays and activated carbons, and more preferred are metal oxides.

上記金属酸化物としては例えばシリカ、チタニア、ジルコニア、マグネシア等の単一金属酸化物類や、シリカ−アルミナ、チタニア−シリカ、シリカ−マグネシア、ゼオライト類等の複合酸化物が挙げられ、これらの1種又は2種以上を用いることができる。その中でもシリカ、チタニア、シリカ−アルミナ、チタニア−シリカ、ゼオライト類が好ましく、より好ましくはチタニア、ゼオライト類である。
上記ゼオライト類としては天然に存在するものや、合成により得られたものには特に制限を受けない、例えば、ゼオライトA、ゼオライトX、ゼオライトY、ゼオライトL、ゼオライトΩ、ZSM−5、β―ゼオライト、モルデナイト等が使用でき、好ましくはゼオライトA、ゼオライトX、ゼオライトY、ZSM−5である。
上記多孔質固体を用いた場合のホルムアルデヒドの吸着条件は、RHMA類の重合防止の観点から160℃以下に温度が制限されるが、それ以外は特に制限されるものではなく、好ましくは0℃〜150℃の温度範囲で行い、より好ましくは10℃〜130℃、更に好ましくは20℃〜130℃の温度範囲で行う。
吸着除去に要する時間は特に制限を受けないが、好ましくは1分〜20時間、より好ましくは10分〜5時間の間で行う。
Examples of the metal oxide include single metal oxides such as silica, titania, zirconia, and magnesia, and composite oxides such as silica-alumina, titania-silica, silica-magnesia, and zeolite. Species or two or more can be used. Among these, silica, titania, silica-alumina, titania-silica, and zeolites are preferable, and titania and zeolites are more preferable.
The above zeolites are not particularly limited to those naturally occurring or obtained by synthesis, for example, zeolite A, zeolite X, zeolite Y, zeolite L, zeolite Ω, ZSM-5, β-zeolite Mordenite can be used, and zeolite A, zeolite X, zeolite Y, and ZSM-5 are preferred.
In the case of using the above-mentioned porous solid, the formaldehyde adsorption condition is limited to 160 ° C. or less from the viewpoint of preventing polymerization of RHMAs, but is not particularly limited, and preferably 0 ° C. to It is carried out in a temperature range of 150 ° C., more preferably 10 ° C. to 130 ° C., further preferably 20 ° C. to 130 ° C.
The time required for adsorption removal is not particularly limited, but is preferably 1 minute to 20 hours, more preferably 10 minutes to 5 hours.

このときの処理は、重合禁止剤の存在下で行うことが好ましく、使用する重合禁止剤の具体例、好ましい形態、使用態様等は、上述した通りである。これらの重合禁止剤は、吸着処理の前に所定量を一括して仕込んでもよく、吸着処理中に分割して添加してもよい。
上記多孔質固体を用いてホルムアルデヒドの吸着を行った後、ろ過によってホルムアルデヒドを吸着した多孔質固体を除去し、製品のRHMA類を得る。この時必要であれば蒸留等によって更に精製を行ってもよい。なお、蒸留の好ましい形態等は、後述する通りである。
上記ろ過は室温〜120℃の間で行うことが好ましい。
このような好ましい形態は、上記(1)の精製工程を有する本発明の製造方法における好ましい形態と同様である。
The treatment at this time is preferably performed in the presence of a polymerization inhibitor, and specific examples, preferred forms, use modes, and the like of the polymerization inhibitor to be used are as described above. These polymerization inhibitors may be charged in a predetermined amount before the adsorption treatment, or may be added in portions during the adsorption treatment.
After the formaldehyde is adsorbed using the porous solid, the porous solid adsorbed with formaldehyde is removed by filtration to obtain RHMAs of products. At this time, if necessary, further purification may be performed by distillation or the like. In addition, the preferable form of distillation etc. are as mentioning later.
The filtration is preferably performed between room temperature and 120 ° C.
Such a preferable form is the same as the preferable form in the manufacturing method of this invention which has the refinement | purification process of said (1).

(3)塩基性陰イオン交換樹脂を用いたホルムアルデヒド吸着による除去
アクリル酸エステルとホルムアルデヒドとを触媒存在下で反応させることによりα−ヒドロキシメチルアクリレート化合物類を製造する方法であって、反応工程から得られる粗生成物を塩基性イオン交換樹脂で処理する工程を有するα−ヒドロキシメチルアクリレート化合物類の製造方法もまた、本発明の好ましい実施形態である。
上記塩基性陰イオン交換樹脂を用いてホルムアルデヒドを吸着除去する場合、用いる塩基性陰イオン交換樹脂としてはアクリル系、スチレン系等のポリマー骨格には特に制限を受けない。
また上記塩基性陰イオン交換樹脂には、ゲルタイプ、マクロポーラスタイプ等があるが、それらのタイプに特に制限されるものではない。
(3) A method for producing α-hydroxymethyl acrylate compounds by reacting a removed acrylic acid ester by formaldehyde adsorption using a basic anion exchange resin with formaldehyde in the presence of a catalyst, obtained from the reaction step A method for producing α-hydroxymethyl acrylate compounds having a step of treating the resulting crude product with a basic ion exchange resin is also a preferred embodiment of the present invention.
When adsorbing and removing formaldehyde using the above basic anion exchange resin, the basic anion exchange resin to be used is not particularly limited to an acrylic or styrene polymer skeleton.
The basic anion exchange resin includes a gel type and a macroporous type, but is not particularly limited to these types.

これらの上記塩基性陰イオン交換樹脂としては具体的に例えばダイヤイオンSA、ダイヤイオンUBA120、ダイヤイオンPA300、ダイヤイオンPA400、ダイヤイオンHPA、アンバーライトIRA400Cl、アンバーライトIRA402BL、アンバーライトIRA410Cl、アンバーライトIRA411、ダウエックス・モノスフィア550A、ダウエックス・マラソンMSA、ダウエックス・マラソンA2等の強塩基性陰イオン交換樹脂やダイヤイオンWA10、ダイヤイオンWA20、ダイヤイオンWA21、ダイヤイオンWA30、アンバーライトIRA67、アンバーライトIRA96SB、アンバーライトXT6050RF、ダウエックス66、ダウエックス・マラソンWBA等の弱塩基性陰イオン交換樹脂とがあり、これらの1種又は2種以上を用いることができる。特に制限はされないが、好ましくは弱塩基性陰イオン交換樹脂であり、より好ましくはダイヤイオンWA20、ダイヤイオンWA21Jである。 Specific examples of these basic anion exchange resins include Diaion SA, Diaion UBA120, Diaion PA300, Diaion PA400, Diaion HPA, Amberlite IRA400Cl, Amberlite IRA402BL, Amberlite IRA410Cl, Amberlite IRA411. , Dowex Monosphere 550A, Dowex Marathon MSA, Dowex Marathon A2 and other strongly basic anion exchange resins, Diaion WA10, Diaion WA20, Diaion WA21, Diaion WA30, Amberlite IRA67, Amberlite Weakly basic anion exchange resins such as Wright IRA96SB, Amberlite XT6050RF, Dowex 66, Dowex Marathon WBA There may be used one or two or more of these. Although not particularly limited, a weak basic anion exchange resin is preferable, and Diaion WA20 and Diaion WA21J are more preferable.

上記塩基性陰イオン交換樹脂を用いた吸着によるホルムアルデヒド除去の条件は、使用する塩基性陰イオン交換樹脂にもよるが、塩基性陰イオン交換樹脂の耐熱温度以下で行う必要があること以外には特に制限を受けるものではない。具体的な処理温度は、0〜150℃の範囲で行うことが好ましく、特に好ましいのは0〜100℃の範囲である。 The conditions for removing formaldehyde by adsorption using the basic anion exchange resin described above depend on the basic anion exchange resin to be used, but it must be performed at a temperature lower than the heat resistant temperature of the basic anion exchange resin. There are no particular restrictions. The specific treatment temperature is preferably in the range of 0 to 150 ° C, and particularly preferably in the range of 0 to 100 ° C.

このときの処理は、重合禁止剤の存在下で行うことが好ましく、使用する重合禁止剤の具体例、好ましい形態、使用態様等は、上述した通りである。これらの重合禁止剤は、吸着処理の前に所定量を一括して仕込んでもよく、吸着処理中に分割して添加してもよい。
このような好ましい形態は、上記(1)の精製工程における好ましい形態と同様である。
The treatment at this time is preferably performed in the presence of a polymerization inhibitor, and specific examples, preferred forms, use modes, and the like of the polymerization inhibitor to be used are as described above. These polymerization inhibitors may be charged in a predetermined amount before the adsorption treatment, or may be added in portions during the adsorption treatment.
Such a preferable form is the same as the preferable form in the purification step (1).

