JPWO2009044856A1 - Electrode for electric double layer capacitor and method for manufacturing the same - Google Patents
Electrode for electric double layer capacitor and method for manufacturing the same Download PDFInfo
- Publication number
- JPWO2009044856A1 JPWO2009044856A1 JP2009536103A JP2009536103A JPWO2009044856A1 JP WO2009044856 A1 JPWO2009044856 A1 JP WO2009044856A1 JP 2009536103 A JP2009536103 A JP 2009536103A JP 2009536103 A JP2009536103 A JP 2009536103A JP WO2009044856 A1 JPWO2009044856 A1 JP WO2009044856A1
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- active material
- granulated particles
- electric double
- double layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 62
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 238000000034 method Methods 0.000 title description 63
- 239000011361 granulated particle Substances 0.000 claims abstract description 82
- 239000007772 electrode material Substances 0.000 claims abstract description 75
- 239000011230 binding agent Substances 0.000 claims abstract description 49
- 239000002482 conductive additive Substances 0.000 claims abstract description 41
- 239000011149 active material Substances 0.000 claims abstract description 35
- 239000011246 composite particle Substances 0.000 claims abstract description 25
- 238000000465 moulding Methods 0.000 claims abstract description 25
- 238000010030 laminating Methods 0.000 claims abstract description 8
- 239000000835 fiber Substances 0.000 claims description 58
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 44
- 229910052782 aluminium Inorganic materials 0.000 claims description 16
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 16
- 238000000576 coating method Methods 0.000 claims description 12
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 12
- 239000002134 carbon nanofiber Substances 0.000 claims description 11
- 239000011248 coating agent Substances 0.000 claims description 10
- 239000002041 carbon nanotube Substances 0.000 claims description 7
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 7
- 239000010410 layer Substances 0.000 description 61
- 239000002245 particle Substances 0.000 description 32
- 239000002270 dispersing agent Substances 0.000 description 20
- 239000002002 slurry Substances 0.000 description 20
- 239000002904 solvent Substances 0.000 description 18
- 238000005469 granulation Methods 0.000 description 14
- 230000003179 granulation Effects 0.000 description 14
- -1 polytetrafluoroethylene Polymers 0.000 description 14
- 239000000853 adhesive Substances 0.000 description 13
- 230000001070 adhesive effect Effects 0.000 description 13
- 229920000642 polymer Polymers 0.000 description 11
- 238000001694 spray drying Methods 0.000 description 11
- 238000005507 spraying Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 239000000654 additive Substances 0.000 description 8
- 239000012752 auxiliary agent Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 229920001577 copolymer Polymers 0.000 description 8
- 150000001993 dienes Chemical class 0.000 description 8
- 239000003960 organic solvent Substances 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000006230 acetylene black Substances 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 7
- 239000008151 electrolyte solution Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 229910021387 carbon allotrope Inorganic materials 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 229920000049 Carbon (fiber) Polymers 0.000 description 5
- 150000003863 ammonium salts Chemical class 0.000 description 5
- 239000004917 carbon fiber Substances 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 239000001768 carboxy methyl cellulose Substances 0.000 description 4
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 4
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 235000019441 ethanol Nutrition 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 description 3
- JHPBZFOKBAGZBL-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylprop-2-enoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)=C JHPBZFOKBAGZBL-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004962 Polyamide-imide Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 125000005907 alkyl ester group Chemical group 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 238000007600 charging Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010280 constant potential charging Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000010556 emulsion polymerization method Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 239000006232 furnace black Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920002312 polyamide-imide Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 239000002964 rayon Substances 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 229920003026 Acene Polymers 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical class NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SUAKHGWARZSWIH-UHFFFAOYSA-N N,N‐diethylformamide Chemical compound CCN(CC)C=O SUAKHGWARZSWIH-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000005233 alkylalcohol group Chemical group 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical class C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920003174 cellulose-based polymer Polymers 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000012674 dispersion polymerization Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000007909 melt granulation Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 229940117841 methacrylic acid copolymer Drugs 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000001254 oxidized starch Substances 0.000 description 1
- 235000013808 oxidized starch Nutrition 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000010558 suspension polymerization method Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/0029—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
- H01G11/28—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/36—Nanostructures, e.g. nanofibres, nanotubes or fullerenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/38—Carbon pastes or blends; Binders or additives therein
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
本発明は、内部抵抗が十分に低減され、大電力での高速充放電に適したキャパシタを得ることができる電気二重層キャパシタ用電極を提供することを目的としている。本発明に係る電気二重層キャパシタ用電極は、電極活物質、導電助剤および結着剤を含む造粒粒子、を含有する電極材料を成形してなる活物質層と、集電体とが積層されてなり、前記電極材料が、さらに繊維状導電助剤を前記造粒粒子の外部に含有することを特徴としている。かかる電気二重層キャパシタ用電極は、電極活物質、導電助剤、および結着剤、を造粒して造粒粒子を得る工程、該造粒粒子の表面の少なくとも一部を繊維状導電助剤で被覆して複合粒子を得る工程、該複合粒子を含む電極材料を乾式成形して活物質層を形成する工程、ならびに該活物質層および集電体を積層する工程により製造することができる。An object of the present invention is to provide an electrode for an electric double layer capacitor in which an internal resistance is sufficiently reduced and a capacitor suitable for high-speed charge / discharge with a large power can be obtained. An electrode for an electric double layer capacitor according to the present invention includes an active material layer formed by molding an electrode material containing an electrode active material, a granulated particle containing a conductive additive and a binder, and a current collector laminated. The electrode material further contains a fibrous conductive additive outside the granulated particles. Such an electrode for an electric double layer capacitor comprises a step of granulating an electrode active material, a conductive aid, and a binder to obtain granulated particles, and at least a part of the surface of the granulated particles is a fibrous conductive aid. To obtain composite particles, dry forming an electrode material containing the composite particles to form an active material layer, and laminating the active material layer and a current collector.
Description
本発明は、電気二重層キャパシタ用電極およびその製造方法に関する。より詳しくは、導電性が高く内部抵抗の低い電気二重層キャパシタ用電極を得ることのできる電気化学素子電極およびその製造方法に関する。 The present invention relates to an electrode for an electric double layer capacitor and a manufacturing method thereof. More specifically, the present invention relates to an electrochemical element electrode capable of obtaining an electrode for an electric double layer capacitor having high conductivity and low internal resistance, and a method for producing the same.
近年、電気二重層キャパシタ(以下、単に「キャパシタ」ということがある。)は高速充放電が可能なため高出力用途や回生エネルギー用途において注目を集めており、その用途は拡大しつつある。キャパシタにおいて、内部抵抗の低減は、放電効率や回生エネルギー効率を向上させるための重要な課題である。 In recent years, electric double layer capacitors (hereinafter sometimes simply referred to as “capacitors”) are attracting attention in high-power applications and regenerative energy applications because they can be charged and discharged at high speed, and their applications are expanding. In capacitors, reduction of internal resistance is an important issue for improving discharge efficiency and regenerative energy efficiency.
キャパシタの内部抵抗低減のために、電気二重層キャパシタ用電極(以下、単に「電極」ということがある。)内に導電性のネットワーク構造を形成することが提案されている。例えば、電極活物質である活性炭粒子と、導電助剤であるステンレス繊維とを、バインダー(結着剤)と共に混練し、これを集電体にブレードを用いて塗布し、乾燥して電極を得る方法が開示されている(特許文献1参照)。また、活性炭、炭素繊維、および結着剤であるPTFE粉末を混練して粘土状とし、これをプレスしてシート状の電極を得る方法が開示されている(特許文献2参照)。これらの方法は、導電助剤として繊維状のものを用いることで、電極内により多くの導電パスを形成するものである。 In order to reduce the internal resistance of a capacitor, it has been proposed to form a conductive network structure in an electrode for an electric double layer capacitor (hereinafter sometimes simply referred to as “electrode”). For example, activated carbon particles, which are electrode active materials, and stainless fibers, which are conductive assistants, are kneaded together with a binder (binder), applied to a current collector using a blade, and dried to obtain an electrode. A method is disclosed (see Patent Document 1). In addition, a method is disclosed in which activated carbon, carbon fiber, and PTFE powder as a binder are kneaded to form a clay and pressed to obtain a sheet-like electrode (see Patent Document 2). In these methods, more conductive paths are formed in the electrode by using a fibrous material as the conductive assistant.
また、電極活物質、導電助剤および結着剤を含有し、かつ外層部と内層部からなり、該外層部に導電助剤が偏在した構造を有する複合粒子を用いることも提案されている(特許文献3参照)。この複合粒子は加圧成形時に変形し難いため、これを用いて得られる電極は、粒子構造が維持され、導電助剤によるネットワークが維持される。 It has also been proposed to use composite particles that contain an electrode active material, a conductive aid, and a binder, and that have a structure in which a conductive aid is unevenly distributed in the outer layer portion. (See Patent Document 3). Since the composite particles are difficult to be deformed at the time of pressure molding, the electrode structure obtained by using the composite particles maintains the particle structure and maintains a network of conductive assistants.
しかしながら、上記文献記載の方法では、なお十分に内部抵抗を低減できない場合があった。本発明は上記事情に鑑みてなされたもので、その目的は、内部抵抗が十分に低減され、大電力での高速充放電に適したキャパシタを得ることができる電気二重層キャパシタ用電極を提供することにある。 However, in the method described in the above document, the internal resistance may not be sufficiently reduced. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an electrode for an electric double layer capacitor in which the internal resistance is sufficiently reduced and a capacitor suitable for high-speed charge / discharge at high power can be obtained. There is.
本発明者は鋭意検討した結果、電極活物質、導電助剤および結着剤を含む造粒粒子の表面の少なくとも一部を繊維状導電助剤で被覆してなる複合粒子を用いることで、上記課題を解決できることを見出し、この知見に基づき本発明を完成させるに至った。 As a result of intensive studies, the present inventor used the composite particles obtained by coating at least a part of the surface of the granulated particles containing the electrode active material, the conductive assistant and the binder with a fibrous conductive assistant. The present inventors have found that the problem can be solved, and have completed the present invention based on this knowledge.
かくして本発明によれば、下記(1)〜(6)が提供される。
(1)電極活物質、導電助剤、および結着剤を含む造粒粒子を含有する電極材料を成形してなる活物質層と、集電体とが積層されてなり、
前記電極材料が、さらに繊維状導電助剤を前記造粒粒子の外部に含有することを特徴とする電気二重層キャパシタ用電極。Thus, according to the present invention, the following (1) to (6) are provided.
(1) An active material layer formed by molding an electrode material containing granulated particles containing an electrode active material, a conductive additive, and a binder, and a current collector are laminated,
The electrode material for an electric double layer capacitor, wherein the electrode material further contains a fibrous conductive additive outside the granulated particles.
(2)繊維状導電助剤がアルミ繊維、ステンレス繊維、カーボンナノファイバーおよびカーボンナノチューブから選ばれる少なくとも一種である前記(1)記載の電気二重層キャパシタ用電極。 (2) The electrode for an electric double layer capacitor according to (1), wherein the fibrous conductive additive is at least one selected from aluminum fibers, stainless fibers, carbon nanofibers, and carbon nanotubes.