また、本発明は、アクリル酸エステルとホルムアルデヒドとを触媒存在下で反応させる工程を含むことによりα−ヒドロキシメチルアクリレート化合物類を製造する方法であって、上記製造方法は、反応工程から得られる粗生成物を吸着剤で処理する精製工程を有し、ホルムアルデヒド含有量を200ppm未満とするα−ヒドロキシメチルアクリレート化合物類の製造方法でもある。
上記吸着剤で処理する精製工程としては、上述した(2)吸着剤として多孔質固体を用いるもの、(3)吸着剤として塩基性陰イオン交換樹脂を用いるものが挙げられる。すなわち、上記吸着剤は、多孔質固体及び塩基性陰イオン交換樹脂からなる群より選択される少なくとも1種であることが好ましい。より好ましくは、塩基性陰イオン交換樹脂である。
Further, the present invention is a method for producing α-hydroxymethyl acrylate compounds by including a step of reacting an acrylate ester with formaldehyde in the presence of a catalyst, wherein the production method is a crude product obtained from the reaction step. It is also a method for producing α-hydroxymethyl acrylate compounds having a purification step of treating the product with an adsorbent and having a formaldehyde content of less than 200 ppm.
Examples of the purification step to be treated with the adsorbent include (2) those using a porous solid as the adsorbent and (3) those using a basic anion exchange resin as the adsorbent. That is, the adsorbent is preferably at least one selected from the group consisting of a porous solid and a basic anion exchange resin. More preferably, it is a basic anion exchange resin.

(4)オゾンを用いた酸化処理
本発明は更に、アクリル酸エステルとホルムアルデヒドとを触媒存在下で反応させることによりα−ヒドロキシメチルアクリレート化合物類を製造する方法であって、反応工程から得られる粗生成物をオゾン処理する工程を有するα−ヒドロキシメチルアクリレート化合物類の製造方法でもある。
ホルムアルデヒドの除去方法として、ホルムアルデヒドを含有するRHMA類を所定量のオゾンによって酸化処理を行い、蟻酸として除去することが挙げられる。
オゾン使用量は処理するRHMA類や含有しているホルムアルデヒド量にもよるが、処理するRHMA類に対して10〜1000ppmであることが好ましく、10〜500ppmであることが特に好ましい。
処理温度は、RHMA類の種類にもよるが、重合防止の観点から160℃以下に制限されるが、好ましくは30℃〜150℃、より好ましくは50℃〜140℃で行う。
(4) Oxidation treatment using ozone The present invention further relates to a method for producing α-hydroxymethyl acrylate compounds by reacting an acrylate ester with formaldehyde in the presence of a catalyst, which is obtained from the reaction step. It is also a method for producing α-hydroxymethyl acrylate compounds having a step of treating the product with ozone.
As a method for removing formaldehyde, RHMA containing formaldehyde is oxidized with a predetermined amount of ozone and removed as formic acid.
Although the amount of ozone used depends on the amount of RHMA to be treated and the amount of formaldehyde contained, it is preferably 10 to 1000 ppm, particularly preferably 10 to 500 ppm, based on the RHMA to be treated.
The treatment temperature depends on the type of RHMA, but is limited to 160 ° C. or less from the viewpoint of preventing polymerization, but is preferably 30 ° C. to 150 ° C., more preferably 50 ° C. to 140 ° C.

このときの処理は、重合禁止剤の存在下で行うことが好ましく、使用する重合禁止剤の具体例、好ましい形態、使用態様等は、上述した通りである。これらの重合禁止剤は、オゾン処理の前に所定量を一括して仕込んでもよく、オゾン処理中に分割して添加してもよい。
またオゾン処理の後に、ホルムアルデヒドを除去したRHMA類を蒸留精製することにより、実質的に着色のない低ホルムアルデヒド含有RHMA類を得てもよい。
このような好ましい形態は、上記(1)の精製工程における好ましい形態と同様である。
The treatment at this time is preferably performed in the presence of a polymerization inhibitor, and specific examples, preferred forms, use modes, and the like of the polymerization inhibitor to be used are as described above. These polymerization inhibitors may be charged in a predetermined amount before the ozone treatment, or may be added separately during the ozone treatment.
Further, after the ozone treatment, low formaldehyde-containing RHMA substantially free of color may be obtained by distillation purification of RHMAs from which formaldehyde has been removed.
Such a preferable form is the same as the preferable form in the purification step (1).

これらの精製工程のいずれか1つ以上を用いてホルムアルデヒドを充分に取り除くことができる。更に、その後に蒸留による精製工程を行う際に、上述したように気化されたホルムアルデヒドがパラホルムアルデヒドとして析出し、蒸留塔内を汚染することを充分に防ぐことができる。よって、蒸留による精製工程を好適に行うことができ、これにより更にRHMA類のホルムアルデヒド含有量を充分に低下することができる。また、ホルムアルデヒド除去成分を実質的に含有しないものとすることができ、実質的に着色がない、工業的に有利なRHMA類を効率よく得ることができる。言い換えれば、本発明の製造方法は、上記(1)〜(4)の精製工程の後に、更に蒸留による精製工程を有することによって、ホルムアルデヒド含有量を200ppm未満とすることが好ましい。
上記工程において、(2)及び(3)は処理後の多孔質固体(多孔性固体)やイオン交換樹脂の再生や廃棄等が、(4)ではオゾン発生装置や系外へ排出されるオゾンの処理が必要になるが、(1)であれば、蒸留による精製工程での操作条件の調整により実施できるので、簡便であり、(1)の工程が本発明の製造方法における好ましい形態である。また、上記工程は単独で実施してもよく、2以上を組み合わせて実施しても良い。また上記工程は、その他のRHMA類の蒸留や洗浄等の精製工程と組み合わせて行うのが好ましく、この場合にはその他の精製工程と本発明の工程の順序等は特に制限されないが、中でも後述するように上記工程の後に蒸留による精製工程を行う形態が特に好ましい。
Any one or more of these purification steps can be used to sufficiently remove formaldehyde. Furthermore, when performing the refinement | purification process by distillation after that, it can fully prevent that the vaporized formaldehyde precipitates as paraformaldehyde as mentioned above, and contaminates the inside of a distillation tower. Therefore, the purification process by distillation can be suitably performed, and thereby the formaldehyde content of RHMAs can be sufficiently reduced. Moreover, it can be made to contain substantially no formaldehyde-removing component, and industrially advantageous RHMAs that are substantially free of coloration can be obtained efficiently. In other words, the production method of the present invention preferably has a formaldehyde content of less than 200 ppm by further including a purification step by distillation after the purification steps (1) to (4).
In the above process, (2) and (3) are used for the regeneration and disposal of the treated porous solid (porous solid) and ion exchange resin, and in (4) the ozone generator and the ozone discharged outside the system. Although treatment is required, (1) is simple because it can be carried out by adjusting the operating conditions in the purification step by distillation, and the step (1) is a preferred embodiment in the production method of the present invention. Moreover, the said process may be implemented independently and may be implemented in combination of 2 or more. The above steps are preferably performed in combination with other purification steps such as distillation and washing of RHMAs. In this case, the order of the other purification steps and the steps of the present invention is not particularly limited, but will be described later. Thus, a form in which a purification step by distillation is performed after the above step is particularly preferable.

(森田−Baylis−Hilman反応)
前述した実用的な製法である森田−Baylis−Hilman反応を用いたRHMA類の製造方法を下記に記述するが、本発明の製造方法(処理方法)はアクリル酸エステルとホルムアルデヒドとを原料として得られるRHMA類であれば、特に制限無く使用できる。
本製造方法は各種アクリル酸エステル(以下、アクリル酸エステル類ともいう)とホルムアルデヒド(以下、ホルムアルデヒド類ともいう)とを触媒存在下で反応させることでRHMA類を得る反応である。
(Morita-Baylis-Hilman reaction)
The production method of RHMAs using the Morita-Baylis-Hilman reaction, which is the practical production method described above, will be described below. The production method (treatment method) of the present invention is obtained using acrylic acid ester and formaldehyde as raw materials. Any RHMA can be used without any particular limitation.
This production method is a reaction for obtaining RHMA by reacting various acrylic esters (hereinafter also referred to as acrylic esters) and formaldehyde (hereinafter also referred to as formaldehyde) in the presence of a catalyst.

上記触媒は、森田−Baylis−Hilman反応において用いられる三級アミンを好適に用いることができる。
上記三級アミンとしては、具体的には例えば、トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリイソプロピルアミン等のトリアルキルアミン;N,N−ジメチルエチルアミン、N,N−ジメチルプロピルアミン、N,N−ジメチルイソプロピルアミン、N,N−ジメチルブチルアミン、N,N−ジメチルイソブチルアミン、N,N−ジメチル−t−ブチルアミン、N,N−ジメチル(トリメチルシリル)アミン等のN,N−ジメチルアルキルアミン;N,N−ジエチルメチルアミン、N,N−ジエチルプロピルアミン、N,N−ジエチルイソプロピルアミン等のN,N−ジエチルアルキルアミン;等が挙げられる。これら三級アミンは、単独で用いても2種類以上を併用してもよい。これらの三級アミンのうち、水に対する溶解度が比較的高い化合物が好ましく、常圧における沸点が100℃以下であり、且つ、少なくとも1個のN−メチル基を有するN−メチルアルキルアミン(N−メチル化合物)がより好ましく、常圧における沸点が100℃以下であり、且つ、少なくとも2個のN−メチル基を有するN,N−ジメチルアルキルアミンがさらに好ましい。特に好ましくは、トリメチルアミンである。
As the catalyst, a tertiary amine used in the Morita-Baylis-Hilman reaction can be preferably used.
Specific examples of the tertiary amine include trialkylamines such as trimethylamine, triethylamine, tri-n-propylamine, and triisopropylamine; N, N-dimethylethylamine, N, N-dimethylpropylamine, N, N, N-dimethylalkylamine such as N-dimethylisopropylamine, N, N-dimethylbutylamine, N, N-dimethylisobutylamine, N, N-dimethyl-t-butylamine, N, N-dimethyl (trimethylsilyl) amine; N, N-diethylmethylamine, N, N-diethylpropylamine, N, N-diethylalkylamine such as N, N-diethylisopropylamine; and the like. These tertiary amines may be used alone or in combination of two or more. Of these tertiary amines, compounds having a relatively high solubility in water are preferred, and N-methylalkylamines (N-methylbenzene) having a boiling point of 100 ° C. or less at normal pressure and having at least one N-methyl group. Methyl compound) is more preferable, and N, N-dimethylalkylamine having a boiling point at normal pressure of 100 ° C. or less and having at least two N-methyl groups is more preferable. Particularly preferred is trimethylamine.

上記触媒は、液体状、ガス状等、種々の状態での使用が可能であるが、5〜80質量%水溶液として使用することが好ましく、20〜60質量%水溶液として使用することが好ましい。触媒を水溶液の状態で使用することにより、反応開始時及び反応時における取り扱いが容易になると共に、反応終了後に触媒を回収して再使用する場合における取り扱い等も容易となる。 The catalyst can be used in various states such as liquid and gaseous, but is preferably used as a 5 to 80% by mass aqueous solution, and more preferably as a 20 to 60% by mass aqueous solution. By using the catalyst in the form of an aqueous solution, handling at the start of the reaction and at the time of the reaction is facilitated, and handling when the catalyst is recovered and reused after the completion of the reaction is facilitated.

上記触媒の使用量としては、特に限定されるものではないが、触媒/ホルムアルデヒド(モル比)は0.05〜2であることが好ましく、より好ましくは0.05〜1であり、更に好ましくは0.07〜0.9である。 The amount of the catalyst used is not particularly limited, but the catalyst / formaldehyde (molar ratio) is preferably 0.05 to 2, more preferably 0.05 to 1, and still more preferably. 0.07 to 0.9.

上記アクリル酸エステル類としては、具体的には例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸t−ブチル、アクリル酸n−オクチル、アクリル酸イソオクチル、アクリル酸2−エチルへキシル、アクリル酸ラウリル、アクリル酸ステアリル等のアクリル酸アルキルエステル;アクリル酸シクロペンチル、アクリル酸シクロヘキシル等のアクリル酸シクロアルキルエステル;アクリル酸フェニル、アクリル酸o−メトキシフェニル、アクリル酸p−メトキシフェニル、アクリル酸p−ニトロフェニル、アクリル酸p−メチルフェニル、アクリル酸p−t−ブチルフェニル等のアクリル酸アリールエステル;等が挙げられる。これらのアクリル酸エステル類のうち、アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル、アクリル酸2−エチルヘキシルが特に好適である。
上記ホルムアルデヒド類としては、ホルムアルデヒドの20〜50%水溶液、パラホルムアルデヒド、ジオキサン、トリオキサン等が好適なものとして挙げられる。
Specific examples of the acrylate esters include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, and acrylic acid. n-octyl, isooctyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, stearyl acrylate and other alkyl acrylates; cyclopentyl acrylate, cyclohexyl acrylate and other acrylates; phenyl acrylate, acrylic Examples include acrylic acid aryl esters such as acid o-methoxyphenyl, acrylic acid p-methoxyphenyl, acrylic acid p-nitrophenyl, acrylic acid p-methylphenyl, and acrylic acid p-t-butylphenyl. Of these acrylic acid esters, methyl acrylate, ethyl acrylate, n-butyl acrylate, and 2-ethylhexyl acrylate are particularly suitable.
Preferred examples of the formaldehydes include 20-50% aqueous solutions of formaldehyde, paraformaldehyde, dioxane, trioxane and the like.

上記アクリル酸エステル類(アクリレート化合物類)の使用量としてはアクリル酸エステル類/ホルムアルデヒド類(モル比)は0.5〜10であることが好ましい。より好ましくは0.8〜8であり、更に好ましくは1〜8である。
上記反応には水が用いられるが、その水の量としては全反応液量に対して0.001質量%以上60質量%以下にすることが好ましい。より好ましくは、0.005質量%以上50質量%以下であり、更に好ましくは、0.01質量%以上40質量%以下である。
上記反応においては、必要に応じて、有機溶媒を用いることができるが、特に使用しなくても構わない。上記溶媒の種類は、反応に用いる基質及び触媒を溶解し、且つ、反応に対して不活性な化合物であれば、特に限定されるものではない。
As for the usage-amount of the said acrylic ester (acrylate compound), it is preferable that acrylic ester / formaldehyde (molar ratio) is 0.5-10. More preferably, it is 0.8-8, More preferably, it is 1-8.
Although water is used in the above reaction, the amount of water is preferably 0.001% by mass to 60% by mass with respect to the total reaction liquid amount. More preferably, it is 0.005 mass% or more and 50 mass% or less, More preferably, it is 0.01 mass% or more and 40 mass% or less.
In the above reaction, an organic solvent can be used if necessary, but it is not particularly necessary to use it. The type of the solvent is not particularly limited as long as it is a compound that dissolves the substrate and catalyst used in the reaction and is inert to the reaction.

上記反応において反応原料であるアクリル酸エステル類及び生成物であるRHMA類が共に重合しやすい性質を有することから、反応時の重合を抑制するために、反応系に重合禁止剤や分子状酸素を添加することが好ましい。
上記重合禁止剤の具体例等は、上述した通りである。これら重合禁止剤は、一種類のみを用いてもよいし、二種類以上を適宜混合して用いてもよい。
In the above reaction, both the acrylic ester as a reaction raw material and the RHMA as a product have a property of being easily polymerized. Therefore, in order to suppress polymerization during the reaction, a polymerization inhibitor or molecular oxygen is added to the reaction system. It is preferable to add.
Specific examples of the polymerization inhibitor are as described above. These polymerization inhibitors may be used alone or in a suitable mixture of two or more.

上記重合禁止剤の添加量は、特に限定されるものではないが、通常、粗RHMA類に対する割合が、0.0001質量%〜5質量%の範囲内となるようにすればよく、当該範囲が本発明における好ましい形態である。
上記の分子状酸素としては、例えば、酸素−窒素の混合ガスや空気を用いることができる。この場合、反応系に酸素含有ガスを吹き込む(いわゆる、バブリング)ようにすればよい。尚、上記重合禁止剤と分子状酸素とを併用してもよい。
上記反応において、反応温度は、反応が進行する範囲であれば特に限定されるものではないが、上記重合を抑制するために、40〜160℃で行うのが好ましい。反応温度が40℃よりも低い場合には、反応速度が小さく反応時間が長くなり過ぎ、RHMA類を工業的に製造するに際して好ましくない。より好ましくは60〜100℃の範囲内である。
The addition amount of the polymerization inhibitor is not particularly limited, but usually, the ratio to the crude RHMAs may be in the range of 0.0001% by mass to 5% by mass, and the range is within this range. This is a preferred embodiment in the present invention.
As said molecular oxygen, oxygen-nitrogen mixed gas and air can be used, for example. In this case, an oxygen-containing gas may be blown into the reaction system (so-called bubbling). The polymerization inhibitor and molecular oxygen may be used in combination.
In the above reaction, the reaction temperature is not particularly limited as long as the reaction proceeds, but it is preferably performed at 40 to 160 ° C. in order to suppress the polymerization. When the reaction temperature is lower than 40 ° C., the reaction rate is small and the reaction time is too long, which is not preferable for industrial production of RHMAs. More preferably, it exists in the range of 60-100 degreeC.