(3)電極活物質、導電助剤および結着剤を造粒して造粒粒子を得る工程、
該造粒粒子および繊維状導電助剤を混合して前記造粒粒子の外部に繊維状導電助剤を含む電極材料を得る工程、
該電極材料を乾式成形して活物質層を形成する工程、ならびに
該活物質層および集電体を積層する工程、
を有する前記(1)記載の電気二重層キャパシタ用電極の製造方法。(3) a step of granulating an electrode active material, a conductive additive and a binder to obtain granulated particles;
Mixing the granulated particles and a fibrous conductive additive to obtain an electrode material containing a fibrous conductive aid outside the granulated particles;
A step of dry-molding the electrode material to form an active material layer, and a step of laminating the active material layer and a current collector,
The manufacturing method of the electrode for electric double layer capacitors as described in said (1) which has these.
(4)電極活物質、導電助剤および結着剤を造粒して造粒粒子を得る工程、
該造粒粒子の表面の少なくとも一部を繊維状導電助剤で被覆して複合粒子を得る工程、
該複合粒子を含む電極材料を乾式成形して活物質層を形成する工程、ならびに
該活物質層および集電体を積層する工程、
を有する前記(1)記載の電気二重層キャパシタ用電極の製造方法。(4) a step of granulating an electrode active material, a conductive additive and a binder to obtain granulated particles;
A step of coating at least a part of the surface of the granulated particles with a fibrous conductive aid to obtain composite particles;
A step of dry-molding an electrode material containing the composite particles to form an active material layer, and a step of laminating the active material layer and a current collector,
The manufacturing method of the electrode for electric double layer capacitors as described in said (1) which has these.
(5)前記(1)または(2)に記載の電気二重層キャパシタ用電極を有する電気二重層キャパシタ。 (5) An electric double layer capacitor having the electric double layer capacitor electrode according to (1) or (2).
本発明の電気二重層キャパシタ用電極は、造粒粒子間に導電ネットワーク構造が構築されているので、これを用いて得られる電気二重層キャパシタは、内部抵抗が十分に低減される。また、該電極は、乾式成形により製造することができるので、生産性に優れる。 In the electrode for an electric double layer capacitor of the present invention, a conductive network structure is constructed between the granulated particles, and thus the electric resistance of the electric double layer capacitor obtained by using this is sufficiently reduced. Moreover, since this electrode can be manufactured by dry molding, it is excellent in productivity.
本発明の電気二重層キャパシタ用電極は、活物質層と集電体とが積層されてなる電気二重層キャパシタ用電極である。該活物質層は、造粒粒子および該造粒粒子の外部に繊維状導電助剤を含有する電極材料を成形してなるものであり、該造粒粒子は、電極活物質、導電助剤および結着剤を含む。 The electrode for an electric double layer capacitor of the present invention is an electrode for an electric double layer capacitor formed by laminating an active material layer and a current collector. The active material layer is formed by molding granulated particles and an electrode material containing a fibrous conductive aid outside the granulated particles, and the granulated particles comprise an electrode active material, a conductive aid and Contains a binder.
<電極活物質>
本発明に用いる電極活物質としては、通常、炭素の同素体が用いられる。電極活物質は、同じ質量でもより広い面積の界面を形成することが可能な、比表面積の大きいものが好ましい。具体的には、比表面積は30m2/g以上、好ましくは500〜5,000m2/g、より好ましくは1,000〜3,000m2/gの範囲である。炭素の同素体の具体例としては、活性炭、ポリアセン、カーボンウィスカおよびグラファイト等が挙げられ、これらの粉末または繊維を使用することができる。電気二重層キャパシタ用の好ましい電極活物質は活性炭であり、具体的にはフェノール系、レーヨン系、アクリル系、ピッチ系、またはヤシガラ系等の活性炭を挙げることができる。これら炭素質物質は、電気二重層キャパシタ用電極活物質として、単独でまたは二種類以上を組み合わせて使用することができる。<Electrode active material>
As the electrode active material used in the present invention, a carbon allotrope is usually used. The electrode active material preferably has a large specific surface area that can form an interface with a larger area even with the same mass. Specifically, a specific surface area of 30 m 2 / g or more, preferably in the range of 500~5,000m 2 / g, more preferably 1,000~3,000m 2 / g. Specific examples of the allotrope of carbon include activated carbon, polyacene, carbon whisker, and graphite, and these powders or fibers can be used. A preferred electrode active material for the electric double layer capacitor is activated carbon, and specific examples include phenol-based, rayon-based, acrylic-based, pitch-based, and coconut shell-based activated carbon. These carbonaceous materials can be used alone or in combination of two or more as an electrode active material for an electric double layer capacitor.
また、電極活物質として、黒鉛類似の微結晶炭素を有し、その微結晶炭素の層間距離が拡大された非多孔性炭素を用いることもできる。このような非多孔性炭素は、多層グラファイト構造の微結晶が発達した易黒鉛化炭を700〜850℃で乾留し、次いで苛性アルカリと共に800〜900℃で熱処理し、さらに必要に応じ加熱水蒸気により残存アルカリ成分を除くことで得られる。 Further, as the electrode active material, non-porous carbon having a microcrystalline carbon similar to graphite and having an increased interlayer distance of the microcrystalline carbon can be used. Such non-porous carbon is obtained by dry-distilling graphitized charcoal with microcrystals of a multilayer graphite structure at 700 to 850 ° C., then heat-treating with caustic at 800 to 900 ° C., and if necessary with heated steam. It is obtained by removing the residual alkali component.
電極活物質の体積平均粒子径は、0.1〜100μm、好ましくは1〜50μm、更に好ましくは3〜35μmである。体積平均粒子径がこの範囲にあると、電極の成形が容易で、容量も高くできるので好ましい。上記した電極活物質は、電気化学素子の種類に応じて、単独でまたは二種類以上を組み合わせて使用することができる。電極活物質を組み合わせて使用する場合は、平均粒子径または粒径分布が異なる二種類以上の電極活物質を組み合わせて使用してもよい。 The volume average particle diameter of the electrode active material is 0.1 to 100 μm, preferably 1 to 50 μm, and more preferably 3 to 35 μm. It is preferable that the volume average particle diameter is in this range because the electrode can be easily molded and the capacity can be increased. The electrode active materials described above can be used alone or in combination of two or more depending on the type of electrochemical element. When the electrode active materials are used in combination, two or more types of electrode active materials having different average particle diameters or particle size distributions may be used in combination.
<結着剤>
本発明に使用される結着剤は、結着力を有する化合物であれば特に制限はない。例えば、フッ素系重合体、ジエン系重合体、アクリレート系重合体、ポリイミド、ポリアミド、ポリウレタン等の高分子化合物が挙げられる。中でも、フッ素系重合体、ジエン系重合体、およびアクリレート系重合体が好ましく、集電体との結着性および得られる電極の内部抵抗の特性のバランスに優れるので、フッ素系重合体がより好ましい。これら結着剤は単独でまたは二種以上を組み合わせて用いることができる。<Binder>
The binder used in the present invention is not particularly limited as long as it is a compound having a binding force. For example, high molecular compounds, such as a fluorine-type polymer, a diene polymer, an acrylate polymer, a polyimide, polyamide, a polyurethane, are mentioned. Of these, fluorine-based polymers, diene-based polymers, and acrylate-based polymers are preferable, and a fluorine-based polymer is more preferable because of excellent balance between the binding property with the current collector and the internal resistance of the resulting electrode. . These binders can be used alone or in combination of two or more.
フッ素系重合体は、フッ素原子を含む単量体単位を含有する重合体である。フッ素系重合体の具体例としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、エチレン・テトラフルオロエチレン共重合体、エチレン・クロロトリフルオロエチレン共重合体、パーフルオロエチレン・プロペン共重合体が挙げられる。中でも、ポリテトラフルオロエチレンを含むことが、フィブリル化して電極活物質を保持しやすいので好ましい。 The fluorine-based polymer is a polymer containing a monomer unit containing a fluorine atom. Specific examples of the fluoropolymer include polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, ethylene / tetrafluoroethylene copolymer, ethylene / chlorotrifluoroethylene copolymer, A perfluoroethylene propene copolymer may be mentioned. Among them, it is preferable to include polytetrafluoroethylene because it is easy to fibrillate and retain the electrode active material.
ジエン系重合体は、共役ジエンの単独重合体もしくは共役ジエンを含む単量体混合物を重合して得られる共重合体、またはそれらの水素添加物である。前記単量体混合物における共役ジエンの割合は通常40質量%以上、好ましくは50質量%以上、より好ましくは60質量%以上である。ジエン系重合体の具体例としては、ポリブタジエンやポリイソプレンなどの共役ジエン単独重合体;カルボキシ変性されていてもよいスチレン・ブタジエン共重合体(SBR)などの芳香族ビニル・共役ジエン共重合体;アクリロニトリル・ブタジエン共重合体(NBR)などのシアン化ビニル・共役ジエン共重合体;水素化SBR、水素化NBR等が挙げられる。 The diene polymer is a homopolymer of a conjugated diene or a copolymer obtained by polymerizing a monomer mixture containing a conjugated diene, or a hydrogenated product thereof. The proportion of the conjugated diene in the monomer mixture is usually 40% by mass or more, preferably 50% by mass or more, more preferably 60% by mass or more. Specific examples of the diene polymer include conjugated diene homopolymers such as polybutadiene and polyisoprene; aromatic vinyl / conjugated diene copolymers such as carboxy-modified styrene / butadiene copolymer (SBR); Examples thereof include vinyl cyanide / conjugated diene copolymers such as acrylonitrile / butadiene copolymer (NBR); hydrogenated SBR, hydrogenated NBR, and the like.
アクリレート系重合体は、アクリル酸エステルもしくはメタクリル酸エステルの単独重合体またはこれらを含む単量体混合物を重合して得られる共重合体である。アクリル酸エステル、メタクリル酸エステルとしては、アルキルエステルを用いることが好ましく、アルキルエステルのアルキル基としては、炭素数が1〜18のものが好ましい。 The acrylate polymer is a copolymer obtained by polymerizing a homopolymer of an acrylic ester or a methacrylic ester or a monomer mixture containing these. As the acrylic ester and methacrylic ester, it is preferable to use an alkyl ester, and the alkyl group of the alkyl ester preferably has 1 to 18 carbon atoms.
本発明に使用される結着剤の形状は、特に限定されないが、結着性の向上、電極の容量の低下、および内部抵抗の増大を最小限に抑えるために、粒子状であることが好ましい。粒子状の結着剤としては、例えば、ラテックスのような結着剤の粒子が溶媒に分散した状態のものや、このような分散液を乾燥して得られる粉末状のものが挙げられる。 The shape of the binder used in the present invention is not particularly limited, but is preferably in the form of particles in order to minimize the increase in binding property, decrease in electrode capacity, and increase in internal resistance. . Examples of the particulate binder include those in which binder particles such as latex are dispersed in a solvent, and powders obtained by drying such a dispersion.
結着剤の形状が粒子状の場合、その粒子径は特に限定されないが、通常は0.001〜100μm、好ましくは0.01〜10μm、より好ましくは0.05〜1μmの体積平均粒子径を有するものである。結着剤の平均粒子径がこの範囲であるときは、少量の結着剤の使用でも優れた結着力を活物質層に与えることができる。 When the shape of the binder is particulate, the particle diameter is not particularly limited, but usually a volume average particle diameter of 0.001 to 100 μm, preferably 0.01 to 10 μm, more preferably 0.05 to 1 μm. It is what you have. When the average particle size of the binder is within this range, an excellent binding force can be imparted to the active material layer even when a small amount of the binder is used.