上記の手段で得られた粗RHMA類反応液は、触媒の物性にもよるが、ろ過、再結晶、晶析、蒸留、水若しくは有機溶媒による抽出・洗浄処理等の公知の方法により触媒を分離した後、前述のホルムアルデヒド除去処理を行う。必要であれば、更に蒸留等の公知の精製方法により精製RHMA類を得る。この時、RHMA類の精製はホルムアルデヒド除去の前に行ってもよいし、後に行ってもよい。この時、原料のアクリル酸エステル類、触媒、溶媒は回収してもよく、回収分の全量又は一部を再度反応原料、触媒、溶媒として使用してもよい。
アクリル酸エステル類を回収する処理は、通常の分離操作であればよく、RHMA類の物性にもよるが、蒸留や有機溶媒による抽出処理が挙げられる。
Although the crude RHMA reaction liquid obtained by the above means depends on the physical properties of the catalyst, the catalyst is separated by a known method such as filtration, recrystallization, crystallization, distillation, extraction or washing treatment with water or an organic solvent. After that, the above-mentioned formaldehyde removal treatment is performed. If necessary, further purified RHMAs are obtained by a known purification method such as distillation. At this time, the purification of RHMAs may be performed before or after the removal of formaldehyde. At this time, the raw acrylates, catalyst and solvent may be recovered, and the whole or a part of the recovered amount may be used again as the reaction raw material, catalyst and solvent.
The treatment for recovering the acrylates may be a normal separation operation, and depending on the physical properties of the RHMAs, examples thereof include distillation and extraction with an organic solvent.

上記粗RHMA類は、アクリル酸エステルとホルムアルデヒド類とを触媒存在下で反応させる工程から得られるものである。本発明においては、少なくともα−ヒドロキシメチルアクリレート化合物類とホルムアルデヒドとを含む組成物であれば、その技術的意義を有することとなる。
例えば、本発明は、以下のように言い換え、纏めることができる。すなわち、本発明は、アクリル酸エステルとホルムアルデヒドとを触媒存在下で反応させることによりα−ヒドロキシメチルアクリレート化合物類を製造する方法であって、α−ヒドロキシメチルアクリレート化合物類とホルムアルデヒドとを含む組成物を減圧条件下で還流する工程、当該組成物を多孔質固体で処理する工程、当該組成物を塩基性イオン交換樹脂で処理する工程、及び、当該組成物をオゾン処理する工程の、いずれか少なくとも一つの工程を有するα−ヒドロキシメチルアクリレート化合物類の製造方法である。
The crude RHMAs are obtained from a step of reacting an acrylate ester with formaldehyde in the presence of a catalyst. In the present invention, any composition containing at least α-hydroxymethyl acrylate compounds and formaldehyde has technical significance.
For example, the present invention can be summarized and summarized as follows. That is, the present invention relates to a method for producing an α-hydroxymethyl acrylate compound by reacting an acrylate ester with formaldehyde in the presence of a catalyst, the composition comprising the α-hydroxymethyl acrylate compound and formaldehyde. At least one of a step of refluxing the composition under reduced pressure, a step of treating the composition with a porous solid, a step of treating the composition with a basic ion exchange resin, and a step of treating the composition with ozone. This is a method for producing α-hydroxymethyl acrylate compounds having one step.

全還流処理後の精製方法は、該当するRHMA類の物性にもよるが、通常の精製処理であれば特に限定されない。例えば、蒸留、結晶化、晶析等の処理によって行われる。この中でも蒸留による精製処理が特に好ましい。
すなわち、本発明の製造方法は、上述した精製工程の後に、更に蒸留による精製工程を有する形態が好ましい。
通常の蒸留による精製工程においては、沸点差を利用して成分ごとに分別して精製する場合は、蒸留塔内に充填材を入れて蒸留塔の理論段数を適宜調整する必要がある。
ここで、上述したように蒸留による精製工程の前に粗RHMA類のホルムアルデヒド含有量が充分に低下することになるため、当該蒸留による精製工程において、気化されたホルムアルデヒドがパラホルムアルデヒドとして析出し、蒸留塔内が汚染されることを充分に防ぐことができ、その措置を簡便なものとすることができる。よって、充填材の入った蒸留塔を用いて好適に蒸留による精製をすることができ、RHMA類から低沸点成分(ホルムアルデヒド等の原料等)、高沸点成分(目的物の二量体等)等の不純物を更に充分に除去することができ、本発明の効果をより充分に発揮することができる。
上記蒸留による精製工程は、分別蒸留による精製工程であることが好ましい。
The purification method after the total reflux treatment depends on the physical properties of the corresponding RHMAs, but is not particularly limited as long as it is a normal purification treatment. For example, it is carried out by a treatment such as distillation, crystallization, crystallization. Of these, purification by distillation is particularly preferred.
That is, it is preferable that the production method of the present invention further includes a purification step by distillation after the above-described purification step.
In a purification process using ordinary distillation, when fractionation is performed for each component using a difference in boiling point, it is necessary to appropriately adjust the number of theoretical columns of the distillation column by putting a filler in the distillation column.
Here, as described above, since the formaldehyde content of the crude RHMAs is sufficiently lowered before the purification step by distillation, vaporized formaldehyde is precipitated as paraformaldehyde in the purification step by distillation, and the distillation. The inside of the tower can be sufficiently prevented from being contaminated, and the measures can be simplified. Therefore, it can be suitably purified by distillation using a distillation column containing a filler. From RHMAs, low-boiling components (such as raw materials such as formaldehyde), high-boiling components (such as dimers of the target product), etc. The impurities can be further sufficiently removed, and the effects of the present invention can be more fully exhibited.
The purification step by distillation is preferably a purification step by fractional distillation.

この蒸留時の処理温度(ボトム温度又は塔底温度ともいう。)は、RHMA類の種類、処理圧力にもよるが、重合防止の観点から160℃以下に制限されるが、好ましくは80℃〜150℃、更に好ましくは90℃〜140℃で行う。
また蒸留時の圧力条件としては、RHMA類の種類、蒸留温度にもよるが、10hPa〜150hPaの減圧下で行うことが好ましく、より好ましいのは10hPa〜120hPaであり、特に好ましいのは10hPa〜100hPaである。
蒸留処理の時間は、RHMA類の種類や重合禁止剤の種類にもよるが、重合防止の観点から24時間以内で行うのがよく、好ましくは3時間〜12時間である。
また、RHMA類は、高い重合性を有することから、粗RHMA類を蒸留精製処理する際には、RHMA類の重合を抑制するために、処理系に重合禁止剤や分子状酸素を添加することが好ましい。
The treatment temperature during distillation (also referred to as bottom temperature or tower bottom temperature) is limited to 160 ° C. or less from the viewpoint of preventing polymerization, although it depends on the type of RHMAs and the treatment pressure, but preferably 80 ° C. to 150 degreeC, More preferably, it carries out at 90 to 140 degreeC.
The pressure condition during distillation depends on the type of RHMA and the distillation temperature, but is preferably performed under a reduced pressure of 10 hPa to 150 hPa, more preferably 10 hPa to 120 hPa, and particularly preferably 10 hPa to 100 hPa. It is.
The time for the distillation treatment depends on the kind of RHMAs and the kind of the polymerization inhibitor, but is preferably within 24 hours from the viewpoint of preventing polymerization, and preferably 3 hours to 12 hours.
In addition, since RHMAs have high polymerizability, when the crude RHMAs are subjected to distillation purification treatment, a polymerization inhibitor or molecular oxygen should be added to the treatment system in order to suppress the polymerization of RHMAs. Is preferred.

上記全還流工程後の蒸留は、通常は、充填材の入った蒸留塔を用いて行うことになる。充填材を入れることにより蒸留塔の理論段数を調製し、好適に蒸留を行うためである。なお、パラホルムアルデヒドの析出は、上述したように充分に防ぐことができる。
上記充填材としては、ラシヒリング、ベルルサドル、マクマホンパッキング、カスケードミニリング、キャノン、ポールリング等の不規則充填物、スルザーパッキング、メラパック、ジェムパック、テクノパック、モンツパック、グリッチグリッド、フレキシグリッド、スナップグリッド、パーフォームグリッド等の規則充填物が挙げられ、これらの一種又は二種以上を用いることができる。充填材を入れることにより、より容易に不純物を除去することができる。中でも、スルザーパッキング(住友重機械工業(株)製充填材)を充填したものが特に好ましい。
The distillation after the total reflux step is usually performed using a distillation column containing a filler. This is because the theoretical plate number of the distillation column is adjusted by adding a filler, and distillation is suitably performed. In addition, precipitation of paraformaldehyde can fully be prevented as described above.
As the above filler, irregular packing such as Raschig ring, Berle saddle, McMahon packing, cascade mini ring, cannon, pole ring, sulzer packing, mela pack, gem pack, techno pack, montz pack, glitch grid, flexi grid, snap grid, Regular packings such as perform grids can be used, and one or more of these can be used. Impurities can be removed more easily by adding a filler. Among them, those filled with sulzer packing (filler manufactured by Sumitomo Heavy Industries, Ltd.) are particularly preferable.