また、本発明に用いる結着剤の製造方法は特に限定されず、乳化重合法、懸濁重合法、分散重合法または溶液重合法等の公知の重合法を採用することができる。中でも、乳化重合法で製造することが、結着剤の粒子径の制御が容易であるので好ましい。また、本発明に用いる結着剤は、2種以上の単量体混合物を段階的に重合することにより得られるコアシェル構造を有する粒子であっても良い。 Moreover, the manufacturing method of the binder used for this invention is not specifically limited, Well-known polymerization methods, such as an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, or a solution polymerization method, are employable. Among them, it is preferable to produce by an emulsion polymerization method because the particle diameter of the binder is easy to control. Further, the binder used in the present invention may be particles having a core-shell structure obtained by stepwise polymerization of a mixture of two or more monomers.
造粒粒子に含まれる結着剤の量は、電極活物質100質量部に対して、通常は1〜20質量部、好ましくは3〜15質量部の範囲である。 The amount of the binder contained in the granulated particles is usually in the range of 1 to 20 parts by mass, preferably 3 to 15 parts by mass with respect to 100 parts by mass of the electrode active material.
<導電助剤>
造粒粒子に含まれる導電助剤は、導電性を有するものであれば特に限定されない。導電助剤を含む造粒粒子を用いることで、電極形成時に導電助剤を均一に分散でき、得られるキャパシタを内部抵抗の低いものとできる。導電助剤としては、炭素の同素体または金属からなるものが挙げられ、好適には炭素の同素体が用いられる。かかる炭素の同素体は、電気二重層を形成し得る細孔を有さないものであり、具体的には、ファーネスブラック、アセチレンブラック、およびケッチェンブラック(アクゾノーベル ケミカルズ ベスローテン フェンノートシャップ社の登録商標)等の導電性カーボンブラック;天然黒鉛、人造黒鉛等の黒鉛;などの炭素の同素体からなる粒子状導電助剤が挙げられる。また、ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維、気相法炭素繊維等の炭素繊維;などの炭素の同素体からなる繊維状導電助剤も挙げられる。金属からなる導電助剤としては、例えば酸化チタン、酸化ルテニウム、アルミニウム、ニッケル等の粒子状導電助剤;金属ファイバなどの繊維状導電助剤;が挙げられる。これらの中でも、カーボンブラックが好ましく、アセチレンブラックおよびファーネスブラックがより好ましい。<Conductive aid>
The conductive auxiliary agent contained in the granulated particles is not particularly limited as long as it has conductivity. By using granulated particles containing a conductive aid, the conductive aid can be uniformly dispersed during electrode formation, and the resulting capacitor can have a low internal resistance. Examples of the conductive assistant include carbon allotropes or metals, and carbon allotropes are preferably used. Such allotropes of carbon are those that do not have pores that can form an electric double layer. Specifically, furnace black, acetylene black, and ketjen black (registered trademark of Akzo Nobel Chemicals Bethloten Fennaut Shap) And the like, and particulate conductive assistants made of carbon allotropes such as graphite such as natural graphite and artificial graphite. Moreover, the fibrous conductive support agent which consists of carbon allotropes, such as carbon fiber; Examples of conductive assistants made of metal include particulate conductive assistants such as titanium oxide, ruthenium oxide, aluminum, and nickel; and fibrous conductive assistants such as metal fibers. Among these, carbon black is preferable, and acetylene black and furnace black are more preferable.
造粒粒子に含まれる導電助剤の体積平均粒子径は、電極活物質の体積平均粒径よりも小さいものが好ましく、通常0.001〜10μm、好ましくは0.05〜5μm、より好ましくは0.01〜1μmの範囲である。導電助剤の粒径がこの範囲にあると、より少ない使用量で高い導電性が得られる。これらの導電助剤は、それぞれ単独でまたは2種以上を組み合わせて用いることができる。 The volume average particle diameter of the conductive assistant contained in the granulated particles is preferably smaller than the volume average particle diameter of the electrode active material, and is usually 0.001 to 10 μm, preferably 0.05 to 5 μm, more preferably 0. The range is from 0.01 to 1 μm. When the particle size of the conductive assistant is within this range, high conductivity can be obtained with a smaller amount of use. These conductive assistants can be used alone or in combination of two or more.
造粒粒子に含まれる導電助剤の量は、電極活物質100質量部に対して通常0.1〜50質量部、好ましくは0.5〜15質量部、より好ましくは1〜10質量部の範囲である。この範囲の量の導電助剤を含有する複合粒子を用いて電極を形成することによって、キャパシタの容量を高く、かつ内部抵抗を低くすることができる。 The amount of the conductive assistant contained in the granulated particles is usually 0.1 to 50 parts by mass, preferably 0.5 to 15 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the electrode active material. It is a range. By forming the electrode using composite particles containing an amount of the conductive aid in this range, the capacitance of the capacitor can be increased and the internal resistance can be decreased.
<分散剤>
造粒粒子は、上記の他に分散剤を含有していてもよい。分散剤は、溶媒に溶解する樹脂であり、好適には後述するスラリーの調製時に溶媒に溶解させて用いられて、電極活物質、導電助剤等を溶媒に均一に分散させる作用を有するものである。分散剤としては、カルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、および、ヒドロキシプロピルメチルセルロース等のセルロース系ポリマー、ならびにこれらのアンモニウム塩またはアルカリ金属塩;ポリアクリル酸またはポリメタクリル酸のアンモニウム塩またはアルカリ金属塩;ポリビニルアルコール、変性ポリビニルアルコール、ポリエチレンオキシド;ポリビニルピロリドン、ポリカルボン酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、キチン、キトサン誘導体等が挙げられる。これらの分散剤は、それぞれ単独でまたは2種以上を組み合わせて使用できる。
中でも、分散剤としては、セルロース系ポリマーが好ましく、カルボキシメチルセルロースまたはそのアンモニウム塩もしくはアルカリ金属塩が特に好ましい。分散剤の量は、特に限定されないが、電極活物質100質量部に対して、通常は0.1〜10質量部、好ましくは0.5〜5質量部、より好ましくは0.8〜2.5質量部の範囲である。<Dispersant>
In addition to the above, the granulated particles may contain a dispersant. The dispersant is a resin that dissolves in a solvent, and is preferably used by being dissolved in a solvent at the time of preparing a slurry, which will be described later, and has an action of uniformly dispersing an electrode active material, a conductive assistant, and the like in the solvent. is there. Examples of the dispersant include cellulose polymers such as carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxypropylcellulose, and hydroxypropylmethylcellulose, and ammonium salts or alkali metal salts thereof; ammonium salts or alkali metals of polyacrylic acid or polymethacrylic acid Salts: polyvinyl alcohol, modified polyvinyl alcohol, polyethylene oxide; polyvinyl pyrrolidone, polycarboxylic acid, oxidized starch, phosphate starch, casein, various modified starches, chitin, chitosan derivatives and the like. These dispersants can be used alone or in combination of two or more.
Among these, as the dispersant, a cellulose-based polymer is preferable, and carboxymethyl cellulose or its ammonium salt or alkali metal salt is particularly preferable. Although the quantity of a dispersing agent is not specifically limited, Usually, 0.1-10 mass parts with respect to 100 mass parts of electrode active materials, Preferably it is 0.5-5 mass parts, More preferably, 0.8-2. The range is 5 parts by mass.
<その他の添加剤>
造粒粒子は、さらに必要に応じてその他の添加剤を含有していてもよい。その他の添加剤としては、例えば、界面活性剤がある。界面活性剤としては、アニオン性、カチオン性、ノニオン性、およびノニオニックアニオン等の両性の界面活性剤が挙げられるが、中でもアニオン性またはノニオン性の界面活性剤で熱分解しやすいものが好ましい。界面活性剤の量は、特に限定されないが、電極活物質100質量部に対して0〜50質量部、好ましくは0.1〜10質量部、より好ましくは0.5〜5質量部の範囲である。<Other additives>
The granulated particles may further contain other additives as necessary. Examples of other additives include a surfactant. Examples of the surfactant include amphoteric surfactants such as anionic, cationic, nonionic, and nonionic anions. Among them, anionic or nonionic surfactants that are easily thermally decomposed are preferable. . Although the quantity of surfactant is not specifically limited, 0-50 mass parts with respect to 100 mass parts of electrode active materials, Preferably it is 0.1-10 mass parts, More preferably, it is the range of 0.5-5 mass parts. is there.
<造粒粒子の製造方法>
本発明に用いる造粒粒子は、上記した電極活物質、導電助剤、結着剤ならびに必要に応じて添加される分散剤およびその他の添加剤を、造粒して得られる粒子である。造粒粒子の製造方法は特に制限されず、噴霧乾燥造粒法、転動層造粒法、圧縮型造粒法、攪拌型造粒法、押出し造粒法、破砕型造粒法、流動層造粒法、流動層多機能型造粒法、および溶融造粒法などの公知の造粒法により製造することができる。中でも、表面付近に結着剤および導電助剤が偏在した造粒粒子を容易に得られるので、噴霧乾燥造粒法が好ましい。噴霧乾燥造粒法で得られる造粒粒子を用いると、本発明の電極を高い生産性で得ることができる。また、該電極の内部抵抗をより低減することができる。<Method for producing granulated particles>
The granulated particles used in the present invention are particles obtained by granulating the electrode active material, the conductive additive, the binder, and a dispersant and other additives added as necessary. The production method of the granulated particles is not particularly limited, and is a spray drying granulation method, a rolling bed granulation method, a compression granulation method, a stirring granulation method, an extrusion granulation method, a crushing granulation method, a fluidized bed. It can be produced by a known granulation method such as a granulation method, a fluidized bed multifunctional granulation method, or a melt granulation method. Among them, the spray-drying granulation method is preferable because granulated particles in which the binder and the conductive assistant are unevenly distributed near the surface can be easily obtained. When the granulated particles obtained by the spray drying granulation method are used, the electrode of the present invention can be obtained with high productivity. In addition, the internal resistance of the electrode can be further reduced.
<噴霧乾燥造粒法>
噴霧乾燥造粒法では、上記した電極活物質、導電助剤、結着剤ならびに必要に応じて分散剤およびその他の添加剤を溶媒に分散または溶解して、電極活物質、導電助剤、結着剤ならびに必要に応じて分散剤およびその他の添加剤が分散または溶解されてなるスラリーを得る。<Spray drying granulation method>
In the spray-drying granulation method, the electrode active material, the conductive auxiliary agent, the binder, and the electrode active material, the conductive auxiliary agent, the binder are dispersed or dissolved in a solvent as necessary. A slurry is obtained in which the adhering agent and, if necessary, the dispersing agent and other additives are dispersed or dissolved.
スラリーを得るために用いる溶媒は、特に限定されないが、上記の分散剤を用いる場合には、分散剤を溶解可能な溶媒が好適に用いられる。具体的には、通常水が用いられるが、有機溶媒を用いることもできるし、水と有機溶媒との混合溶媒を用いてもよい。有機溶媒としては、例えば、メチルアルコール、エチルアルコール、プロピルアルコール等のアルキルアルコール類;アセトン、メチルエチルケトン等のアルキルケトン類;テトラヒドロフラン、ジオキサン、ジグライム等のエーテル類;ジエチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルイミダゾリジノン等のアミド類;ジメチルスルホキサイド、スルホラン等のイオウ系溶剤;等が挙げられる。この中でも有機溶媒としては、アルコール類が好ましい。水と、水よりも沸点の低い有機溶媒とを併用すると、噴霧乾燥時に、乾燥速度を速くすることができる。また、水と併用する有機溶媒の量または種類によって、結着剤の分散性または分散剤の溶解性が変わる。これにより、スラリーの粘度や流動性を調整することができ、生産効率を向上させることができる。 The solvent used for obtaining the slurry is not particularly limited, but when using the above dispersant, a solvent capable of dissolving the dispersant is preferably used. Specifically, water is usually used, but an organic solvent may be used, or a mixed solvent of water and an organic solvent may be used. Examples of the organic solvent include alkyl alcohols such as methyl alcohol, ethyl alcohol and propyl alcohol; alkyl ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran, dioxane and diglyme; diethylformamide, dimethylacetamide and N-methyl- Amides such as 2-pyrrolidone and dimethylimidazolidinone; sulfur solvents such as dimethyl sulfoxide and sulfolane; and the like. Among these, alcohols are preferable as the organic solvent. When water and an organic solvent having a lower boiling point than water are used in combination, the drying rate can be increased during spray drying. Further, the dispersibility of the binder or the solubility of the dispersant varies depending on the amount or type of the organic solvent used in combination with water. Thereby, the viscosity and fluidity | liquidity of a slurry can be adjusted and production efficiency can be improved.
スラリーを調製するときに使用する溶媒の量は、スラリーの固形分濃度が、通常1〜50質量%、好ましくは5〜50質量%、より好ましくは10〜30質量%の範囲となる量である。固形分濃度がこの範囲にあるときに、結着剤が均一に分散するため好適である。 The amount of the solvent used when preparing the slurry is an amount such that the solid content concentration of the slurry is usually in the range of 1 to 50% by mass, preferably 5 to 50% by mass, more preferably 10 to 30% by mass. . When the solid content concentration is in this range, the binder is preferably dispersed uniformly.
電極活物質、導電助剤、結着剤、分散剤およびその他の添加剤を溶媒に分散または溶解する方法または手順は特に限定されず、例えば、溶媒に電極活物質、導電助剤、結着剤および分散剤を添加し混合する方法、溶媒に分散剤を溶解した後、溶媒に分散させた結着剤(例えば、ラテックス)を添加して混合し、最後に電極活物質および導電助剤を添加して混合する方法、溶媒に分散させた結着剤に電極活物質および導電助剤を添加して混合し、この混合物に溶媒に溶解させた分散剤を添加して混合する方法等が挙げられる。混合の手段としては、例えば、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、ホモミキサー、プラネタリーミキサー等の混合機器が挙げられる。混合は、通常、室温〜80℃の範囲で、10分〜数時間行う。 The method or procedure for dispersing or dissolving the electrode active material, conductive additive, binder, dispersant and other additives in a solvent is not particularly limited. For example, the electrode active material, conductive additive, binder in the solvent Add and mix the dispersant, dissolve the dispersant in the solvent, add the binder (for example, latex) dispersed in the solvent, mix, and finally add the electrode active material and conductive aid And a method in which an electrode active material and a conductive additive are added to a binder dispersed in a solvent and mixed, and a dispersant dissolved in a solvent is added to the mixture and mixed. . Examples of the mixing means include mixing equipment such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a homomixer, and a planetary mixer. Mixing is usually performed in the range of room temperature to 80 ° C. for 10 minutes to several hours.
スラリーの粘度は、室温において、通常10〜3,000mPa・s、好ましくは30〜1,500mPa・s、より好ましくは50〜1,000mPa・sの範囲である。スラリーの粘度がこの範囲にあると、造粒粒子の生産性を上げることができる。また、スラリーの粘度が高いほど、噴霧液滴が大きくなり、得られる造粒粒子の体積平均粒子径が大きくなる。 The viscosity of the slurry is usually in the range of 10 to 3,000 mPa · s, preferably 30 to 1,500 mPa · s, more preferably 50 to 1,000 mPa · s at room temperature. When the viscosity of the slurry is within this range, the productivity of the granulated particles can be increased. Moreover, the higher the viscosity of the slurry, the larger the spray droplets, and the larger the volume average particle diameter of the resulting granulated particles.
次に、上記で得たスラリーを噴霧乾燥して造粒し、造粒粒子を得る。噴霧乾燥は、熱風中にスラリーを噴霧して乾燥することにより行う。スラリーの噴霧に用いる装置としてアトマイザーが挙げられる。アトマイザーは、回転円盤方式と加圧方式との二種類の装置がある。回転円盤方式は、高速回転する円盤のほぼ中央にスラリーを導入し、円盤の遠心力によってスラリーが円盤の外に放たれ、その際にスラリーを霧状にする方式である。円盤の回転速度は円盤の大きさに依存するが、通常は5,000〜30,000rpm、好ましくは15,000〜30,000rpmである。円盤の回転速度が低いほど、噴霧液滴が大きくなり、得られる造粒粒子の体積平均粒子径が大きくなる。回転円盤方式のアトマイザーとしては、ピン型とベーン型が挙げられるが、好ましくはピン型アトマイザーである。ピン型アトマイザーは、噴霧盤を用いた遠心式の噴霧装置の一種であり、該噴霧盤が上下取付円板の間にその周縁に沿ったほぼ同心円上に着脱自在に複数の噴霧用コロを取り付けたもので構成されている。スラリーは噴霧盤中央から導入され、遠心力によって噴霧用コロに付着し、コロ表面を外側へと移動し、最後にコロ表面から離れ噴霧される。一方、加圧方式は、スラリーを加圧してノズルから霧状にして乾燥する方式である。 Next, the slurry obtained above is spray-dried and granulated to obtain granulated particles. Spray drying is performed by spraying the slurry in hot air and drying. An atomizer is used as an apparatus used for spraying slurry. There are two types of atomizers: a rotating disk method and a pressure method. The rotating disk system is a system in which slurry is introduced almost at the center of a disk that rotates at a high speed, and the slurry is released out of the disk by the centrifugal force of the disk, and the slurry is atomized at that time. The rotational speed of the disc depends on the size of the disc, but is usually 5,000 to 30,000 rpm, preferably 15,000 to 30,000 rpm. The lower the rotational speed of the disk, the larger the spray droplets and the larger the volume average particle diameter of the resulting granulated particles. Examples of the rotating disk type atomizer include a pin type and a vane type, and a pin type atomizer is preferable. A pin-type atomizer is a type of centrifugal spraying device that uses a spraying plate, and the spraying plate has a plurality of spraying rollers removably mounted on a concentric circle along its periphery between upper and lower mounting disks. It consists of The slurry is introduced from the center of the spray platen, adheres to the spraying roller by centrifugal force, moves outside the roller surface, and finally sprays away from the roller surface. On the other hand, the pressurization method is a method in which the slurry is pressurized and sprayed from a nozzle to be dried.
噴霧されるスラリーの温度は、通常は室温であるが、加温して室温以上にしたものであってもよい。また、噴霧乾燥時の熱風温度は、通常80〜250℃、好ましくは100〜200℃である。噴霧乾燥において、熱風の吹き込み方法は特に制限されず、例えば、熱風と噴霧方向が横方向に並流する方式、乾燥塔頂部で噴霧され熱風と共に下降する方式、噴霧した滴と熱風が向流接触する方式、噴霧した滴が最初熱風と並流し次いで重力落下して向流接触する方式等が挙げられる。 The temperature of the slurry to be sprayed is usually room temperature, but may be heated to room temperature or higher. Moreover, the hot air temperature at the time of spray-drying is 80-250 degreeC normally, Preferably it is 100-200 degreeC. In spray drying, the method of blowing hot air is not particularly limited, for example, a method in which the hot air and the spray direction flow in the horizontal direction, a method in which the hot air is sprayed at the top of the drying tower and descends with the hot air, and the sprayed droplets and hot air are in countercurrent contact. And a system in which sprayed droplets first flow in parallel with hot air and then drop by gravity to make countercurrent contact.
上記の噴霧乾燥により、造粒粒子が得られる。該造粒粒子の体積平均粒子径は、通常1〜500μm、好ましくは5〜300μm、より好ましくは10〜100μm、最も好ましくは20〜75μmの範囲である。ここで、造粒粒子の体積平均粒子径は、レーザ回折式粒度分布測定装置を用いて造粒粒子を圧搾空気により加圧噴霧して測定される体積平均粒子径である。 Granulated particles are obtained by spray drying. The volume average particle diameter of the granulated particles is usually 1 to 500 μm, preferably 5 to 300 μm, more preferably 10 to 100 μm, and most preferably 20 to 75 μm. Here, the volume average particle size of the granulated particles is a volume average particle size measured by spraying the granulated particles with compressed air using a laser diffraction particle size distribution measuring device.
<繊維状導電助剤>
本発明の電極の製造に用いられる電極材料は、上記の造粒粒子に加え、該造粒粒子の外部に繊維状導電助剤を含有する。ここで「外部に」とは、繊維状導電助剤が造粒粒子と別個に存在するか、または造粒粒子の表面に付着していることを表わし、造粒粒子内部に取り込まれている状態を含まない。ただし、「外部に」とは、繊維状導電助剤の大部分が、造粒粒子と別個に存在又は造粒粒子の表面に付着していればよく、少量の繊維状導電助剤が造粒粒子の内部に取り込まれている状態を、排除するものではない。すなわち、前記造粒粒子の製造において、造粒粒子の内部に取り込まれる導電助剤として繊維状のものを用いることもできるが、その場合でもかかる導電助剤以外にさらに繊維状導電助剤を外部に含有していることを表わす。<Fibrous conductive auxiliary>
The electrode material used for manufacturing the electrode of the present invention contains a fibrous conductive additive outside the granulated particles in addition to the granulated particles. Here, “externally” means that the fibrous conductive auxiliary agent is present separately from the granulated particles or attached to the surface of the granulated particles, and is taken into the granulated particles. Not included. However, “externally” means that a large part of the fibrous conductive additive is present separately from the granulated particles or adhering to the surface of the granulated particles. It does not exclude the state of being taken inside the particles. That is, in the production of the granulated particles, a fibrous material can be used as the conductive auxiliary agent incorporated into the granulated particles, but even in this case, a fibrous conductive auxiliary agent is further added to the outside in addition to the conductive auxiliary agent. Indicates that it is contained in
繊維状導電助剤は、繊維状であり導電性を有するものであれば限定されないが、ステンレス繊維、アルミ繊維、ニッケル繊維、鉄繊維、銅繊維などの金属繊維;ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維、気相法炭素繊維、カーボンナノファイバー、カーボンナノチューブなどの炭素繊維;が好ましい。これらの繊維状導電助剤は2種類以上を併用することもできる。中でも、耐電圧、耐電解液性に優れ導電性も高くできる点で、アルミ繊維、ステンレス繊維、カーボンナノファイバー、およびカーボンナノチューブが好ましく、アルミ繊維およびカーボンナノファイバーがより好ましい。 The fibrous conductive auxiliary agent is not limited as long as it is fibrous and has conductivity, but metal fibers such as stainless fiber, aluminum fiber, nickel fiber, iron fiber, copper fiber; polyacrylonitrile-based carbon fiber, pitch-based fiber Carbon fibers such as carbon fibers, vapor grown carbon fibers, carbon nanofibers, and carbon nanotubes are preferred. Two or more kinds of these fibrous conductive assistants can be used in combination. Of these, aluminum fibers, stainless steel fibers, carbon nanofibers, and carbon nanotubes are preferable, and aluminum fibers and carbon nanofibers are more preferable because they are excellent in voltage resistance and electrolyte resistance and can have high conductivity.