上記重合禁止剤の具体例、好ましい形態、使用態様等は、(1)の精製工程において上述した通りである。
上記の分子状酸素としては、例えば、酸素−窒素の混合ガスや空気を用いることができる。この場合、反応系に酸素含有ガスを吹き込む(いわゆる、バブリング)ようにすればよい。尚、上記重合禁止剤と分子状酸素とを併用してもよい。
Specific examples, preferred forms, usage modes and the like of the polymerization inhibitor are as described above in the purification step (1).
As said molecular oxygen, oxygen-nitrogen mixed gas and air can be used, for example. In this case, an oxygen-containing gas may be blown into the reaction system (so-called bubbling). The polymerization inhibitor and molecular oxygen may be used in combination.

以上のように、本発明の製造方法は、例えば、アクリル酸エステルとホルムアルデヒドとを触媒存在下で反応させ、油水分離(アミン除去)し、アクリル酸エステルを除去し、ホルムアルデヒドを除去し、精製することによって行う工程を有するものであることが好ましい。ここで、本発明によれば、ホルムアルデヒドの除去として、(1)全還流による除去、(2)吸着剤を用いたホルムアルデヒド吸着による除去、(4)オゾンを用いた酸化処理、のいずれか一種又は二種以上を行うことができる。
これにより、それまで非常に困難であったホルムアルデヒドの除去を効果的且つRHMA類の品質を損なうことなく行うことができ、その結果、実質的に着色の問題がなく、工業的で実用的なホルムアルデヒド含有量が200ppm未満であるRHMA類を提供することができる。
本発明の製造方法において、上記ホルムアルデヒド含有量は、180ppm以下とすることが本発明の製造方法における好ましい形態である。より好ましくは、150ppm以下である。更に好ましくは、120ppm以下である。特に好ましくは、100ppm以下である。
As described above, in the production method of the present invention, for example, an acrylic ester and formaldehyde are reacted in the presence of a catalyst, oil-water separation (amine removal), acrylic ester is removed, formaldehyde is removed, and purification is performed. It is preferable that it has the process performed by this. Here, according to the present invention, as removal of formaldehyde, any one of (1) removal by total reflux, (2) removal by formaldehyde adsorption using an adsorbent, (4) oxidation treatment using ozone, or Two or more can be performed.
This makes it possible to remove formaldehyde, which has been very difficult until now, effectively and without impairing the quality of the RHMAs. As a result, there is virtually no coloration problem, and industrial and practical formaldehyde RHMAs having a content of less than 200 ppm can be provided.
In the production method of the present invention, the formaldehyde content is preferably 180 ppm or less in the production method of the present invention. More preferably, it is 150 ppm or less. More preferably, it is 120 ppm or less. Particularly preferably, it is 100 ppm or less.

以下に本発明の製造方法における好ましい形態の一つについて、図1及び図2を用いて説明する。なお、本発明は、これらの形態に限られるものではない。
アクリル酸エステルとホルムアルデヒドとを触媒存在下で反応させる工程から得られる粗生成物を、図1に示す全還流装置4を用いて全還流する。すなわち、空塔蒸留管1において、粗生成物を減圧下で蒸気とし、冷却器において蒸気の一部が液化され、液化されない蒸気であるホルムアルデヒドを減圧ラインへと除去する。液化されたものは、実質的に全てを液ため3に入れ、空塔蒸留管1に戻して、還流することになる。これにより、粗生成物のホルムアルデヒド含有量を充分に低下することができる。
One preferred embodiment of the production method of the present invention will be described below with reference to FIGS. Note that the present invention is not limited to these forms.
The crude product obtained from the step of reacting the acrylate ester with formaldehyde in the presence of a catalyst is fully refluxed using the total reflux device 4 shown in FIG. That is, in the empty distillation tube 1, the crude product is vaporized under reduced pressure, and a part of the vapor is liquefied in the cooler, and formaldehyde, which is unliquefied vapor, is removed to the decompression line. The liquefied product is substantially entirely put into the liquid storage 3 and returned to the empty distillation tube 1 to be refluxed. Thereby, the formaldehyde content of the crude product can be sufficiently reduced.

上記全還流する精製工程の後に、図2に示す分別蒸留装置6を用いて、更に蒸留による精製工程を行う。ここで、充填塔式蒸留塔5を用いて分別蒸留により精製を行う。上記全還流する精製工程によりホルムアルデヒド含有量が充分に低下されているため、充填塔式蒸留塔5内でパラホルムアルデヒドが析出・凝集することを充分に防ぐことができる。蒸気が冷却器によって冷却されて液状となり、液ため3に入る。これにより、RHMA類と低沸点成分(原料等)、高沸点成分(目的物の二量体等)等の不純物とを分別して、RHMA類を好適に精製することができる。
以上により、本発明の有利な効果を充分に発揮することができる。
なお、本発明の製造方法は、後述するホルムアルデヒド除去成分を用いて処理する工程を実質的に含まないようにすることができ、そのような形態が好ましい。これにより、後述するように本発明の効果を更に充分に発揮することができる。
After the purification step for total reflux, a purification step by distillation is further performed using the fractional distillation apparatus 6 shown in FIG. Here, purification is performed by fractional distillation using the packed column type distillation column 5. Since the formaldehyde content is sufficiently reduced by the purification step in which the total reflux is performed, it is possible to sufficiently prevent the paraformaldehyde from being precipitated and aggregated in the packed column type distillation column 5. The steam is cooled by the cooler to become liquid and enters liquid 3 for liquid. Thereby, RHMAs can be suitably purified by separating RHMAs from impurities such as low-boiling components (raw materials, etc.) and high-boiling components (dimers of the target product, etc.).
As described above, the advantageous effects of the present invention can be sufficiently exhibited.
In addition, the manufacturing method of this invention can be made not to include substantially the process processed using the formaldehyde removal component mentioned later, and such a form is preferable. Thereby, as described later, the effects of the present invention can be more fully exhibited.

本発明はまた、上述した少なくとも一つの製造方法により得られたα−ヒドロキシメチルアクリレート化合物類である。
本発明のα−ヒドロキシメチルアクリレート化合物類の好ましい形態は、上述した本発明の製造方法における好ましい形態によって得られることになる。
The present invention is also α-hydroxymethyl acrylate compounds obtained by at least one production method described above.
The preferable form of (alpha) -hydroxymethyl acrylate compounds of this invention will be obtained by the preferable form in the manufacturing method of this invention mentioned above.

本発明は、更に、下記一般式(1); The present invention further includes the following general formula (1);

Figure 2009084320
Figure 2009084320

(式中、Rは、炭素数1〜18のアルキル基、炭素数4〜12のシクロアルキル基、又は、炭素数6〜12のアリール基を表し、鎖状であっても分岐状であってもよい。)で表される化合物を含んでなるα−ヒドロキシメチルアクリレート化合物類であって、上記α−ヒドロキシメチルアクリレート化合物類は、ホルムアルデヒド含有量が200ppm未満であり、且つ、ホルムアルデヒド除去成分を実質的に含有しないα−ヒドロキシメチルアクリレート化合物類でもある。
中でも、上記Rは、炭素数1〜12のアルキル基、炭素数4〜8のシクロアルキル基、又は、炭素数6のアリール基であることが好ましい。より好ましくは、炭素数1〜4のアルキル基である。
(In the formula, R represents an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 4 to 12 carbon atoms, or an aryl group having 6 to 12 carbon atoms. Α-hydroxymethyl acrylate compounds comprising the compound represented by formula (1), wherein the α-hydroxymethyl acrylate compounds have a formaldehyde content of less than 200 ppm and are substantially free of formaldehyde removal components. It is also an α-hydroxymethyl acrylate compound which is not contained.
Among these, R is preferably an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 4 to 8 carbon atoms, or an aryl group having 6 carbon atoms. More preferably, it is a C1-C4 alkyl group.

上記ホルムアルデヒド除去成分は、ホルムアルデヒド除去成分の水溶液で洗浄処理を行うことにより、RHMA類に含有されるホルムアルデヒドが当該成分と塩を形成し、水層中に移行させて、RHMA類からホルムアルデヒドを除去することができるものである。上記ホルムアルデヒド除去成分は、通常は上述した作用効果を発揮するS及び/又はN元素を含む化合物(硫黄含有化合物や窒素含有化合物)である。例えば、亜硫酸塩、アミン類及びその塩からなる群より選ばれる少なくとも1種の化合物が挙げられる。これら亜硫酸塩、アミン類及びその塩の具体例は、特開平10−53547号公報において開示されたとおりである。中でも、亜硫酸水素ナトリウム、塩酸ヒドロキシルアミン、ヒドラジンが挙げられる。このようなホルムアルデヒド除去成分は、ヒドラジン等に代表されるように着色力が強いものであり、微量で影響が大きい。
一旦ホルムアルデヒド除去成分の水溶液で洗浄処理等を行った場合は、その後、蒸留等によりホルムアルデヒド除去成分量を低減させても、当該成分に基づく着色を工業的に簡便な工程で実質的になくすことはできないといえる。
The formaldehyde removal component is washed with an aqueous solution of the formaldehyde removal component so that the formaldehyde contained in the RHMAs forms a salt with the component and is transferred into the aqueous layer to remove formaldehyde from the RHMAs. It is something that can be done. The formaldehyde-removing component is usually a compound (S-containing compound or nitrogen-containing compound) containing S and / or N elements that exhibits the above-described effects. Examples thereof include at least one compound selected from the group consisting of sulfites, amines, and salts thereof. Specific examples of these sulfites, amines and salts thereof are as disclosed in JP-A-10-53547. Among them, sodium bisulfite, hydroxylamine hydrochloride, and hydrazine can be mentioned. Such a formaldehyde-removing component has a strong coloring power as typified by hydrazine and the like, and has a great influence on a small amount.
Once washed with an aqueous solution of formaldehyde-removing component, even if the amount of formaldehyde-removing component is reduced by distillation, etc., the coloration based on the component is not substantially eliminated in an industrially simple process. I can't say that.

本発明は、上記一般式(1)で表されるα−ヒドロキシメチルアクリレート化合物類であってホルムアルデヒド含有量が200ppm未満で且つ着色していないα−ヒドロキシメチルアクリレート化合物類でもある。
上記着色していないα−ヒドロキシメチルアクリレート化合物類とは、実質的に着色成分を含まないα−ヒドロキシメチルアクリレート化合物類であり、例えば、上述したような硫黄含有化合物及び/又は窒素含有化合物等のホルムアルデヒド除去成分を含まないものである。本発明のα−ヒドロキシメチルアクリレート化合物類の好ましい形態は、上述した本発明の製造方法における好ましい形態によって得られることになる。
The present invention also relates to α-hydroxymethyl acrylate compounds represented by the above general formula (1), which are formaldehyde content of less than 200 ppm and are not colored α-hydroxymethyl acrylate compounds.
The non-colored α-hydroxymethyl acrylate compounds are α-hydroxymethyl acrylate compounds substantially free of coloring components, such as sulfur-containing compounds and / or nitrogen-containing compounds as described above. It does not contain a formaldehyde removal component. The preferable form of (alpha) -hydroxymethyl acrylate compounds of this invention will be obtained by the preferable form in the manufacturing method of this invention mentioned above.

本発明のRHMA類は、重合体を形成するために供される単量体;塗料、接着剤、洗剤ビルダー、透明樹脂等の各種化学製品の製造原料;抗癌剤、抗ウイルス剤等の医薬品の製造原料(中間体)等といった用途において好適に使用することができる。中でも、医薬品の製造原料用途として使用することが好ましい。 The RHMA of the present invention is a monomer provided to form a polymer; a raw material for producing various chemical products such as paints, adhesives, detergent builders, transparent resins; and the like; manufacture of pharmaceuticals such as anticancer agents and antiviral agents It can be suitably used in applications such as raw materials (intermediates). Especially, it is preferable to use as a manufacturing raw material use of a pharmaceutical.

本発明はそして、ホルムアルデヒド含有量が200ppm未満であるRHMA類の医薬品の製造原料としての使用でもある。
これにより、工業的に有利な製法で製造され、ホルムアルデヒド含有量が充分に低下された医薬品の製造原料を使用することができ、医薬品を好適に製造することが可能となる。
本発明の使用方法の好ましい実施形態は、上述した本発明のRHMA類の製造方法、RHMA類における好ましい実施形態と同様である。例えば、本発明の使用方法における上記RHMA類は、ホルムアルデヒド除去成分を実質的に含有しないものであることが好ましい。
The present invention is also the use of RHMAs having a formaldehyde content of less than 200 ppm as a raw material for producing pharmaceuticals.
Thereby, it is possible to use a raw material for producing a pharmaceutical product produced by an industrially advantageous production method and having a sufficiently reduced formaldehyde content, and the pharmaceutical product can be suitably produced.
Preferred embodiments of the method of use of the present invention are the same as the preferred embodiments of the method for producing RHMAs and RHMAs of the present invention described above. For example, it is preferable that the RHMAs in the method of use of the present invention contain substantially no formaldehyde removal component.

本発明によれば、特定化学物質に指定されているホルムアルデヒドの除去を効果的且つRHMA類の品質を損なうことなく行うことができ、その結果、ホルムアルデヒドの含有量が従来達成することができなかった200ppm未満に低減された、高純度で且つ実質的に着色の問題のないRHMA類を実用的に製造することが出来る。更に、該製造方法で得られた、ホルムアルデヒド含有量が200ppm未満に低減された高純度で実質的に着色のないRHMA類は、重合体を形成するために供される単量体;塗料、接着剤、洗剤ビルダー、透明樹脂等の各種化学製品の製造原料;抗癌剤、抗ウイルス剤等の医薬品の中間体等といった用途において好適に用いることが出来る。 According to the present invention, it is possible to effectively remove formaldehyde designated as a specific chemical substance without impairing the quality of RHMAs, and as a result, the content of formaldehyde has not been achieved in the past. It is possible to practically produce RHMAs that are reduced to less than 200 ppm and have high purity and substantially no coloring problems. Furthermore, the RHMAs having high purity and substantially no coloration obtained by the production method and having a formaldehyde content reduced to less than 200 ppm are monomers provided for forming a polymer; It can be suitably used in applications such as manufacturing raw materials for various chemical products such as agents, detergent builders, transparent resins, and the like, and pharmaceutical intermediates such as anticancer agents and antiviral agents.

図1は、本発明の製造方法に用いることができる全還流装置の好ましい形態の一つを示す模式図である。FIG. 1 is a schematic view showing one preferred embodiment of a total reflux apparatus that can be used in the production method of the present invention. 図2は、本発明の製造方法に用いることができる分別蒸留装置の好ましい形態の一つを示す模式図である。FIG. 2 is a schematic view showing one preferred form of a fractional distillation apparatus that can be used in the production method of the present invention.

符号の説明Explanation of symbols

1:空塔蒸留管
2:冷却器
3:液ため
4:全還流装置
5:充填塔式蒸留塔
6:分別蒸留装置
1: Empty column distillation tube 2: Cooler 3: Liquid 4: Total reflux device 5: Packed column type distillation column 6: Fractional distillation device

以下、実施例を挙げて本発明を具体的に説明するが、本発明はもとより下記実施例により制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。なお、特に断りのない限り、「部」は「重量部」を、「%」は「質量%」を意味するものとする。 EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited by the following examples, but may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all included in the technical scope of the present invention. Unless otherwise specified, “part” means “part by weight” and “%” means “mass%”.

まず、ホルムアルデヒド濃度測定方法について以下に説明する。
試薬には、0.2%MBTH(3−メチル−2−ベンゾチアゾロンヒドラジン塩酸塩)、0.6%硫酸第二鉄アンモニウム水溶液、及び、ホルムアルデヒド標準液(JIS K1502にて濃度を測定)を用いた。
First, a method for measuring formaldehyde concentration will be described below.
Reagents include 0.2% MBTH (3-methyl-2-benzothiazolone hydrazine hydrochloride), 0.6% aqueous ferric sulfate ammonium solution, and formaldehyde standard solution (concentration measured according to JIS K1502). Using.

方法:ホルムアルデヒド標準液を段階的に4個以上ピペットでとり、50mlメスフラスコに入れる。そこへ、MBTH試薬5mlを加えた後、30分放置する。次いで硫酸第二鉄アンモニウム試薬10mlを加え、10分放置した後、純水にて50mlに希釈した後、発色を完全にするため、更に30分放置する。この液を620nmの波長で、各々吸光度を測定し、検量線を作成する。同様の操作にて未知試料のホルムアルデヒド濃度を測定する。 Method: Pipette 4 or more formaldehyde standard solutions stepwise into a 50 ml volumetric flask. After adding 5 ml of MBTH reagent, leave it for 30 minutes. Next, 10 ml of ferric ammonium sulfate reagent is added and left for 10 minutes. After dilution to 50 ml with pure water, the solution is further left for 30 minutes to complete color development. The absorbance of each solution is measured at a wavelength of 620 nm to prepare a calibration curve. The formaldehyde concentration of the unknown sample is measured by the same operation.