繊維状導電助剤の繊維径は、通常0.4nm〜150μm、好ましくは10nm〜100μm、より好ましくは10nm〜20μm、特に好ましくは10nm〜200nmである。また、繊維長は、通常1μm〜2,000μm、好ましくは5μm〜1500μm、より好ましくは10μm〜1,000μm、特に好ましくは100μm〜700μmである。また、繊維状導電助剤のアスペクト比(繊維長:繊維径)は、通常4:1〜15000:1であり、特に繊維状導電助剤がアルミ繊維である場合は好ましくは7:1〜12000:1、繊維状導電助剤がステンレス繊維、カーボンナノファイバー、およびカーボンナノチューブである場合は好ましくは10:1〜10000:1である。繊維長、繊維径およびアスペクト比がこの範囲であると、造粒粒子中に含まれる導電助剤と、繊維状導電助剤との接触に優れ、効率的に導電パスを形成することができるので、内部抵抗の低い電極を得ることができる。ここで、繊維径及び繊維長は、走査型電子顕微鏡(SEM)で観察を行ったときに、任意に選んだ10本の繊維状導電助剤についての繊維径と繊維長との平均値である。 The fiber diameter of the fibrous conductive additive is usually 0.4 nm to 150 μm, preferably 10 nm to 100 μm, more preferably 10 nm to 20 μm, and particularly preferably 10 nm to 200 nm. The fiber length is usually 1 μm to 2,000 μm, preferably 5 μm to 1500 μm, more preferably 10 μm to 1,000 μm, and particularly preferably 100 μm to 700 μm. Further, the aspect ratio (fiber length: fiber diameter) of the fibrous conductive assistant is usually 4: 1 to 15000: 1, and particularly preferably 7: 1 to 12000 when the fibrous conductive assistant is an aluminum fiber. 1: When the fibrous conductive additive is stainless fiber, carbon nanofiber, and carbon nanotube, it is preferably 10: 1 to 10000: 1. When the fiber length, fiber diameter, and aspect ratio are within this range, the conductive aid contained in the granulated particles is excellent in contact with the fibrous conductive aid, and a conductive path can be efficiently formed. An electrode with low internal resistance can be obtained. Here, the fiber diameter and the fiber length are average values of the fiber diameter and the fiber length for 10 arbitrarily selected fibrous conductive assistants when observed with a scanning electron microscope (SEM). .
繊維状導電助剤の量は、造粒粒子100質量部に対して通常0.1〜50質量部、好ましくは0.5〜15質量部、より好ましくは1〜10質量部である。繊維状導電助剤の量がこの範囲であると、得られる電極を使用した電気二重層キャパシタの容量を高く且つ内部抵抗を低くすることができる。 The amount of the fibrous conductive additive is usually 0.1 to 50 parts by mass, preferably 0.5 to 15 parts by mass, and more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the granulated particles. When the amount of the fibrous conductive additive is within this range, the capacity of the electric double layer capacitor using the obtained electrode can be increased and the internal resistance can be decreased.
繊維状導電助剤は、その表面が導電性接着剤でコーティングされたものであることが好ましい。導電性接着剤は、導電助剤の粉末と結着剤と、必要に応じ添加される分散剤とを水または有機溶媒中に分散させたものである。導電性接着剤の導電助剤としては、銀、ニッケル、金、黒鉛、アセチレンブラック、ケッチェンブラックが挙げられ、好ましくは黒鉛、アセチレンブラックである。導電性接着剤の結着剤としては、上記本発明の造粒粒子に使用される結着剤として例示したものをいずれも使用できる。また、水ガラス、エポキシ樹脂、ポリアミドイミド樹脂、ウレタン樹脂等も用いることができ、それぞれ単独でまたは2種以上を組み合わせて使用できる。導電性接着剤の結着剤は好ましくは、アクリレート系重合体、カルボキシメチルセルロースのアンモニウム塩またはアルカリ金属塩、水ガラス、ポリアミドイミド樹脂である。また、導電性接着剤の分散剤としては、造粒粒子に使用してもよい分散剤、または界面活性剤を用いることができる。 The fibrous conductive additive is preferably one whose surface is coated with a conductive adhesive. The conductive adhesive is obtained by dispersing a conductive auxiliary powder, a binder, and a dispersant added as necessary in water or an organic solvent. Examples of the conductive assistant for the conductive adhesive include silver, nickel, gold, graphite, acetylene black, and ketjen black, and graphite and acetylene black are preferable. As the binder of the conductive adhesive, any of those exemplified as the binder used in the granulated particles of the present invention can be used. Moreover, water glass, an epoxy resin, a polyamideimide resin, a urethane resin, etc. can also be used, and each can be used individually or in combination of 2 or more types. The binder of the conductive adhesive is preferably an acrylate polymer, an ammonium salt or alkali metal salt of carboxymethyl cellulose, water glass, or polyamideimide resin. Further, as the dispersant for the conductive adhesive, a dispersant that may be used for the granulated particles or a surfactant can be used.
表面をコーティングする方法は導電性接着剤が繊維状導電助剤の表面に接触し得る条件であれば特に限定されない。例えば、導電性接着剤の液中に繊維状導電助剤を添加、混合し、次いで乾燥する方法が挙げられる。また、高速回転羽根混合機(例えば、三井三池社製ヘンシェルミキサー)やオムニミキサーなどの混合機中で導電性接着剤を攪拌しながら、ここに導電性接着剤を噴霧などにより添加し、混合する方法も挙げられる。 The method for coating the surface is not particularly limited as long as the conductive adhesive can be brought into contact with the surface of the fibrous conductive additive. For example, the method of adding and mixing a fibrous conductive support agent in the liquid of a conductive adhesive, and then drying is mentioned. In addition, while stirring the conductive adhesive in a mixer such as a high-speed rotary blade mixer (for example, a Henschel mixer manufactured by Mitsui Miike) or an omni mixer, the conductive adhesive is added thereto by spraying or the like and mixed. A method is also mentioned.
<被覆する工程>
本発明に用いる電極材料において、前記の造粒粒子は、その表面の少なくとも一部を前記繊維状導電助剤で被覆してなる複合粒子として用いることが好ましい。ここで、本発明において「被覆」とは、造粒粒子の表面の少なくとも一部に繊維状導電助剤が付着することを表し、造粒粒子の表面の全体が覆われることは要しない。被覆の方法は特に限定されないが、通常、造粒粒子と繊維状導電助剤とを均一に混合することで被覆することができる。特に、造粒粒子と繊維状導電助剤とを均一に混合でき、かつ混合中に造粒粒子が破壊されないように造粒粒子に強いせん断力がかからない方法で混合することが好ましい。噴霧乾燥により得られる上記の造粒粒子は、粒子表面に結着剤が偏在しているので、混合時のせん断力が弱くても、繊維状導電助剤を造粒粒子に結着させ、表面を被覆することができる。さらに、繊維状導電助剤が造粒粒子表面に結着することで、得られる複合粒子の二次凝集の割合が過大になることを抑制できる。<Coating process>
In the electrode material used in the present invention, the granulated particles are preferably used as composite particles obtained by coating at least a part of the surface with the fibrous conductive additive. Here, in the present invention, “coating” means that the fibrous conductive additive is attached to at least a part of the surface of the granulated particle, and it is not necessary to cover the entire surface of the granulated particle. Although the method of coating is not particularly limited, the coating can be usually performed by uniformly mixing the granulated particles and the fibrous conductive additive. In particular, it is preferable to mix the granulated particles and the fibrous conductive additive by a method that does not apply a strong shearing force to the granulated particles so that the granulated particles are not destroyed during the mixing. Since the above-mentioned granulated particles obtained by spray drying are unevenly distributed on the particle surface, even if the shearing force during mixing is weak, the fibrous conductive additive is bound to the granulated particles, Can be coated. Furthermore, it can suppress that the ratio of the secondary aggregation of the composite particle obtained becomes excessive because a fibrous conductive support agent binds to the granulated particle surface.
具体的な混合方法としては、容器自体が振とう、回転、または振動することで混合される、ロッキングミキサー、タンブラーミキサー等を用いた容器攪拌法;容器内に対し水平、または垂直の回転軸に撹拌のための羽根、回転盤、またはスクリュー等が取り付けられた混合機である、水平円筒型混合機、V型混合機、リボン型混合機、円錐型スクリュー混合機、高速流動型混合機、回転円盤型混合機および高速回転羽根混合機等を用いた機械式撹拌;圧縮気体による旋回気流を利用する、流動層の中で粉体を混合する気流攪拌;等が挙げられる。また、これらの機構は単独あるいは併用して用いられた混合機を使用することもできる。 As a specific mixing method, a container stirring method using a rocking mixer, a tumbler mixer or the like that is mixed by shaking, rotating, or vibrating the container itself; Horizontal cylindrical mixer, V-type mixer, ribbon-type mixer, conical-type screw mixer, high-speed flow-type mixer, rotation, which is a mixer equipped with blades, rotating disk or screw for stirring And mechanical stirring using a disk-type mixer and a high-speed rotating blade mixer; and airflow stirring using a swirling airflow by compressed gas to mix powder in a fluidized bed. These mechanisms can be used alone or in combination.
中でも、生産性の点から、撹拌時間を短縮できるやや強いせん断力のかかる高速回転羽根混合機(ヘンシェルミキサー)、および連続的に被覆処理が可能である気流撹拌が好ましい。高速回転羽根混合機を用いる場合、回転数は通常1,000〜2,500rpmで、好ましくは1,500〜2,000rpmである。回転数がこの範囲にあると、短時間で上記の造粒粒子構造を破壊することなく、表面に繊維状導電助剤が均一に被覆した複合粒子を得ることができる。混合時間は特に限定されないが、好ましくは5〜20分間である。造粒粒子の破壊の有無およびその表面が繊維状導電助剤で被覆されていることは、走査型電子顕微鏡等の観察によって確認できる。 Among these, from the viewpoint of productivity, a high-speed rotary blade mixer (Henschel mixer) that can reduce the stirring time and a slightly strong shear force, and airflow stirring that allows continuous coating treatment are preferable. When using a high-speed rotary blade mixer, the number of rotations is usually 1,000 to 2,500 rpm, preferably 1,500 to 2,000 rpm. When the rotational speed is within this range, composite particles having a surface uniformly coated with a fibrous conductive additive can be obtained without destroying the granulated particle structure in a short time. The mixing time is not particularly limited, but is preferably 5 to 20 minutes. It can be confirmed by observation with a scanning electron microscope or the like that the granulated particles are broken and the surface thereof is coated with the fibrous conductive additive.