(合成例1(粗RHMA類の合成))
温度計、ガス吹込み管、冷却管、撹拌装置、水浴を備えた容量3Lの4つ口フラスコに、アクリル酸エステルとしてアクリル酸メチル2066g(24モル)、ホルムアルデヒド原料として92質量%パラホルムアルデヒド195.8g(ホルムアルデヒド換算で6モル)、触媒として30質量%トリメチルアミン水溶液237.8g(1.2モル)、重合禁止剤としてp−メトキシフェノール2.1gを仕込んだ。アクリル酸メチルに対するp−メトキシフェノールの割合は、1000ppmであった。その後、反応溶液に空気を吹き込みながら、反応溶液を70℃で8時間撹拌して反応させた。
反応終了後、反応溶液を分液ロートに移し、有機相と水相に分液した。次に、有機相に水100gを加えて水洗を行った。有機相と水相に分液した後、有機相をさらに同量の水で水洗し、有機相と水洗液とに分液した。
得られた有機相を、温度計、ガス吹込み管、空塔蒸留管、撹拌装置、油浴を備えた容量2Lの4つ口フラスコに移し、安定剤としてフェノチアジン5gを添加し、空気を吹き込みながら、内温が100℃を超えないように調節しつつ、圧力400〜133hPa(300〜100mmHg)でアクリル酸メチルを留去した。この際粗RHMA類を616gが得られたがこの粗RHMA類中のホルムアルデヒド濃度は15340ppmであった。
(Synthesis Example 1 (Synthesis of crude RHMAs))
Into a 3 L four-necked flask equipped with a thermometer, a gas blowing tube, a cooling tube, a stirrer and a water bath, 2066 g (24 mol) of methyl acrylate as an acrylate ester and 92% by mass of paraformaldehyde as a formaldehyde raw material 195. 8 g (6 mol in terms of formaldehyde), 237.8 g (1.2 mol) of 30% by mass trimethylamine aqueous solution as a catalyst, and 2.1 g of p-methoxyphenol as a polymerization inhibitor were charged. The ratio of p-methoxyphenol to methyl acrylate was 1000 ppm. Thereafter, the reaction solution was stirred and reacted at 70 ° C. for 8 hours while air was blown into the reaction solution.
After completion of the reaction, the reaction solution was transferred to a separating funnel and separated into an organic phase and an aqueous phase. Next, 100 g of water was added to the organic phase and washed with water. After separation into an organic phase and an aqueous phase, the organic phase was further washed with the same amount of water, and separated into an organic phase and a washing solution.
The obtained organic phase was transferred to a 2 L four-necked flask equipped with a thermometer, gas blowing tube, empty distillation tube, stirrer and oil bath, 5 g of phenothiazine was added as a stabilizer, and air was blown into it. While adjusting the internal temperature so as not to exceed 100 ° C., methyl acrylate was distilled off at a pressure of 400 to 133 hPa (300 to 100 mmHg). At this time, 616 g of crude RHMAs was obtained, and the formaldehyde concentration in the crude RHMAs was 15340 ppm.

(実施例1)
合成例1で得られた粗RHMA類600gを温度計、ガス吹き込み管、空塔蒸留管、撹拌装置、油浴を備えた容量2Lの4つ口フラスコに移し、空気を吹き込みながら、内温が110〜120℃、圧力20hPa(15mmHg)で還流を10時間行った。この際留出してきた液はコンデンサで10度で冷却してフラスコに戻し、ホルムアルデヒドを含むガス成分は真空系に除去した。
この際の積算蒸気量は801g、全還流比は1.3であり、得られた粗RHMA類中のホルムアルデヒド濃度は320ppmであった。
上記方法で得られた粗RHMA類を後述する比較例1に記載の方法で分別蒸留することでホルムアルデヒド濃度20ppmのRHMA−Mが407g得られた。結果を表1に示す。
Example 1
600 g of the crude RHMA obtained in Synthesis Example 1 was transferred to a 2 L four-necked flask equipped with a thermometer, gas blowing tube, empty distillation tube, stirring device, and oil bath, and the internal temperature was reduced while blowing air. Refluxing was performed at 110 to 120 ° C. and a pressure of 20 hPa (15 mmHg) for 10 hours. The liquid distilled at this time was cooled by a condenser at 10 ° C. and returned to the flask, and the gas components containing formaldehyde were removed to a vacuum system.
The integrated steam amount at this time was 801 g, the total reflux ratio was 1.3, and the formaldehyde concentration in the obtained crude RHMAs was 320 ppm.
407 g of RHMA-M having a formaldehyde concentration of 20 ppm was obtained by subjecting the crude RHMAs obtained by the above method to fractional distillation by the method described in Comparative Example 1 described later. The results are shown in Table 1.

(実施例2〜5)
実施例1において、還流時間を8時間(実施例2)、6時間(実施例3)、5時間(実施例4)又は4時間(実施例5)に変更し、重合禁止剤をジブチルジチオカルバミン酸銅(実施例2)、2,2,6,6−テトラメチルピペリジノ フリーラジカル(TEMPO)(実施例3)に変更した以外は実施例1と同様にしてRHMA−Mを得た。全還流比、粗RHMA類及び精製RHMA−M中のホルムアルデヒド濃度の結果を表1に示した。
(Examples 2 to 5)
In Example 1, the reflux time was changed to 8 hours (Example 2), 6 hours (Example 3), 5 hours (Example 4) or 4 hours (Example 5), and the polymerization inhibitor was dibutyldithiocarbamic acid. RHMA-M was obtained in the same manner as in Example 1 except that it was changed to copper (Example 2) and 2,2,6,6-tetramethylpiperidino free radical (TEMPO) (Example 3). The results of formaldehyde concentration in the total reflux ratio, crude RHMAs and purified RHMA-M are shown in Table 1.

(実施例6)
実施例1において、還流時の圧力を40hPa(30mmHg)に、時間を10時間に変更した以外は実施例1と同様にしてRHMA−Mを得た。全還流比、粗RHMA類及び精製RHMA−M中のホルムアルデヒド濃度の結果を表1に示した。
(Example 6)
In Example 1, RHMA-M was obtained in the same manner as in Example 1 except that the pressure during reflux was changed to 40 hPa (30 mmHg) and the time was changed to 10 hours. The results of formaldehyde concentration in the total reflux ratio, crude RHMAs and purified RHMA-M are shown in Table 1.

(比較例1(粗RHMA類の精製))
合成例1で得られた粗RHMA類の分別蒸留を行い、塔頂温度86〜87℃/13.3hPa(10mmHg)の留分である2−ヒドロキシメチルアクリル酸メチル(以下「RHMA−M」という)418gが得られたが、このRHMA−M中のホルムアルデヒド濃度は2260ppmであった。この目的物を得た際の精留時のボトム温度は93.5〜110℃であった。
(Comparative Example 1 (Purification of crude RHMAs))
The crude RHMAs obtained in Synthesis Example 1 were subjected to fractional distillation, and methyl 2-hydroxymethyl acrylate (hereinafter referred to as “RHMA-M”), which is a fraction having a tower top temperature of 86 to 87 ° C./13.3 hPa (10 mmHg). 418 g was obtained, and the formaldehyde concentration in this RHMA-M was 2260 ppm. The bottom temperature during rectification when this target product was obtained was 93.5 to 110 ° C.

Figure 2009084320
Figure 2009084320

上述した実施例及び比較例から、本発明の数値範囲の臨界的意義については、次のようにいえることがわかった。すなわち、本発明の製造方法により、α−ヒドロキシメチルアクリレートのホルムアルデヒド含有量を200ppm未満とすることができ、本発明の有利な効果を発揮し、それが顕著であることがわかった。 From the examples and comparative examples described above, it was found that the critical significance of the numerical range of the present invention can be said as follows. That is, it was found that the formaldehyde content of α-hydroxymethyl acrylate can be less than 200 ppm by the production method of the present invention, and the advantageous effects of the present invention are exhibited, which is remarkable.

数値範囲の上限の技術的意義については、実施例5が180ppmで上限値より低い値である。実施例5では、各種化学品・医薬品原料として好適なα−ヒドロキシメチルアクリレート化合物類の製品が製造可能であるレベルである。このような効果、つまり各種化学品・医薬品原料として使用することができるα−ヒドロキシメチルアクリレート化合物類の製品を工業化することが可能であるという効果は、際立ったものであるということはいうまでもない。実施例1〜4及び実施例6では、ホルムアルデヒド含有量を更に低いレベルとしているが、これらの実施例においては、更に本発明の効果が顕著に現れることになる。 Regarding the technical significance of the upper limit of the numerical range, Example 5 is 180 ppm, which is lower than the upper limit. In Example 5, it is a level which can manufacture the product of (alpha) -hydroxymethyl acrylate compounds suitable as various chemicals and a pharmaceutical raw material. It goes without saying that such an effect, that is, the effect that it is possible to industrialize products of α-hydroxymethyl acrylate compounds that can be used as various chemicals and pharmaceutical raw materials is remarkable. Absent. In Examples 1 to 4 and Example 6, the formaldehyde content is set to a lower level. However, in these Examples, the effect of the present invention appears more remarkably.

なお、上述した実施例及び比較例では、RHMA類として2−ヒドロキシメチルアクリル酸メチルを調製しているが、アクリル酸エステルとホルムアルデヒドとを触媒存在下で反応させて調製されるRHMA類である限り、重合体を形成するために供される単量体、各種化学品・医薬品の中間体や製造原料等として用いることができるようなものであれば、ホルムアルデヒドやホルムアルデヒド除去成分等の不純物を含有することにより重合性の低下、着色等の問題を生じさせる機構は同様である。したがって、RHMA類であればすべて、本発明の精製条件において同様の優れた効果を有することは確実であるといえる。少なくとも、一般式(1)で示されたRHMA類においては、上述した実施例及び比較例で充分に本発明の有利な効果が立証され、本発明の技術的意義が裏付けられている。 In Examples and Comparative Examples described above, methyl 2-hydroxymethyl acrylate is prepared as RHMAs. However, as long as the RHMAs are prepared by reacting an acrylate ester with formaldehyde in the presence of a catalyst. It contains impurities such as formaldehyde and formaldehyde-removing components as long as it can be used as a monomer provided to form a polymer, an intermediate for various chemicals and pharmaceuticals, or a raw material for production. The mechanism for causing problems such as a decrease in polymerization and coloring is the same. Therefore, it can be said that all RHMAs have the same excellent effect under the purification conditions of the present invention. At least, in the RHMAs represented by the general formula (1), the advantageous effects of the present invention are sufficiently demonstrated by the above-described Examples and Comparative Examples, and the technical significance of the present invention is supported.

Claims (6)

アクリル酸エステルとホルムアルデヒドとを触媒存在下で反応させる工程を含むことによりα−ヒドロキシメチルアクリレート化合物類を製造する方法であって、
該製造方法は、反応工程から得られる粗生成物を減圧下で蒸気とし、液化されたものを実質的に全て還流する精製工程を有し、ホルムアルデヒド含有量を200ppm未満とすることを特徴とするα−ヒドロキシメチルアクリレート化合物類の製造方法。
A method for producing α-hydroxymethyl acrylate compounds by including a step of reacting an acrylate ester with formaldehyde in the presence of a catalyst,
The production method has a purification step in which the crude product obtained from the reaction step is vaporized under reduced pressure, and substantially all of the liquefied product is refluxed, and the formaldehyde content is less than 200 ppm. A method for producing α-hydroxymethyl acrylate compounds.
前記製造方法は、前記精製工程における積算蒸気量をVとし、前記精製工程への粗生成物の仕込み量をBとすると、全還流比がV/Bによって求められ、該全還流比が0.5以上となるように前記精製工程を行うことを特徴とする請求項1に記載のα−ヒドロキシメチルアクリレート化合物類の製造方法。 In the production method, assuming that the cumulative vapor amount in the purification step is V and the amount of the crude product charged into the purification step is B, the total reflux ratio is obtained by V / B, and the total reflux ratio is 0.00. The method for producing an α-hydroxymethyl acrylate compound according to claim 1, wherein the purification step is performed so as to be 5 or more. アクリル酸エステルとホルムアルデヒドとを触媒存在下で反応させる工程を含むことによりα−ヒドロキシメチルアクリレート化合物類を製造する方法であって、
該製造方法は、反応工程から得られる粗生成物を吸着剤で処理する精製工程を有し、ホルムアルデヒド含有量を200ppm未満とすることを特徴とするα−ヒドロキシメチルアクリレート化合物類の製造方法。
A method for producing α-hydroxymethyl acrylate compounds by including a step of reacting an acrylate ester with formaldehyde in the presence of a catalyst,
This manufacturing method has the refinement | purification process which processes the crude product obtained from a reaction process with adsorption agent, Formaldehyde content shall be less than 200 ppm, The manufacturing method of alpha-hydroxymethyl acrylate compounds characterized by the above-mentioned.
前記製造方法は、前記精製工程の後に、更に蒸留による精製工程を有することによって、ホルムアルデヒド含有量を200ppm未満とすることを特徴とする請求項1〜3のいずれかに記載のα−ヒドロキシメチルアクリレート化合物類の製造方法。 The α-hydroxymethyl acrylate according to any one of claims 1 to 3, wherein the production method further comprises a purification step by distillation after the purification step, so that the formaldehyde content is less than 200 ppm. Method for producing compounds. 請求項1〜4のいずれかに記載の製造方法により得られたことを特徴とするα−ヒドロキシメチルアクリレート化合物類。 Α-Hydroxymethyl acrylate compounds obtained by the production method according to claim 1. 下記一般式(1);
Figure 2009084320
(式中、Rは、炭素数1〜18のアルキル基、炭素数4〜12のシクロアルキル基、又は、炭素数6〜12のアリール基を表し、鎖状であっても分岐状であってもよい。)で表される化合物を含んでなるα−ヒドロキシメチルアクリレート化合物類であって、
該α−ヒドロキシメチルアクリレート化合物類は、ホルムアルデヒド含有量が200ppm未満であり、且つ、ホルムアルデヒド除去成分を実質的に含有しないことを特徴とするα−ヒドロキシメチルアクリレート化合物類。
The following general formula (1);
Figure 2009084320
(In the formula, R represents an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 4 to 12 carbon atoms, or an aryl group having 6 to 12 carbon atoms. Α-hydroxymethyl acrylate compounds comprising a compound represented by:
The α-hydroxymethyl acrylate compounds have a formaldehyde content of less than 200 ppm and substantially do not contain a formaldehyde removing component.
JP2009547951A 2007-12-27 2008-10-31 α-Hydroxymethyl acrylate compounds and process for producing the same Active JP5596978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009547951A JP5596978B2 (en) 2007-12-27 2008-10-31 α-Hydroxymethyl acrylate compounds and process for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007335739 2007-12-27
JP2007335739 2007-12-27
JP2009547951A JP5596978B2 (en) 2007-12-27 2008-10-31 α-Hydroxymethyl acrylate compounds and process for producing the same
PCT/JP2008/069957 WO2009084320A1 (en) 2007-12-27 2008-10-31 Α-hydroxymethyl acrylate compounds and method of producing the same

Publications (2)

Publication Number Publication Date
JPWO2009084320A1 true JPWO2009084320A1 (en) 2011-05-12
JP5596978B2 JP5596978B2 (en) 2014-10-01

Family

ID=40824043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009547951A Active JP5596978B2 (en) 2007-12-27 2008-10-31 α-Hydroxymethyl acrylate compounds and process for producing the same

Country Status (3)

Country Link
JP (1) JP5596978B2 (en)
CN (1) CN101910105B (en)
WO (1) WO2009084320A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6034220B2 (en) * 2013-02-27 2016-11-30 株式会社日本触媒 Method for producing α-substituted acrylates
CN106397182A (en) * 2016-08-31 2017-02-15 江苏三蝶化工有限公司 Polymerization inhibitor for preparation apparatus of acrylic acid
CN109704962A (en) * 2018-12-26 2019-05-03 温州大学 A kind of more acrylate monomers of water soluble polyhydroxy and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3053499B2 (en) * 1992-08-31 2000-06-19 大塚化学株式会社 1,2,3,4-butanetetracarboxylic acid hydrazide
JPH08183755A (en) * 1994-12-28 1996-07-16 Mitsubishi Rayon Co Ltd Production of alpha-hydroxymethyl acrylate compound
JPH1053547A (en) * 1996-08-09 1998-02-24 Nippon Shokubai Co Ltd Purification of hydroxyl group-containing vinyl compound

Also Published As

Publication number Publication date
JP5596978B2 (en) 2014-10-01
WO2009084320A1 (en) 2009-07-09
CN101910105A (en) 2010-12-08
CN101910105B (en) 2015-08-05

Similar Documents

Publication Publication Date Title
US7368602B2 (en) Process for producing (meth) acrylic acid
JP5506700B2 (en) Process for producing (meth) acrylate of C10-alcohol mixture
JP5448830B2 (en) Manufacturing method and storage method of (meth) acrylic anhydride, and manufacturing method of (meth) acrylic acid ester
EP1749812B1 (en) Process for producing easily polymerizable compound with a polymerization inhibitor
JP5368673B2 (en) Method for producing (meth) acrylic acid
JP5596978B2 (en) α-Hydroxymethyl acrylate compounds and process for producing the same
SA08290304B1 (en) Method for producing (meth)acrylic acid
JP2005239564A (en) Method for producing (meth)acrylic ester
JP2012515751A (en) Method for purifying azeotropic fraction generated during synthesis of N, N-dimethylaminoethyl acrylate
JP4442845B2 (en) Resist monomer and purification method thereof
JP2006519257A5 (en)
JP2000281617A (en) Purification of acrylic acid
JP4567362B2 (en) Production method of (meth) acrylic acid ester
EP1284256A1 (en) Process of the preparation of high-purity alkyladamantyl esters
CN113348162A (en) Method for purifying (meth) acrylic esters using a dividing wall column
JP2006176419A (en) Method for producing bisphenol monoester
JP4050187B2 (en) (Meth) acrylic acid collection method
KR101346370B1 (en) Effective preparation method for (meth)acrylate
JP2023128008A (en) Method for producing methacrylate
JP5249287B2 (en) Production method of (meth) acrylic acid ester
JP2022147037A (en) Method for producing methacrylate
JP5608046B2 (en) Purification method of aldehyde
JP2022528886A (en) Production of polymer grade acrylic acid
JP2002155021A (en) Polymerization inhibitor composition for vinyl monomer and method for producing high-purity (meth)acrylic acid
JP2017088607A (en) Method for purifying furfuryl methacrylate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140808

R150 Certificate of patent or registration of utility model

Ref document number: 5596978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150