上記の方法によれば、表面の少なくとも一部が繊維状導電助剤で被覆された複合粒子を得ることができる。繊維状導電助剤の種類、繊維径、繊維長、量等を調節することで、得られる複合粒子が二次凝集する割合を調節することができる。 According to said method, the composite particle by which at least one part of the surface was coat | covered with the fibrous conductive support agent can be obtained. By adjusting the type, fiber diameter, fiber length, amount, etc. of the fibrous conductive additive, the ratio of secondary aggregation of the obtained composite particles can be adjusted.
本発明に用いられる電極材料は、上記の造粒粒子および繊維状導電助剤を含んでなる。電極材料は、必要に応じて他の結着剤やその他の添加剤を含有していてもよい。必要に応じて含有される他の結着剤としては、前記造粒粒子に用いられる結着剤として挙げたものと同様のものが挙げられる。前記造粒粒子はすでに結着剤を含有しているので、電極材料を調製する際に、別途添加する必要はないが、より結着力を高めるために他の結着剤を、電極材料を調製する際に添加してもよい。電極材料中に含まれる結着剤の総量は、電極活物質100重量部に対して、通常は0.1〜50重量部、好ましくは0.5〜20重量部、より好ましくは1〜10重量部の範囲である。その他の添加剤には、水やアルコールなどの成形助剤等があり、本発明の効果を損なわない量を適宜選択して加えることができる。 The electrode material used in the present invention comprises the above granulated particles and a fibrous conductive additive. The electrode material may contain other binders and other additives as necessary. Examples of the other binder contained as required include the same binders as those used for the granulated particles. Since the granulated particles already contain a binder, it is not necessary to add them separately when preparing the electrode material, but in order to increase the binding power, other binders and electrode materials are prepared. You may add when you do. The total amount of the binder contained in the electrode material is usually 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the electrode active material. Part range. Other additives include molding aids such as water and alcohol, and can be appropriately selected in an amount that does not impair the effects of the present invention.
<電気二重層キャパシタ用電極>
本発明の電気二重層キャパシタ用電極は、上記の電極材料を成形してなる活物質層と集電体とが積層されてなるものである。<Electrode for electric double layer capacitor>
The electrode for an electric double layer capacitor of the present invention is formed by laminating an active material layer formed by molding the above electrode material and a current collector.
<集電体>
電極に使用される集電体用材料としては、例えば、金属、炭素、導電性高分子等を用いることができ、好適には金属が用いられる。集電体用金属としては、通常、アルミニウム、白金、ニッケル、タンタル、チタン、ステンレス鋼、その他合金等が使用される。これらの中で導電性、耐電圧性の面からアルミニウムまたはアルミニウム合金を使用するのが好ましい。また、高い耐電圧性が要求される場合には特開2001−176757号公報等で開示される高純度のアルミニウムを好適に用いることができる。集電体は、フィルムまたはシート状であり、その厚みは、使用目的に応じて適宜選択されるが、通常1〜200μm、好ましくは5〜100μm、より好ましくは10〜60μmである。またシート状集電体は、エキスパンドメタル、パンチングメタル、網状などの空孔を有した形状であってもよい。<Current collector>
As the current collector material used for the electrode, for example, metal, carbon, conductive polymer, and the like can be used, and metal is preferably used. As the current collector metal, aluminum, platinum, nickel, tantalum, titanium, stainless steel, other alloys and the like are usually used. Among these, it is preferable to use aluminum or an aluminum alloy in terms of conductivity and voltage resistance. Further, when high voltage resistance is required, high-purity aluminum disclosed in JP-A-2001-176757 can be suitably used. The current collector is in the form of a film or a sheet, and the thickness thereof is appropriately selected depending on the purpose of use, but is usually 1 to 200 μm, preferably 5 to 100 μm, more preferably 10 to 60 μm. Further, the sheet-like current collector may have a shape having holes such as expanded metal, punching metal, and net-like shape.
集電体には、活物質層との接触抵抗の低減、または活物質層との付着性向上のために、必要に応じて表面化学処理、表面粗面化処理があらかじめ施されていても良い。表面化学処理としては、酸処理、クロメート処理等が挙げられる。表面粗面化処理としては、電気化学的エッチング処理、酸またアルカリによるエッチング処理が挙げられる。 The current collector may be subjected to a surface chemical treatment or a surface roughening treatment in advance to reduce contact resistance with the active material layer or improve adhesion to the active material layer, if necessary. . Examples of the surface chemical treatment include acid treatment and chromate treatment. Examples of the surface roughening treatment include electrochemical etching treatment and etching treatment with acid or alkali.
また集電体は、その表面に導電性接着剤を塗布したものを用いてもよい。導電性接着剤としては、繊維状導電助剤の表面をコーティングするために用いるものと同様のものをいずれも用いることができる。 Moreover, you may use what applied the conductive adhesive to the surface as a collector. As the conductive adhesive, any of those similar to those used for coating the surface of the fibrous conductive additive can be used.
<活物質層>
活物質層は、電極材料をシート状に成形し、次いで集電体上に積層して形成しても良いし、集電体上で電極材料を直接成形し活物質層を形成しても良い。活物質層を形成する方法としては、加圧成形法等の乾式成形方法、および塗布方法等の湿式成形方法があるが、乾燥工程が不要で製造コストを抑えることが可能な乾式成形法が好ましい。乾式成形法としては、加圧成形法、押出成形法(ペースト押出ともいう。)等がある。加圧成形法は、電極材料に圧力を加えることで電極材料の再配列、変形により緻密化を行い、活物質層を成形する方法である。押出成形法は、電極材料を押出成形機で押し出しフィルム、シート等に成形する方法である。<Active material layer>
The active material layer may be formed by forming the electrode material into a sheet shape and then laminating the electrode material on the current collector, or may directly form the electrode material on the current collector to form the active material layer. . As a method for forming the active material layer, there are a dry molding method such as a pressure molding method, and a wet molding method such as a coating method, but a dry molding method that does not require a drying step and can reduce manufacturing costs is preferable. . Examples of the dry molding method include a pressure molding method and an extrusion molding method (also referred to as paste extrusion). The pressure forming method is a method of forming an active material layer by applying pressure to the electrode material to perform densification by rearrangement and deformation of the electrode material. The extrusion molding method is a method in which an electrode material is molded into an extruded film, sheet or the like with an extruder.
これらのうち、簡略な設備で行えることから、加圧成形法を採用することが好ましい。加圧成形法としては、例えば、電極材料をスクリューフィーダー等の供給装置でロール式加圧成形装置に供給し、活物質層を成形するロール加圧成形法や、電極材料を集電体上に散布し、電極材料をブレード等でならして厚みを調整し、次いで加圧装置で成形する方法、電極材料を金型に充填し、金型を加圧して成形する方法等がある。 Of these, the pressure molding method is preferably employed because it can be performed with simple equipment. Examples of the pressure molding method include a roll pressure molding method in which an electrode material is supplied to a roll-type pressure molding device with a supply device such as a screw feeder, and an active material layer is molded, or an electrode material is placed on a current collector. There are a method of spraying, adjusting the thickness of the electrode material with a blade or the like, and then forming with a pressurizing device, a method of filling the electrode material with a mold and pressurizing the mold, and the like.
これら加圧成形のうち、ロール加圧成形法が好適である。この方法において、集電体を電極材料の供給と同時にロールに送り込むことによって、集電体上に直接活物質層を積層してもよい。成形時の温度は、通常0〜200℃であり、複合粒子の結着剤の融点またはガラス転移温度より高いことが好ましく、融点またはガラス転移温度より20℃以上高いことがより好ましい。ロール加圧成形においては、成形速度を通常0.1〜20m/分、好ましくは4〜10m/分の範囲とする。また、ロール間のプレス線圧は、通常0.2〜30kN/cm、好ましくは1.5〜15kN/cmとする。 Of these pressure forming methods, the roll pressure forming method is preferred. In this method, the active material layer may be laminated directly on the current collector by feeding the current collector to the roll simultaneously with the supply of the electrode material. The molding temperature is usually 0 to 200 ° C., preferably higher than the melting point or glass transition temperature of the binder of the composite particles, and more preferably 20 ° C. higher than the melting point or glass transition temperature. In roll press molding, the molding speed is usually 0.1 to 20 m / min, preferably 4 to 10 m / min. The press linear pressure between the rolls is usually 0.2 to 30 kN / cm, preferably 1.5 to 15 kN / cm.
成形した電極の厚みのばらつきをなくし、活物質層の密度を上げて高容量化をはかるために、必要に応じてさらに後加圧を行っても良い。後加圧の方法は、ロールプレス工程が一般的である。ロールプレス工程では、2本の円柱状のロールをせまい間隔で平行に上下にならべ、それぞれを反対方向に回転させて、その間に電極をかみこませ加圧する。ロールは加熱または冷却等して温度調節しても良い。 In order to eliminate variations in the thickness of the molded electrode and increase the density of the active material layer to increase the capacity, post-pressurization may be further performed as necessary. The post-pressing method is generally a roll press process. In the roll press process, two cylindrical rolls are arranged in parallel at a narrow interval in the vertical direction, and each is rotated in the opposite direction. The temperature of the roll may be adjusted by heating or cooling.
<電気二重層キャパシタ>
本発明の電気二重層キャパシタは、上記本発明の電気二重層キャパシタ用電極を有するものである。電気二重層キャパシタは、本発明の電極と、電解液、セパレータなどの部品を用いて、常法に従って製造することができる。具体的には、例えば、電極を適切な大きさに切断し、次いでセパレータを介して電極を重ね合わせ、これをキャパシタ形状に巻く、折るなどして容器に入れ、容器に電解液を注入して封口して製造できる。<Electric double layer capacitor>
The electric double layer capacitor of the present invention has the electrode for the electric double layer capacitor of the present invention. The electric double layer capacitor can be produced according to a conventional method using the electrode of the present invention and components such as an electrolytic solution and a separator. Specifically, for example, the electrode is cut into an appropriate size, then the electrodes are overlapped via a separator, and this is wound into a capacitor shape, folded into a container, and an electrolytic solution is injected into the container. Can be manufactured by sealing.
電解液は、特に限定されないが、電解質を有機溶媒に溶解した非水電解液が好ましい。電解質としては、従来より公知のものがいずれも使用でき、テトラエチルアンモニウムテトラフルオロボレート、トリエチルモノメチルアンモニウムテトラフルオロボレート、テトラエチルアンモニウムヘキサフルオロフォスフェートなどが挙げられる。 The electrolytic solution is not particularly limited, but a nonaqueous electrolytic solution in which an electrolyte is dissolved in an organic solvent is preferable. As the electrolyte, any conventionally known electrolyte can be used, and examples thereof include tetraethylammonium tetrafluoroborate, triethylmonomethylammonium tetrafluoroborate, and tetraethylammonium hexafluorophosphate.
これらの電解質を溶解させる溶媒(電解液溶媒)は、一般的に電解液溶媒として用いられるものであれば特に限定されない。具体的には、プロピレンカーボート、エチレンカーボネート、ブチレンカーボネートなどのカーボネート類;γ-ブチロラクトンなどのラクトン類;スルホラン類;アセトニトリルなどのニトリル類;が挙げられる。これらは単独または二種以上の混合溶媒として使用することができる。中でも、カーボネート類が好ましい。電解液の濃度は通常0.5モル/リットル以上、好ましくは0.8モル/リットル以上である。 The solvent for dissolving these electrolytes (electrolyte solvent) is not particularly limited as long as it is generally used as an electrolyte solvent. Specifically, carbonates such as propylene car boat, ethylene carbonate and butylene carbonate; lactones such as γ-butyrolactone; sulfolanes; nitriles such as acetonitrile; These can be used alone or as a mixed solvent of two or more. Of these, carbonates are preferred. The concentration of the electrolytic solution is usually 0.5 mol / liter or more, preferably 0.8 mol / liter or more.
セパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン製の微孔膜または不織布、一般に電解コンデンサ紙と呼ばれるパルプを主原料とする多孔質膜などを用いることができる。また、セパレータに代えて固体電解質を用いることもできる。 As the separator, for example, a microporous membrane or non-woven fabric made of polyolefin such as polyethylene or polypropylene, or a porous membrane mainly made of pulp called electrolytic capacitor paper can be used. Moreover, it can replace with a separator and a solid electrolyte can also be used.
以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例および比較例における部および%は、特に断りのない限り質量基準である。 EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited to these Examples. In addition, the part and% in an Example and a comparative example are mass references | standards unless there is particular notice.
実施例および比較例における各特性の測定、評価は、以下の方法により行う。
(体積平均粒子径の測定)
活性炭および造粒粒子の体積平均粒子径は、レーザ回折式粒度分布測定装置(SALD−2000:島津製作所社製)で測定する。
(繊維径および繊維長の測定)
繊維状導電助剤の繊維径及び繊維長は、走査型電子顕微鏡(SEM)で観察を行い10点の平均値として求める。Measurement and evaluation of each characteristic in Examples and Comparative Examples are performed by the following methods.
(Measurement of volume average particle diameter)
The volume average particle diameter of the activated carbon and the granulated particles is measured with a laser diffraction particle size distribution analyzer (SALD-2000: manufactured by Shimadzu Corporation).
(Measurement of fiber diameter and fiber length)
The fiber diameter and fiber length of the fibrous conductive additive are obtained by observing with a scanning electron microscope (SEM) as an average value of 10 points.
(電気二重層キャパシタの特性)
電気二重層キャパシタについて、10mAの定電流で充電を開始し、電圧が2.7Vに達したらその電圧を保って定電圧充電とし、5分間定電圧充電を行った時点で充電を完了する。次いで、充電終了直後に定電流10mAで0Vに達するまで放電を行う。得られる充放電曲線より社団法人電子情報技術産業協会が定める規格RC−2377の計算方法に従って内部抵抗を算出する。(Characteristics of electric double layer capacitor)
The electric double layer capacitor starts to be charged with a constant current of 10 mA. When the voltage reaches 2.7 V, the voltage is maintained to be constant voltage charging, and the charging is completed when the constant voltage charging is performed for 5 minutes. Next, immediately after the end of charging, discharging is performed at a constant current of 10 mA until reaching 0V. The internal resistance is calculated from the obtained charge / discharge curve according to the calculation method of standard RC-2377 defined by the Japan Electronics and Information Technology Industries Association.
<実施例1>
電極活物質として比表面積が2,000m2/gで、体積平均粒子径が5μmである高純度活性炭粉末85部、粒子状導電助剤として体積平均粒子径0.7μmのアセチレンブラック(デンカブラック粉状;電気化学工業社製)5部、結着剤として、アクリレート系重合体の一種であるアクリル酸ブチル・メタクリル酸メチル・メタクリル酸共重合体の水分散体(固形分濃度28%)を固形分相当で9部、分散剤としてカルボキシメチルセルロースのアンモニウム塩(DN−800H:ダイセル化学工業社製)の1.5%水溶液を固形分相当で1部、および蒸留水を加えて「T.K.ホモディスパー」(プライミクス社製)で撹拌混合して固形分濃度が20%のスラリーを調製した。このスラリーをスプレー乾燥機(OC−16;大河原化工機社製)を使用し、回転円盤方式のアトマイザ(直径65mm)の回転数25,000rpm、熱風温度150℃、粒子回収出口の温度が90℃で噴霧乾燥造粒を行い、体積平均粒子径50μmの造粒粒子を得た。<Example 1>
85 parts of high-purity activated carbon powder having a specific surface area of 2,000 m 2 / g and a volume average particle diameter of 5 μm as an electrode active material, and acetylene black (DENKA black powder having a volume average particle diameter of 0.7 μm as a particulate conductive additive 5 parts, manufactured by Denki Kagaku Kogyo Co., Ltd., solid butyl acrylate / methyl methacrylate / methacrylic acid copolymer aqueous dispersion (solid content concentration 28%) as a binder. 9 parts in equivalent of a part, 1.5 parts of a 1.5% aqueous solution of ammonium salt of carboxymethyl cellulose (DN-800H: manufactured by Daicel Chemical Industries, Ltd.) as a dispersant, and 1 part in equivalent of a solid part, and distilled water were added, and “TK A slurry having a solid content concentration of 20% was prepared by stirring and mixing with "Homodisper" (manufactured by Primics). The slurry was sprayed using a spray dryer (OC-16; manufactured by Okawara Kako Co., Ltd.). The rotating disk atomizer (diameter 65 mm) was rotated at 25,000 rpm, the hot air temperature was 150 ° C, and the particle recovery outlet temperature was 90 ° C. Spray granulation was performed to obtain granulated particles having a volume average particle diameter of 50 μm.
この造粒粒子100部と、繊維状導電助剤としてのアルミ繊維(繊維径100μm、繊維長が700μm、アスペクト比(繊維長:繊維径)=7:1)10部とを接粉部がジルコニアでできた2L高速混合機(三井三池製作所製ヘンシェルミキサー)で2,000rpmで15分混合し、表面に繊維状導電助剤が付着した複合粒子を得た。 100 parts of the granulated particles and 10 parts of aluminum fibers (fiber diameter: 100 μm, fiber length: 700 μm, aspect ratio (fiber length: fiber diameter) = 7: 1) as a fibrous conductive assistant are used. Was mixed for 15 minutes at 2,000 rpm with a 2 L high-speed mixer (Mitsui Miike Seisakusho Henschel mixer), and composite particles having a fibrous conductive additive adhered to the surface were obtained.
次に、得られた複合粒子をロールプレス機(押し切り粗面熱ロール、ヒラノ技研工業社製)のロール(ロール温度100℃、プレス線圧1.7kN/cm)に定量フィーダーを用いて供給し、成形速度2m/分でロール加圧成形により厚さ480μmのシート状の活物質層を成形した。 Next, the obtained composite particles are supplied to a roll (roll temperature 100 ° C., press linear pressure 1.7 kN / cm) of a roll press machine (pressed rough surface heat roll, manufactured by Hirano Giken Kogyo Co., Ltd.) using a quantitative feeder. Then, a sheet-shaped active material layer having a thickness of 480 μm was formed by roll press forming at a forming speed of 2 m / min.
これとは別に、集電体として厚さ30μmのアルミニウム箔に導電性接着剤(バニーハイト#523−3:日本黒鉛社製)を塗布し、乾燥して導電性接着剤層を形成した。この集電体の導電性接着剤層を形成した面に、上記で得られたシート状の活物質層を積層して貼り合せ、厚さ500μmのシート状電極を得た。 Separately, a conductive adhesive (Bunny Height # 523-3: manufactured by Nippon Graphite Co., Ltd.) was applied to a 30 μm thick aluminum foil as a current collector and dried to form a conductive adhesive layer. The sheet-like active material layer obtained above was laminated and bonded to the surface of the current collector on which the conductive adhesive layer was formed to obtain a sheet-like electrode having a thickness of 500 μm.
このシート状電極を打ち抜き、直径12mmの円形電極を2枚得た。該電極を用い、活物質層同士が対抗するようにして、厚さ35μmのレーヨン製セパレータを挟んだ。これに電解液を含浸させて、コインセルCR2032型の電気二重層キャパシタを作製した。電解液としては、トリエチルメチルアンモニウムテトラフルオロボレートの、1.4モル/リットル濃度のプロピレンカーボネート溶液を用いた。このキャパシタの特性を評価した結果を表1に示す。 This sheet electrode was punched out to obtain two circular electrodes having a diameter of 12 mm. Using this electrode, a 35 μm-thick rayon separator was sandwiched so that the active material layers faced each other. This was impregnated with an electrolytic solution to produce a coin cell CR2032-type electric double layer capacitor. As the electrolytic solution, a 1.4 mol / liter propylene carbonate solution of triethylmethylammonium tetrafluoroborate was used. The results of evaluating the characteristics of this capacitor are shown in Table 1.
<実施例2>
繊維状導電助剤として、アルミ繊維10部に代えて、カーボンナノファイバー(VGCF:昭和電工社製、繊維径150nm、繊維長20μm、アスペクト比(繊維長:繊維径)=133:1)5部を用いた以外は実施例1と同様にして複合粒子を得た。次いで、この複合粒子を用いて実施例1と同様にして活物質層、電極およびキャパシタを成形した。得られたキャパシタの各特性の評価結果を表1に示す。<Example 2>
As a fibrous conductive aid, carbon nanofiber (VGCF: manufactured by Showa Denko KK, fiber diameter 150 nm, fiber length 20 μm, aspect ratio (fiber length: fiber diameter) = 133: 1) instead of 10 parts of aluminum fiber 5 parts Composite particles were obtained in the same manner as in Example 1 except that was used. Subsequently, an active material layer, an electrode, and a capacitor were formed using the composite particles in the same manner as in Example 1. Table 1 shows the evaluation results of the characteristics of the obtained capacitor.
<実施例3>
繊維状導電助剤として、アルミ繊維10部に代えて、カーボンナノチューブ(繊維経10〜30nm、繊維長1〜100μm、アスペクト比(繊維長:繊維径)=100:1〜10000:1)5部を用いる以外は実施例1と同様にして複合粒子を得る。次いで、この複合粒子を用いて実施例1と同様にして活物質層、電極およびキャパシタを成形する。得られるキャパシタの各特性の評価結果を表1に示す。<Example 3>
As a fibrous conductive assistant, instead of 10 parts of aluminum fiber, 5 parts of carbon nanotube (fiber length 10-30 nm, fiber length 1-100 μm, aspect ratio (fiber length: fiber diameter) = 100: 1-10000: 1) Composite particles are obtained in the same manner as in Example 1 except that is used. Next, an active material layer, an electrode, and a capacitor are formed using the composite particles in the same manner as in Example 1. Table 1 shows the evaluation results of the characteristics of the obtained capacitor.
<実施例4>
繊維状導電助剤として、アルミ繊維10部に代えて、ステンレス繊維(繊維経12μm、繊維長200μm、アスペクト比(繊維長:繊維径)=17:1)10部を用いる以外は実施例1と同様にして複合粒子を得る。次いで、この複合粒子を用いて実施例1と同様にして活物質層、電極およびキャパシタを成形する。得られるキャパシタの各特性の評価結果を表1に示す。<Example 4>
Example 1 except that instead of 10 parts of aluminum fiber, 10 parts of stainless steel fiber (fiber diameter 12 μm, fiber length 200 μm, aspect ratio (fiber length: fiber diameter) = 17: 1) is used as the fibrous conductive additive. Similarly, composite particles are obtained. Next, an active material layer, an electrode, and a capacitor are formed using the composite particles in the same manner as in Example 1. Table 1 shows the evaluation results of the characteristics of the obtained capacitor.
<比較例1>
高純度活性炭粉末の量を75部、アセチレンブラックの量を15部とした以外は、実施例1と同様にして造粒粒子を得た。この造粒粒子を、繊維状導電助剤と混合せずにそのまま使用した以外は、実施例1と同様にして活物質層、電極およびキャパシタを成形した。
得られたキャパシタの各特性の評価結果を表1に示す。<Comparative Example 1>
Granulated particles were obtained in the same manner as in Example 1 except that the amount of high-purity activated carbon powder was 75 parts and the amount of acetylene black was 15 parts. An active material layer, an electrode and a capacitor were formed in the same manner as in Example 1 except that the granulated particles were used as they were without being mixed with the fibrous conductive additive.
Table 1 shows the evaluation results of the characteristics of the obtained capacitor.
<比較例2>
高純度活性炭粉末の量を75部とし、導電助剤として、粒子状導電助剤であるアセチレンブラック10部に加え、さらに繊維状導電助剤であるカーボンナノファイバー(実施例2で用いた物と同じ物)を5部用いた他は、実施例1と同様にして造粒粒子を得た。この造粒粒子を、繊維状導電助剤と混合せずにそのまま使用して、比較例1と同様にして活物質層、電極およびキャパシタを成形した。得られたキャパシタの各特性の評価結果を表1に示す。<Comparative Example 2>
The amount of high-purity activated carbon powder is 75 parts, and in addition to 10 parts of acetylene black, which is a particulate conductive aid, as a conductive aid, carbon nanofibers, which are fibrous conductive aids (the same as those used in Example 2) Granulated particles were obtained in the same manner as in Example 1 except that 5 parts of the same product was used. The granulated particles were used as they were without being mixed with the fibrous conductive additive, and an active material layer, an electrode and a capacitor were formed in the same manner as in Comparative Example 1. Table 1 shows the evaluation results of the characteristics of the obtained capacitor.
以上より明らかなように、造粒粒子と繊維状導電助剤としてアルミ繊維やステンレス繊維を含有し、該繊維状導電助剤が該造粒粒子の外部に存在する電極材料を用いて得られる、本発明の電気二重層キャパシタ用電極を用いると、内部抵抗の低い電気二重層キャパシタが得られる(実施例1、4)。一方、繊維状導電助剤を含まない場合(比較例1)、および繊維状導電助剤が造粒粒子の内部にのみ存在する場合(比較例2)は、導電助剤の総量は実施例1および4と同量であるが、得られる電気二重層キャパシタは内部抵抗が大きいものである。これに対し、繊維状導電助剤としてカーボンナノファイバーやカーボンナノチューブを含有し、該繊維状導電助剤が該造粒粒子の外部に存在する電極材料を用いて得られる、本発明の電気二重層キャパシタ用電極を用いると、導電助剤の総量が少ないにもかかわらず、内部抵抗の低い電気二重層キャパシタが得られる(実施例2や3)。 As apparent from the above, granulated particles and fibrous conductive assistants containing aluminum fibers and stainless fibers, the fibrous conductive assistants obtained using an electrode material present outside the granulated particles, When the electric double layer capacitor electrode of the present invention is used, an electric double layer capacitor having a low internal resistance can be obtained (Examples 1 and 4). On the other hand, when the fibrous conductive assistant is not included (Comparative Example 1) and when the fibrous conductive assistant is present only inside the granulated particles (Comparative Example 2), the total amount of the conductive assistant is Example 1. The electric double layer capacitor obtained has the same internal resistance as that of No. 4 and No. 4. On the other hand, the electric double layer of the present invention obtained by using an electrode material containing carbon nanofibers or carbon nanotubes as a fibrous conductive assistant, and the fibrous conductive assistant is present outside the granulated particles. When the capacitor electrode is used, an electric double layer capacitor having a low internal resistance can be obtained even though the total amount of the conductive additive is small (Examples 2 and 3).
Claims (5)
前記電極材料が、さらに繊維状導電助剤を前記造粒粒子の外部に含有することを特徴とする電気二重層キャパシタ用電極。An active material layer formed by molding an electrode material containing granulated particles containing an electrode active material, a conductive additive, and a binder, and a current collector are laminated,
The electrode material for an electric double layer capacitor, wherein the electrode material further contains a fibrous conductive additive outside the granulated particles.
該造粒粒子および繊維状導電助剤を混合して前記造粒粒子の外部に繊維状導電助剤を含む電極材料を得る工程、
該電極材料を乾式成形して活物質層を形成する工程、ならびに
該活物質層および集電体を積層する工程、
を有する請求項1記載の電気二重層キャパシタ用電極の製造方法。A step of granulating an electrode active material, a conductive aid, and a binder to obtain granulated particles;
Mixing the granulated particles and a fibrous conductive additive to obtain an electrode material containing a fibrous conductive aid outside the granulated particles;
A step of dry-molding the electrode material to form an active material layer, and a step of laminating the active material layer and a current collector,
The manufacturing method of the electrode for electric double layer capacitors of Claim 1 which has these.
該造粒粒子の表面の少なくとも一部を繊維状導電助剤で被覆して複合粒子を得る工程、
該複合粒子を含む電極材料を乾式成形して活物質層を形成する工程、ならびに
該活物質層および集電体を積層する工程、
を有する請求項1記載の電気二重層キャパシタ用電極の製造方法。A step of granulating an electrode active material, a conductive aid, and a binder to obtain granulated particles;
A step of coating at least a part of the surface of the granulated particles with a fibrous conductive aid to obtain composite particles;
A step of dry-molding an electrode material containing the composite particles to form an active material layer, and a step of laminating the active material layer and a current collector,
The manufacturing method of the electrode for electric double layer capacitors of Claim 1 which has these.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009536103A JP5045761B2 (en) | 2007-10-03 | 2008-10-03 | Electrode for electric double layer capacitor and method for manufacturing the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007259814 | 2007-10-03 | ||
JP2007259814 | 2007-10-03 | ||
JP2009536103A JP5045761B2 (en) | 2007-10-03 | 2008-10-03 | Electrode for electric double layer capacitor and method for manufacturing the same |
PCT/JP2008/068054 WO2009044856A1 (en) | 2007-10-03 | 2008-10-03 | Electrode for electric double layer capacitor and process for producing the electrode for electric double layer capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2009044856A1 true JPWO2009044856A1 (en) | 2011-02-10 |
JP5045761B2 JP5045761B2 (en) | 2012-10-10 |
Family
ID=40526278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009536103A Expired - Fee Related JP5045761B2 (en) | 2007-10-03 | 2008-10-03 | Electrode for electric double layer capacitor and method for manufacturing the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5045761B2 (en) |
WO (1) | WO2009044856A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160005551A1 (en) * | 2013-02-27 | 2016-01-07 | Zeon Corporation | Composite particles for electrochemical device electrode, method for manufacturing composite particles for electrochemical device electrode, electrochemical device electrode, and electrochemical device |
JP6344384B2 (en) | 2013-05-13 | 2018-06-20 | 日本ゼオン株式会社 | Electrochemical element electrode composite particle, method for producing electrochemical element electrode composite particle, electrochemical element electrode and electrochemical element |
WO2015098632A1 (en) | 2013-12-26 | 2015-07-02 | 日本ゼオン株式会社 | Composite particle for electrochemical element electrode |
CN106030865B (en) | 2014-03-19 | 2019-06-11 | 日本瑞翁株式会社 | Composite particles for electrochemical element electrode |
JP6927012B2 (en) * | 2017-12-15 | 2021-08-25 | トヨタ自動車株式会社 | Manufacturing method of electrodes for power storage devices, electrodes for power storage devices and power storage devices |
KR102613287B1 (en) | 2018-02-13 | 2023-12-14 | 주식회사 엘지에너지솔루션 | Method for Manufacturing an Electrode in which a Carbon nanotube is Applied as a Conductive Material, an Electrode Manufactured by the Method, and a Secondary Battery Including the Electrode |
KR20240093100A (en) | 2022-12-15 | 2024-06-24 | 주식회사 월덱스 | Manufacturing Method of Aluminum Pouch Film For Secondary Battery |
KR20240145102A (en) | 2023-03-27 | 2024-10-07 | 주식회사 피씨에스 | Method For Producing Cathode Current Collector For Secondary Battery with Improved Hydrophilicity and Conductivity |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040248006A1 (en) * | 2001-09-17 | 2004-12-09 | Kazuo Tsutsumi | Active material for cell and its manufacturing method |
JP4839669B2 (en) * | 2005-04-28 | 2011-12-21 | 日本ゼオン株式会社 | Composite particles for electrochemical device electrodes |
-
2008
- 2008-10-03 JP JP2009536103A patent/JP5045761B2/en not_active Expired - Fee Related
- 2008-10-03 WO PCT/JP2008/068054 patent/WO2009044856A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JP5045761B2 (en) | 2012-10-10 |
WO2009044856A1 (en) | 2009-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5141002B2 (en) | Method for producing composite particle for electrochemical device electrode | |
JP5045761B2 (en) | Electrode for electric double layer capacitor and method for manufacturing the same | |
JP4929792B2 (en) | Composite particles for electrochemical device electrodes | |
JP4840357B2 (en) | Composite particles for electrochemical device electrodes | |
JP4840358B2 (en) | Electrochemical element electrode | |
JP4978467B2 (en) | Electrochemical element electrode material and composite particles | |
JP4839669B2 (en) | Composite particles for electrochemical device electrodes | |
KR101455445B1 (en) | Electrode for lithium ion capacitor and lithium ion capacitor | |
KR101245055B1 (en) | Composite particles for electrochemical element electrode, process for producing composite particles for electrochemical element electrode, and electrochemical element electrode | |
KR20080077995A (en) | Electric double layer capacitor | |
JP5311706B2 (en) | Method for producing composite particle for electrochemical device electrode | |
JPWO2005124801A1 (en) | Electrode material for electric double layer capacitor and manufacturing method thereof | |
JP4985404B2 (en) | Electrochemical element electrode manufacturing method, electrochemical element electrode material, and electrochemical element electrode | |
JP2010109354A (en) | Method of manufacturing electrode for electrochemical element | |
JPWO2006106680A1 (en) | Electrode material for electric double layer capacitor, manufacturing method, electrode for electric double layer capacitor, and electric double layer capacitor | |
JP2009212131A (en) | Collector for hybrid capacitor and electrode sheet for hybrid capacitor using the same | |
JP4839726B2 (en) | Electrode for electric double layer capacitor | |
JP2013077558A (en) | Electrode for electrochemical element | |
JP2010171212A (en) | Electrode for electric double layer capacitor and method of manufacturing the same | |
JP2010171213A (en) | Electrode for electric double layer capacitor | |
JP6375751B2 (en) | Method for producing composite particle for electrochemical element electrode, composite particle for electrochemical element electrode, electrochemical element electrode, and electrochemical element | |
WO2009119553A1 (en) | Method for production of electrode for hybrid capacitor | |
JP2008251958A (en) | Manufacturing method of electric double layer capacitor electrode | |
JP2010157564A (en) | Method of manufacturing composite particle for electrochemical element electrode | |
JP2010171211A (en) | Electrode for electric double layer capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110912 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120423 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20120423 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120619 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120702 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150727 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5045761 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |